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In this paper we model the tomography of scale-free networks by studying the structure of layers around an
arbitrary network node. We find, both analytically and empirically, that the distance distribution of all nodes
from a specific network node consists of two regimes. The first is characterized by rapid growth, and the
second decays exponentially. We also show analytically that the nodes degree distribution at each layer exhibits
a power-law tail with an exponential cutoff. We obtain similar empirical results for the layers surrounding the
root of shortest path trees cut from such networks, as well as the Internet.
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I. INTRODUCTION

Many systems in nature have a weblike structure consist-
ing of nodes and links connecting them, and may be de-
scribed as “networks.” Examples for such networks may be
found in computer science �e.g., the Internet�, biology, and
sociology �1–3�. It was recently realized that many networks
in nature exhibit a “scale-free” degree distribution, meaning
that the number of nodes with degree k decays as a power
law P�k��k−� where 2���3 �4�. These types of networks
were found to have anomalous properties, for example, they
were found to have a small radius and also to be resilient to
random breakdown of nodes or links �e.g., Refs. �5,6��.

In this paper we investigate the structure of scale-free
networks, and suggest an analytical derivation for some of
their characteristics. We verify our findings with simulations,
and compare them to real router-level Internet data obtained
from the Lucent mapping project �7�. We observe similar
results for shortest path trees cut from these networks. Given
a specific real-world network, this analysis can be used as a
tool for preliminary evaluation of the different models de-
scribing its structure.

Specifically, we introduce here a first attempt to analyti-
cally evaluate the number and degree distribution of nodes as
a function of their distance from a specific network node. We
show that the distribution of the number of nodes as a func-
tion of the distance consists of two regimes. The first regime
is characterized by a very rapid growth in the number of
nodes, leading to a maximum after a rather short distance.
Then a second regime starts, characterized by an exponential
decay in the number of nodes. We also show that the tail of
the node degree distribution at each layer follows a power
law with an exponential cutoff. Although this cutoff was ob-
served in previous works �5,8,9�, it was not characterized.
Here, we show analytically that it is of an exponential nature,
and decays with the distance from the origin point.

We further investigate the inner structure of scale-free
networks by studying shortest path trees cut from them. The

study of such trees is important, as they may represent the
structure of multicast trees in the Internet. Previous results
�10� show that the degree distribution of such trees exhibits a
power-law tail. Here we investigate their layer structure and
the distribution of number of nodes as a function of their
distance from the root of the tree. Using simulations and real
router-level Internet data, we show that the trees exhibit a
layer behavior similar to the network they were cut from.

Note that our results conform to the “ultrasmall world”
phenomenon described in Refs. �5,8,9�, which means that the
average distance between every two nodes in a scale-free
network scales as ln ln N, where N is the total number of
nodes in the network. As a result, the average distance in
scale-free networks is much smaller than in traditional ran-
dom Erdős-Rényi networks �11�, for which the average dis-
tance scales as the logarithm of the number of nodes. How-
ever, as opposed to the ultrasmall world phenomenon, which
is extremely hard to observe in reasonable size graphs, the
results we give here are applicable for finite size networks
and allow a numerical calculation of several aspects of the
layer structure. As we show, these analytical results are in
agreement with both simulations and real data.

A possible application of our results is to use them as an
indicative tool for the assessment of the accuracy of model-
ing mechanisms of the Internet and multicast trees, in addi-
tion to other metrics widely used today �e.g., the network
degree distribution�. This understanding may also aid in the
development of better routing and transport layer protocols,
as well as structural sensitive application level algorithms,
such as placement problems.

II. BACKGROUND

A. Graph generation

As mentioned above, recent studies have shown that
many real world systems may be described as scale-free net-
works. That is, their degree distribution follows a power law,
P�k�=ck−�, where c is an appropriate normalization factor,
and � is the exponent of the power law.

Several techniques for generating such scale-free graphs
were introduced �12–14�. The model we use here is usually
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termed the configuration model �CM� �15� or the generalized
random graph �GRG� model �16�, and is used for generating
random graphs with a given degree distribution. The con-
struction method is as follows: For a given graph size N, a
set V of N nodes is generated. The degree sequence is deter-
mined by randomly choosing a degree for each one of the
nodes from the given degree distribution. At first, each node
is given a predetermined number of outgoing links. We de-
note the set of these links �which are still unmatched� by C,
and term them open connections. Then, we randomly match
each open link with another open link to create an edge con-
necting two nodes. The set of edges is denoted by E.

