
656 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

SNMPGetPrev: An Efficient Way to Browse
Large MIB Tables

David Breitgand, Associate Member, IEEE, Danny Raz, Member, IEEE, and Yuval Shavitt, Senior Member, IEEE

Invited Paper

Abstract—The simple network management protocol (SNMP)
is a widely used standard for management of devices in Internet
protocol networks. Part of the protocol great success is due to its
simplicity; all the managed information is kept in a management
information base (MIB) that can be accessed using SNMP queries
to a software agent. In this paper, we develop a general model that
abstract the data retrieval process in SNMP. In particular, we study
the amount of queries (communication) and time needed to ran-
domly access an element in this model. It turns out that this ques-
tion has practical importance.

For some network management applications, e.g., MIB
browsing, there is a need to traverse portions of a MIB tree,
especially tables, in both directions. While theGetNext request
defined by SNMP standard allows an easy and fast access to the
next columnar object instance or next scalar object, there is no
corresponding operator defined in the SNMP framework for
retrieving the previous MIB object instance. This, in effect, allows
an efficient MIB traversal only in one direction and makes the
search in the reverse direction problematic.

This paper presents and analyzes theGetPrev application,
a tool that enables the retrieval of the previous instances of a
columnar objects or scalar MIB objects. OurGetPrev applica-
tion uses only standard SNMPGetNext and Get requests to
carry on a fast and bandwidth efficient search for the required ob-
ject instance. For example, as predicted by our analysis and shown
by our experiments, retrieving a value of the last columnar object
instance in a large forwarding table (ipForwardTable) containing
about 3000 entries can take several minutes using a sequence of
the GetNext requests (the straightforward approach used, e.g.,
by widely deployed and applications).
The GetPrev application presented in this paper retrieves this
value using no more than 20GetNext requests (in most cases
about seven requests), taking no more than a second (i.e., it is two
orders of magnitude faster and two to three orders of magnitude
less bandwidth consuming).

Index Terms—GetPrev, MIB browsing, network management,
SNMP.

Manuscript received May 8, 2001; revised December 20, 2001. The work of
D. Breitgand, D. Raz and Y. Shavitt was done while they were at Bell Labs,
Lucent Technologies, Holmdel, NJ 07733 USA.

D. Breitgand was with Bell Labs, Lucent Technologies, Holmdel, NJ 07733
USA. He is now with the Hebrew University, School of Engineering and Com-
puter Science, Jerusalem, Israel (e-mail: davb@cs.huji.ac.il).

D. Raz was with Bell Labs, Lucent Technologies, Holmdel, NJ 07733 USA.
He is now with the Technion, Department of Computer Science, Haifa, Israel
(e-mail: danny@cs.technion.ac.il).

Y. Shavitt was with Bell Labs, Lucent Technologies, Holmdel, NJ 07733
USA. He is now with Tel-Aviv University, Department of Electrical Engi-
neering—Systems, Tel-Aviv, Israel (e-mail: shavitt@eng.tau.ac.il).

Publisher Item Identifier S 0733-8716(02)05078-3.

I. INTRODUCTION AND MOTIVATION

SNMP (simple network management protocol) is a widely
used standard for management of devices in Internet pro-

tocol (IP) networks [1]–[4]. Part of the protocol great success is
due to its simplicity. All the managed information is kept in a
management information base (MIB) that can be accessed using
SNMP queries to a software agent that is executed on the man-
aged device.1

To retrieve information from the remote SNMP daemon’s
MIB managercan use two basic SNMP requests: and

. A () request retrieves the value of the object
instance identified by the given object identifier (OID). If the
leaf in the MIB tree identified by does not exist returns
with an error indicating this. A () request receives
an OID approximationas its input. The wordapproximation
is used in the literature to indicate the fact that the input
component sequence should not necessarily identify an
existing leaf in the MIB tree. always retrieves a value
of the object instance whose OID is immediate lexicographical
successor of the given OID approximationin the MIB tree.
In other words, retrieves the value of an object
instance with the smallest (in the lexicographic order) OID
that is still greater than the given OID approximation. If the
given OID approximation identifies the last leaf (in ascending
lexicographic order) of the MIB tree, then returns
with an error indicating this condition.

While and are perfectly adequate for retrieving
scalars, using them to retrieve large tables may be cumbersome
and inefficient (see a discussion in [5]). To this end a special

request was introduced in SNMPv2 [6]. fa-
cilitates the retrieval of large blocks of data and is used primarily
to retrieve large tables. In a sense it is a generalization of the

request. Conceptually, can be viewed as
requests packed into a single protocol data unit (PDU),

where being a parameter controlled by a manager.
In many cases, one does not need to retrieve an entire table

but is interested only in a specific entry. For example, a manager
may wish to find out what is the largest port number currently
used by transmission control protocol (TCP) at a specific host.
Another case that may be considered arises when a manager
wishes to see which entry in a routing table precedes a given
entry. A more general case is introduced by the MIB browsers.

1In order to make our presentation self-contained and clear even to the SNMP
novice, we found it appropriate to reiterate some of the SNMP basics in the
Appendix.

0733-8716/02$17.00 © 2002 IEEE

BREITGAND et al.: SNMP : AN EFFICIENT WAY TO BROWSE LARGE MIB TABLES 657

A MIB browser is an indispensable management tool that allows
the interactive browsing of the content of a MIB using an ad-
vanced GUI. Many MIB browser implementations are available
today [7]–[9]. In order to implement such a browser, one has to
be able to efficiently respond to the user requests and retrieve
the ever changing information regarding the next and previous
objects instances with respect to the current position of a user
in the MIB tree. In other words, the MIB tree should be effi-
ciently traversed in both directions in real time. Most browsers
today will download a “chunk” of the MIB tree and then per-
form a local browsing. This creates two problems: 1) if the in-
formation in the MIB is changing at a relatively high rate, the
information displayed to the user may be out of date; and 2) in
many cases the browser may download unnecessary information
(e.g., when is used), which both wastes bandwidth and
slows down the browser.

