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Abstract Peer-to-peer (p2p) networks are used by millions for searching and download-
ing content. Recently, clustering algorithms were shown to be useful for helping users find
content in large networks. Yet, many of these algorithms overlook the fact that p2p net-
works follow graph models with a power-law node degree distribution. This paper studies
the obtained clusters when applying clustering algorithms on power-law graphs and their
applicability for finding content. Driven by the observed deficiencies, a simple yet efficient
clustering algorithm is proposed, which targets a relaxed optimization of a minimal distance
distribution of each cluster with a size balancing scheme. A comparative analysis using a
song-similarity graph collected from 1.2 million Gnutella users reveals that commonly used
efficiency measures often overlook search and recommendation applicability issues and pro-
vide the wrong impression that the resulting clusters are well suited for these tasks. We show
that the proposed algorithm performs well on various measures that are well suited for the
domain.

Keywords Peer-to-peer · Data mining · Recommender systems · Clustering

1 Introduction

Peer-to-peer (p2p) networks are used for sharing content (i.e., files) by millions of users
worldwide (note that we use the term content to refer to the files that are shared by users
and not to the bits that comprise the files themselves). Users mostly search for content by
using query strings which are matched against metadata fields that are attached to the content,
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either directly in the shared file or in a file’s tracker. For example, song files contain metadata
(ID3 tags) that describe the name of a song, genre, artist, and album.

Often, some of this data are missing, incorrectly spelled, or encoded (such as musical
genre), making it difficult for users to find the data they are looking for in the abundance of
existing content. As such, even though improved search schemes [27,51] and recommender
systems [34] were proposed to help users find content, current p2p networks mostly employ
simple string matching algorithms against the file name and its metadata. These algorithms
are either distributed or centralized, usually using a web-based search engine. For example,
in the Gnutella network, this scheme causes only 7–10 % of the queries to successfully return
useful content [52].

Several difficulties arise when trying to improve the efficiency of search schemes and
recommender systems that operate on such networks. These include implicit ranking, i.e.,
lack of explicit ranking of content by users, the large amount of noise which is attributed to
user-generated content, the power-law structure of the network, and the extreme sparseness
of the network which is the result of the abundance of users and shared content. These
complexities often result in frustration of p2p users that are unable to find content using
standard search methods, whereas recommender systems that aim to help users find new
unfamiliar content cannot efficiently operate in these networks.

This paper studies the search and recommendation applicability of clustering power-law
graphs in general and its implications to p2p networks in particular. We first study the problems
that rise when applying existing clustering algorithms on power-law graphs. We validate the
applicability of clustering by using a real-world recommender system. The usefulness in
generating recommendations with significantly smaller search dimensions is evident in this
case. Then, a simple yet efficient clustering algorithm, named Graph k-medoids (GkM), is
presented, targeting a relaxed minimal distance optimization.

The algorithm is simple, yet scalable. It uses the distance between co-shared files as an
item-similarity metric, mitigating the need for in-depth bit-level analysis of the files. Since
it is based on the well-studied k-means algorithm, it benefits from all the intensive research
already performed on k-means, such as distribution [21], measure analysis [50], and user-
centered privacy [36].

In order to provide insightful conclusions on search and recommendation domain, eval-
uation is performed on a real-world graph, containing over 530k songs shared by roughly
1.2 million users in the Gnutella [35] p2p network. The usefulness of p2p data for data-mining
applications is presented alongside with a study of its inherent difficulties.

Using common and domain-specific efficiency measures, an extensive comparative analy-
sis is performed. It shows that GkM obtain better results than other state-of-the-art clustering
algorithms when applied to a power-law graph.

The empirical analysis shows the robustness of the proposed clustering algorithm to the
selection of various input parameters, and a comparative analysis emphasizes its strengths and
weaknesses over existing state-of-the-art methods. We show that commonly used efficiency
measures often overlook search and recommendation applicability issues and provide the
wrong impression that the resulting clusters are well suited for these tasks, whereas the
proposed algorithm manages to perform well on all measures.

The contribution of this work is threefold. First, the difficulties of applying state-of-the-art
clustering algorithms on power-law graphs are presented. Then, a simple relaxed distance
optimization algorithm is proposed that aims at improving existing algorithms when applied
to power-law graphs. Finally, using a real-world large-scale power-law graph, an extensive
comparative analysis of clustering algorithms is performed, showing that commonly used
efficiency measures are insufficient for reflecting the applicability of clusters for search and
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recommendation tasks. Using domain-specific efficiency measures, we show that overall
distance-optimizing algorithms perform better than current state-of-the-art ones.

2 Related work

The popularity of p2p multimedia file sharing applications, such as Gnutella, has created
a flurry of research works related to p2p architectures. Concerns were raised regarding the
ability to extract useful information from such networks. Saroiu et al. [37] described the need
for accurate peer characterization in order to correctly evaluate a p2p system; specifically,
they address questions such as how many files are shared and downloaded by the peers.
Luo et al. [25] studied the problem of performing distributed classification in p2p networks
and showed that although distributed classification was extensively studied, p2p networks
give rise to new challenges, such as peer churn and frequent data updates.

Several studies on p2p networks [13,16] show that graphs that model various p2p networks
exhibit power-law distributions. Stutzbach et al. [46] presented a detailed characterization of
topology that is typical in modern popular p2p systems and examined different forms of graph
analysis and their properties. The authors raised a concern that power-law degree distributions
could be a result of measurement artifacts, and presented [45] methods for sampling various
peer properties, e.g., degree, link bandwidth, number of files shared, that result in nearly
unbiased samples under a wide variety of commonly encountered p2p network conditions.

In this work, we analyze various samples of graphs extracted from p2p networks. We
show that given sufficiently extensive and representative sampling process, the obtained
graph, which is constructed from files shared by peers, is robust and exhibits power-law
behavior, even in the presence of partial sampling.

Mining structural data from large-scale graphs is an active research topic [22]. Clustering
a graph is a process that partitions the vertices of the graph into clusters [20], such that
vertices in the same cluster are “similar” in some sense, while vertices in different clusters
are “not-similar,” respectively. Several existing graph clustering algorithms optimize some
aspect of the resulting clusters (for a review, see [44]).

In this paper, we focus on several popular graph clustering algorithms. In particular, we
compare the results of the GkM to those obtained from several state-of-the-art clustering
algorithms. Some of the difficulties of these clustering methods are known. For example,
MCL [11] performs hierarchal clustering based on stochastic flows; however, it is known to
have scalability issues [38]; hence, it can be extremely slow and can output many small-sized
clusters. Graclus [9] minimizes the commonly used clustering metric of normalized cut of
the resulting clusters, i.e., the ratio of outgoing links from each cluster to the overall cluster
degree, using multilevel partitioning. Metis [23] is a similar hierarchal clustering algorithm,
which adds a constrain of producing a balanced partitioning of vertices in each cluster. We
elaborate on these algorithms and their outcome in Sect. 3.2.

