
Mining Music
from Large-Scale,
Peer-to-Peer
Networks

Yuval Shavitt, Ela Weinsberg, and Udi Weinsberg
Tel Aviv University

M
illions of users worldwide use

peer-to-peer (P2P) networks

for sharing content, with a

significantly high percentage

of this content being multimedia, such as

songs and movies.1 As such, P2P networks are

an invaluable resource for various multimedia

information retrieval (MIR) tasks because of

the large data set, the ability to capture data

without the collaboration of P2P network oper-

ators, and a large and diverse population.

However, P2P networks are quite complex,

exhibit high user churn, and contain high

amounts of noise in the user-generated content.

This makes collecting a complete snapshot

of the network content complex. Additionally,

there are often slightly different duplicates of

the same files available in the network, which

might have different file hashes, file names,

and metadata tags. Duplication in metadata

tags is typically caused by spelling mistakes,

missing data, and different variations of the cor-

rect values. Finally, P2P user-to-item mappings

are extremely sparse due to the vast amount

of content, most of which is quite scarce, mak-

ing user preferences hard to deduce.

These complexities result in difficulties

when attempting to mine meaningful data

from P2P networks. For example, even though

improved search schemes2 and recommender

systems3 have been proposed to help users

find content, current P2P networks mostly em-

ploy simple string-matching algorithms against

file name and metadata, either distributed or

centralized, usually using a Web-based search

engine. In the Gnutella network, this method

results in only 7 to 10 percent of queries suc-

cessfully returning useful content.4

While improving these approaches is obvi-

ously needed, recommender systems require

meaningful data sets. Current recommender

systems mostly rely on the willingness of

users to rank their preferences to provide better

recommendation. However, the nonexistence

of explicit ranking in P2P networks and the pre-

viously mentioned complexities make it diffi-

cult to create efficient recommender systems,

thus contributing to the increasing frustration

of users. The main objective of the work

described in this article is to overcome these

difficulties and improve the ability to perform

efficient mining of music content in data sets

originating from P2P networks. For this project,

we studied the musical content shared by users

in Gnutella,5 then built a song-similarity graph,

where the similarity between two songs is based

on the number of users that share the two

songs. We accounted for missing metadata by

clustering the similarity graph and finding

groups of similar songs. This article describes

how the resulting clusters hold songs of varying

popularity with high prevalence of dominant

genres and artists, properties that are especially

useful for recommender systems.

Song-similarity graph
Collecting the shared songs from a P2P net-

work requires crawling the network, which

involves traversing the network in a way similar

to how Web crawlers behave. Using the Gnu-

tella protocol, we can discover, for each crawled

user, the set of peered users and the files they

are sharing. We collected the data set used in

this article in a 24 hour Gnutella crawl on

25 November, 2007. At this time, Gnutella

was the most popular file-sharing network.6

The crawler reached more than 1.2 million

Gnutella users and recorded more than 373 mil-

lion files. Because this article focuses on MIR

data, we identified files that are music-related

by indexing only the files with a music-related

suffix (MP3, WMA, FLAC, M4P, and M4A). We

found that music-related content accounted for

more than 75 percent of the files on the net-

work, that is, more than 281 million files.

These figures strengthen the notion that P2P

[3B2-9] mmu2011010014.3d 18/2/011 16:32 Page 14

Large-Scale Multimedia Retrieval and Mining

Using song files

shared by users in

the Gnutella

network, the authors

present a method for

constructing a song-

similarity graph to

create scalable and

efficient

applications.

1070-986X/11/$26.00 �c 2011 IEEE Published by the IEEE Computer Society14

networks are an excellent source for MIR con-

tent, analysis, and applications.

We modeled the crawling data as a bipartite

graph that connects users to files. This graph

is a special case of the standard collaborative-

filtering matrix in which a link in the graph

represents the ranking of an item by a user.

This graph is transformed into a song similar-

ity graph, S, where the weight of a link be-

tween two songs is the number of users that

hold both songs. Additionally, a popularity

distribution vector, P, is created, counting

the number of times each song appears in

the network.