The following options are available in order to support the
retrieval of the previous MIB object instances.

• One may add a request to the SNMP standard.
Once the agent supports such a request, the retrieval of
the previous object will become fast and efficient. The
problem, of course, is that changing the standard is highly
undesirable. It takes a long period of time, and it is not
clear whether such a change is unavoidable. Even if this
would happen the multitude of the legacy agents would
not support the new version.

• One can redefine large tables in such a way that every
object instance contains a pointer to the previous object.
Although such mechanism could (and maybe should) be
used when new MIB modules are designed, it is inappli-
cable to the well established MIB definitions e.g., those
of MIB II [10]. Therefore, this option is as troublesome
as updating the SNMP standard to support a new type of
request.

• One may “walk” the table, using a sequence of the
requests until the required oid is retrieved. If

we are required to find the value of the last but one entry
in the table of size , this method loads the device with

queries and takes a time ofround trip delays plus
query processing delays. RFC 1187 [11] suggests to divide
the table among a number of threads each one walking its
part of a table concurrently with the other threads. This
scheme potentially reduces the retrieval time by a constant
factor at the price of overloading the SNMP agent and
the management station. The issue of evenly partition the
table among the threads is not addressed there.

• One may use for greater efficiency. Alas, here
we are faced with a problem of choosing the right block
size for the request. If the block size is too large,
one may retrieve information which is outside of the table.
If the block size is too small we will only improve the pre-
viously mentioned “walking” method by a small factor.
It should be noted also that does not reduce the
overall amount of data transmitted over the network, but
rather reduces the overall number of IP packets sent be-
tween the manager and a daemon. Last, but not the least,
this method is not applicable to the legacy SNMP daemons
that are still running SNMPv1.

In the latter two options, we may be required to retrieve the
entire table although we are interested only in a single object
instance. This is inefficient in several aspects: it takes a longer
time, it consumes more bandwidth, and it overloads both the
managed device and the manager. For example, retrieving a for-
warding table with 3000 entries from a Cisco 7500 router over
the 100BaseT Ethernet can take five to seven minutes using

application included with the UCD SNMP library
[8], which is definitely too time consuming.

Our goal is to address this problem and allow efficient MIB
browsing in real time. To do so, we introduce a simple
application, a tool that substantially optimizes retrieval of the
previous MIB object instances. The presented applica-
tion uses only standard SNMP and requests (thus
being applicable to any SNMP version) to carry on a fast and
bandwidth efficient search for the required object instance.

The main novel idea proposed by this paper is to use binary
search rather than linear search in order to make a fast progress
in a table starting with the first instance of the columnar ob-
ject. That is, instead of retrieving the lexicographically next ob-
ject we try to “jump” forward to a larger OID and perform a

request on it. If we do not end up with a too large OID
then we continue, otherwise, we know that the guessed value
is too large and we modify the previous guess. Of course, this
basic idea had to be modified in order to build an efficient tool.
This resulted in a number of algorithm variants with different
time/bandwidth tradeoffs.

Note that our algorithm is an interactive process and may be
effected by changes in the table during its execution. As a result,
the algorithm may return a stale value. This problem exists in
all the other alternative methods, e.g., due to changes that may
occur immediately after the table was dumped.

As our experiments show, retrieves a value of
the last columnar object instance in a large forwarding table
(ipForwardTable) containing about 3000 entries in less than
a second, which is 500 times faster than the straightforward
approach used by . It also achieves a factor of
about 400 in the amount of data transmitted over the network
during the search. As mentioned above, the usage of
does not reduce the total bandwidth consumption (in some
cases it even makes it larger). However, one would expect less
request messages sent over the network and less processing
time. We show that even when compared with , the
performance of our application is orders of magnitude
superior not only in terms of bandwidth, but also in terms of
time and a number of IP datagrams.

The rest of the paper is organized as following. In Section II,
we define the problem in more rigorous terms. Section III dis-
cusses the algorithms used for implementation. We
evaluate the performance of the new tool in Section IV, analyze
the performance results in Section V, and provide some con-
cluding remarks in Section VI.

II. PROBLEM DEFINITION AND MODEL

In order to perform a rigorous study of the efficiency of the
different possible solutions we turn now to define our model
formally. We abstract the MIB objects and the communication

658 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

Fig. 1. An example for the tree structure of a table.

between a manager and an SNMP agent by the following data
base model.

All management variables are organized into a labeled tree
representing a MIB. A labeled tree, is a tree in which each
node has a label. Two different children of a node must have
distinct labels. Following the naming model adopted by SNMP,
these labels are nonnegative Integer numbers. Each node of the
labeled tree is uniquely identified by the ordered sequence of
labels of the internal nodes belonging to the path from the root
to this node.

Definition 1: Identity (or path label) of node ,
, is the ordered sequence of labels uniquely

identifying the path from the root of to this node. The
sequence is interpreted as a path that starts at the root (.) goes
to the node labeled , then to the child labeled and so on.

Leaves in the labeled tree havevaluesassociated with them.
The value of node is given by . In
SNMP terminology, is termed the OID of a MIB variable,
and is referred to as the value of the variable.

