
A Deep Learning Approach for IP Hijack Detection Based on
ASN Embedding

Tal Shapira
talshapira1@mail.tau.ac.il

School of Electrical Engineering, Tel-Aviv University

Yuval Shavitt
shavitt@eng.tau.ac.il

School of Electrical Engineering, Tel-Aviv University

ABSTRACT
IP hijack detection is an important security challenge. In this paper
we introduce a novel approach for BGP hijack detection using deep
learning. Similar to natural language processing (NLP) models, we
show that by using BGP route announcements as sentences, we can
embed each AS number (ASN) to a vector that represents its latent
characteristics. In order to solve this supervised learning problem,
we use these vectors as an input to a recurrent neural network and
achieve an excellent result: an accuracy of 99.99% for BGP hijack
detection with 0.00% false alarm. We test our method on 48 past
hijack events between the years 2008 and 2018 and detect 32 of
them, and in particular, all the events within two years from our
training data.

CCS CONCEPTS
• Networks → Routing protocols; Network security; • Security
and privacy → Security protocols; • Computing methodolo-
gies → Knowledge representation and reasoning; Supervised
learning by classification; Neural networks.

KEYWORDS
Deep Learning, BGP, BGP hijacking, AS embedding, routing, secu-
rity
ACM Reference Format:
Tal Shapira and Yuval Shavitt. 2020. A Deep Learning Approach for IP
Hijack Detection Based on ASN Embedding. In Workshop on Network Meets
AI & ML (NetAI’20), August 14, 2020, Virtual Event, NY, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3405671.3405814

1 INTRODUCTION
The Internet consists of thousands of Autonomous Systems (ASes),
each AS operated by an administrative domain such as an Internet
Service Provider (ISP), a business enterprise or a University. Each
autonomous system is assigned a globally unique number, also
called an Autonomous System Number (ASN), and advertises one
or more IP address prefixes. Interdomain Routing between ASes
is determined by the Border Gateway Protocol (BGP). BGP is a
path-vector routing protocol that uses routing update messages to
propagate routing changes. Each routing update lists the entire AS

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NetAI’20, August 14, 2020, Virtual Event, NY, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8043-0/20/08. . . $15.00
https://doi.org/10.1145/3405671.3405814

path to reach an IP prefix and carries one or more BGP attributes.
BGP allows each AS to choose its own policy on selecting the best
routes, accepting routes (according to its import policy), and an-
nouncing routes (according to its export policy). An AS routing
policy is usually determined by the commercial contractual rela-
tionship with other administrative domains.

The BGP connection between two autonomous systems usually
called an AS link and is determined by the contractual commercial
agreements between two connected ASes, also called Type of Rela-
tionships (ToR). ASes ToR are broadly classified into three symmet-
ric types: (1) Peer-to-peer (P2P) - two ASes freely exchange traffic
between themselves and their customers, but do not exchange traffic
from or to their providers or other peers, (2) Provider-to-customer
(P2C) - the customer AS pays the provider AS for transit traffic from
and to the rest of the Internet. In most cases, the customer AS does
not forward traffic between its providers, and (3) Sibling-to-sibling
(S2S) - two ASes, that usually belongs to the same administrative
domain, freely transit traffic for each other.

In recent years, there have been many reports of BGP Prefix
hijacking [9, 27], e.g., more than 40% of the network operators
reported that their organization had been a victim of a hijack in
the past [27]. BGP Prefix hijack attacks have become a commonly
employed technique by hostile governments and criminal organi-
zations. This attack allows the attacker to eavesdrop, record and
manipulate Internet traffic, and also to implement various man-in-
the-middle attacks against the victim network, even when strong
encryption is used. The attack is made by a BGP speaker that ad-
vertises illegitimate routes for IP prefixes or sub-prefixes that are
own by the victim AS. Note that BGP prefix hijacking, can also be
caused by router misconfiguration.