The similarity metric needs to be normalized

to allow comparison of the similarities between

pairs of files with different popularity. Each link

weight wij is normalized using a modified

cosine-distance function of the popularity of

both songs given as follows:

ŵij ¼
wijffiffiffiffiffiffiffiffiffiffiffiffi
Pi � Pj

p

The normalized similarity graph is denoted

by Ŝ.

Intuitively, because some popular songs are

shared by many users while many songs are

shared by only a few, the graph should result

in a power-law degree distribution. In such dis-

tributions, the probability that a randomly

selected node is of degree k is PðkÞ � k��, for a

fixed � > 1. This results in a few popular files

with high degree and many less-popular files

with low degree. In the following section, we

show that, indeed, the degree distribution fol-

lows a power-law distribution.

Unique song identification

One of the difficulties caused by the noisy

data set is the correct identification of unique

songs. To this end, we use several techniques.

First, songs having hashes that appear only

once in the data set are filtered out, mainly be-

cause they are too scarce to provide any mean-

ingful data. We then group all file hashes that

relate to identical metadata value (artist and

title), including artist and title values that

have a small edit distance (counting insert, de-

lete, and substitute), accounting for small spell-

ing mistakes. Representative metadata values

for each group are chosen using majority

voting.

After this aggregation, all songs that have

less than seven occurrences are removed. We

chose this value as a trade-off between filtering

and memory consumption. This song unifica-

tion reduced the number of unique songs

from more than 21 million to 530,000. Al-

though this technique can result in over-

filtering, it successfully overcomes the low

signal-to-noise ratio that inherently exists in a

P2P network, primarily due to user generated

content. However, it’s possible that some uses

of P2P data would need more precise filtering

techniques.

We perform additional filtering of weak

song-to-song relations. Such links are mainly

the result of heavy sharers, that is, users that

share many different and uncommon mixtures

of songs, contributing links between songs that

are not commonly shared together. To this end,

only links that appear in at least 16 different

users are included, a value that we selected as

a trade-off between filtering and resources.

Then, we kept for each file only the top 40 per-

cent of links (ordered by descending similarity

value) and not less than 10. After this filtering,

out of the original 50 million undirected links,

roughly 20 million remain.

Partial sampling

Partial sampling is inherent to P2P networks,

mostly because it’s impossible to crawl all users

and get all of their data, either due to the high

churn or to security and privacy issues. How-

ever, partial sampling of the network is

expected to lower all the links in the graph in

the same proportion with the exception of

the weakest links, where some links will disap-

pear and some will have reduced weight. This

partial crawl will not change the end results.

To evaluate the effect of partial sampling, we

used a simpler, yet equivalent, approach. We

created graphs, denoted by top relations

(TR)N, where each graph contains, for each

file, only the top N neighbors, ordered by non-

increasing, normalized similarity. This tech-

nique captures the relative popularity of

adjacent files, and is analogous to the effect of

a partial sampling in the P2P network, where

many users are simply not reached during the

crawling phase. We will use these graphs to

evaluate the way the similarity graph is affected

by partial sampling. For additional analysis that

we performed on these aspects, we refer the

reader to Koenigstein et al.7

[3B2-9] mmu2011010014.3d 18/2/011 16:32 Page 15

Ja
n

u
a
ry

�
M

a
rch

2
0
1
1

15

The degree distribution depicted in Figure 1

shows, as expected, a power-law distribution

for all samples that have a similar exponent

value. Furthermore, the figure shows that

while for N ¼ 1 the distribution is extremely

sparse, for N � 10 we get an almost identical

distribution with slight shifts. These results

indicate that obtaining partial file-sharing in-

formation is sufficient for generating a compre-

hensive similarity graph, as the utility of

having a more complete view of the network

quickly diminishes.

Approximated search

and recommendation
Users in P2P networks mostly search for con-

tent by using query strings that are matched

against metadata fields attached to the content,

either directly in the shared file or in a file’s

tracker. However, as stated before, metadata

fields are often missing or quite ambiguous.

For example, more than 35 percent of the files

in our data set are missing a genre, while the

remaining files have more than 3,600 different

genres, some of which are encoded with num-

bers. This missing metadata obviously causes

query-based searches to be rather ineffective

in returning correct content.