Notice that this procedure may lead to a multigraph, i.e., a
graph with self-loops and multiple edges between two sites.
However, the fraction of such links is statistically insignifi-
cant and we ignore them �17�. Notice also that the order by
which we match the open links is insignificant as long as the
choice of the matching link is random.

There are other methods for generating scale-free net-
works, such as the Barabási-Albert �BA� model �12,18�,
which involves growth and preferential attachment. How-
ever, while in the BA model the graph degree distribution
function emerges only at the end of the process, in the con-
figuration model the distribution is known a priori, thus en-
abling us to use it in our analysis during the construction of
the graph.

B. Graph radius and distribution cutoff

Recent work �5,19� has shown that the radius r �defined as
the average distance between the highest degree node and all
other nodes� of scale-free graphs with 2���3 is extremely
small and scales as r� ln ln N. The meaning of this is that
even for very large networks, finite size effects must be taken
into account, because algorithms for traversing the graph will
arrive at the network edge after a small number of steps.

Since the scale-free distribution has no typical degree, its
behavior is influenced by externally imposed cutoffs, i.e.,
minimum and maximum values for the allowed degrees, k.
The fraction of sites having degrees above and below the
threshold is assumed to be zero. The lower cutoff, m, is
usually chosen to be of order O�1�, since it is natural to
assume that in real world networks many nodes of interest
have only one or two links. The upper cutoff, K, can also be
enforced externally �say, by the maximum number of links
that can be physically connected to a router�. However, in
situations where no such cutoff is imposed, we assume that
the system has a natural cutoff.

To estimate the natural cutoff of a network, we assume
that the network consists of N nodes, each of which has a
degree randomly selected from the distribution P�k�=ck−�.
An estimate of the average value of the largest of the N
nodes can be obtained by looking for the smallest possible
tail that contains a single node on the average �6�,

�
k=K

�

P�k� � �
K

�

P�k�dk = 1/N . �1�

Solving the integral yields K�mN1/��−1�, which is the
approximate natural upper cutoff of a scale-free network
�6,20,21�.

In the rest of this paper, in order to simplify the analysis
presented, we will assume that this natural cutoff is imposed
on the distribution by the exponential factor P�k�=ck−�e−k/K.

III. TOMOGRAPHY OF SCALE-FREE NETWORKS

In this section we study the statistical behavior of layers
surrounding the maximally connected node in the network.
First, we describe the process of generating the network and
define our terminology. Then, we analyze the degree distri-
bution at each layer surrounding the maximally connected
node.

A. Model description

We base our construction on the CM �13�, also described
in Sec. II A. The construction process tries to gradually “ex-
pose” the network �5,19�, and is forcing a hierarchy on the
CM, thus enabling us to define layers in the graph.

We start by setting the number of nodes in the network, N.
We then choose the nodes degrees according to the scale-free
distribution function P�k�=ck−�, where c���−1�m�−1 is the
normalizing constant and k is in the range �m ,K�, for some
chosen minimal degree m and the natural cutoff K
=mN1/��−1� of the distribution �6,20�.

At this stage each node in the network has a given number
of outgoing links, which we term open connections, accord-
ing to its chosen degree. Using our definitions in Sec. II A,
the set of edges in E is empty at this point, while the set of
open links in C contains all unmatched outgoing links in the
graph.

We proceed as follows: we start from the maximal degree
node, which has a degree K, and connect it randomly to K
available open connections, thus removing these open con-
nections from C �see Fig. 1�a��. We have now exposed the
first layer �or shell� of nodes, indexed as l=1. We now con-
tinue to fill out the second layer l=2 in the same way: We
connect all open connections emerging from nodes in layer
No. 1 to randomly chosen open connections. These open
connections may be chosen from nodes of layer No. 1 �thus
creating a loop� or from other links in C. We continue until
all open connections emerging from layer No. 1 have been
connected, thus filling layer l=2 �see Fig. 1�b��. Generally, to
form layer l+1 from an arbitrary layer l, we randomly con-
nect all open connections emerging from layer l to other
open connections, either those emerging from l or chosen
from the other links in C �see Fig. 1�c��. Note, that when we
have formed layer l+1, layer l has no more open connec-
tions. The process continues until the set of open connec-
tions, C, is empty.