Searching in p2p networks was extensively studied. Various techniques were proposed,
such as approximate searching [26,27,29,51], interest locality [43], semantic overlays [47],
and even complete restructuring of the network [49]. However, most p2p networks still
employ the simple string matching technique against the name of the file or its metadata, if
exists. However, this simple technique was shown to perform poorly [52].

Clustering the shared content in p2p network was proposed [13,24,41,42] to have the
potential for overcoming some of the above-mentioned difficulties. However, the structure
of p2p networks as well as many other networks [3] often follows a power-law degree
distribution. This causes existing clustering algorithms to fail to produce clusters that are
well suited for efficient search and recommendation content.
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Recommender systems have been extensively studied in the past in various contexts and
applications. Zheng et al. [53] described an approach to identify peers that share similar
music preferences and cluster them into communities. Anglade et. al [2] presented a tech-
nique for clustering peers according to their explicitly or implicitly stated music preferences.
They showed high percentage of of successful assignment of peers into their communities.
However, it has been claimed that accurately characterizing peer preferences [45] and find-
ing a distance metric between peers are far from being trivial [40]. For a thorough review on
recommender system or on music recommendation, the reader is reffered to [34].

Note that although we present a simple recommender system built on top of clusters, the
focus of the paper is not on building a novel recommender system. Rather we seek to show
the applicability of shared file clusters to recommendation. We address the ability to match
search strings to actual content when metadata are missing, and the ability to scale down the
vast dimensions of searching and recommending problems in p2p networks.

3 Methodology

Clustering the content of a p2p network starts with collecting the list of files shared by each
user. Once collected, the data are processed into a similarity graph that is used as the input
for the clustering algorithm which, upon completion, maps the collected files into clusters.

3.1 Definitions

The initial input for the problem is a matrix, denoted by F , that serves as an indicator to the
files that users share:

F(i, j) =
{

1 f ile j ∈ user i
0 otherwise

The matrix is obtained by crawling the network and collecting all the files that a user
shares. Since the number of users and different files is often extremely large, the network
is very sparse. Notice that this matrix is a special case of the more standard collaborative
filtering matrix, yet instead of rankings we have only an indicator.

Based on this matrix, a file similarity matrix S with size m × m is created using:

S = FT F

where each entry S(i, j) counts the number of users that share both file i and file j .
Additionally, a popularity distribution vector P ∈ R

m (number of files) is created, counting
the number of different users that share each file:

P(i) =
n∑

j=1

F(i, j)

These vectors are used later to normalize the graph weights. In practice, performing such
a scalar multiplication using a matrix with 1.2 million rows and over half a million columns
(as we present in Sect. 4) is almost impossible with commodity hardware. Therefore, in
order to obtain this graph, we go over each user and gradually build pairs of files that are
shared together using 4 bit counters. This procedure enables relatively low usage of memory
for pairs that do not appear often together. Only for a pair that exhausts the counter, we
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accommodate a new 4 byte counter and reuse the previous 4 bit counter for other pairs. This
graduate and conservative memory consumption enables building the similarity matrix and
popularity vector using commodity hardware in reasonable time.

For simplicity reasons, we refer to the similarity matrix S as a similarity graph, where
each node is a file, and the weight of a link between two files represents the similarity metric
between them. Given two nodes i and j , the weight of the link wi j connecting these nodes
is simply the number of users that share both file i and file j .

This similarity metric is normalized to allow comparison of similarities among pairs of
files with different popularity. Each link weight wi j is normalized using a modified cosine-
distance function of the popularity of both files:

ŵi j = wi j√
P(i) · P( j)

(1)

Since wi j counts the number of different users sharing files i and j together, then wi j ≤
P(i)+ P( j) (equality is obtained when the two files are always shared together). Obviously,
wi j ≤ P(i) · P( j), and therefore, the normalized similarity metric, denoted by Ŝ, holds
0 < ŵi j ≤ 1.

3.2 Existing graph clustering algorithms

Intuitively, since some (relatively few) popular files are shared by many users while most
of the files are shared by only a few users, the graph results in a power-law [3] degree
distribution. In such distributions, the probability that a randomly selected node will be of
degree k is P(k) � k−γ , for a fixed γ > 1. This results in high degree of the few popular
files and lower degree of many less-popular files. We validate this intuition in Sect. 4 and
show its implications on the clustering algorithms.

The power-law distribution has a major downside as it prevents common state-of-the-art
clustering algorithms from achieving a graph partitioning that is suitable for searching content
in the p2p network. In particular, in many cases, the power-law distribution causes state-of-
the-art clustering to produce biased clusters. On the other hand, as we later show, it enables
applying efficient distance-optimizing clustering algorithms. Moreover, in this network, even
partial view of the network is sufficient to efficiently capture many of the underlying graph
properties.

MCL [11] performs hierarchical clustering based on stochastic flows and finds the optimal
number of clusters. The intuition behind MCL is that using random walks based on vertex
transition probabilities (i.e., link weights) allows the algorithm to identify all the vertices that
flow to the same “attractor” vertex, hence belong in the same cluster. While MCL is useful in
domains that use relatively small graphs, it has been shown [38] to be slow due to scalability
issues and to output many small-sized clusters. While the first feature is clearly problematic
for applying on large graphs, the latter is also undesired for search and recommendation
tasks since the clusters break related content, inducing a spatial search over the set of clusters
which is not much smaller than the original problem size.

A commonly used efficiency measure for evaluating clustering algorithms is the normal-
ized cut (or conductance). The normalized cut is the percentage of links that connect vertices
within a cluster to vertices outside the cluster. Denote by A(i, j) the adjacency matrix rep-
resenting connectivity of graph G. The normalized cut of a cluster C is defined using:

Ncut (C) =
∑

i∈C, j �∈C A(i, j)∑
vi∈C degree (vi )

(2)
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Graclus [9] is a clustering algorithm that optimizes the normalized cut of the resulting
clusters while using multilevel partitioning. Although the normalized cut measure was proven
to be quite efficient, applying it on a power-law graph is problematic. In power-law graphs,
high-degree vertices are strongly connected to both many low-degree vertices and other high-
degree vertices, i.e., popular content is connected to both popular and less-popular contents.
Assuming that each of two distinct clusters contain only a single highly popular file, both will
have very high cut, driven by the many less-popular files that are connected to each. Given
that one of these clusters will “pull” most less-popular files, the second cluster, containing
the other very popular file will have a very high cut, since it is also connected to many of
the same less-popular files, and with high probability to the other popular file. Hence, the
best cut will be achieved by merging the two clusters into one. This process will lead most
files to be pulled into a single cluster, resulting in a “mega” cluster. This is undesired as the
clusters do not significantly reduce the dimensions of the original problem in our considered
case. We note that some improvements to Graclus have been proposed, e.g., combining it
with other clustering algorithms [28]; however, these mostly target avoiding breaking up
well-connected communities, which is not an issue with our data set.

