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Counting network graphlets (and motifs) was shown to have an important role in studying
a wide range of complex networks. However, when the network size is large, as in the case
of the Internet topology and WWW graphs, counting the number of graphlets becomes
prohibitive for graphlets of size 4 and above. Devising efficient graphlet counting algo-
rithms thus becomes an important goal.

In this paper, we present efficient counting algorithms for 4-node graphlets. We show
how to efficiently count the total number of each type of graphlet, and the number of gra-
phlets adjacent to a node. We further present a new algorithm for node position-aware gra-
phlet counting, namely partitioning the graphlet count by the node position in the
graphlet. Since our algorithms are based on non-induced graphlet count, we also show
how to calculate the count of induced graphlets given the non-induced count.

We implemented our algorithms on a set of both synthetic and real-world graphs. Our
evaluation shows that the algorithms are scalable and perform up to 30 times faster than
the state-of-the-art. We then apply the algorithms on the Internet Autonomous Systems
(AS) graph, and show how fast graphlet counting can be leveraged for efficient and scalable
classification of the ASes that comprise the Internet. Finally, we present RAGE, a tool for
rapid graphlet enumeration available online.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction Recently, there is an increased interest in exploring the
1.1. Graphlet discovery

Network graphlets are small connected sub-graphs of a
larger network [1]. In a seminal paper by Milo et al. [2],
network motifs were defined as interaction patterns (or
graphlets) occurring in a network more often than those
in randomized networks. Significant motifs were found in
various real world networks including protein interaction
networks, neurobiological networks, social networks,
World Wide Web (WWW) hyper-link networks, and the
Internet Autonomous Systems (AS) network [3].
. All rights reserved.
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role of network motifs and graphlets in networking.
Feldman and Shavitt [4] suggested that the bi-fan graphlet
(a directed 2–2 full bi-partite graph) may indicate exis-
tence of ‘‘points of presence’’ (PoPs) in the Internet’s router
level network. The distribution of the local number of tri-
angles and the related clustering coefficient can be used
to detect the presence of spamming activity in large scale
Web graphs [5]. Hales and Arteconi [6] presented results
from a motif analysis of networks produced by peer-to-
peer protocols, showing that the motif profiles of such net-
works closely match protein structure networks.

Graphlet degree counting, counting the number of gra-
phlets in which a node participates, was recently suggested
as a method to classify nodes in the network into functional
classes [7]. The suggestion assumes that the graphlet degree
vector of a node portrays its function in the network.

Gonen and Shavitt [8,20] were the first to suggest effi-
cient algorithms for positional graphlet degree counting,
graphlet enumerator for large networks, Comput. Netw. (2011),
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namely partitioning the graphlet count by the node posi-
tion in the graphlet. However, some of their algorithms
only approximate the count with high probability. We sug-
gest here improved algorithms for this task, giving an exact
count of all the 4-node graphlets, and with better time
complexity than the ones in their publication [8]. We also
provide a simple algorithm for counting triangles, based on
new-vertex-listing [9] and slightly modified to assist in
per-node count. We thus cover with efficient algorithms
all graphlets of size 4 and below. This leaves the problem
of efficient 5-node counting open, which is usually the
largest size graphlet used for classification.

For most network and node classification analysis we
relate only to induced graphlets, meaning that a subgraph
H(VH,EH) is counted as graphlet g(Vg,Eg) only if there exists
an isomorphism f :VH ? Vg such that (u,v) 2 EH iff (f(u),
f(v)) 2 Eg. However, the algorithms presented here and in
some previous works [8,20] count non-induced graphlets,
namely a subgraph is counted even if additional edges ex-
ist between the subgraph nodes ((f(u), f(v)) 2 Eg if (u,v)
2 EH). Thus, we present simple transformation that given
the non-induced graphlet-count calculates the correspond-
ing induced-graphlet count.
1.2. Related Work

Batagelj and Mrvar [10] presented an algorithm which
lists all triangles in a graph with time complexity
O(djEj) = O(njEj), where d is maximum nodal degree in the
graph. This result was further improved to O(jEj3/2) [9].

Itzhack et al. [11] gave an algorithm for counting all di-
rected graphlets up to size 4, based on network decomposi-
tion via node removal. They claimed a time complexity of
O(jEjd2 logd). Shervashidze et al. [12] provide methodology
for counting all undirected graphlets up to size five in
bounded degree graphs, mostly by using the intersection be-
tween neighborhoods of each node pair of the graph edges.