B. Analysis

We proceed now to evaluate the probability for nodes
with degree k to reside outside the first l layers, denoted by
Pl�k�.

The number of open connections outside layer No. l, is
given by
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Tl = N�
k

kPl�k� . �2�

Thus, we can define the probability that a detached node
with degree k will be connected to an open connection
emerging from layer l by k

�l+Tl
, where �l is the number of

open connections emerging from layer l �see Fig. 1�b��.
Therefore, the conditional probability for a node with de-

gree k to be also outside layer l+1, given that it is outside
layer l, is the probability that it does not connect to any of
the �l open connection emerging from layer l, that is

P�k,l + 1	l� = 
1 −
k

�l + Tl
��l

� exp�−
k

1 +
Tl

�l
 , �3�

for large enough values of �l.
Thus, the probability that a node of degree k will be out-

side layer No. l+1 is

Pl+1�k� = Pl�k�P�k,l + 1	l� = Pl�k�exp�−
k

1 +
Tl

�l
 . �4�

Thus we derive the exponential cutoff

Pl�k� = P�k�exp
−
k

Kl
� , �5�

where

1

Kl+1
=

1

Kl
+

1

1 +
Tl

�l

. �6�

An alternate method for deriving the above relationship is
given in the Appendix.

Now let us find the behavior of �l and Sl, where Sl+1 is the
number of links incoming to the l+1 layer from layer No. l
�and approximately equals Nl+1, the number of nodes in the
l+1th layer �22��. The number of incoming connections to
layer l+1 equals the number of connections emerging from
layer l, minus the number of connections looping back into
layer No. l. The probability for a connection to loop back
into layer l is

P�loop	l� =
�l

�l + Tl
, �7�

and therefore

Sl+1 = �l
1 −
�l

�l + Tl
� . �8�

The number of connections emerging from all the nodes
in layer No. l+1 is Tl−Tl+1. This includes the number of
incoming connections from layer l into layer l+1, which is
equal to Sl+1, and the number of outgoing connections �l+1.
Therefore

�l+1 = Tl − Tl+1 − Sl+1. �9�

At this point we have the following relations: Tl+1�Kl+1�
�Eqs. �2� and �5��, Sl+1��l ,Tl� �Eq. �8��, Kl+1�Kl ,�l ,Tl� �Eq.
�6��, and �l+1�Tl ,Tl+1 ,Sl+1� �Eq. �9��. These relations may be
solved numerically. Note that approximate analytical results
for the limit N→� can be found in Refs. �5,8,19,23�.

C. Empirical results on networks

Figure 2 shows results from simulations �filled symbols�
for the number of nodes at layer l, which can be seen to be in
agreement with the analytical curves of Sl �lines�. We can see
that starting from a given layer l=L the number of nodes
decays exponentially. We believe that the layer index L is
related to the radius of the graph �5,19�. It can be seen that Sl
is a good approximation for the number of nodes at layer l.
This is true in cases when only a small fraction of sites in
each layer l have more than one incoming connection. An
example for this case is when m=1 so that most of the sites
in the network have only one connection. Figure 3 shows
results for Pl�k� with similar agreement �24�. Note the expo-
nential cutoff which becomes stronger with l.

It is important to note that the simulation results give the
probability distribution for the nodes of the giant component
�the largest connected component of the network�, while the

FIG. 1. Illustration of the exposure process. The large circles
denote exposed layers of the giant component, while the small
circles denote individual sites. The sites outside the circles have not
been reached yet. �a� We begin with the highest degree node and fill
out layer No. 1. �b� In the exposure of layer No. l+1 any open
connection emerging from layer No. l may connect to any open
node �Tl connections� or loop back into layer No. l ��l connections�.
�c� The number of connections emerging from layer No. l+1 is the
difference between Tl and Tl+1 after reducing the incoming connec-
tions Sl+1 from layer No. l.
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analytical reconstruction gives the probability distribution
for the whole graph. This may explain the difference in the
probability distributions for lower degrees: many low-degree
nodes are not connected to the giant component and there-
fore the probability distribution derived from the simulations
is smaller for low degrees. However, as can be seen from
Fig. 3, the finite size effects due to the difference between the
giant component and the whole network do not affect the
�power-law� tail of the distribution function.