Metis [23] is one of the most well-known multilevel partitioning algorithm that uses
coarsening and refinement heuristics for achieving a fast running algorithm. In addition to
an objective of minimizing the normalized cut, Metis also enforces a constraint of producing
equal-size partitions (any two clusters have roughly the same number of vertices). Although
this constrain avoids the problems in Graclus, by enforcing smooth partitioning into equal-
size clusters, Metis breaks large groups in an unnatural fashion. Since it is based on the
normalized cut, it mainly enforces small strongly connected subgroups to remain in the
same cluster, while shifting weaker connected groups arbitrarily to other clusters. Similarly,
clusters that should be kept small are unnaturally merged with other small groups, so that the
cluster size remains the same.

The k-medoids algorithm [30] is another distance-optimizing algorithm, which is similar
to the well-known k-means algorithm except that it uses data points as cluster “centroids”.
Since it operates on a multi-dimensional feature space and not on a graph, it requires the
projection of the graph onto this space [39], hence creating a dense matrix of distances
between vertices. Platt [32] showed that it is possible to obtain clusters of musical genres
using fast sparse embedding, a variation of the FastMap [12] embedding algorithm. However,
projecting the already known distances between files onto a multi-dimensional space results
in a distance approximation, which serves as an approximation of the original distance,
and thus results in distortion of the data. When the projected graph is extremely large with
very high degrees, as expected to be the case of the p2p file similarity graph, the distortion
can be quite severe, causing an aggregated mistake and leading to a biased clustering. A
different approach that approximates k-mean was presented in [48]; however, it was mostly
experimented with small-scale data sets (thousands of items).

3.3 Relaxed distance optimization

Accounting for the above, we design a new clustering algorithm, which is based on the
concepts of k-medoids. Similar to k-medoids, our proposed algorithm, denoted by GkM,
randomly selects k data points as cluster origins and then assigns each data point to the
nearest medoid.

There are several major differences between k-medoids and GkM. First, k-medoid shifts
its selected set of medoids toward a local minima and then reiterates the assignment process
until the overall distance of each data point from the nearest medoid is minimal. This way,
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k-medoid is able to perform local optimization of these distances, hence is less affected by
the distribution of the data points and quite robust to extreme data points and outliers. On the
other hand, repeating these iterations until convergence prevents the algorithm from scaly
well. Due to the extreme graphs that GkM is designed to operate on, GkM does not perform
iterations. We later discuss the implications of this design aspect.

Second, k-medoids do not operate directly on graphs; hence, as stated above, this requires
the projection of the data points onto a multidimensional space. While there are some meth-
ods for projection that introduce little bias when projected on large dimensions (see [14]
for a survey of such methods), operating directly on the graph completely avoids this bias
altogether, by preserving the original distances between vertices in the graph.

Finally, the selection of the k-medoids is commonly done in a completely random fashion,
counting on the iterations to fix incorrect selections. This random selection process often
leads to incorrect clustering of the data points; hence, some methods for improving the initial
selection were suggested in the past [7,19,31]. We take a different approach and tackle this
problem by selecting medoids that are sufficiently distant from one another. This aspect is
detailed in the next sections.

Conceptually, GkM operates in a similar fashion to k-medoid as it attempts to minimize
the total distance of vertices in each cluster from the “center” (or origin) of the cluster. More
formally, given a set O of k preselected cluster origins, the primary algorithm optimization
goal is as follows:

min
k∑

i=1

∑
v∈Ci

d (v, Oi ) (3)

We note that selecting a “good” value for k is a nontrivial task, mainly since it is highly
domain specific, i.e., it should somehow capture the meaning behind the clusters that are
generated from the data set. The evaluation of data in this paper represents musical prefer-
ences of users, and the clusters are supposed to capture songs that have similar features. In
such subjective domains, precisely capturing the number of clusters is unlikely; however, as
we later show, the evaluated applications are not sensitive to the exact selection of k, given
that it is large enough.

The algorithm receives as input a similarity graph, G(V, E), the number of output clusters,
k, and a size balancing threshold τ , which is used to balance the size of the resulting clusters as
explained later. Since the algorithm operates on distances rather than similarity, we assume the
existence of a function d(v1, v2) that calculates the distance between any two (connected)
vertices. This is achieved by converting the similarity metric into a distance metric and
summing distances along the shortest path between the vertices (e.g., using Dijkstra [10]).

The algorithm pseudocode is shown in Algorithm 1. The algorithm operates in the two steps
listed in lines 4 and 5—it first finds a set of cluster origins using the FindClusterOrigins

procedure and then uses a single iteration to assign the vertices to the nearest cluster using
the AssignVerticesToClusters procedure. The remaining code handles the case of a
graph which is not fully connected, and contains a set of connected components (cc). In
this case, each component cc is separately clustered to kcc clusters, where kcc is com-
puted using the proportion of the numbers of vertices contained by the connected com-
ponent.

If the size of the connected component is too small, the algorithm simply adds it as a
complete cluster. Note that in a highly fragmented graph, this results in more clusters than
the provided k. To avoid this, it is possible to simply throw small clusters, i.e., remove line
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Algorithm 1 GkM

Require: Graph Ĝ(V, E), number of clusters k, distance function d(vi , v j ), size balancing threshold τ

Ensure: Cluster set C
1: for all cc(Vcc, Ecc) ∈ Connected_Components(G) do
2: kcc ← �k · |Vcc| / |V |	
3: if kcc > 1 then
4: O ← FindClusterOrigins(Vcc, kcc, d)

5: C ←AssignVerticesToClusters(Vcc, O, d, τ )

6: else
7: C ← C ∪ Vcc
8: end if
9: end for
10: Return C

7 in the code above; however, we assume that the exact value of k is less important in terms
of performance than actually extracting the correct clusters.

3.3.1 Finding cluster origins

Algorithm 2 shows how the set of k cluster origins is selected. Basically, the origins are
selected at random, such that there is a minimal distance between every two origins, i.e.,
∀i, j ∈ {1 . . . k}, i �= j, d(Oi , O j ) > min_dist . The min_dist value is obtained using the
ApproxMinimalDistance(V, k, d) procedure which is explained later.