Several reactive mechanisms or modifications to BGP have been
proposed to deal with the attack (such as RPKI [15] and BGPsec [20]),
however most operators have not deployed them and are reluctant
to deploy them due to technical and financial costs. Defending
against hijacking consists of detection and mitigation. Current
solutions for BGP hijacking detection are based on BGP routing
databases, detect only simple attacks, and suffer from large delayed
response time, and lack of accuracy (prone to false positives).

In this paper, we introduce a novel approach for BGP hijack
detection, using deep learningmethods. Our datasets consist of BGP
path announcements obtained from RouteViews [23] and labeled
by a VF algorithm (i.e., standard routes and hijacked routes) that is
based on Shavitt et al. [33] with manual corrections.

Over the past few years, advances in deep learning [19] have
driven tremendous progress in many fields; one of them is Natural
Language Processing (NLP). In our recent work [29], we built on
the excellent results achieved for NLP tasks (Word2Vec [21]) and
introduced an extension of word vectors for creating a dense vector

35

https://doi.org/10.1145/3405671.3405814
https://doi.org/10.1145/3405671.3405814


NetAI’20, August 14, 2020, Virtual Event, NY, USA Tal Shapira and Yuval Shavitt

Figure 1: An example for generating input/output ASNs for the training process of BGP2VEC.

representation of ASNs (we called it BGP2VEC). This method is
trained on unlabeled BGP routes dataset in order to embed each
ASN to a dense vector based on hierarchical contexts of ASNs.

Using the BGP2VEC embedding, we apply a recurrent neural
network to classify BGP routes as standard or hijacked routes. Our
approach achieved excellent results. We detect BGP hijacking with
an accuracy of 99.99% and a False Alarm of 0.00% on our dataset.
Furthermore, as we examined our misclassified predictions, we
found that more than 50% of our misclassified predictions were
wrong, i.e., we found errors in the labeled dataset. Additionally,
we tested our algorithm on 48 past documented hijack events [6]
between 2008-2018, and classified correctly all the events within
2 years of our training data, or 2/3 of all the events. Finally, as far
as we know, we are the first to apply an end-to-end deep learning
approach to detect IP hijack based on only BGP routes.

The rest of the paper continues as follows. After describing re-
lated work in Sec. 2, we describe the dataset in Sec. 3. In Sec. 4 we
describe our method, and in sec. 5 we explore the latent character-
istics of ASN embedding. Sec. 6 presents our experiments and their
results, and Sec. 7 presents several interesting examples. Finally,
the last section concludes the paper.

2 RELATEDWORK
Approaches for defending against BGP hijacking can be sorted
into two categories: prevention and detection. BGP prefix hijack-
ing prevention solutions, also sometimes called reactive solutions,
are based on cryptographic authentications such as RPKI and BG-
Psec [15, 16, 20, 31]. There are many different approaches for the
detection of BGP hijacking. We divide these approaches into three
main categories, based on the type of information they use: (1) Con-
trol-plane approaches [18, 24, 28] - also called passive solutions,
these methods analyzed BGP routing information from a distributed
set of BGPmonitors and route collectors to detect anomalous behav-
ior, (2) Data-plane approaches [9, 34, 35] - only relies on real-time
data plane information that is obtained from multiple sensors that
deploy active probing (pings/traceroutes). Some of these methods
are based on analyzing IP TTL (Time to Live) or an increased RTT
(round-trip delay time), and (3) Hybrid approaches [14, 26, 30] -
these approaches use both control-plane and data-plane informa-
tion and sometimes even use external databases to perform joint
analysis.

Several recent works [1, 5, 6, 10, 32] examined machine learning
techniques with manually generated features to identify malicious
origin ASes; mainly leveraging historical BGP data from Route-
Views [23] and RIPE. Testart et al. [32] focused on identifying
dominant characteristics of serial hijackers over a long-term period
of 5 years (such as intermittent AS presence, short prefix origina-
tion duration and etc.). They generated dominant features, used a

tree-based machine learning classifier model for identifying ASes
with BGP origination patterns similar to serial hijackers, and found
about 900 ASes with similar behavior.