Figures 4 and 5 show the same analysis for a cut of the
Internet at router-level �Lucent mapping project �7�, LC to-
pology, see Table I�. The actual probability distribution is not

a pure power law, rather it can be approximated by �=2.3 for
small degrees and �=3 at the tail. Our analytical reconstruc-
tion of the layer statistics assumes �=3, because the tail of a
power-law distribution is the important factor in determining
properties of the system. This method results in a good re-
construction for the number of nodes in each layer, and a
qualitative reconstruction of the probability distribution in
each layer.

Previous measurements �25� have shown that the number
of nodes at each layer from a chosen node on the Internet
follows a gamma distribution:

FIG. 2. �Color online� Approximate number of nodes �Sl� vs
layer index l for a network with N=106 nodes, �=2.85, and m=1.
Filled symbols represent simulation results while black lines are a
numerical solution for the derived recursive relations. Empty sym-
bols represent the gamma function with �=10.576 and �=2.225.
Bottom: from the semilog plot we see that there is an exponential
decay of Sl for layers l�L starting from a given layer L which we
believe is related to the radius of the graph.

FIG. 3. �Color online� Log-log plot of Pl�k� for different layers
l=0,1 ,2 , . . ., for a network with N=106 nodes, �=2.85, and m=1.
Symbols represent simulation results while black lines are a nu-
merical solution for the derived recursive relations.

FIG. 4. �Color online� Number of nodes at each layer for a
router level cut of the Internet with N=112 969 nodes �LC topol-
ogy�. Analytical reconstruction for Sl is done with �=3 and m=1.
The fit to the gamma function was done with parameters �=9.99
and �=1.701.

FIG. 5. �Color online� Log-log plot of Pl�k� for different layers
l=0,1 ,2 , . . ., for a router level cut of the Internet with N=112 969
nodes �LC topology�. Qualitative analytical reconstruction is done
with �=3, and m=1.
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f�,��l� =
1

����
��l��−1� exp�− �l� , �10�

where the free parameters � and � may be found by the

mean E�f� and variance V�f� of the distribution, �=
E�f�

V�f� , �

=
�E�f��2

V�f� . As can be seen in Figs. 2 and 4, the gamma distri-

bution function gives a reasonable approximation to our re-
sults.

Note that in our model, large degree nodes of the network
tend to reside in the lower layers, while the layers further
away from the source node are populated mostly by low
degree nodes �10�. This implies that the tail of the distribu-
tion affects the lower layers, while the distribution function
for lower degrees affects the outer layers. Thus the devia-
tions in the analytical reconstruction of the number of nodes
per layer for the higher layers may be attributed to the de-
viation in the assumed distribution function for low degrees
�that is �=3 instead of �=2.3�. Note also that our model
does not take into account the correlations in node degrees,
which were observed in the Internet �26�, and hierarchical
structures �27�. All these considerations may explain the de-
viation of our measurements from the model predictions �see
also Refs. �28–31��.

As a final cautionary point, it should be mentioned that
some recent papers �32–35� discussing the influence of the
measurement bias on the measured topology suggest that the
measured node degrees are not the actual ones. Usually,
traceroute data is used to study the Internet topology. It is
known that this kind of measurement tends to miss a high
number of links far from the measurement center and there-
fore to underestimate the degree of distant nodes. This may
lead to a picture giving the central nodes a higher degree
than the peripheral ones. Therefore, it is possible that the
empirical data does not represent a complete view of the
Internet, but rather a combination of the Internet structure
with measurement bias.

IV. TOMOGRAPHY OF SHORTEST PATH TREES
(EMPIRICAL RESULTS)

In this section, we study the tomography of shortest path
trees embedded in scale-free networks.