Overcoming these difficulties is achieved

by creating clusters of the shared songs on

the basis of an estimation of the distance be-

tween shared songs. The resulting clusters can

help interpolate missing metadata, therefore

improving the ability to search for specific

songs even if they have missing or misspelled

metadata. Furthermore, recommender systems

benefit by significantly scaling down the prob-

lem, estimating similarities using co-occurrences

within clusters, and managing to detect less

popular songs.

Clustering algorithm

To perform efficient clustering of the

song-similarity graph, we use a variation of

k-medoids,8 which is a distance-optimizing

algorithm. The k-medoids method randomly

selects k data points as cluster origins, then

assigns each data point to the nearest medoid.

It then shifts the medoids and reiterates the as-

signment process until the overall distance of

each data point from the nearest medoid is

minimal. This way, k-medoids is able to per-

form local optimization of these distances,

hence is less affected by the distribution of

the data points and quite robust to extreme

data points and outliers. However, k-medoids

doesn’t operate directly on graphs, hence it

requires its projection onto a multidimensional

space. Moreover, k-medoids performs repeating

iterations until converging, hence it doesn’t

scale. An in-depth review of clustering methods

is available elsewhere.9

Our modified algorithm, called Graph k-

medoids (GkM), includes several adaptations,

making it more suitable to run on large-scale

graphs. GkM operates directly on the similarity

graph by calculating the distance between any

two connected songs using a shortest-path al-

gorithm, such as Dijkstra. Songs are assigned

to the nearest cluster unless the distance to an-

other cluster is roughly the same (up to some

threshold). In the latter case, the song is

assigned to the cluster with fewer songs, so

that, overall, the number of songs in each clus-

ter will be balanced. GkM performs a single-

iteration medoid selection, allowing the

algorithm to be highly scalable. Although this

makes the algorithm not necessarily optimal,

the vast size of the graph causes the algorithm

to perform well.

GkM selects the cluster origins (medoids)

once in a random method, keeping the dis-

tance between them larger than a preset value

min_dist. Due to the random nature of

this selection, and the lack of converging itera-

tions, we might expect that the resulting clus-

ters could vary significantly between runs.

[3B2-9] mmu2011010014.3d 18/2/011 16:32 Page 16

100 101 102 103 104
100

101

102

103

104

105

106

Degree

N
um

be
r

of
 s

on
gs

TR1
TR5
TR10
TR20
TR50

Figure 1. Degree

distribution of the song

similarity graph.

IE
E
E

M
u

lt
iM

e
d

ia

16

However, the heuristic behind the algorithm

design is that due to the large size of the

graph, the min_dist limitation, and existence

of popular and strongly connected vertices,

clusters quickly grow toward popular vertices

and extend from there. Pathological cases

can rise when extremely remote and not well-

connected vertices are selected as cluster ori-

gins. In these rare cases, however, these clusters

will include only a few vertices and hence can

be either discarded or manually identified to

capture a unique set of similar vertices.

Clustering evaluation

To quantify the ability of the clusters to assist

in search tasks and compare the results of sev-

eral clustering algorithms, we present measures

that capture how closely related the songs are in

each cluster and how different the songs are be-

tween any two clusters. These questions play an

important role when searching for songs by

identifying clusters in which to search or from

which to recommend.

Evaluation is performed using the graph

TR10 with k¼ 100. Converting similarity to dis-

tance is performed using d(w) ¼ �log2(w). GkM

takes roughly 5 minutes to complete on a quad-

core, quad-processor server with 16 Gbytes of

memory.

Although a uniform cardinality (number of

different files) distribution along the different

clusters is desired, it’s not likely to occur in

music data because there are a few main

streams and many niches. In these cases, the

main stream clusters are expected to be much

larger than the ones that represent a niche or

some subgenre.