GkM selects a random vertex, which is the origin of the first cluster, O1. Then, the next
origin O2 is selected, making sure that the distance d(O1, O2) is at least min_dist . If the
distance is found to be smaller, a new vertex is randomly selected and the test is performed
again; otherwise, GkM proceeds to the next origin. This selection process is repeated until k
origins that satisfy the minimal distance constraint are found.

Algorithm 2 FindClusterOrigins

Require: Vertex set V , number of clusters k, distance function d(vi , v j )
Ensure: Cluster origin set O
1: min_dist ←ApproxMinimalDistance(V, k, d)

2: i ← 0
3: while |O| < k do
4: Oi ← Select v ∈ V uni f ormly at random
5: if ∀o ∈ O \ Oi , d (Oi , o) ≥ min_dist then
6: i ← i + 1
7: end if
8: end while

Since a fast running algorithm is usually more important than memory consumption, it
is possible to store the distances from each origin Oi to all other vertices in the graph. This
allows efficient replacement of an origin that does not hold the minimal distance constraint and
more importantly, significantly speeds up the following step of the algorithm. Additionally,
if the graph is large and k  |V |, which is assumed to be the common case, it is possible to
select origins in a distributed manner, and only when all k origins are selected, validate that
min_dist holds, as the probability of randomly selecting near-by vertices is low, especially
in power-law graphs which are the focus of this work.
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3.3.2 Approximating minimal distance

Enforcing a minimal distance between cluster origins ensures that clusters will not overlap,
which may result in mixture of their features. As show in Sect. 4, a large graph makes the
random selection with minimal distance constraint very effective. As shown in Algorithm 3,
GkM uses a simple heuristic to approximate this distance. First, it approximates the distance
between the two most distant vertices (line 1–3). It uses approximation since finding the exact
two most distant vertices requires all-pair distance calculation, which is practically infeasible
in large-scale graphs. Then, it divides this distance by a constant f which is a function of
the number of clusters k. Considering a d-dimensional space as in standard k-means, this
constant is simply obtained by f = d

√
k. However, since GkM uses the true distances, and

we apply it on power-law graphs, even f = 2
√

k is practically sufficient. The parameter
0 < γ ≤ 1 enables relaxing this distance in order to avoid excessive searches of the vertices
that will be used as origins, as a result of a too large min_dist .

Algorithm 3 ApproxMinimalDistance

Require: Vertex set V , number of clusters k, distance function d(vi , v j )
Ensure: Cluster origin set O
1: vi ← Select v ∈ V uni f ormly at random
2: v j ← arg maxw d (vi , w)

3: vk ← arg maxw d
(
v j , w

)
4: Return γ · d(vk , v j )/ f (k)

3.3.3 Assigning vertices to clusters

Algorithm 4 shows the main phase of GkM. Once the origins are selected, GkM performs
a single iteration over all the vertices and assigns each vertex to the cluster whose origin is
the nearest. During this phase, it is possible to use the already calculated distances from each
origin to all other vertices; therefore, no other distance calculations are required, and only k
comparisons are performed for each vertex.

Considering only the distances between vertices may result in “mega-clusters” [17], i.e.,
extremely large clusters, which are the outcome of highly popular files that “pull” many other
files to their cluster. These mega-clusters make the clustering of the graph significantly less
useful since they do not provide a clear separation between the vertices, and additionally,
they do not scale down the original problem, keeping it in a similar order of the number of
vertices.

In order to balance the number of vertices between clusters, we define a size balancing
threshold τ , which is used to determine whether a vertex can be shifted between clusters.
When a vertex is “close” to several cluster origins, then it is assigned to the cluster that has
the smallest number of vertices, and not necessarily the cluster that has the nearest origin.
We define the set of clusters that a vertex is “close” to, as the clusters that have an origin
which is at most τ farther than the nearest cluster origin, and select the smallest cluster from
this group (line 6). This method relaxes the nearest distance optimization depending on the
value of τ , where high values of τ result in a more relaxed distance optimization and a more
balanced size of the obtained clusters.

Due to the random nature of the selection of cluster origin, it might be speculated that
the resulting clusters may vary significantly between runs of GkM. However, the heuristic
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Algorithm 4 AssignVerticesToClusters

Require: Vertex set V , Cluster origin set O , distance function d(vi , v j ), size balancing threshold τ

Ensure: Cluster set C
1: for all v ∈ V do
2: Dv ←�
3: for all o ∈ O do
4: Dv[o] ← d(v, o)

5: end for
6: c∗ ← arg minc∈{|Dv [oc]−min Dv |≤τ } |Dv [oc] |
7: Cc∗ ← Cc∗ ∪ v

8: end for
9: Return C

behind the algorithm design is that due to the large size of the graph, its power-law nature
(having a few very popular and strongly connected vertices), and the min_dist limitation,
clusters quickly “grow” toward different popular vertices (i.e. popular files) and extend from
there. These popular vertices are quite similar to the “attractors” that form the theory behind
MCL. The empirical study on a real p2p network performed in Sect. 4 shows that indeed
this is the case. Pathological cases can rise when extremely “remote” and not well-connected
vertices are selected as cluster origins. In these unlikely cases, however, these clusters will
be completely disconnected or include only a few vertices and hence can be either discarded
or manually looked at in case they capture a very unique set of similar vertices.

3.3.4 Efficiency

The algorithm performs k times single-source shortest path (in case the minimal distance
constraint holds for each random selection of cluster origin). We used a single-source Dijkstra
[10], which can be efficiently calculated [4] in O(|E | + |V | log |V |).

A simple improvement to the algorithm listed in Algorithm 1, during the selection of
cluster origins, first calculate the distances between cluster origins, and only if a vertex
sustains the minimal distance constraint, perform the remaining distance calculation using
Dijkstra to all other vertices. This improvement is useful when there is a high probability
to select cluster origins that are too close to each other. This can be a result of using a very
large k relative to the size and density of the network, or running this algorithm on a network
which is strongly connected with many high similarity edges, which is clearly not the case
in p2p file similarity networks.

Once completed, the vertices are traversed once, mapping each to the cluster origin that
matches the smallest distance. This phase can be completely avoided, if during the Dijkstra
calculation from each cluster origin, only the nearest cluster and its corresponding distance
is stored. Therefore, the overall time complexity of the improved algorithm is bounded by
O(k(|E | + |V | log |V |)).