A motivation for studying shortest path trees is that they
may be seen as analogs for Internet multicast trees �36�. Mul-
ticast trees are trees built over the Internet topology and used
to transmit data �in particular multimedia� from one source to
many destinations �clients�. Each new client connecting to
this tree is connected through its shortest path to the source.
The benefit of multicast trees is that data is transmitted only
once to each node in the tree, whereas if communication was
established with each client individually, it is highly probable
that each node along the path would receive each packet
multiple times, once for each shortest path going through it.

Hence, we study the structure and characteristics of the
depth rings around the root node of shortest path trees em-
bedded in the network. We will show that in this aspect,
shortest path trees have similar characteristics to the net-
works they were cut from.

A. Topology and tree generation

Our method for producing trees is the following. First, we
generate power-law topologies based on the CM �described
in Sec. II A� and the BA model �18�.

The BA model is based on two principles: “growth” and
“preferential attachment.” The model specifies four param-
eters, m0, m, p, and q, where m0 is the initial number of
nodes, and m is the initial connectivity �degree� of each
node. When a link is added �or rewired�, one of its endpoints
is chosen randomly, and the other is chosen with a probabil-
ity that is proportional to the node degree. This “preferential
attachment” reflects the fact that new links often attach to
popular �high-degree� nodes. The growth model is the fol-
lowing: we start with m0 detached nodes. Then, with prob-
ability p, m new links are added to the topology. With prob-
ability q, m links are rewired, and with probability 1− p−q a
new node with m links is added. The process repeats itself
until we reach the required number of nodes. Note that m, p,
and q determine the average degree of the nodes and the
power-law scaling exponent—see Ref. �18� for details �37�.

We created a vast range of topologies, but concentrated on
several parameter combinations that can be roughly de-
scribed as very sparse �VS�, Internet like sparse �IS� and less
sparse �LS�. We also created a topology using the CM, de-

TABLE I. The types of underlying network topologies used for the analysis of the tomography of networks and multicast trees �BA,
Barabási-Albert; CM, configuration model�. For all networks generated by the Barabási-Albert model we used m0=6 and q=0. Note that for
the real Internet data the degree distribution is not a pure power law, rather, it can be approximated by �=2.3 for small degrees and �=3 at
the tail.

Name Type Parameters No. of Nodes Avg. Node degree Power-law exponent ���

VS Generated �BA� m=1; p�0:0.05:0.5 10000 1.99–3.98 4–3.5

LS Generated �BA� m=3; p�0:0.05:0.5 10000 5.98–12.04 3.3333–3.16667

IS Generated �BA� m=2; p�0:0.05:0.5 10000 3.99–7.9 3.5–3.25

IS Generated �BA� m=1.5,2; p=0.1 50000;100000 3.3;4.4 3.6;3.45

IS Generated �BA� m=1.5, p=0.1 1000000 3.335 3.6

CM Generated �CM� �=2.85; m=1 1000000 2.17 2.85

CM Generated �CM� �=2.5; m=1 1000000 2.97 2.5

LC Real data Internet 112969 3.2 3 �approximate�
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scribed in Sec. II A. Table I summarizes the main character-
istics of the topologies used in this paper.

From these underlying topologies, we create the trees in
the following manner. For each predetermined size of client
population we choose a root node and a set of clients. Using
Dijkstra’s algorithm we build the shortest path tree from the
root to the clients. To create a set of trees that realistically
resemble Internet trees, we define four basic tree types.
These types are based on the degree of the root node and the
client nodes. In order to represent the case of a tree rooted at
a big ISP site, we choose a root node with a high degree with
respect to the underlying topology. Then, we either choose
the clients as low-degree nodes, or at random as a control
group. Note, that due to the characteristic of the power-law
distribution, a random selection of a node has a high prob-
ability of choosing a low-degree node. The next two tree
types have a low-degree root, which corresponds to a multi-
cast session from an edge router. Again, the two types differ
by the clients degrees, which are either low, or picked at
random.

The tree client population is chosen at the range �50,4000�
for the 10 000 node generated topology, �50,10 000� for the
100 000 node generated topology, and 100 000 clients for all
106 nodes topologies �38�.