Cho et al. [6] classified detected hijack events in order to un-
derstand the nature of reported events. They introduced four cate-
gories of BGP hijack: typos, prepending mistakes, origin changes,
and forged AS paths. Unlike previous works, their work aimed to
classify detected hijack events and not detect new hijack events.
They generated five features, including AS hegemony (a metric that
quantifies the likelihood of an AS to lie on paths toward certain
destination IP prefixes), and use Random Forest classifier, which
achieved 95.71% accuracy over their dataset.

As far as we know, there is no prior work in the field that
involves the use of end-to-end (namely, without manually gener-
ated features) deep learning approach and by using only BGP
routes data. As we will show, without any features engineering,
our deep learning method produced excellent results.

3 THE DATASETS
In our experiments, we use data that was collected in March 2018.
We use two types of datasets: (1) RouteViews’s BGP paths (RV) [23]
- contains BGP paths collected from 19 route collectors. The dataset
consists of approximately 3,600,000 BGP paths, 62,525 AS vertices
and approximately 113,400 undirected links, and (2) Labeled BGP
routes - consists of approximately 2,648,900 standard routes (labeled
’GREEN’) and 47,800 hijacked routes (labeled ’RED’). The remaining
roughly 900,000 routes which had missing ToRs were classified as
’undecided’ and were only used in the unsupervised embedding.
The labeling was generated by combinations of VF algorithms [33]
and manual work. Manual auditing of routes was done by sampling
GREEN routes at a low probability and RED routes at a high proba-
bility. Manual auditing could result in identifying wrongly inferred
ToRs (and re-evaluating all the routes with corrected ToRs), or by
manually changing the label of routes whose VF labeling is incor-
rect. Thus, ’RED’ labeled routes are only proxy for hijacking and
misconfigurations, although our large scale manual examination,
removed many valley free violations that were benign.

Furthermore, in order to validate our results, we use the BGP
data for ground truth events dataset that was introduced by Cho et
al. [6]. This dataset contains 70 events from February 2008 to July
2018; 35 events from Dyn [11] and 35 events from BGPMon [2]. The
historical BGP data was collected using CAIDA’s BGPStream [3].
The dataset contains 21 typo events, 15 prepending mistakes, 16
origin change events (MOAS), and 18 forged AS paths events with
an average number of 669 AS paths per event. As we will show
later, we don’t aim to classify these events into 4 classes, but
to actually detect these hijack events.

36



IP Hijack Detection Based on ASN Embedding NetAI’20, August 14, 2020, Virtual Event, NY, USA

Figure 2: Our LSTM architecture.

4 METHOD
Our method works as follows: at the first stage, using a shallow neu-
ral network (BGP2VEC [29]), we map each ASN to a 32-dimensional
representative vector. Then, for the BGP hijacking detection task,
we activate an LSTM network that receives the vectors from the
previous stage. In this section, we will introduce in detail both
stages.

4.1 ASN Embedding
Asmentioned in [29], in the first stage, we produce a 32-dimensional
continuous vector representation for each ASN. We apply a similar
skip-gram model as introduced in [21], which contains an input
layer of size 62,525 (which is the number of distinct ASes in our
dataset), one FC hidden layer with a size of 32, and an output layer
whose size is determined by the window size. We choose to apply
a window of size 2 (see Figure 1), which is the maximum distance
between the input ASN and a predicted ASN (the output) within
an AS path, which results with an output layer with a maximum
size equals to 4x62,525. In order to improve the representation, we
use negative sampling [21] to distinguish the target ASN from the
noise distribution using 5 negative samples for each target ASN.
We build and run our network using the Gensim [25] library.

4.2 LSTM Architecture
At the second stage, as can be seen in Figure 2, we activate an
LSTM network that receives the vectors produced in the previous
stage and classifies BGP routes. As depicted in Table 2, our LSTM
architecture comprises five layers, not counting the input. A se-
quence of ASNs is fed into the first layer of the network, which is
an embedding layer. Each ASN is embedded into a 32-dimensional
vector based on the first stage. The next layer is a 1-dimensional