Definition 2: SNMP-like data baseis an object comprised of
a labeled tree , and the following methods:

if is a leaf

NULL otherwise

where is the smallest (in lexicographic ordering)
leaf in that is lexicographically greater than . If
such a leaf does not exist then and

.
Note that the methods can be called with any value, that is

can be any label sequence and does not need to
represent an existing node in the tree. In this case
is termedidentity approximation.

The above formalism can also represent a table with a lexico-
graphically sorted key list. In this case the identity of the leaves
represent the values of the keys of the table entries.retrieves
the value of a table entry given the key values, and re-
trieve the key values of the next element in the table along with
its value.

Given a label sequence OID, identifying a leaf in the tree, our
aim is to find the previous (in the lexicographic ordering) leaf
in this tree. In other words, we want to implement the following
operator:

Definition 3:
, where is the largest (in lexico-

graphic ordering) leaf in that is smaller than . If
such a leaf does not exist then
and .

Given the above definitions, the problem is expressed as fol-
lowing. We need to implement the method using the
least number of calls to the and SNMP-like data
base operators.

Note that by the above definitions if
is a leaf then =

. If is an internal
node then

.
Let us call the identity returned by the target leaf.

In order to implement the operator we need to find the
target leaf first. In other words, we have to find the path label lex-
icographically preceding the path label specified as s
input. Once found, target leaf uniquely identifies the previous
element, and its value is retrieved using .

The first step in finding the target leaf is to find the common
ancestor of the given path label and the target leaf. The common
ancestor is the last node (from the root) on the path from the
root to the given node that has a descendant leaf whose label
is lexicographically smaller than that of the input path label. In
other words, we are looking for the first node from the input
node upward, for which the label of the operator is
strictly smaller than the input. We call this node themaximal
common prefix. For example, in Fig. 1 the maximal common
prefix of the leaf.1.135.180.158.21 is the node.1, and

BREITGAND et al.: SNMP : AN EFFICIENT WAY TO BROWSE LARGE MIB TABLES 659

the maximal common prefix for the label.1.132.65.10.4
is .1.132.

The correspondence between the labeled treeand the scalar
objects in the MIB is obvious. Instances of columnar objects
are lexicographically ordered by the ascending values of their
indices. Usually, as explained in the introduction one would
apply the operator to an instance of a columnar ob-
ject, looking for the value of the previous element in the table. In
such cases either MIB parsing or Syntax parsing of the OID can
retrieve the table’s OID. The search for the maximal common
prefix can then start from this OID, since the table is an existing
object.

III. I MPLEMENTATIONS OF THEGETPREV ALGORITHM

This section presents the algorithms used by the ap-
plication and reports the status of its implementation. All of the
algorithms utilize two basic building blocks: a variant of the
well-known binary search algorithm, and anupper boundal-
gorithm based on well known techniques for competitive algo-
rithms [12]). The latter is used to obtain an upper bound to the
searched value when one is not known.

As explained in Section II, we are looking for an identity of
an instance of the columnar object that lexicographically pre-
cedes the identity of the given OID. In other words, if the given
OID identifies a valid instance of a columnar object then we
are looking for the instance of the columnar object for which
the return value of a request is the value of the given
instance. However, if the given OID does not identify a valid
instance of a columnar object then we are looking for the in-
stance of the columnar object for which the returned value of
a request is the returned value of a request
for the given instance approximation. Thus, before starting the
search algorithm we verify that the given OID identifies an ex-
isting instance of a columnar object (using). If this is not the
case, we replace the given OID by the identity of the instance
returned by a request.

In order to illustrate the problem and the difficulties associ-
ated with solving it, consider the table presented in the right
hand side of Fig. 1. This is a part of the ipRoutingTable from
MIB II. 2 The corresponding labeled tree is presented in the left
hand side of Fig. 1. Leaves of the tree are ordered (from left
to right) in the ascending order of the values of their indices.
Suppose that we want to find the value of the entry preceding
135.180.158.21. The full OID of this columnar object in-
stance is:1.3.6.1.2.1.4.21.1.1.135.180.158.21
(or ip.ipRoutingTable.1.1.135.180.158.21). By
parsing the MIB one can find the table OID and limit the search
to the indices that follow the table prefix (these key fields are
shown in Fig. 1). The first stage is to find the first component
of the preceding entry (132 in our case). We know that the com-
ponent’s value is an integer number between 0 and 135, and we
can carry on a binary search to find it (see Section III-A-1). After
the first component has been determined we turn to finding the

2Notice that this table is obsolete and is replaced by other tables. However,
in many legacy systems this table is still in use and, therefore, we used it in our
experiments.

Fig. 2. Binary search: determines a value of the OIC in thelength(pre�x)+1
position of the OIDs predecessor.

second one. In this case, we do not have an upper bound on the
possible value of this component. Since we know that any OID
component is of integer type, we can use the maximal integer
value as an upper bound.3 However, a better approach is to try
to find a tighter bound on the actual value of the component. We
present a simple and fast algorithm that finds an upper bound
that is guaranteed to be no greater than twice the actual value
of this component. Once the bound is found we use the binary
search to determine the wanted component value. In a similar
way, we find the values of the next two components and then
perform an request to retrieve the desired value of
the columnar object instance.

Next, we describe the building blocks mentioned above and
the algorithm. Then we describe modifications made
to the building blocks in order to improve the application’s
performance. Finally, we report the implementation
status and the application’s availability.

A. Building Blocks

1) Binary Search:We use binary search in two ways: a
classic divide-and-conquer and a search in a sparse domain [13].
As explained before, the first step in finding the predecessor of
the given OID is to find the maximal common prefix between
this OID and its lexicographic predecessor. In order to do this
we use the classic binary search on the length of the prefix.
Later we refer to this procedure as .