Another improvement is achieved by removing vertices from shortest path calculation in
case they have shorter distance to a previous cluster origin. Consider a vertex v that have a
distance d j from cluster origin j , and distance di < d j from a previously calculated cluster
origin i . Any path traversing through vertex v to another vertex will have shortest distance
to cluster i than to cluster j . Therefore, it is possible to remove vertex v from shortest paths
of cluster j .

Following the above observation, it is possible to obtain stronger bounds on the efficiency
of the algorithm. Consider a graph that has all vertices aligned along a line with indices
1 . . . n, with a completely balanced set of clusters. Meaning, given n vertices and k clusters,
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each cluster holds exactly n/k vertices. In the worst case, cluster origins are aligned along
the line graph, spaced with n/k vertices apart. The first cluster will have to traverse all n− 1
vertices, the second n − n/k − 1 (since only the first n/k are closer to the first cluster), the
third n− 2n/k− 1, and so forth, until the kth cluster that will traverse only n/k− 1 vertices.
This linear descend causes the algorithm to traverse a O(n2) vertices.

The best case is when each cluster origin split the space of the previous cluster origin
in half. In this case, the first cluster origin will be in the middle of the line graph (at index
n/2) and will traverse all vertices. The second and third cluster origins will be at indices n/4
and 3n/4 accordingly. Each of them will have to traverse only n/2 vertices. The following
four clusters split each of the four regions and each traverses only n/4 vertices. Overall, the
algorithm traverses O (n log(n)) vertices.

While this analysis seems unfeasible when dealing with large graphs (due to their high
dimensionality), it is, in fact, possible to find vertices that “split” the graph using the overall
popularity of the files. A highly popular file is most likely “close” to every other file in the
graph; hence, it makes sense to select it as the central vertex. Other less-popular files can also
be selected as origins, enabling efficient partitioning of the space.

In terms of memory consumption, assuming B bytes (we used 4 bytes integer) are stored for
identifying vertices, link weight (storing the normalized similarity), and distance between
vertices. Therefore, the similarity graph can be efficiently stored using B · |V | + B · |E |
bytes. Storing the k origins requires additional B · k bytes. Assuming we use the previously
mentioned improvements, for each vertex, we store the nearest origin and its corresponding
distance, which requires additional 2B · |V | bytes. Therefore, the total memory consumption
is bounded by O(B · (|V | + |E | + k)).

The above analysis indicates that GkM is scalable. The performance of k-means is related
to its convergence parameter; hence, it is expected to see similar behavior with slight advan-
tage to k-means, as it is known to efficiently converge given good selection of parameters.
MCL is significantly less scalable than the rest due to its large matrix multiplications. Metis
and Graclus are both designed for efficient partitioning of the data hence are likely to run
faster than all other algorithms.

3.3.5 Network dynamics

Peer-to-peer (P2P) networks are highly dynamic as content is constantly added and removed
by users. Adding and deleting files to the network changes the similarity graph, hence may
affect the resulting clusters. In most cases, when a set of clusters is already established, the
objective is to quickly associate new content with existing clusters without affecting other
files. In this case, for each file that is added to the graph, the distance to each of the k origins
must be calculated, which can be achieved by traversing only vertices adjacent to the new
vertex. The distance of each adjacent vertex is added to the link that connects it to the new
vertex, and the minimal distance is the one that is used to map the vertex to the correct cluster.

However, new files that gain extreme popularity introduce new links with large similarity
values and can lead to “short-cuts” in the graph, resulting in a need to move vertices between
clusters. Moreover, but less likely, trends in the network can result in the creation of new
clusters that represent a true change in user preferences. When this is the case, the algorithm
must run again on the updated graph. A possible improvement was suggested [6] using an
approximation method that help identify vertices that are likely to change clusters, therefore
focus only on them.
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4 Evaluation

Evaluation is performed using a graph that represents a snapshot of the music files that were
shared in the Gnutella [35] p2p network. It is also possible to evaluate the proposed method
on a synthetic power-law graph and validate our claims regarding bias in current algorithms.
We use a large-scale power-law graph originated from a real-world network, since it provides
additional domain-specific information such as metadata about the songs. This realistic data
set helps to show how commonly used efficiency measures provide misleading information
about the applicability of the resulting clusters for search and recommendation purposes.

4.1 Data set

The files from Gnutella were collected by a 24 h active crawl over the shared folders of
over 1.2 million users on November 25, 2007, selecting only musical mp3 files. At the time
of the crawl, Gnutella was considered as the most popular file sharing network [1]. Using
this data, a songs similarity graph was created, having songs as vertices and the weight of
a link connecting two vertices as the total number of different users that shared both files.
The graph holds a total of 531k songs, performed by more than 100k artists covering over
3,600 genres and have more than 1 billion interconnecting links. The songs are indexed in
descending order of their popularity; i.e., given songs i < j , song i is more popular (shared
by more users) than song j .

Many of the links represent a very weak relation between songs due to invalid or scarce
content and hence were filtered. During the collection of songs, we only kept links that
appear in at least 16 different users (16 was selected for implementation reasons). This filter
guarantees that “weak” ties between songs are not inserted to the similarity graph. A second
filter keeps, for each file only the top 40 % links (ordered by descending similarity value) and
not less than 10 links, i.e., keeping 20 million undirected links in the graph.

4.2 Crawl accuracy

Collecting the complete information about all users and files in a p2p network is practically
not feasible. Therefore, in order to understand how well the crawl captures the underlying
network, an empirical study of the utility of an exhaustive crawl relative to a partial crawl
is performed. Partial crawl means that not all users are reached, hence not all songs are
collected, and the weights of the links between songs are less accurate.

The first validation is achieved by creating a smaller data set using a random sample of
100k users. While the sample set constitutes for less than 10 % of the original users, the
number of songs in the sampled set is over 96 % of the overall songs (511k out of 530k). This
shows that most users in the p2p network share similar files indicating that it is not required
to perform an exhaustive crawl in order to obtain sufficient representative data.

Notice, however, that the songs that are lost during the sampling belong to very specific
musical niches. These are of less interest to this work since this music is usually known to
the users that like it, and they usually know how to find it. However, some trendy songs that
are not yet shared by many users can be overseen indicating that detecting “hypes” require
a more exhaustive crawl of the network.

A second analysis is done on the similarity graph itself. We construct smaller sub-networks,
by including, for each vertex, only the top N neighbors, ordered by nonincreasing normalized
similarity. The truncated links stand for weak relations between songs that disappeared since
users holding these songs were not crawled. The number of times each song appears as the
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Fig. 1 Degree distribution of the
song-similarity graph
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nearest neighbor for increasing values of N was calculated. The results indicate that for
N ≥ 10 (we denote the graph T R10), the distributions almost overlap.