convolutional layer (labeled as ConV1D) with 32 filters of length
3. A convolutional layer [8] produces layers that are called features
map. Each unit in a feature map is connected to a local region
of the previous layer through a set of weights called filter, such
that all units in a feature map share the same filter. The outputs
of our ConV1D are 32 feature maps of size 13. ConV1D contains
a total number of 3,104 trainable parameters (3072 weights and
32 bias parameters). The result of the convolution in each unit is
passed through the ReLU activation function [22]. The next layer
is a max-pooling layer with 32 feature maps of size 2, where each
unit in each feature map outputs the maximum value of 2 neurons
in the corresponding feature map in ConV1D. The next layer is the
LSTM layer with a default configuration [13], which produces a
100-size output vector. The layer consists of 100 LSTMs cells, which
contains a total number of 5,320 trainable parameters. Finally, our
output layer is a single neuron with a Sigmoid activation function,
which produces a value between 0 and 1, and contains 101 trainable
parameters.

4.3 Training Specifications
The training of the LSTM networks was done by optimizing the
categorical cross entropy [4] cost function, which is a measure of the
difference between the softmax layer output and a one-hot encoding
vector of the same size, representing the true label of the sample.
For the optimization process we use the Adam [17] gradient-based
optimizer. The Adam optimization algorithm is an extension to
the stochastic gradient descent algorithm, which achieves better
results than other optimization algorithms. We used the default
hyper-parameters as provided in Kingma et al. [17] and set our
batch size to 64.

37



NetAI’20, August 14, 2020, Virtual Event, NY, USA Tal Shapira and Yuval Shavitt

Table 1: Exploration of the 5 nearest neighbours for AS3356 (Level3) and AS15169 (Google).

Neigh- ASN Owner Cosine Degree hops from AS Class Country ToR Similarity
bor Similarity Tier-1 Grade
- 3356 Level3 1 5035 0 NSP USA - -
1st 3549 Level3 0.897 2334 0 NSP USA S2S 5
2nd 1299 Telia 0.850 1747 0 NSP Sweden P2P 4
3rd 701 Verizon 0.849 1216 0 NSP USA P2P 3
4th 286 KPN 0.844 267 0 NSP Netherlands P2P 2
5th 6071 Unisys 0.843 4 1 - USA P2C 0
- 15169 Google 1 54 1 Content USA - -
1st 36385 Google 0.759 4 1 Content USA S2S 5
2nd 63293 Facebook 0.755 17 1 Content USA None 4
3rd 16591 Google 0.743 11 1 Cable/DSL/ISP Canada S2S 3
4th 133982 EXCITEL 0.739 6 2 Cable/DSL/ISP India None 0
5th 38726 VTC Digicom 0.736 16 1 NSP Vietnam None 0

Table 2: The architecture of our LSTM network.

BGP Routes Classification

Embeddings: Input: 13, 1
Output: 13, 32

Conv1D: Output: 13, 32

MaxPool: Output: 6, 32

LSTM: Output: 100

FC + Sigmoid: Output: 1

We build and run our networks using the Keras [7] library with
Tensorflow [12] as its back-end. We use 80% of the samples as a
training set and 20% of the samples as a test set. We run our network
for 10 epochs of the training set for the BGP routes classification.
We save the result, which achieves the best accuracy during the
training process. During the test time, our network classifies an AS
sequence of ASNs in an average time of 0.1mSec on a single Intel
CPU.

5 EXPLORATION OF ASN EMBEDDINGS
By exploring the generated vectors, we show that the representa-
tions exhibit linear structure, and specifically, we can characterize
an ASN by its closest ASNs. Table 1 displays the 5 nearest neigh-
bours for 2 chosen ASes. For each explored AS, we find its 5 nearest
neighbors using cosine similarity, and for each tabulate general
properties: AS owner, cosine similarity with the specified AS, AS
degree based on our RV dataset, distance from Tier-1 (we calcu-
late the distance based on our RV dataset), AS PeeringDB class,
AS country and ToR with the specified AS. In addition, for each
neighbor, we assigned a grade according to its proximity rank (5
for the nearest, 1 for the fifth nearest) if it is similar to the specified
AS.