Another use of the binary search is to determine values of
theobject identifier components(OICs), following the maximal
common prefix. The pseudo code of the binary search algorithm
adapted for this purpose is shown in Fig. 2. Here, and later on,
we make usage of the two additional functions:
that receives an OID and returns the number of its OICs; and

that returns the value ofth component of the OID
specified as its argument.

Binary_Search (see Fig. 2) receives the following parameters:

• : OID whose lexicographic predecessor should be
found

• : currently known prefix of the predecessor
• : lower bound of the binary search
• : upper bound of the binary search.

3In fact, in this specific case we could use additional knowledge about IP
addresses, and bound this number by 255. We discuss this point further in Sec-
tion III-A-2.

660 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

Fig. 3. An example of a TCP connection table.

It preforms a binary search based on the fact that the wanted
value of the component is the largest valuesuch that

is lexicographically smaller than .
Note that the statement in Line 9 is redundant and is present
there just for the sake of clarity.

2) Upper Bound Algorithm:In many cases the upper bound
for the binary search is unknown. As an example, consider tcp-
ConnTable (MIB-II). An instance of a columnar object in this
table is identified using four indices: two IP addresses (source
and destination), and two ports (source and destination). A
sample table is shown by Fig. 3.

If we want to find the value of an OID that lexico-
graphically precedes135.180.161.15.23.135.180.
142.50.1125, then, obviously, we can use the regular
binary search in order to determine the value of the first OIC
of the predecessor by having zero as the low and 135 as the
high bounds of the search. However, we cannot use this simple
scheme for determining a value of the second OIC of the
predecessor.

Using semantic knowledge of the OIC (in this case, about IP
addresses), we would be able to set 255 as the upper bound for
the label’s values. However, this require the client to be aware
of the semantics of all MIB variables. We prefer to keep the
client side as simple as possible and, thus, do not use semantic
knowledge.

In absence of the additional knowledge, we find an upper
bound for the binary search using the upper bound algorithm.
The algorithm (see Fig. 4) receives the OID whose prede-
cessor should be found, and a currently known prefix of the
predecessor.

It sequentially tries candidates for an upper bound until
the request returns the OID equivalent to that

Fig. 4. Upper bound algorithm: finding an upper bound for the binary search.

specified as the input. To achieve a tight bound we select as
our next candidate value twice the value we received in the
response to the . This promises a bound which
is at most twice the actual value present in the table for this
OIC. In Section III-C, we show how to make the bound tighter.

Starting from second OIC after the common prefix, the upper
bound algorithm is executed prior to the binary search for every
OIC.

B. Basic Search Algorithm

Fig. 5 presents the pseudocode of the main algorithm used
to implement the application. The algorithm is
comprised of four main steps. In the first step (line 1), the
algorithm finds the maximal prefix common to the input OID
and its predecessor using classic divide-and-conquer search on
the length of the prefix. In the next step (line 3), the value of
the first OIC following the maximal common prefix is found
using binary search algorithm presented in Section III-A-1.
In the third step (line 4), subsequent OICs are determined
using a two phase procedure. First, a tight upper bound for
the OIC value is found using the upper bound algorithm (see

BREITGAND et al.: SNMP : AN EFFICIENT WAY TO BROWSE LARGE MIB TABLES 661

Fig. 5. Basic GetPrev algorithm: finds the value of a lexicographic
predecessor of the given OID.

Section III-A-2). This bound is fed to the binary search which
comprises the second phase. In the fourth step, the algorithm
retrieves the value of the variable identified by the found OID
of the predecessor.

In the following subsections, we present some modifications
made to the building blocks used by the main algorithm in order
to improve its performance.

C. Improved Bounds Algorithm

The upper bound algorithm finds an upper bound which
is, in the worst case, twice the actual OIC value of the prede-
cessor. For example, suppose we want to find the predecessor
of 135.180.161.15.23.135.180.142.50.1125 in
tcpConnTable shown in Fig. 3. Upper_Bound will return a
value not greater than 66 378 as the upper bound for the fifth
OIC of the predecessor (In fact, the upper bound returned for
this example will be).

It would be beneficial to obtain a tighter upper bound to min-
imize the number of iterations performed later by the binary
search and, thus, to conserve both bandwidth and time. In ad-
dition, since the upper bound algorithm sequentially tests in-
creasing OIC values until it finds an upper bound, each of the
responses to the queries issued by this algorithm constitutes a
better lower bound on the OIC value. Not using this informa-
tion later in the binary search is wasteful.

Fig. 6 presents the pseudo-code of the Improved Bounds
Algorithm. The Improved_Bounds function receives the same
parameters as Upper_Bound. However, it is modified to return
two values: a lower bound and an upper bound.

Improved_Bounds works in two phases:gross bound com-
putation and fine bound computation.The gross bound com-
putation phase is almost identical to the original upper bound
algorithm. The only difference is that now the algorithm keeps
updating the lower bound. The lower bound is the last response
to a request being lexicographically less than
the input OID.

During the second phase, we start a new series of
queries at exponentially increasing dis-

tances from the lower bound found in the previous phase.
For example, if the OIC we are looking for is 3214, and the
expansion phase finished with the bounds [3200, 6400], the
contraction phase would test the values 3201, 3203, 3207, 3215,
and return [3208,3215] as the bounds for the binary search.4

4For simplicity we assume that all the values between 3200 and 3216 indeed
exist.