Finally, the degree distribution depicted in Fig. 1 shows, as expected, a power-law dis-
tribution for all samples, with similar exponent value. Furthermore, the figure shows that
while for N = 1 the distribution is extremely sparse, for N ≥ 10 we get an almost identical
distribution with slight shifts.

These results indicate that obtaining partial file sharing information is sufficient for gen-
erating a comprehensive similarity graph, as the utility of having a more complete view of
the network quickly diminishes.

4.3 Applying clustering algorithms

In order to evaluate the results of the different aspects of the considered algorithm, we ran all
of them using the graph T R10 with k = 100. For GkM, the distance function that was used
is given d(i, j) = − log2(w(i, j)). This function helps distinguish better between “near”
and “far” songs, while mid-range is less affected. We note that we experimented with other
distance functions, such as 1/ŵ(i, j) and 1− ŵ(i, j). Although the results were very similar,
it is likely that this is due to the similar smoothing effect of these functions over the similarity
values, where it is likely that other distance methods might result in significantly different
results [33]; hence, care should be taken when converting similarity to distance.

GkM longest running code is the Dijkstra calculations, which even in an efficient imple-
mentation take around 5 s on average for the evaluated graph. This results in an overall
execution time of roughly 8 min, when the origins need to be reselected, and a few seconds
when distances between origins and all other vertices are known (e.g., when changing various
input parameters and recalculating).

Although Metis and Graclus operate on the similarity values, the published implementa-
tions require integer values. Hence, the similarity value was multiplied by 10,000 and then
rounded to the nearest integer. This loses some precision since the normalized similarity value
has longer fractions; however, multiplying by higher numbers resulted in a never-ending run
time, which we attribute to implementation issues rather than the design of the algorithm.
When the values are properly set, both algorithms run extremely fast and complete in roughly
20 s.
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(a) (b)

Fig. 2 Number of songs, distinct genres and distinct artists (a GkM, b k-means and Metis)

MCL does not accept as input the number of clusters k, but instead accept a value that
specified the required coarseness of the resulting clusters. For this analysis, we tried several
values; however, we found that even for the coarsest level, MCL produced 129k clusters and
took 3 days to complete. Obviously, even without detailed comparison, this makes MCL really
problematic for large networks. We note, however, that recently [38] several improvements to
MCL were suggested without changing the underlying theoretical basis, making it somewhat
more suited for such networks; hence, we include it in this analysis.

Since k-means does not run directly on graphs, the graph was first embedded into a
10-dimension feature matrix using fast sparse embedding [32]. This technique requires 10
shortest path calculation, which was efficiently calculated in less than a minute. Then, k-
means was applied on the resulting matrix, with a stopping criteria of maximal centroid shift.
Meaning, the algorithm converged once all centroids moved less than 0.5 units (measured in
the Euclidian embedded space) relative to their prior location. This converges very fast and
took less than a minute to complete.

4.4 Efficiency measures

Evaluating the efficiency of clusters can be very subjective [15] and highly dependent on
the specific domain. Therefore, we use both conventional efficiency measures and develop
additional domain-specific measures that utilize the metadata extracted from the shared files.
Furthermore, some measures are used to study the robustness of GkM to various input
parameters values.

4.4.1 Cluster size

The size of the cluster is defined as the number of different files it contains. Although we
would like to obtain a uniform size distribution along the different clusters, such a distribution
will not be correct for p2p shared content in general and musical content in particular. The
reason is that usually there are some mainstreams and many much smaller niches (in our data
set, there are more than 3,600 genres). In this case, the mainstream clusters are expected to
be larger than the ones that represent a niche or some subgenres.

Looking at the number of songs in Fig. 2, GkM and k-means exhibit quite similar median
number of songs, where, as expected, GkM exhibits more “noisy” clusters. This is attributed
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(a) (b)

(c)

Fig. 3 Number of songs, distinct genres, and distinct artists, showing problematic results of a Graclus,
b MCL, and c Metis

to the observation that GkM’s clusters grow according to the distances of vertices, whereas
k-means converges to a local minima which is an average of near-by vertices.

Figure 3 shows the results of Graclus, MCL and Metis, all of which exhibiting problematic
behavior. Graclus exhibits a large variety of sizes, with a few extremely large clusters. The
largest cluster contains almost 400k songs (not shown in the plot scale), which are 75 %
of the songs in the graph, rendering the resulting clusters completely useless for improving
search and recommendation applications. As expected, MCL fragments the output clusters
into over 129k clusters, most of them are very small (only the first 1k are shown). While it is
possible to use only the k largest clusters, the tail is so long that unless k is extremely large,
most files will be lost.

As expected, Metis exhibits an almost perfectly balanced size of 5,318 files in each cluster,
and interestingly, the genres and artists are also quite smooth. However, using a completely
uniform distribution via the balls-in-bins formula provides similar results given that songs
are grouped into batches of 10–12. This can be explained by strong relations between songs
that are in the same album (each containing 10 songs on average), hence are commonly
downloaded together.

GkM provides the best overall average songs to artists ratio (i.e., the number of songs
in each cluster divided by the number of unique artists performing these songs, averaged
over all clusters) of 0.49, compared to the second best, Metis, with 0.55. Furthermore, since
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Fig. 4 Distance distribution and size balancing threshold τ . a GkM τ = 0. b GkM τ = 3. c k-means

GkM relaxes the size balancing constrain, it generates more natural clustering, with larger
clusters for the more mainstream songs and smaller clusters for the less-popular songs. In the
remainder of the paper, we mostly focus on the results of GkM and k-mean and compare to
other methods only when the results are not of their problematic partitioning of the data set.

4.4.2 Distance distribution

Unlike k-means, GkM does not guarantee convergence of cluster distances to local minima.
The reason is that GkM does not shift the cluster origins and its use of the size balancing
parameter τ , which prefers balanced size distribution over distance minimization. Hence,
it is important to empirically validate that the resulting clusters have a relatively uniform
distribution of distances, with different values of τ .

Figure 4 depicts the distribution of the distances of all files in each cluster, using k-means
and GkM with τ = 0 (no size balancing) and with τ = 3. The latter was chosen once we
found that the median distance resulting from an execution without size balancing is 15. We
empirically selected τ to be 20 % of this value, i.e., τ = 3.