Figure 2a depicts the number of songs,

distinct genres, and distinct artists in each clus-

ter. The figure shows a relatively balanced

[3B2-9] mmu2011010014.3d 18/2/011 16:32 Page 17

100806040
Cluster index(a) (b)

(c) (d)

Songs
Artists
Genres

200
101

102

103

104

105

D
is

tin
ct

 v
al

ue
s

1,000800600400
Cluster index

Songs
Artists
Genres

2000
100

101

102

103

104

D
is

tin
ct

 v
al

ue
s

100806040

Cluster index

200
102

103

104

D
is

tin
ct

 v
al

ue
s

100806040

Cluster index

200
101

102

103

104

105

D
is

tin
ct

 v
al

ue
s

Songs
Artists
Genres

Songs
Artists
Genres

Figure 2. Number of

songs and unique

metadata fields in each

cluster using GkM and

state-of-the-art, large-

scale clustering

algorithms (clusters are

ordered by descending

number of songs):

(a) GkM, (b) Markov

Cluster algorithm,

(c) Metis, and (d) Graclus.

17

distribution among the clusters. The median

cardinality is roughly 3,000 songs, whereas

four clusters go beyond 20,000 songs. The

lower the number of genres and artists relative

to the number of songs, the more accurate

the identification of musical preferences will

be, hence the ability to approximate metadata

improves. The average genre-to-song ratio is

0.07, and is significantly lower than the average

artist-to-song ratio, which is 0.49. While the

latter seems rather high, it’s still better

than the current state of the art as shown in

Figures 2b, 2c, and 2d.

For the clusters to be efficiently used by rec-

ommender systems, it’s important that each

cluster contains files with large diversity of pop-

ularity. This allows a recommender system to

recommend less popular content, which is

often difficult to find. The resulting clusters

hold a mixture of popular and unpopular

songs. Furthermore, looking at the number

of top popular songs in each cluster, we found

that most clusters have at least one song from

the top 2,500, and all of them have at least

one from the top 5,000. As mentioned previ-

ously, this property is especially useful for

recommender systems because common collab-

orative filtering techniques are based on like-

minded users causing them to support popular

tastes stronger than the unpopular. Finding

less-popular content that might be of interest

to users is therefore problematic as these are

not easily tracked.

Having files in a cluster sharing various fea-

tures is expected to be reflected in their meta-

data. For each cluster, we find the dominant

genre and dominant artist (that is, the genre

and artist that have the highest prevalence),

and the percentage of their appearance out of

all the files in the cluster that have valid

metadata.

In roughly 60 percent of the clusters, more

than 10 percent of the songs belong to the

dominant genre, and in 5 percent of the clus-

ters 30 percent of the songs belong to the dom-

inant genre. These figures show that many of

the songs in a cluster share a common feature

(recall that there are more than 3,600 genres

in our database). Additionally, in 94 percent

of the clusters, the maximum prevalence of

the dominant artist is less than 3 percent.

However, noting that there are over 100,000

artists in the data set, this percentage is still

quite high.

Next, we consider the number of additional

significant genres and artists in each cluster. A

significant genre or artist is defined as the one

that has a prevalence of at least half the preva-

lence of the dominant genre or artist. On aver-

age, each cluster contains only two significant

genres and four significant songs. Recalling

that clusters contain thousands of songs, the

metadata makes evident that songs residing in

a cluster share common features.

Because many popular and productive artists

create music that spans different genres, their

metadata will have significant weight in several

clusters. Additionally, although there are many

different possible genres, most songs are tagged

using only a handful of genres. Therefore, we

might expect that several clusters will share

the same dominant artist and the same domi-

nant genre. This similarity, however, can be

useful for recommender systems because it

shows that clusters can reveal a segmentation

of the files, which is significantly more fine-

grained than that possibly obtained by user-

generated tagging.

We analyzed the number of clusters in

which each of the top-10 most dominant gen-

res appear as dominant. We found that a few

genres are dominant in many different clusters

with up to 40 percent of the clusters having the

same dominant genre. This finding shows that

there can be many variations of the same genre

that aren’t properly tagged but are identified

using cluster analysis. The distribution of dom-

inant artists is, as expected, much broader than

genres, where only a few artists appear as dom-

inant in more than one cluster. However, it’s

still possible to detect different audiences for a

given artist. For example, although Lil Wayne’s

songs are tagged with four genres (rap and hip-

hop in our database and rock and pop-rap in

Wikipedia), he appears in more than 10 differ-

ent clusters, meaning that he has songs that

spread across several different styles.