Fig. 6. Improved bounds algorithm: Tighter upper and low bounds for the
binary search.

The main motivation for the improvement described in
this section is the observation that OICs are not uniformly
distributed in the Integer space, but rather tend to concentrate
in several blocks of large size. This can be easily seen in the
table presented in Fig. 3. The improvement’s performance is
more rigorously assessed in Section V using the model defined
in Section II.

D. Search Algorithm With Time-bandwidth Tradeoffs

In many cases, getting the right answer fast is more impor-
tant than the overhead of the algorithm. Thus, one may wish to
trade bandwidth for time. For example, in cases where the com-
munication delay dwarfs the message processing time, we may
want to reduce the number of messages sent back and forth be-
tween the SNMP daemon and even further. This can be
achieved by asking about more than one OID in every
message. As a result, the number of messages is reduced but
their size and processing time become larger. This requires to
modify the binary search as described below.

The number of OIDs to include in a message is a param-
eter we can tune. If this number is very large, we are again
faced with the problems discussed for usage of re-
quest (see Section IV-A. We found that using two or three vari-
able bindings per message offers a considerable
improvement in the number of messages and only slightly in-
creases the bandwidth consumption. For simplicity we continue
with a description of the algorithm where three variable bindings
are used, but in the same spirit we can use any (small) number
of bindings per message.

In general, the variable bindings are evenly spaced between
the current bounds. For the case where the number of bind-
ings per message is three, the known prefix is concatenated with

, , and , re-
spectively, where is the lower bound of an OIC value and

662 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

Fig. 7. The performance ofGetPrev on a TCPConnectionTable.

is the upper one. All three approximations are packed into
a single SNMP message PDU and sent to the daemon.

For the case of three variable bindings per message, the mod-
ified binary search provides the effect of performing two itera-
tions of the original binary search in just one iteration. There-
fore, 50% less messages are sent by binary search. However, one
may notice that exactly one out of every three bindings sent over
the network in every message would not be used
by the original binary search algorithm. Therefore, the tradeoff
between using this modified algorithm and other versions is the
tradeoff between sending 50% less messages where
each message is three times larger than in the regular case, and
sending more messages where each message is smaller.

Similar modification can be made to the improved bounds
algorithm, by changing it to try more than one upper and lower
bound candidate in every message.

In principle, multiple variable bindings may also be used for
the search of the maximal common prefix. However, in prac-
tice, this would not provide any considerable benefit since the
maximal number of OICs in an OID according to the SNMP
standard is limited to 128, and usually OIDs are much shorter
than this. Therefore, in the worst case, maximal common prefix
can always be found using just seven messages.

E. Implementation Status

The application has been implemented in the
FreeBSD OS environment using the C programming language
and ucd-snmp-3.6.2 SNMP library [8]. The application, called

(in analogy to) admits a number
of options that allow to choose different tradeoffs explained

above. As we write this paper, the application is in the process
of being released by Lucent Technologies, and we plan to make
it publicly available in the near future.

IV. PERFORMANCEEVALUATION

In this section, we study the efficiency of our tool.
All experiments have been conducted on a 166 MHz PentiumII
running the FreeBSD operating system. The machine was
connected through a Fast Ethernet to a Cisco 7500 router
running IOS Version 11.2(21)P, and to a Sun Ultra 10 running
Sun SNMP Agent, Ultra-250. Our application was written
using ucd-snmp-3.6.2 SNMP library.

We performed two sets of experiments on two different large
tables found in MIB-II [10]: tcpConnTable (residing on the Sun
machine), and ipRoutingTable (residing on the Cisco router).
TcpConnTable had around 500 entries in it throughout the ex-
periment. It took application (included with the ucd-
3.6.2 library) about 2.5 s to download the entire table. In order to
evaluate the performance of the algorithm, we first downloaded
the entire table, then we retrieved the OIDs of the elements in
position 5, 10, 15, etc. For each of these OIDs we found the pre-
vious value using the following four methods:

• TableWalk: A sequence of requests from the
beginning of the table. This is the traditional way to find
the previous object.

• GetPrev (Basic):This is our basic algorithm without the
improvements discussed in Sections III-A-2 and III-D.

• GetPrev (Improved Bounds):This is our basic algorithm
with the improvement discussed in Section III-A-2.

BREITGAND et al.: SNMP : AN EFFICIENT WAY TO BROWSE LARGE MIB TABLES 663

Fig. 8. The performance of the different variants ofGetPrev on a
TCPConnectionTable.

• GetPrev (Multiquery): This is our algorithm with
the time/bandwidth tradeoff improvement discussed
in Section III-D.

For every invocation of each of the above algorithms we have
measured the following parameters:

• the number of and messages
used to retrieve the value of the lexicographically previous
OID;

• the overall time it took to retrieve a value of the previous
OID. This time accounts for all of the local computations,
the communication between the agent and the application,
and the agent’s response time;

• the total bandwidth used. This is the number of payload
octets sent over the network in the process of retrieving
the value of the previous OID.

The results presented in Fig. 7 reflect an average of ten runs of
the above test for each of the four algorithms. It is clear from the
figure that the number of requests, the amount of
network traffic, and the time required for the traditional retrieval
of the previous value increase linearly with the distance of the
object from the beginning of the table. However, the amount of
resources used by our tool does not depend on the position of the
entry in the table. It stays fairly constant for all elements (the rea-
sons for this are discussed in the following section). Moreover,
the amount of time it took our tool to get the previous element
of the 500th entry in the table was about 0.65 s while it took

more than two seconds to accomplish the same task.
In terms of bandwidth usage the result is even more dramatic.