The most similar vector to AS3356 (Level3, Tier-1 provider) is
the vector of its sibling AS3549, with a high cosine similarity of
0.897. The next 3 nearest neighbors are other tier-1 providers, while
the 5th nearest neighbor does not seem to be related to AS3356 and
thus counted as zero; therefore, the total similarity grade is 14.

For the second example, we chose AS15169 (Google). Its first
and third nearest neighbors (NN) are also owned by Google. The
second NN is a Facebook ASN. Note that all the cosine scores for
Google are below 0.76.

Generally, for the above (and many other) examples, the embed-
ding seems to capture many latent characteristics of the ASNs.

6 EXPERIMENTS AND RESULTS
In this section, we report our experimental results for BGP hijack
detection. Due to the lack of standard datasets, we have not found
any previous work for comparing our BGP routes classification
results. However, as we will show, our method succeeds in finding
many mistakes in the dataset, which emphasizes the strength of
our results.

6.1 Evaluation Criteria
We use the accuracy criteria to evaluate our model performance,
which is defined as the proportion of examples for which the model
produces the correct output of all predictions made. A formal defi-
nition of the accuracy for binary classification is

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
,

where𝑇𝑃 ,𝑇𝑁 , 𝐹𝑃 and 𝐹𝑁 are the true positive, true negative, false
positive, and false negative, respectively. In our case the positive
class corresponds with ’RED’ routes.

For visualizing the results, we use the normalized confusion
matrix (Figure 4). In a confusion matrix, each row represents the
actual class, while each column represents the predicted class. In
a normalized confusion matrix, the diagonal values represent the
true positive rate (𝑇𝑃𝑅) and the true negative rate (𝑇𝑁𝑅) corre-
spondingly.

38



IP Hijack Detection Based on ASN Embedding NetAI’20, August 14, 2020, Virtual Event, NY, USA

Figure 3: Grid search results for BGP routes classification ac-
curacy as a function of the embedding size (V) and the win-
dow size of the BGP2VEC.

6.2 Hyperparameter Optimization
Figure 3 shows the results of a grid search over different ASN em-
bedding sizes (V) and window sizes, in order to optimize these
parameters to achieve the best accuracy for the classification prob-
lem. We performed a grid search over window sizes 1, 2, and 3;
and multiples of 2 embedding sizes in a range between 2 and 512.
In each experiment, we used the same architecture as depicted in
Table 2, with only one difference in the output of the embedding
layer.

Figure 3 shows that we achieve the best accuracy results for BGP
routes classification with an embedding size of 128 and a window
size of 3. However, there is only a slight difference in window sizes
in the range [32,256]. Thus, for the rest of the paper, we select
an embedding size of 32 and a window of 2. Note that by always
classifying as ’Green’ we get 98.23% accuracy due to the unbalanced
dataset.

Figure 4: A confusionmatrix of the BGP routes classification
problem.

6.3 Results on BGP Routes Classification
As mentioned above, after training our LSTM network over the
training set, we evaluate our method over a test set consisting of
20% of the dataset, and achieve an accuracy of 99.98%. Figure 4
shows that our method correctly classifies 97.8% of the hijacked
routes (RED) and almost completely succeeds to classify legitimate
routes (GREEN) with a false alarm (FP) of 0.00%, that is much
lower than the 1.77% of hijacked routes in our dataset. By manually
exploring our 211 misclassified test results, we found that 152 of
them (or 72.0%) were indeed classified correctly, which increases
the mentioned accuracy to 99.99%. Moreover, our method was able
to find BGP hijacking that has not been found using other methods,
as described in Sec. 7 below.

6.4 Results on Ground Truth Events
For each event in the BGP data for ground truth events we apply
our pre-trained LSTM network (that was trained over the labeled
BGP routes dataset from March 2018) over all the related hijacked
BGP routes. Unlike [6], we do not aim to classify these events into 4
classes but to detect these hijack events. A summary of our results
is displayed in Table 3. Among these 70 events, in 22 cases, the
hijack AS was not found in our training set, these are ASes that
were present in the routing system only for a short term, such
as the malicious Bitcanal AS (AS197426), or AS57807 that almost
always announced using its sibling AS58321; therefore, we can
not apply our LSTM network for these cases. Overall, among the
remaining 48 events (termed as valid events), our method succeeds
in detecting 32 events (66.7%) with a high mean average prediction
score (MAPS) of 0.985. Among the detected event, we calculated the
prevalence of paths that were identified as hijacked by our method,
out of all paths associated with that event, and achieve an average
prevalence (denoted as ’Red Prevalence’) of 47.1%.