Comparison to state-of-the-art algorithms

We compare the results of GkM with several

state-of-the-art unsupervised clustering algo-

rithms. Markov Clustering (MCL) algorithm

performs hierarchal clustering on the basis of

stochastic flows and finds an optimal number

of clusters.10 However, MCL has scalability

issues, hence it’s extremely slow and outputs

many small-sized clusters (although some

improvements were recently suggested).11

[3B2-9] mmu2011010014.3d 18/2/011 16:32 Page 18

IE
E
E

M
u

lt
iM

e
d

ia

18

Metis uses a recursive, multilevel, bisection-

partitioning algorithm, resulting in a fast

algorithm that tends to force a balanced parti-

tioning of songs in each cluster.12 Graclus

attempts to optimize the normalized cut of

the resulting clusters (that is, the ratio of outgo-

ing links from each cluster to the overall cluster

degree) using multilevel partitioning similar to

Metis.13

A common problem with these algorithms is

that they don’t directly attempt to find vertices

that are close to each other, but rather optimize

efficiency metrics that are less suited to search

and recommendation tasks, mainly due to the

power-law nature of the similarity graph. As

such, a balanced partition is desired but should

not be strongly forced, making MCL, which

creates thousands of small clusters, and Metis,

which creates completely balanced partitions,

not suited for our needs. Similarly, Graclus

optimizes the normalized cut, which, as we

show, results in extremely large clusters.

We evaluated these algorithms using the

same TR20 graph and efficiency metrics. As

expected, Metis and Graclus run extremely

fast, and complete in roughly 20 seconds,

whereas MCL, which attempts to find an opti-

mal number of clusters on the basis of a given

coarseness level, took almost three days to com-

plete. This alone makes MCL problematic for

clustering of large networks. Recall that GkM

took roughly 5 minutes to complete on the

same hardware.

In our results, which show the number of

songs, the distinct artists, and genres in each

cluster, MCL (see Figure 2b), as expected, out-

puts many small clusters (only the largest

1,000 clusters out of the 129,000 resulting clus-

ters are presented). While it’s possible to use

only the T largest clusters, the tail is so long

that unless T is extremely large, most files will

be lost. Metis exhibits an almost perfectly bal-

anced 5,318 songs per cluster (see Figure 2c).

Graclus has a large variety of cluster sizes (see

Figure 2d). However, almost 30 percent of the

clusters contain less than 1,000 songs, making

them rather useless for our needs.

The metadata distribution in Metis is ex-

tremely smooth, which is unexpected because

Metis balances the number of songs in each

cluster without any knowledge about metadata.

However, using a completely uniform distribu-

tion with the balls-in-bins formula provides

similar results given that songs are grouped

into batches of between 10 and 12. This result

can be explained by the strong relationships be-

tween songs that are in the same album (con-

taining 10 songs on average), and hence are

commonly downloaded together. Although

Metis performs quite well, GkM provides better

results with an average artists-to-songs ratio of

0.49 as opposed to the 0.55 of Metis. Further-

more, because GkM relaxes the size balancing

constraint, it generates more natural clustering,

which also includes much larger clusters than

Metis. Graclus and MCL perform worst, because

they both have too many small clusters, but

still each have a variety of genres and artists,

making them useless for our tasks.

The popularity of songs in Metis clusters is

also well-balanced, while again Graclus and

MCL perform badly. This result is due to

Metis performing an almost uniform distribu-

tion of strongly connected songs into clusters.

Because Graclus and MCL produce many

small clusters, they are unable to provide high

diversity of popularities, causing only the few

large clusters to be effective.

Overall, GkM outperforms these state-of-

the-art clustering algorithms using the studied

metrics, indicating that it will most likely

perform more effectively in search and recom-

mendation tasks on power-law networks. Obvi-

ously, when comparing the optimized feature,

for example, normalized cut in GkM and Gra-

clus clusters, GkM falls far behind. Recalling

that the clustering is not the goal, but rather

the means toward recommending songs, this

comparison shows that commonly used effi-

ciency metrics are not always the best measure

when considering specific applications of the

resulting clusters.