Our tool used 7000 octets while the traditional used
200 000 octets (a factor of 30).

Fig. 8 shows a detailed picture of the resources used by
the different variants of (the legend is the same as
in Fig. 7). One can see the clear tradeoff between time and
bandwidth achieved by the variant with multiple variable bind-
ings per message (blue circles in the figure). This variant uses
the least number of requests, but, in general,
it uses more bandwidth compared with other two variants of
our algorithm. This is hardly surprising, since each
packet contains more octets. It is also clear from this figure that
the number of requests, and the total bandwidth
usage does not depend on the location of an entry in the table.

An even more impressive improvement has been achieved
when we tested the tool on Cisco 7500 router’s
ipForwardTable. The number of entries in this table was around
3000 throughout the experiment, which is not a very large
number for such a router. The resource consumption of the
different tests is presented in Fig. 9. The gap between the
linear behavior of the traditional retrieval method and constant
requirements of our is very clear. In fact, due to this
large gap it is impossible to see the data in a linear scale. Thus,
we selected a logarithmic scale on theaxis. In fact, if we
consider the time parameter for the 2625th element, we can
see that while more than eight minutes were required for the
traditional , our accomplished the same
task in less than a second, a factor of more than 500.

A. GetBulk

is a new type of request introduced in
version 2 of the SNMP protocol [10] as an optimization
to in order to improve the performance of
downloading large tables [2]. Basically, instead of retrieving
only a single next object (like in) it retrieves a
bulk of data following the next object. The size of the retrieved
data bulk is specified by the user. Note that while
can reduce the number of requests needed to download a table,
and can also reduce the number of IP packets used, it will not
decrease the total amount of octet transmitted except for the
headers. In some cases, it may even increase this number as the
last data bulk may contain data that is not part of the table.

Unfortunately, s applicability is limited to
SNMPv2 and SNMPv3 versions only. In particular, in our ex-
periments we could not test it with the SNMPv1 agent deployed
by the Cisco router. Thus, we computed the possible effect of

instead of measuring it. The amount of resources
required by depends on the bulk size parameter.
Since most SNMP implementation are done on top of UDP, the
maximal size of a UDP packet (65 000 octets) is a clear upper
bound on the size of the possible bulk size. Because of the
ASN.1 encoding schemes about 163 instances of the columnar
object like ipRoutingTable can fit into 65 000 octets. Thus, in
a very optimistic scenario, a retrieval of the table up to theth
element will work 163 times faster than (compare
to the factor of 500 for our GetPrev).

The MTU (which is the maximal size of an IP packet) in our
Fast Ethernet network is 1500 octets and, therefore, the number
of IP packets used by is only a factor of five times

664 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

Fig. 9. The performance ofGetPrev on a ipRoutingTable.

Fig. 10. The performance ofGetBulk on a ipRoutingTable.

less than the one used by . Note that each large UDP
packet is fragmented into smaller MTU size IP packets [14].

As mentioned before, the total number of bandwidth usage of
is at least the same as that of . Fig. 10

BREITGAND et al.: SNMP : AN EFFICIENT WAY TO BROWSE LARGE MIB TABLES 665

presents the computed resource consumption of the previous ob-
ject instance retrieval using , and compares it to that of

. As one can observe, the gap between our
and this application is smaller with respect to the number of
IP packets and processing time. However, our tool still offers a
clear advantage for all resource types (packets, time, and overall
bandwidth usage) while being compatible with all versions of
SNMP.

V. PERFORMANCEANALYSIS

In this section, we analyze the expected performance of our
tool using the model defined in Section II. Since one

can find the beginning of the table using MIB parsing or syntax
parsing (simply looking for the last occurrence of the pattern
.1.1 in the OID) we assume for this analysis that the table begins
at the tree’s root. Also, unless specified otherwise, we use
to denote .

Consider first the basic variant of , and let us assume
that we want to find the predecessor of . Recall that
the first step of the algorithm is to find the maximal common
prefix. This is done using a binary search on the length of the
label path (the number of components in the input OID) using
no more than messages. The second step
is a bounded binary search that uses a value of the component
(in the input OID) that follows the maximal common prefix as
the upper bound and zero as the lower bound. Then, for every
remaining component, until we find the wanted object, we carry
on both a computation of the upper bound and the bounded bi-
nary search (see Fig. 5). Note that the number of these steps
is bounded by the length of the result, i.e., by the number of
components in the OID of the object preceding .
This OID may have more than components. The number of
components is effectively bounded by 128 which is the max-
imal number of components allowed in a name of SNMP object
[1]. However, if both and its predecessor are in-
stances of the same columnar object, then they have the same
number of components in their OIDs and it equals the number
of table indices. Both the upper bound computation and the bi-
nary search algorithm take
requests where being the maximal value of an In-
teger index. Finally, there is an additional request that re-
trieves the wanted value.

Putting this all together, if we are searching in a table indexed
by integer keys, the total number of request
messages is bounded by:

Note that this bound does not depend on a position of the object
in the table, or, even more important, on the table size. This
is the reason for the superior performance of that we
observed in the previous section.

It is important to mention that
is only an upper bound, for

a specific object, the number of requests used
by depends on the actual values of the index compo-
nents of the wanted object. For example, consider the routing

table. It is indexed by an IP address. This means that
algorithm should perform the search for four components of the
predecessor’s OID. However, since all of them belong to IP ad-
dresses their value never exceeds 255. Therefore, the number
of the requests used is, in fact, bounded by

. The actual number obtained in the ex-
periments, though, varies depending on the actual values of the
fields. This explains the noisy picture in Fig. 8.