There are two underlying assumptions made in the tree
construction. The first is that the multicast routing protocol
delivers a packet from the source to each of the destinations
along a shortest path tree. This scenario conforms with cur-
rent Internet routing �it should be noted that the actual BGP
routing in the Internet is not guaranteed to be shortest path,
and contains several other policy considerations�. For ex-
ample, IP packets are forwarded based on the reverse short-
est path, and multicast routing protocols such as source spe-
cific multicast �39� deliver packets along the shortest path
route. In addition, we assume that client distribution in the
tree is uniform �7,40–42�.

B. Tree characteristics—simulations

In previous work we have shown that shortest path trees
cut from a power-law network topology obey a similar
power law for the degree distribution, as well as the subtrees
sizes �10�. The results were shown to hold for all trees cut
from all generated topologies, even for trees as small as 200
nodes. Here we investigate the tomography of the trees, and
look at the degree distribution of nodes at different depth
rings around the root, i.e., tree layers.

Figure 6 shows the number of nodes and the degree dis-
tribution at each layer l from the root of a shortest path tree
cut from a CM topology �106 nodes�. The root was chosen
with a high degree, and the clients with a low degree. It can
be seen that the degree distribution obeys a power law with
an exponential cutoff, similar to what was observed in net-
works. This phenomenon was found to be stable regardless
of the tree type, and the client population size �43�. As seen
from Fig. 6, the number of nodes at each layer can be ap-
proximated by a gamma distribution �25�, similar to what
was found in networks �Sec. III C�.

Figure 7 shows the same analysis for a shortest path tree
cut from a BA topology �106 nodes�. Again, the degree dis-

tributions for the different layers obey a power law with
progressively stronger exponential cutoffs, similar to what
was observed in networks.

In order to understand the exact relationship of the degree
of a node on its layer, we plot the number of nodes of each
degree at different layers. Figures 8 and 9 show the distribu-

FIG. 6. �Color online� Tomography of a 100 000 client multicast
tree cut from a CM topology of 106 nodes, with m=1 and �=2.5.
The root was chosen with a high degree, and the clients were cho-
sen randomly. Top: Number of nodes at each layer �filled symbols�.
Empty symbols represent a gamma distribution function with �
=10.302 and �=3.424. Middle: Log-log plot of the degree distribu-
tions Pl�k� for different layers l=0,1 ,2 , . . . . Bottom: A semilog plot
of the same distributions. The degree distributions exhibit a power-
law tail ��tree�2.5� with an exponential cutoff which is becoming
stronger at each layer.
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tion of the distance of degree two �k=2� nodes, and high
degree nodes �k	7 or k	8� for CM and BA topologies. It
can be seen that for both models the high-degree nodes tend
to reside much closer to the root than the low-degree nodes,
and in adjacent layers �44,45,48�.

We also checked the distribution of the lengths of the
paths to the clients. Our results show that the less connected
the underlying topology, the higher is the average tree cut
from the topology. For a 10 000 node underlying topology
with an average degree of 3 and higher, the height of the
trees was not more than 10. On an underlying topology of
100 000 nodes, the height of the trees was not more than 12.
In accordance with our findings of a core of high-degree
nodes, the trees were higher on the average when the root
was a low-degree node, compared to trees with a high-degree
root.

FIG. 7. �Color online� Tomography of a 100 000 client multicast
tree cut from a BA topology of 106 nodes with m0=6, m=1.5, p
=0.1, and q=0. The root was chosen with a high degree, and the
clients were chosen randomly. Top: Number of nodes at each layer
�filled symbols�. Empty symbols represent a gamma distribution
function with �=18.215 and �=3.896. Middle: Log-log plot of the
degree distributions Pl�k� for different layers l=0,1 ,2 , . . . . Bottom:
A semilog plot of the same distributions. The degree distributions
exhibit a power-law tail ��tree�3.2� with an exponential cutoff
which is becoming stronger at each layer.

FIG. 8. �Color online� Top: Number of degree two nodes �k
=2� at each layer of a multicast tree cut from CM topology with
�=2.5 and 106 nodes. Empty symbols represent a fit to the gamma
distribution with �=11.173 and �=3.984. Bottom: Number of
high-degree nodes �k	8� at each layer of a multicast tree cut from
the same underlying topology. Empty symbols represent the corre-
sponding gamma distribution with �=12.25 and �=7.36. It can be
seen that the high-degree nodes tend to reside much closer to the
root than the low-degree nodes.