Recommendation system

As a real world application, the song clusters

are used for creating a recommendation system

that provides users with songs that are related

to the ones they already share. Because people

usually have a defined taste in music, we expect

that the songs of each user will reside in a small

number of clusters with a large fraction of the

songs in one of the clusters. This expected be-

havior provides the ability to identify a user’s

musical taste by mapping each user to her dom-

inant cluster or even to several clusters. Recom-

mender systems can take advantage of the

diversity of file popularity within each cluster

and recommend new and yet unpopular

[3B2-9] mmu2011010014.3d 18/2/011 16:32 Page 19

Ja
n

u
a
ry

�
M

a
rch

2
0
1
1

19

content (of high quality), a task that is known

to be difficult.14

Counting the number of songs a user has in

each cluster revealed that 11 percent of the

users have all their songs in a single cluster

and almost 70 percent are mapped to fewer

than 10 different clusters. Furthermore, the me-

dian of song prevalence in the user’s dominant

cluster (that is, the cluster that has the most

songs) is almost 70 percent.

We create user recommendations with three

methods. The first, which is used for compari-

son, simply recommends the overall most

popular songs that a user doesn’t have, in

descending order of popularity. The second

method improves on the first by finding the

user’s dominant cluster and recommending

the most popular songs from that cluster.

The third method considers all the songs neigh-

boring the known songs in the dominant clus-

ter, and iteratively recommends the nearest

neighboring song. We refer to these methods

as ‘‘most popular,’’ ‘‘cluster popular,’’ and

‘‘nearest neighbor’’ respectively.

We evaluate the results by randomly select-

ing 30 percent of the songs of each user.

Then, each recommender system attempts to

recommend the remaining 70 percent of the

songs. We resolve the artists of the recom-

mended songs and count the precision (that

is, how many were correctly recommended

out of the recommended set) and recall (that

is, how many were correctly recommended

out of the real data). Clustering was performed

on the TR20 using GkM with k ¼ 100.

Using the most popular method resulted in

an average precision (taken over all users) of

19.4 percent and a recall of 18 percent. Cluster

popular and nearest neighbor gave slightly bet-

ter results with an average precision of 21.7 per-

cent and 21.5 percent, and average recall of

18.7 percent and 18.1 percent, respectively.

While these results seem somewhat low, they

are quite good considering the vast amounts

of songs that exist on P2P networks. For exam-

ple, one user in our data set had songs tagged

with ‘‘Bob Dylan featuring Van Morrison,’’

‘‘Chuck Berry,’’ and ‘‘Bob Dylan.’’ Given that

only one song was tagged with ‘‘Bob Dylan ft.

Van Morrison,’’ the nearest neighbor algorithm

recommended songs tagged with ‘‘Van Morri-

son.’’ Although this is clearly a good recom-

mendation, it was tagged as a failure by our

automatic evaluation.

The popularity-based methods are successful

due to the many users that prefer popular

mainstream music. Furthermore, a major ad-

vantage of these methods is that preparing

the list of possible recommendations can be

performed for all users, while the latter requires

processing per user. However, the latter can be

refined so that it provides diversity in the rec-

ommendation, such as recommending the

song that has smallest average distance to all

other songs, the song that is nearest neighbor

in one of the nondominant clusters or for

more adventurous users, recommending the

nearest neighboring song that is the least popu-

lar. Such recommendations, however, are

much more subjective and thus are difficult to

assess.

This analysis shows that it’s possible, yet not

trivial, to recommend the songs and artists that

a user might prefer. Moreover, devising an au-

tomatic criteria for accurate estimation of the

correctness of recommendations is a compli-

cated task.

User similarity
A different use of the song-similarity graph is

estimating the similarity between peers, mak-

ing it possible to find like-minded users. For tra-

ditional search-string propagation, users that

are similar to searching users are more likely

to have the searched content than other

users. In recommendation systems, it’s obvi-

ously more promising to recommend content

from like-minded users. However, developing

user similarity metrics in modern P2P networks

is challenging, mainly due to sparseness, mean-

ing the overlap between users’ shared songs is

extremely small. In our data set, almost 85 per-

cent of the users share less than 20 songs, while

fewer than 3 percent of users share more than

50 songs.