This also explains why the search in the TCP connections
table demands more requests. In this table, entries have ten com-
ponents of their OIDs belonging to the indices (two four-compo-
nent IP addresses of the source and destination and two integer
numbers for the source’s and destination’s ports). The port num-
bers, however, can be as large as 64 000. Thus, the upper bound
on the number of requests in this case is much worse, namely

.
Now, let us analyze the theoretical performance of the

improvements introduced in Sections III-C and III-D. Clearly
the upper bound for finding the maximal common prefix does
not change as a result of the improvement. Analogously we still
need the final request to be performed in order to retrieve
the desired value. It is easily observed that the minimal lower
bound that can be attained by the first phase of the improved
bounds algorithm (see Fig. 6), namely the lower bound compu-
tation phase, is . Also, as explained above this
phase’s message complexity is bounded by .
The upper bound computation starts from the lower bound
computed in the previous phase. As one observes, its message
complexity is bounded by . Finally, the
binary search algorithm message complexity is also bounded
by .

Putting it all together, we obtain that the message complexity
of the improved bounds variant of the algorithm is

. Turning back to our ipForwardTable
example, we obtain the upper bound of

. As one may notice, the predicted performance
of the improved algorithm is worse than that of the basic one.
Yet, as our experiments show, the performance of the improved
bounds variant of the algorithm is almost always superior to that
of the basic variant. Namely, the improved bounds variant uses
10%–15% less requests.

The reason for this is simple. As was mentioned in
Section III-C. In the real tables, the integer values of the indices
of the table entries are not uniformly distributed. Thus, in
most cases after the lower bound is found in the first phase of
the improved bounds algorithm, it takes only a few messages
(usually only one or two) to compute the upper bound and not

as predicted by the theoretical analysis.
When this is not the case, we observe the rare fluctuations of
the Improved Bounds performance rendering it worse than the
basic algorithm (see Fig. 8).

Finally, we analyze the multiquery variant of the basic al-
gorithm. As was explained in Section III-D, a single packet of
the multiquery algorithm containsdifferent values (in our ex-
periments we used). This means that we partition the
search range into equal intervals, and use a response to
the request to choose the correct interval. The search

666 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 20, NO. 4, MAY 2002

in this case takes iterations, instead of the
required by our basic algorithm. If

is small enough when compared with the
Multiquery variant saves a factor of

in the number of messages. Assuming that the local computation
time is negligible, and most of the search time is due to the
communication delay and the daemon’s response time, a similar
factor is saved for the overall search time. As explained above,
we pay for this speedup by increasing the size of each packet.
We can assume that each packet istimes larger than the basic
version’s packet. Therefore, the total bandwidth used is a factor
of

larger than that of the basic variant. Indeed, for we use
half the messages () and
times more bandwidth. Note that this is a theoretical analysis,
in practice, due to factors such as the MTU size, one cannot use

that is larger than say five.

VI. CONCLUSION

We have presented , a new tool that facilitates fast
and bandwidth efficient traversal of large SNMP tables in
reverse direction. This application may be used as a building
block for implementing more efficient and less resource
consuming MIB browsers that are widely used by network
managers. We have presented the algorithms used to implement

, compared the performance of our implementation
to other alternatives, and also provided the rigorous theoretical
analysis of performance.

Some other alternatives for implementing an efficient re-
trieval of the previous instances of MIB objects have not been
discussed and have been deferred for future work. In particular,
we are interested in investigating the possibility of using
AgentX [15] and MIB Script Protocol [16] for implementing

locally to the SNMP daemon.

APPENDIX

A. SNMP Basics

Unarguably, one of the main advantages of SNMP is its
simplicity. All management information pertaining to a specific
device is made accessible to a manger through a universal
interface referred to asMIB. MIB definesclasses(or types) of
management information calledobjects(or object types). Thus,
the actual management information is viewed as a collection
of object instances(also calledvariables) and their values. The
set of MIB variables is structured as a rooted tree where leaves
correspond to the variables. Each variable has a unique name
referred to as itsOID. SNMP uses the naming model borrowed
from Abstract Syntax Notation One (ASN.1) [17]. Accordingly,
the OID of a MIB object is an ordered sequence ofcomponents

(calledsubidentifiersin SNMP SMI) written from left to right
being separated by “..” Each component value of OID is a
nonnegative Integer number and the number of components in
the OID should be at least two. SNMP limits the OID length
to 128 components while ASN.1 does not. An interpretation of
the OID component values is as following. Starting with the
root of the OID tree every component value identifies an arc in
the tree. Thus, an OID of the MIB object type which is a node
in the tree is, in fact, a unique path from the root of the tree to
this node. To illustrate this, node1.5.2 is accessed using the
first child of the root, then the fifth child of the first child, and
then the second child of the second level child.

An object may be defined as ascalar objectmeaning that it
has exactly one instance, or as acolumnar object.Columnar
objects may have multiple instances where each instance is
uniquely identified using someindexing scheme.Together with
the indexing scheme, a columnar object defines aconceptual
table (later referred simply astable). Entries in the table are
accessed using the values of the indices.

An access to the management information items exported by
the MIB interface is instrumented by the software agent, called
SNMP daemonthat executes locally on the managed device and
possesses the means for retrieval or modification of the values
of variables present in the MIB it controls.

ACKNOWLEDGMENT

The authors would like to thank S. Mazumdar for his com-
ments during their work on GetPrev.

REFERENCES

[1] P. E. Miller and M. A. Miller,Managing Internetworks with SNMP, 3rd
ed: M&T Books, Nov. 1999.