As Table 3 shows, our method deals well with prepending mis-
takes and forged AS paths while achieves less accurate results
for typos and origin changes. It worth mentioning that although
our method was trained with a dataset from March 2018, it
succeeds in detecting hijacked routes from past events (2008-
2018). Furthermore, our method succeeds in detecting all recent
hijack events (2016-2018).

7 EXAMPLES
7.1 Violation of VF
The BGP route: [23673, 1299, 3267, 31500, 57363] was labeled as
’RED’ in our dataset because it violates the "VF Routing," due to the
fact that GlobalNet (AS31500) and RUNNet (AS3267) are classified
as peers, while Telia (AS1299) is a provider of RUNNet (AS3267).
The relations between RUNNet and GlobalNet do not seem to follow
the VF model: RUNNet is an academic network, but it seems to
provide some transient service to GlobalNet. Our deep learning
method managed to capture this complex relationship and classified
the path correctly as ’GREEN’.

7.2 Iranian Hijacker
As described in Sec. 5, by exploring the generated vectors of the
BGP2VEC, we can characterize an ASN by its most similar ASNs

39



NetAI’20, August 14, 2020, Virtual Event, NY, USA Tal Shapira and Yuval Shavitt

Table 3: Results over the BGP data for ground truth events dataset.

Category Prepending Typo MOAS Forged Path All
Total Events 21 15 17 17 70
Valid Events 21 14 9 4 48
Detected Events 18 8 3 3 32
Success 85.7% 57.1% 33.3% 75.0% 66.7%
MAPS 0.986 0.985 0.982 0.988 0.985
Red Prevalence 50.1% 46.3% 27.5% 46.3% 47.1%

(in term of cosine similarity). For example, we examined AS41881,
which is assigned to Fanava Group and involved in many hijacked
routes (∼200). We found that most of its nearest neighbors are also
involved in many hijacked routes, such as AS202788, which is also
an Iranian AS, and all the routes that it is part of are hijacked (∼40).
Furthermore, the nearest neighbor of AS41881 is AS1756, which
in our dataset is involved only in legitimate routes. However, by
running our model over its ’undecided’ routes, we found that 66
out of 108 were classified as hijacked routes, which makes all the
three nearest neighbors of AS41881 being involved in hijackings.

7.3 Amazon’s Route 53 DNS Service
On April 24th, 2018 between 11AM to 3PM UTC, eNet (AS10297)
announced five more specific APs, which belongs to AWS

205.251.{192, 193, 195, 197, 199}.0/24,

while Amazon (AS 16509) continued to announced

205.251.{192, 194, 196, 198, 200}.0/23.

As a results of the attack, a relatively small amount of currency
from MyEtherWallet.com was stolen.

Running our network, which was trained on data from March
2018, on data from the time of the attack, the network detects 2
hijacked routes out of the 7 unique BGP routes that are associated
with the 5 hijacked APs. Both routes [23673, 55329, 4788, 6939,
10297] with a prediction score of 0.9892 and [47872, 6939, 10297]
with a prediction score of 0.3343 do not violate VF routing; namely,
the network learned additional features on top of VF. These results
demonstrate the strength of our approach.

8 CONCLUDING REMARKS
We introduce a novel approach for control-plane BGP hijacking
detection (by classifying BGP routes as hijacked or benign), using a
deep learning method. As far as we know, we present the first work
in the field that involves the use of an end-to-end deep learning
model.

Our method achieves excellent results on our dataset and very
good results on a small set of documented past events without any
prior assumptions. This is done using a highly unbalanced labeled
dataset, which is known to be challenging. In addition, our method
detected hijacked routes for routes with missing ToRs and found
mistakes in the labeled dataset. This means that we learn additional
features beyond VF routing.