Wernicke [13] presented the ESU algorithm, that enu-
merates all motifs of size k in a graph. The ESU algorithm
starts with individual nodes in the graph and iteratively
adds an additional node from the subgraph’s neighborhood,
until reaching subgraphs of size k. Stoica and Prieur [14] ex-
tended the ESU algorithm to count the number of position-
aware graphlets adjacent to each node in the graph.

Gonen and Shavitt [8] presented algorithms with time

complexity O ð3eÞk �n�jEj�logð1=dÞ
�2 þ jEj2 þ jEjn log n

� �
that approxi-

mates the position aware graphlet degree, but only for k
length paths, k-cycles and k-cycles with a chord graphlet,
where k is at most O(logn). They also count per all nodes
all non-induced and undirected graphlets up to size four,

in time O njEj logð1=dÞ
�2 þ jEj2 þ jEjn log n

� �
. Gonen et al. [15]

gave a sub-linear algorithm for approximating the non-

induced star count, for any given star size.
1 Any input graph can be converted to this form in O(n logn + jEj logn)
pre-processing time using a dictionary data structure.
1.3. Our contribution

In this paper we present a set of algorithms that count
exactly all induced and non-induced position-aware
Please cite this article in press as: D. Marcus, Y. Shavitt, RAGE – A rapid
doi:10.1016/j.comnet.2011.08.019
graphlets of up to size four, adjacent to each node in the
undirected graph, with time complexity of O(d � jEj + jEj2).

Specifically, we present algorithms that count: for each
node, all non-induced tailed triangles, 4-node cycles with
chord (chordal cycles), and a path of length three graphlets
in time complexity of O(d � jEj); Count cliques and non-in-
duced cycles in time complexity of O(d � jEj + jEj2). We also
present a method to obtain the induced graphlet count
from the non-induced graphlet count, for graphlet up to
size four. Parts of the techniques presented are similar in
spirit to those noted in [12], for global graphlet counting.

Since most real-world complex networks are sparse (i.e.
jEj = O(n)), analyzing the runtime of these algorithms on
such networks shows that the runtime bound is much low-
er than the runtime of the trivial exhaustive search, over all
possible edges/nodes.

As an application of our algorithms, we present meth-
ods enabling fast graphlet counting to be used for role clas-
sification of Internet Autonomous Systems [16], a
classification which helps understand the complex ecosys-
tem of the commercial Internet. Our methods improve on
current work, by mitigating the need of inferring the rela-
tionship between ASes, a task which is known to be hard
and inaccurate [17–19].
2. Non-induced graphlet count

All algorithms described in the following section as-
sume an undirected simple input graph G(V,E), which is
represented by an adjacency list. Furthermore, it is as-
sumed that the graph vertices are labeled by the integers
{1,2, . . . ,n}.1 We denote by N(v) the set of neighbor nodes
of v (i.e. N(v) = {u 2 Vj(v,u) 2 E}).

A node v is adjacent to graphlet mi if v is a vertex of gra-
phlet mi. Given S, the set of non-isomorphic vertices in mi,
we say that v is adjacent to graphlet mi at position u 2 S (or
adjacent to mi�u), if v � u or if v is adjacent to mi and is auto-
morphically equivalent to u. For simplicity, we define mi�u
as position aware graphlet. For example, the cycle with a
chord of size four has two position-aware graphlets: One
for the two nodes connected to the chord (m2.1 in Fig. 1)
and one for the other two nodes (m2.2 in Fig. 1).

Although this section discusses per-node graphlet
count, the global graphlet count, i.e. the global number of
different graphlets appearing in the graph, can be deduced
using the counting algorithms presented here: For each
graphlet pattern, we select a single position aware gra-
phlet, sum all the per-node counts in the graph and divide
this sum by the number of nodes in the graphlet that are
automorphically equivalent to the selected position.

2.1. Counting triangles

Algorithm 1 counts, for each node u 2 V, all triangles
(graphlet m7, Fig. 1) adjacent to u: The algorithm iterates
over all edges in the graph (lines 2–6). For each edge
e(u,v) 2 E, it counts all triangles that are edge joint with
graphlet enumerator for large networks, Comput. Netw. (2011),

http://dx.doi.org/10.1016/j.comnet.2011.08.019


Fig. 1. All three and four node undirected position aware graphlets.
Location of the node in the graphlet is marked by an additional circle
(node position is not marked in symmetric graphlets).
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e(u,v) (i.e. e(u,v) is an edge in the triangle), updating the re-
spected triangle count values of both node u and node v.
This edge joint triangle count is obtained using the Merge
procedure (line 9), which returns all nodes sharing an edge
with both u and v. While NodeArray (which is passed ‘‘by
ref’’ via Varr) is not useful for counting triangles, it will be
useful for subsequent algorithms calling the Merge proce-
dure. Finally, since each node is connected to two edges in
each triangle we count each triangle twice. This over-count
is fixed in the final post-processing loop (line 8).