Peer distance estimation

Calculating the distance between users using

the songs-similarity graph manages to capture

the wisdom of the crowd, as it estimates the dis-

tance between files on the basis of the global

preferences of many users. Using the song-

similarity graph, it’s possible to calculate the

distance between users using all of their shared

files, and not only the mutually shared. For any

two given users, we create a bipartite graph B

that contains the songs of each user in each

side. Each song is connected to songs of the

[3B2-9] mmu2011010014.3d 18/2/011 16:32 Page 20

IE
E
E

M
u

lt
iM

e
d

ia

20

other user with a link weight, which is the

shortest-path distance between the two songs

on the similarity graph.

Once the bipartite graph is built, a maxi-

mum weighted bipartite matching algorithm

is applied. To compare between users i and j

that have different number of files, |pi| and

|pj|, the weight of the matching (sum of the

link weights in the matching) is normalized

using min {|pi|, |pj|}, which is the average link

weight. This value is used as the peer similarity.

There are two main benefits of using maxi-

mum weighted matching. First, it provides an

efficient method for assessing the best match

between two sets of files, hence the approach

provides a good estimation for the user similar-

ity without requiring overlap of the shared files.

Second, because only the highest-similarity

links are selected to the matching, various fil-

ters can be used for reducing the size of the sim-

ilarity graph and improving run time and

memory consumption of the algorithm, with

minimal bias in the results.

Results

Validation of the similarity metric is per-

formed using the sampled set of 100,000 users

and the TR10 song-similarity graph. For each

pair of users, we compare the resulting similar-

ity to the artist similarity. To accomplish this

comparison, the artists performing the songs

shared by each user are taken from the meta-

data fields. Assuming that two users i and j

have two sets of artists Ai and Aj, the artist sim-

ilarity is defined as (|Ai \ Aj|)/min {|Ai|, |Aj|}.

Figure 3 shows that high user similarity indi-

cates high artist similarity, which validates the

overall correctness of the similarity metric.

However, high user similarity also exists when

artist similarity is zero, showing that comparing

exact songs between users, even using coarser

granularity, is insufficient.

We have found that there is only a weak cor-

relation between geographical distance and

user similarity, indicating that spatial locality

of interest15 is becoming less valid in P2P net-

works. As such, bootstrapping based solely on

shared-content correlation or geographic local-

ity is insufficient. Adding our proposed user

similarity metric manages to more effectively

include the wisdom of the crowd into the pro-

cess of user-similarity estimation.

Conclusion
Overall, P2P networks provide an abundance

of information that can be used in MIR research

and can help produce exciting applications.

However, data sets extracted from P2P networks

should be carefully processed to fully harness

its strengths. Careful analysis and filtering of

the data set is key for sufficient noise reduction

while maintaining relevant, useful, and repre-

sentative information. MM

Acknowledgments

We thank Tomer Tankel for providing the

data used in this article, and sharing valuable

ideas for its successful analysis. This research

was supported in part by the Israel Science

Foundation center of excellence program

(#1685/07) and by the Ministry of Trade and

Industry, Magnet program through the NeGeV

Consortium.

References

1. A.S. Gish, Y. Shavitt, and T. Tankel, ‘‘Geographical

Statistics and Characteristics of P2P Query

Strings,’’ Proc. Int’l workshop on Peer-to-Peer

Systems (IPTPS), USENIX Assoc., 2007.

2. B. Yang and H. Garcia-Molina, ‘‘Improving Search

in Peer-to-Peer Networks,’’ Proc. 22nd Int’l Conf.

Distributed Computing Systems (ICDCS), IEEE CS

Press, 2002.

3. P. Resnick and H.R. Varian, ‘‘Recommender

Systems,’’ Comm. the ACM, vol. 40, no. 3, 1997.

4. M.A. Zaharia et al., ‘‘Finding Content in File-

Sharing Networks When You Can’t Even Spell,’’

[3B2-9] mmu2011010014.3d 18/2/011 16:32 Page 21

10010–4 10–3 10–2 10–1
0

2,000

4,000

6,000

8,000

10,000

Normalized similarity

G
eo

gr
ap

hi
c

di
st

an
ce

 (
km

)

Figure 3. Comparing

user similarity with

artist similarity

(500 random users are

shown for brevity).