The central mark in each box of the boxplot is the median, the edges of the box are the
25th and 75th percentiles, the whiskers extend to 1.5 times the difference between the 25th
and the 75th percentile distances, and + sign beyond the whiskers is considered as outliers.
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Fig. 5 Radius and diameter. a GkM. b k-means

The immediate observation is the k-means results in very “tight” clusters with a much
smaller median distance than the GkM. Such a result is expected, when considering the
k-means algorithm. Even the many outliers that exist in k-means extend mostly to smaller
regions than GkM. However, GkM manages to create a uniform distribution of distances,
with much less outliers (“bad” outliers being the high ones). As expected, when using higher
value of τ , the median distance is slightly higher and the distances are less uniform, since
the distance optimization is relaxed in favor of size balance. Notice that all figures include
extreme outliers that potentially can be extracted into different clusters.

4.4.3 Radius and diameter

The radius of a graph is defined as the minimum over the shortest paths between all vertices,
whereas the diameter is defined to be their maximum. While these measures have many
implications in scale-free graphs [3,5], in our case, they reflect whether most clusters are
relatively “tight” or are spread on a relatively large space, i.e., how similar are the songs
contained in the cluster. In order to compare different algorithms, we normalize the radius
and diameter by their maximal value, taken over all clusters. Note that the radius and diameter
can be obtained from all algorithms, even those that do not define a cluster origin. Hence,
these measures are in some sense more useful for comparing the different algorithms than
the distance distribution.

Figure 5 compares the cumulative distributions function (CDF) of the radius and the
diameter percentages of the GkM and k-means. GkM results in relatively spread clusters,
having 80 % of the clusters within 50–70 % of the maximum cluster radius and diameter.
This fact aligns with the previously analyzed distance distribution. k-means results in slightly
tighter cluster, due to its optimization targeting procedure.

4.4.4 Normalized cut

Recall that the normalized cut of a cluster measures the ratio between links outgoing from
a cluster to other clusters and the overall cluster degree. Often, good clustering procedures
results in small cut value. We extend this measure to weighted graphs by defining a weighted
normalized cut:
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Fig. 6 Normalized cut and normalized weighted cut. a GkM. b k-means. c Metis

wNcut (C) =
∑

i∈C, j �∈C A(i, j)∑
i∈C

∑
j A(i, j)

(4)

Figure 6 plots the CDF of the normalized cut and normalized weighted cut obtained
by GkM and k-means, compared with the near-optimal value of Metis (lower cut value is
better). GkM performs better than k-means as a result of GkM shifting each vertex toward
the cluster that have the highest sum of neighbor weights. While this procedure modification
significantly improved the cut and weighted cut, the obtained result is still higher than Metis.
This shows that the normalized cut is not always the best measure for successful clustering
when considering the applicability of the resulting clusters.

4.4.5 Diversity of popularity

To be efficiently used by recommender systems, clusters are required to contain files with
large diversity of popularity. Such a diversity allows the recommender system to recommend
content which is less popular therefore often difficult to find [8]. However, it is expected
that clusters that correspond to more mainstream content will have more popular files, while
clusters that correspond to niches will have less-popular files.

Figure 7 shows the distribution of file popularity per cluster (lower song index indicates
higher popularity). The two extreme cases are Metis that produces a very balanced set and
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Fig. 7 Song popularity distribution. a GkM τ = 0. b GkM τ = 3. c k-means. d Metis

k-means that exhibits the least balanced distribution. The completely balanced clusters again
indicate an almost uniform distribution of songs into clusters. On the other hand, clusters
that hold only highly popular content and clusters with mostly not-popular content are also
less useful for a recommender system, since common collaborative filtering techniques are
based on like-minded users causing them to support popular taste stronger than unpopular
one.

GkM exhibits a distribution between the two extreme cases. Different values of τ enable
adjusting the results, with higher τ values result in more balanced popularity. This is attributed
to shifting songs between clusters in contrast to their “natural” attraction to other songs, which
breaks tight groups of songs with similar popularity into different clusters.

4.5 Discussion

Different efficiency measures capture different aspects of the resulting clusters. Using a graph
extracted from a real p2p network enables more accurate evaluation of the results than using
a synthetic graph. The most important observation is that popular measures, which are often
used as optimization factors for state-of-the-art clustering algorithms, may lead to clusters
that are nonoptimal for many applications and particularly for search and recommendation
implementations that are the focus of this paper. Clusters that have low cut values tend to
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be large clusters, mainly due to the skewed nature of the network power-law graph. This
fact causes some domain-specific measures to look good. Yet by examining the underlying
reasons, one reveals that most algorithms will not perform well in real-world applications.

GkM appears to be well-suited algorithm for search and recommendation applications.
Although it is not the fastest algorithm of the ones we have tested, its resulting clusters exhibit
a good overall mixture of size and diversity, with tight distance and small set of music types
contained in each cluster. Graclus, Metis, and MCL “suffer” from their optimization goals,
leading them to produce too large clusters, clusters with strict groups of songs, or too many
clusters. All of these outcomes make the clusters appear good with respect to some efficiency
measures, but, as we have shown, to perform poorly in measures that are more likely to be
of interest in real-world application.

Although k-means has similar optimization goals as the GkM algorithm, the former is more
strict regarding minimal distance optimization. Overall, k-means distance approximation
techniques perform quite well, and it has the advantage over GkM of balancing computation
speed and accuracy, which is determined by the dimension of the embedded space. The
only measure in which the k-means was found inferior to the GkM was the diversity of
popularity: having some clusters with only less-popular songs while other clusters with only
highly popular songs. The diversity of the popularity in clusters is required by recommender
system and less for efficient content searching; hence, k-means can be efficiently used in
such applications.

5 Use case: recommender system

As a measure for a real-world application, we used the clusters for creating a recommender
system that provides users with songs that are related to the ones they already share. Since
people are assumed to have a defined taste in music, we expect that given a good clustering
scheme, the songs of each user will reside in a small number of clusters and a large fraction
the user’s songs in one of the clusters, which we refer to as the dominant cluster. By mapping
each user to her dominant cluster or even to several clusters, we can potentially identify
the musical taste of the user. Recommender systems can take advantage of the diversity of
file popularity within each cluster and recommend new and yet unpopular content (of high
quality), a task which is known to be hard [18].

First, we seek to evaluate how well the different clustering methods perform under these
metrics. Using the original user-to-song network, we count, for each user, the number of
clusters in which her songs reside. Within the dominant cluster (the one that holds most of
the user’s songs), we count the prevalence of the user’s songs, i.e., the percentage of songs
that are contained in the dominant cluster. We expect that a good clustering method does not
spread users songs in too many clusters, and the dominant cluster of any given user should
hold a significant portion of her songs.

Figure 8 plots the CDFs of the number of clusters and the prevalence in the dominant
cluster for the clustering methods. The figure shows that GkM and Metis are similar (kk-
means, which is not shown, resulted very similarly to GkM). For these, roughly 8 % of the
users have all their songs in a single cluster, while 70 % of are mapped to less than 30 different
clusters.