Algorithm 1. Counting triangles

1: procedure TRIANGLECOUNT(G)
2: for all v 2 V(G) do
3: for all u 2 N(v), v < u do
4: Merged MergeG, v, u, Varr

5: m7[v] m7[v] + jMergedj
6: m7[u] m7[u] + jMergedj
7: for all v 2 V(G) do
8: m7[v] m7[v]/2
9: procedure MERGE(G,v,u,NodeArray)

10: for all w 2 N(v) do
11: NodeArray[w] 0
12: for all w 2 N(u) s.t. w – v do
13: NodeArray[w] 1
14: for all w 2 N(v), w – u do
15: if NodeArray[w] = 1 then
16: NodeArray[w] 3
17: list AppendToList list, w
18: else
19: NodeArray[w] 2
20: return list
Theorem 1. Algorithm 1 counts, for every node v 2 V, the
exact amount of occurrences of the triangle graphlet (m7) that
v is part of, with time complexity of O(djEj).
Proof. Assume, by contradiction, that there exists a node
v 2 V, for which the algorithm outputs a wrong value.

If the algorithm outputs a value greater than the
amount of triangles adjacent to v, there must exist an
Please cite this article in press as: D. Marcus, Y. Shavitt, RAGE – A rapid
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additional node u 2 N(v) that shares a neighbor w with v,
but the nodes v, u, w do not form a triangle in G, in
contradiction to the existence of edges (v,u), (v,w), (u,w) in
the graph.

Therefore, it must be that v is adjacent to more triangles
than the algorithm outputs. So there must exist a triangle
M(v,u,w) that is counted in the main iteration (lines 2–6)
less than two times for v. Assume, without loss of
generality, that v < u < w. Since u and v share an edge,
there must be an iteration step where v and u are selected.
In this step, since w is a neighbor of both u and v it is added
to the merged list, and M(v,u,w) is counted for node v.
Similarly there must be an iteration step for the edge (v,w)
where M(v,u,w) is counted again, in contradiction to the
assumption.

The time complexity for the Merge procedure run is
O(jN(v)j + jN(u)j) = O(d), the main loop (lines 2–6) iterates
over all edges in graph G, and the fixup loop (line 8)
iterates over all nodes, giving us the upper bound:
O
P

v2V
P

u2NðvÞd
� �

þ OðnÞ ¼ Oðd � jEjÞ. h
2.2. Counting cycle with a chord

Algorithm 2 uses a cycle with a chord which can be de-
scribed as two triangles with a joint edge. As in triangle
count (Algorithm 1), this algorithm iterates over the edges
of the graph, using the list of nodes obtained by Merge pro-
cedure (merged list) to find all the triangles. Each two
nodes in the merged list create two triangles with the iter-
ated edge as their joint edge.

Theorem 2. Algorithm 2 counts, for every node v 2 V, all
non-induced occurrences of graphlets m2.1 and m2.2 for which
v is part of, in total time complexity of O(djEj).
Proof. "e(u,v) 2 E, "w, t 2 (N(v) \ N(u))(w – t – v – u)
we get that nodes fu;v ;w; tg induce a cycle with
e(u,v) as the chord. Also, for every cycle with a chord
m2(v,u,w, t) having e(u,v) 2 E as the chord edge it holds
that w, t 2 (N(v) \ N(u)). Therefore, there are exactly
jNðvÞ \ NðuÞ n fu;vgj

2

� �
different cycles with chord

(chordal cycles), where e(u,v) is the chord, and, "w 2

N(v) \ N(u)n{u,v}, exactly jNðvÞ \ NðuÞ n fu;v ;wgj
1

� �
of

these chordal cycles are adjacent to node w.
Since every chordal cycle has only one chord edge, and

since Algorithm 2 iterates over all edges once, we get that
each chordal cycle is counted exactly once for each
adjacent node and their respective position aware
graphlets.

Using similar runtime analysis shown in the proof of
Theorem 1, we get that the time complexity is bounded by

O
X
v2V

X
u2NðvÞ

dþ jNðvÞ \ NðuÞjð Þ
 !