Ja
n

u
a
ry

�
M

a
rch

2
0
1
1

21

Proc. Int’l Workshop Peer-to-Peer Systems (IPTPS),

USENIX Assoc., 2007.

5. M. Ripeanu, Peer-to-Peer Architecture Case Study:

Gnutella Network, tech. report TR-2001-26, Univ.

Chicago, 2001.

6. E. Bangeman, Study: Bittorrent Sees Big Growth,

Limewire Still #1 P2P App, Ars Technica report;

http://arstechnica.com/old/content/2008/04/

study-bittorren-sees-big-growth-limewire-

still-1-p2p-app.ars.

7. N. Koenigstein et al., ‘‘On the Applicability of

Peer-To-Peer Data in Music Information Retrieval

Research,’’ Proc. Int’l Society for Music Information

Retrieval Conference (ISMIR), 2010.

8. R.T. Ng and J. Han, ‘‘Efficient and Effective

Clustering Methods for Spatial Data Mining,’’

Proc. 20th Int’l Conf. Very Large Data Bases

(VLDB), Morgan Kaufmann Pub., 1994.

9. A.K. Jain, M.N. Murty, and P.J. Flynn, ‘‘Data

Clustering: A Review,’’ ACM Computing Surveys,

vol. 31, no. 3, 1999, pp. 264-323.

10. S.V. Dongen, Performance Criteria for Graph

Clustering and Markov Cluster Experiments, tech.

report, Nat’l Research Inst. for Mathematics and

Computer Science, 2000.

11. V. Satuluri and S. Parthasarathy, ‘‘Scalable Graph

Clustering Using Stochastic Flows: Applications to

Community Discovery,’’ Proc. 15th Conf. Knowl-

edge Discovery and Data Mining (KDD), ACM

Press, 2009.

12. G. Karypis and V. Kumar, ‘‘A Fast and High

Quality Multilevel Scheme for Partitioning

Irregular Graphs,’’ Proc. Int’l Conf. Parallel

Processing, IEEE CS Press, 1995.

13. I.S. Dhillon, Y. Guan, and B. Kulis, ‘‘Weighted

Graph Cuts without Eigenvectors a Multilevel

Approach,’’ IEEE Trans. Pattern Analysis and Ma-

chine Intelligence, vol. 29, no. 11, 2007,

pp. 1944-1957.

14. J.L. Herlocker et al., ‘‘Evaluating Collaborative Fil-

tering Recommender Systems,’’ ACM Trans. Infor-

mation Systems, vol. 22, no. 1, 2004, pp. 5-53.

15. S. Voulgaris et al., ‘‘Exploiting Semantic Proximity

in Peer-To-Peer Content Searching,’’ Proc. 10th

Int’l Workshop Future Trends in Distributed Comput-

ing Systems, IEEE CS Press, 2004.

Yuval Shavitt is a faculty member in the School of

Electrical Engineering at Tel-Aviv University, Israel.

His research interests include Internet measurements,

mapping, and characterization; and data mining

peer-to-peer networks. Shavitt has a D.Sc. in electrical

engineering from the Technion, Haifa, Israel. Contact

him at shavitt@eng.tau.ac.il.

Ela Weinsberg is an MS student in the department of

industrial engineering at Tel-Aviv University, Israel.

Her research interests include data mining of peer-

to-peer networks. Weinsberg has a BS in computer

science and mathematics from Bar-Ilan University.

Contact her at ela@eng.tau.ac.il.

Udi Weinsberg is a PhD candidate in the school of

electrical engineering at Tel-Aviv University, Israel.

His research interests include Internet measurement,

complex networks analysis, and large-scale data min-

ing. Weinsberg has an MS in electrical engineering

from Tel-Aviv University, Israel. Contact him at

udiw@eng.tau.ac.il.

[3B2-9] mmu2011010014.3d 18/2/011 16:32 Page 22

IE
E
E

M
u

lt
iM

e
d

ia

22