We believe that we present a strong case to make deep learning
an important tool for BGP hijack detection. We plan to investigate

the non-overlapping regions between our method and other well-
known tools.

ACKNOWLEDGMENT
This research was funded in part by the Israeli PMO cyber grant
program, and by the Blavatnik Interdisciplinary Cyber Research
Center at Tel Aviv University.

REFERENCES
[1] Hussain Alshamrani and Bogdan Ghita. 2016. IP prefix hijack detection using

BGP connectivity monitoring. In IEEE 17th International Conference on High
Performance Switching and Routing (HPSR). 35–41.

[2] BGPMon. 2019. BGPStream. https://bgpstream.com/about/.
[3] CAIDA. 2019. CAIDA BGP Stream. https://bgpstream.caida.org/.
[4] Dunne Campbell, R. A. Dunne, and N. A. Campbell. 1997. On The Pairing Of The

Softmax Activation And Cross–Entropy Penalty Functions And The Derivation
Of The Softmax Activation Function. In 8th Australian Conference on Neural
Networks. Melbourne, Australia, 181–185.

[5] Min Cheng, Qian Xu, Jianming Lv, Wenyin Liu, Qing Li, and Jianping Wang. 2016.
MS-LSTM: A multi-scale LSTM model for BGP anomaly detection. In 2016 IEEE
24th International Conference on Network Protocols (ICNP). IEEE, 1–6.

[6] S. Cho, R. Fontugne, K. Cho, A. Dainotti, and P. Gill. 2019. BGP hijacking classifi-
cation. In Network Traffic Measurement and Analysis Conference (TMA).

[7] François Chollet et al. 2015. Keras. https://github.com/fchollet/keras.
[8] Y. Le Cun, O. Matan, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.

Hubbard, L. D. Jacket, and H. S. Baird. 1990. Handwritten zip code recognition
with multilayer networks. In 10th International Conference on Pattern Recognition,
Vol. ii. 35–40 vol.2.

[9] Chris C. Demchak and Yuval Shavitt. 2018. China’s Maxim - Leave No Access
Point Unexploited: The Hidden Story of China Telecom’s BGP Hijacking. Military
Cyber Affairs 3 (Oct. 2018). Issue 1.

[10] Qingye Ding, Zhida Li, Prerna Batta, and Ljiljana Trajković. 2016. Detecting
BGP anomalies using machine learning techniques. In 2016 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). IEEE, 003352–003355.

[11] Dyn. 2019. Dyn blog. https://dyn.com/blog/category/research/.
[12] Martín Abadi et al. 2015. TensorFlow. https://www.tensorflow.org/.
[13] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural

computation 9, 8 (1997), 1735–1780.
[14] Xin Hu and Z Morley Mao. 2007. Accurate real-time identification of IP prefix

hijacking. In Security and Privacy, 2007. SP’07. IEEE Symposium on. IEEE, 3–17.
[15] Geoff Huston and Randy Bush. 2011. Securing BGP and SIDR. IETF Journal 7, 1

(2011).
[16] Josh Karlin, Stephanie Forrest, and Jennifer Rexford. 2006. Pretty good BGP:

Improving BGP by cautiously adopting routes. In icnp. IEEE, 290–299.
[17] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-

mization. CoRR abs/1412.6980 (2014). arXiv:1412.6980
[18] Mohit Lad, Daniel Massey, Dan Pei, Yiguo Wu, Beichuan Zhang, and Lixia Zhang.

2006. PHAS: A Prefix Hijack Alert System.. In USENIX Security symp., Vol. 1.
[19] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature

521, 7553 (2015), 436–444.
[20] Matt Lepinski and K Sriram. 2017. BGPSEC protocol specification. IETF RFC

8205.
[21] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.

Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[22] Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve Re-
stricted BoltzmannMachines. In The 27th International Conference on International
Conference on Machine Learning (ICML’10). Omnipress, USA, 807–814.