Graclus and MCL performed very differently. Graclus resulted in relatively low number
of clusters and high prevalence (desired outcome), while MCL resulted in a very high number
of clusters (we limit the x-axis to 100; however, the maximal number of clusters for one user
was 675) and low prevalence. While these results are quite expected due to the way these
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Fig. 8 Results of mapping users to clusters, showing the number of clusters that holds each user’s songs and
the song prevalence in each user’s dominant cluster. a GkM. b Metis. c Graclus. d MCL

algorithms operate, they are only a single factor for the success of the recommender system,
as we show next.

Our recommender system works as follows. We generate recommendations to a user by
simply finding the user’s dominant cluster (we break ties arbitrarily) and recommending the
most popular songs from that cluster. This is a fairly naive approach, but it shows a simple
use case for the clustering method by leveraging the properties of the clusters and can be
executed extremely fast.

We compare the results of this method with two other methods, which we refer to as “most
popular” and “nearest neighbor”. The “most popular” method simply recommends the overall
most popular songs that a user does not have. We consider this method as a lower bound for
success, as it completely ignores the songs the user has and instead relies on the assumption
that the popular songs are (by definition) liked by many users; thus, it is likely that they are a
good recommendation. A major advantage of the “most popular” method and our proposed
method is that preparing the list of possible recommendations can be preprocessed once for
all users, and then the recommendations can be performed extremely fast.

The “nearest neighbor” method considers all the neighboring songs to the known user’s
songs and iteratively recommends the nearest neighboring song. We consider this method
to be an “upper bound” for success since it uses all the information in the graph and it is
significantly more costly than the other methods (obviously, this is not a real upper bound,
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Table 1 Validation results using the “most popular” and “nearest neighbor” baseline methods, and using the
popular songs within dominant clusters generated with the different clustering methods.

Most
popular (%)

Nearest
neighbor (%)

GkM (%) k-means
(%)

Metis (%) Graclus
(%)

MCL (%)

Precision 22.7 38.4 27.3 30.8 17.0 22.5 36.9
Recall 7.0 10.1 8.6 9.1 5.8 7.2 9.3

but compared to the popularity method, we expect it to perform better). It is significantly
more computationally expensive than the popularity-based method, as it requires per-user
traversal of the song-similarity graph.

Evaluating the results is done by randomly selecting a training set of 60 % of the songs of
each user. Then, each recommender system attempts to recommend the remaining 40 % of the
songs (evaluation set) by using the above-mentioned methods. Since the likelihood of finding
the exact missing user’s songs is low, we measure success by looking at the artists. We count
the precision, i.e., how many artists were correctly recommended out of the recommended set,
and recall, i.e., how many artists were correctly recommended out of the real data. Clustering
was performed on the TR20 graph, and we used k = 100 for all algorithms that accept it as
input.

Table 1 summarizes the results of this analysis. The simplest “most popular” approach
reaches a precision of 22.7 %, whereas our best “nearest neighbor” approach reaches a preci-
sion of 38.4 %. Surprisingly, MCL performed the best among the different clustering methods;
however, since the number of clusters is huge and as Fig. 8d shows, users songs are spread
among many clusters, finding the dominant cluster for each user is a costly task, similar in the
scale to the best method. Putting computational complexity aside, the high precision obtained
by MCL is unexpected since the prevalence of the dominant cluster is very low compared to
the other methods, showing the MCL manages to place a small majority of the user’s songs
in a cluster which is potentially interesting to the user.

The k-means slightly outperforms GkM (30.8 and 27.3 %, respectively), mainly because,
as we have shown, the way the popularity is distributed in GkM may cause our algorithm to
recommend less-popular songs that are more difficult for the user to find; however, these are
harder to evaluate. Despite Metis apparently having similar spread of users’ songs (as can
be seen in Fig. 8b), it performed the worst. This again shows that the hard constrain Metis
imposes on the distribution of songs has real implications on its applicability in practice. The
recall of all methods is quite low, showing that, overall, is it quite difficult to find the exact
artists in the evaluation set.

Although these results seem somewhat low, they are relatively high when considering
the vast amounts of songs that exist and shared by p2p users. For example, one user in the
data set had songs tagged with “Bob Dylan ft. Van Morrison”, “Chuck Berry” and “Bob
Dylan”. Given only two songs which were both tagged with “Bob Dylan ft. Van Morrison”,
the “nearest neighbor” algorithm recommended songs that were tagged with “Van Morrison”.
Although this is clearly a good recommendation, it was tagged as a failure by our automatic
evaluation procedure.

This analysis shows that even when using extremely sparse, noisy, and implicit ranking,
it is still possible, yet not trivial, to recommend the songs and artists that a user may pre-
fer. Moreover, devising an automatic criteria for accurate estimation of the correctness of
recommendations is a nontrivial task. The popularity-based methods were found to be quite
successful due to the fact that many users prefer popular mainstream music. However, the
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proposed “nearest neighbor” method can be further refined so that it provides diversity in the
recommendation. For example, recommending the song that has smallest average distance to
all other songs, or for more adventurous users, recommending the nearest neighboring song
that is the least popular one. These recommendations, however, are much more subjective
and thus are difficult to assess a priori.

Finally, we note that we evaluated the robustness of GkM to the selection of the number of
clusters (k). When discussing clusters of musical taste, the value of k is closely coupled with
the number of various musical “flavors” that are captured in the underlying graph. We found
that for k ≥ 50, the results are similar to the above, showing that the number of clusters that
are actually needed is finite, which is important given that the time and space complexity of
GkM are strongly tied with the value of k. Even when the number of clusters is high, users
are mapped to strongly dominant clusters; thus, the results are not significantly differ than
what we observed for k = 100.

6 Conclusion

This paper aims to provide a profound understanding on the applicability of clustering p2p
networks, focusing on “search and recommendation” implementations. The observation
that many p2p networks, as well as other well-used networks such as the WWW and various
social services, exhibit a power-law degree distribution raises the concern that state-of-the-
art clustering algorithms produce biased clusters. Furthermore, commonly used efficiency
measures often overlook search and recommendation applicability issues and provide wrong
impression that the resulting clusters are well suited for these domains.

In order to overcome these issues, we propose the GkM, a clustering algorithm that
operates on large-scale power-law graphs and implements a relaxed distance optimization
procedure with size balancing. Using a real-world power-law graph that provides us with
domain-specific information, we perform a comparative analysis and show that distance-
optimizing techniques, such as GkM and the approximated k-means, result in clusters that
are well suited for search and recommendation applications.
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