[2] D. Perkins and E. McGinnis,Understanding MIBs. Englewood Cliffs,
NJ: Prentice-Hall, 1997.

[3] M. T. Rose and K. McCloghrie,How to Manage Your Network Using
SNMP. Englewood Cliffs, NJ: Prentice-Hall, Jan. 1995.

[4] W. Stallings,SNMP, SNMPV2, SNMPV3, and RMON 1 and 2: Addison-
Wesley, Jan. 1999.

[5] R. Sprenkels and J.-P. Martin-Flatin, “Bulk transfers of MIB data,”The
Simple Times, The Quarterly Newsletter of SNMP Technology, Com-
ment, and Events, vol. 7, no. 1, pp. 1–8, Mar. 1999.

[6] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser, “Protocol
operations for version 2 of the simple network management protocol
(SNMPv2),” RFC 1905, Jan. 1996.

[7] AdventNet. Adventnet Web nms. [Online]. Available: http://www.
vembu.com/products/snmpbeans/snmpv1/help/uicomponent_mibbro%
w.

[8] University of California Davis. Ucd-snmp Project Home Page. [Online].
Available: http://net-snmp.sourceforge.net.

[9] S. Mazumdar and K. Swenson. Corba/snmp Gateway Project. [Online].
Available: http://www.bell-labs.com/project/CorbaSnmp/JavaORBImpl
/Demo/MibBrowser.%html.

[10] K. McCloghrie and M. Rose, “Management information base for net-
work management of TCP/IP-based internets: MIB-II,”Internet RFC
1213, Mar. 1991.

[11] M. Rose, K. McCloghrie, and J. Devin, “Bulk table retrieval with
SNMP,” RFC 1187, Oct. 1990.

[12] A. Borodin and R. El-Yaniv,Online Computation and Competitive Anal-
ysis. Cambridge, U.K.: Cambridge Univ. Press, 1998.

[13] D. E. Knuth,The Art of Computer Programming: Sorting and Searching,
2nd ed. Reading, MA: Addison-Wesley, 1998, vol. 3.

[14] W. R. Stevens,UNIX Network Programming, ser. Software Se-
ries. Englewood Cliffs, NJ: Prentice-Hall, 1990.

[15] M. Daniele, B. Wijnen, M. Ellison, and D. Francisco, “RFC 2741: Agent
Extensibility (AgentX) Protocol Version 1,” IETF, Jan. 2000.

BREITGAND et al.: SNMP : AN EFFICIENT WAY TO BROWSE LARGE MIB TABLES 667

[16] D. Levi and J. Schoenwaelder, “RFC 2592: Definitions of Managed Ob-
jects for the Delegation of Management Script,” IETF, May 1999.

[17] D. Steedman, “Abstract syntax notation one (ASN.1), the tutorial and
reference,” Technology Appraisals, Ltd., Isleworth, Middlesex, U.K.,
ISBN 1-871 802-06-7, 1990.

David Breitgand (S’97–A’01) received the B.Sc. and M.Sc. degrees in com-
puter science (cum laude) from The Hebrew University of Jerusalem, Israel,
in 1994 and 1997, respectively. Currently, he is pursuing a Ph.D. degree in
computer science from the Hebrew University of Jerusalem. His advisers are
Prof. Danny Dolev, and Dr. Danny Raz.

From 1994 to 1999, he worked first as a Network Administrator, and later as
a Software Engineer in a Distributed and Networking Secure Systems Lab at the
Hebrew University. His primary research interest is application of the theory of
distributed computing to network management problems.

Danny Raz (M’99) received the doctoral degree from the Weizmann Institute
of Science, Israel, in 1995.

From 1995 to 1997 he was a Postdoctoral Fellow at the International Com-
puter Science Institute, (ICSI) Berkeley, CA, and a visiting lecturer at the Uni-
versity of California, Berkeley. From 1997 to 2001 he was a Member of the
Technical Staff at the Networking Research Laboratory at Bell Labs, Lucent
Technologies, Holmdel, NJ. In October 2000, he joined the Faculty of the Com-
puter Science Department at the Technion, Israel. His primary research interest
is the theory and application of management related problems in IP networks.
He served as the general chair of OpenArch 2000. He is an Editor for theJournal
of Communications and Networks(JCN)

Dr. Raz is a TPC member for INFOCOM 2002, OpenArch 2000-2001
IM 2001, NOMS 2002, and GI 2002.

Yuval Shavitt (S’88–M’97–SM’00) received the B.Sc. degree in computer en-
gineering (cum laude), the M.Sc. degree in electrical engineering, and the D.Sc.
degree from the Technion, Israel Institute of Technology, Haifa, in 1986, 1992,
and 1996, respectively.

From 1986 to 1991, he served in the Israel Defense Forces first as a System
Engineer and the last two years as a Software Engineering Team Leader. After
graduation, he spent a year as a Postdoctoral Fellow at the Department of Com-
puter Science at Johns Hopkins University, Baltimore, MD. From 1997 to 2001,
he was a Member of the Technical Staff at the Networking Research Labo-
ratory at Bell Labs, Lucent Technologies, Holmdel, NJ. Since October 2000,
he has been a Faculty Member in the Department of Electrical Engineering,
Tel-Aviv University, Tel-Aviv, Israel. His recent research focuses on active net-
works and their use in network management, QoS routing, and Internet map-
ping, and characterization.

Dr. Shavitt served as TPC member for INFOCOM 2000–2002, IWQoS 2001
and 2002, ICNP 2001, and MMNS 2001, and on the executive committee of
INFOCOM 2000, 2002, and 2003.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