40

https://bgpstream.com/about/
https://bgpstream.caida.org/
https://github.com/fchollet/keras
https://dyn.com/blog/category/research/
https://www.tensorflow.org/
http://arxiv.org/abs/1412.6980


IP Hijack Detection Based on ASN Embedding NetAI’20, August 14, 2020, Virtual Event, NY, USA

[23] University of Oregon Advanced Network Technology Center. [n.d.]. Route Views
Project. http://www.routeviews.org/.

[24] Jian Qiu, Lixin Gao, Supranamaya Ranjan, and Antonio Nucci. 2007. Detecting
bogus BGP route information: Going beyond prefix hijacking. In Security and
Privacy in Communications Networks (SecureComm 2007). IEEE, 381–390.

[25] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks. ELRA, Valletta, Malta, 45–50.

[26] Johann Schlamp, Ralph Holz, Quentin Jacquemart, Georg Carle, and Ernst W
Biersack. 2016. HEAP: reliable assessment of BGP hijacking attacks. IEEE Journal
on Selected Areas in Communications 34, 6 (2016), 1849–1861.

[27] P. Sermpezis, V. Kotronis, A. Dainotti, and X. Dimitropoulos. 2018. A Survey
among Network Operators on BGP Prefix Hijacking. ACM SIGCOMM Computer
Communication Review (CCR) 48, 1 (Jan 2018), 64–69.

[28] P. Sermpezis, V. Kotronis, P. Gigis, X. Dimitropoulos, D. Cicalese, A. King, and
A. Dainotti. 2018. ARTEMIS: Neutralizing BGP Hijacking within a Minute.
IEEE/ACM Transactions on Networking (Oct 2018).

[29] T. Shapira and Y. Shavitt. 2020. Unveiling the Type of Relationship Between
Autonomous Systems Using Deep Learning. In IEEE/IFIP NOMS - International

Workshop on Analytics for Network and Service Management (AnNet 2020).
[30] Xingang Shi, Yang Xiang, Zhiliang Wang, Xia Yin, and Jianping Wu. 2012. De-

tecting prefix hijackings in the internet with argus. In Proceedings of the 2012
Internet Measurement Conference. ACM, 15–28.

[31] Lakshminarayanan Subramanian, Volker Roth, Ion Stoica, Scott Shenker, and
Randy Katz. 2004. Listen and whisper: Security mechanisms for BGP. In The First
Symposium on Networked Systems Design and Implementation (NSDI).

[32] Cecilia Testart, Philipp Richter, Alistair King, Alberto Dainotti, and David Clark.
2019. Profiling BGP Serial Hijackers: Capturing Persistent Misbehavior in the
Global Routing Table. In ACM Internet Measurement Conference (IMC ’19). 420–
434.

[33] U. Weinsberg, Y. Shavitt, and E. Shir. 2009. Near-Deterministic Inference of AS
Relationships. In ConTel 2009. Zagreb, Croatia.

[34] Zheng Zhang, Ying Zhang, Y Charlie Hu, Z Morley Mao, and Randy Bush. 2008.
Ispy: detecting IP prefix hijacking on my own. In ACM SIGCOMM Computer
Communication Review, Vol. 38. ACM, 327–338.

[35] Changxi Zheng, Lusheng Ji, Dan Pei, Jia Wang, and Paul Francis. 2007. A light-
weight distributed scheme for detecting IP prefix hijacks in real-time. In ACM
SIGCOMM Computer Communication Review, Vol. 37. ACM, 277–288.

41

http://www.routeviews.org/

	Abstract
	1 Introduction
	2 Related Work
	3 The Datasets
	4 Method
	4.1 ASN Embedding
	4.2 LSTM Architecture
	4.3 Training Specifications

	5 Exploration of ASN Embeddings
	6 Experiments and Results
	6.1 Evaluation Criteria
	6.2 Hyperparameter Optimization
	6.3 Results on BGP Routes Classification
	6.4 Results on Ground Truth Events

	7 Examples
	7.1 Violation of VF
	7.2 Iranian Hijacker
	7.3 Amazon’s Route 53 DNS Service

	8 Concluding Remarks
	Acknowledgment
	References