FIG. 9. �Color online� Top: Number of degree two nodes �k
=2� at each layer of a multicast tree cut from BA topology with
m0=6,m=1.5, p=0.1,q=0, and 106 nodes. Empty symbols repre-
sent a fit to the gamma distribution with �=23.846 and �=5.397.
Bottom: Number of high-degree nodes �k	7� at each layer of a
multicast tree cut from the same underlying topology. Empty sym-
bols represent the corresponding gamma distribution with �
=16.862 and �=5.959. It can be seen that the high-degree nodes
tend to reside much closer to the root than the low-degree nodes.
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C. Tree characteristics—Internet data

We support the above findings with results obtained from
a real Internet data set. Since we have no access to multicast
tree data we use the client population of a medium sized web
site with scientific and/or engineering content. This may rep-
resent the potential audience of a multicast of a program with
scientific content. Two lists of clients were obtained, and
traceroute was used to determine the paths from the root to the
clients �see Ref. �10� for more details�. It is important to note
that the first three levels of the tree consist of routers that
belong to the site itself, and therefore might be treated as the
root point of the tree, although in our graphs they appear
separately.

Figure 10 shows the degree distribution of consecutive
layers of the Internet tree. Although the tree is rather small
and the data sets are very noisy, there is a strong indication
that the degree distribution behaves similar to what was ob-
served in networks, i.e., a power law with an exponential
cutoff that is becoming stronger at each layer �46�.

V. SUMMARY AND CONCLUSIONS

In this paper we define a “layer” in a network as the set of
nodes at a given distance from a chosen node. For scale-free

networks, we find that the degree distribution of the nodes at
each layer exhibits a power-law tail with an exponential cut-
off. We derive equations for this exponential cutoff and com-
pare them with empirical results. We also model the behavior
of the number of nodes at each layer, and explain the ob-
served exponential decay in the outer layers of the network.
We obtain similar results for layers surrounding the root of
shortest path trees cut from such networks, as well as for
router-level data from the Internet.

It is possible that our findings may help in devising better
network algorithms for the Internet that take advantage of the
network structure. For example, we presented in the past �10�
an algorithm for fast estimation of the multicast group size
that is based on our previous findings regarding the distribu-
tion of high-degree nodes in Internet multicast trees.

Furthermore, our analytical results show that certain at-
tributes observed in the Internet may be explained by simple
models. Although the Internet is most probably a structured
network, designed for optimal function, and not an arbitrary
realization of a random graph �28,29�, our analytical and
empirical results enable us to reconstruct some of the central
characteristics of the layer structure observed in the Internet.
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APPENDIX: DERIVING THE EXPONENTIAL CUTOFF
USING AN ALTERNATIVE ANALYTIC

APPROXIMATION

We treat each node independently, and the interaction be-
tween the nodes is inserted through the expected number of
incoming connections �this is also called the “mean field”
approach�. At each node, the process is treated as equivalent
to randomly distributing �l independent points on a line of
length �l+Tl and counting the resultant number of points
inside a small interval of length k. Thus, the number of in-
coming connections kin from layer l to a node with k open
connections is distributed according to a Poisson distribution
with

�kin� =
k

�l + Tl
�l �A1�

and

Pl+1�kin	k� = e−�kin� �kin�kin

kin!
. �A2�

The probability for a node with k open connections not to
be connected to layer l, i.e., to be outside layer l+1 also, is

FIG. 10. �Color online� Tomography of Internet tree with 12 810
nodes and 5072 clients. Top: Log-log plot of the degree distribu-
tions Pl�k� for different layers l=0,5 ,10,13. Bottom: A semilog
plot of the same distributions. There is strong indication that the
degree distributions exhibit a power-law tail ��tree�3.18 �10�� with
an exponential cutoff which is becoming stronger at each layer.
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P�k,l + 1	l� = Pl+1�kin = 0	k� = e−�kin� = exp�−
k

1 +
Tl

�l
 .

�A3�

Thus the total probability to find a node of degree k out-
side layer l+1 is

Pl+1�k� = Pl�k�P�k,l + 1	l� = Pl�k�exp�−
k

1 +
Tl

�l
 ,

�A4�

and one obtains an exponential cutoff.
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