¼ OðdjEjÞ: �

Note that the runtime for this exact counting algorithm
is better than Gonen and Shavitt [8] approximation count.
graphlet enumerator for large networks, Comput. Netw. (2011),
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Algorithm 2. Counting non-induced 4-cycles with a
chord

1: procedure CHORDCYCLECOUNT(G)
2: for all v 2 V(G) do
3: for all u 2 N(v), v < u do
4: Merged MergeG, v, u, Varr

5: m2.1[v] m2.1[v]+
6: jMergedj � (jMergedj � 1)/2
7: m2.1[u] m2.1[u]+
8: jMergedj � (jMergedj � 1)/2
9: for all w 2Merged do

10: m2.2[w] m2.2[w] + (jMergedj � 1)
2.3. Counting tailed triangles

The tailed triangles counting algorithm is based on the
algorithm presented by Gonen and Shavitt [8]. Our algo-
rithm uses the triangle count results obtained using Algo-
rithm 1 rather than Gonen’s cycle approximation count
algorithm. Furthermore, m4.3 is computed in a more effi-
cient manner. For each v 2 V, in order to count occurrences
of m4.3 adjacent to v, the algorithm needs to count all trian-
gles in v’s neighborhood that v is not a part of. Rather than
recounting all triangles on the graph not connected to v as
done in [8], the algorithm uses the original triangles count
(computed only once for all nodes of the graph) to compute
m4.3, and only later fixes any error that occurred due to fal-
sely counting triangles adjacent to v.

Theorem 3. Algorithm 3 finds, for every node v 2 V, all non-
induced occurrences of graphlets m4.1, m4.2 and m4.3 that v is
part of, in total time complexity of O(djEj).
Proof. By Theorem 1, counting triangles can be done cor-
rectly in time O(d � jEj). For each pair of nodes v, u we define
Tr(u) as the number of triangles adjacent to node u and
Trv(u) as the number of triangles adjacent to u that are
not adjacent to v. The number of graphlets of type m4.1 that
are adjacent to u is given by Tr(u) � (jN(u)j � 2), for each
node this value is computed exactly once (line 11). For each
node w and triangle Muvw the number of graphlets of type
m4.2 which both are adjacent to w and contain the triangle
Muvw can be defined by j{tjt 2 N(u) [ N(v), t – u, v,
w}j = jN(u)j � 2 + jN (v)j � 2. Thus the total number of gra-
phlets of type m4.2 which are adjacent to w can be obtained
by
P
fðu;vÞjðu;vÞ2EðGÞ;w2NðvÞ\NðuÞgjNðuÞj � 2þ jNðvÞj � 2, which is

computed in line 9. Finally, the number of graphlets of type
m4.3 that are adjacent to v is given byX
u2NðvÞ

TrvðuÞ ¼
X

u2NðvÞ
ðTrðuÞ � ðTrðuÞ � TrvðuÞÞÞ ð1Þ

¼
X

u2NðvÞ
TrðuÞ �

X
u2NðvÞ

ðTrðuÞ � TrvðuÞÞ ð2Þ

¼
X

u2NðvÞ
TrðuÞ

 !
� 2TrðvÞ: ð3Þ

Note that in the last transition of the equation we use the
fact that the value Tr(u) � Trv(u) defines the number of
Please cite this article in press as: D. Marcus, Y. Shavitt, RAGE – A rapid
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triangles adjacent to both nodes u and v. ThereforeP
u2NðvÞðTrðuÞ � Trv ðuÞÞ counts every triangle adjacent to

node v exactly twice-once for each extra node in the trian-
gle (each of the two neighbors of v in the triangle).

The runtime complexity analysis is divided into three
parts: Counting triangles in O(djEj) time (line 2), first edge
iteration (lines 3–9), and last edge iteration (lines 10–14).
Using similar analysis as in Theorem 2, we get that the
time complexity for the first iteration is O(djEj). Thus the
total time complexity of Algorithm 3 is:

OðdjEjÞ þ OðdjEjÞ þ OðjEjÞ ¼ OðdjEjÞ: �

The above runtime result, given for the exact tailed tri-
angle counting algorithm, is significantly better than Go-
nen and Shavitt [8] approximation count.

Algorithm 3. Counting non-induced tailed triangles

1: procedure TAILTRIANGLECOUNT(G)
2: TriangleCountG
3: for all v 2 V(G) do
4: for all u 2 N(v), v < u do
5: Merged MergeG, v, u, Varr

6: tailsv max{0,(jN(v)j � 2)}
7: tailsu max{0, (jN(u)j � 2)}
8: for all w 2Merged do
9: m4.2[w] m4.2[w] + tailsv + tailsu

10: for all v 2 V(G) do
11: m4.1[v] max{0, (m7[v] � (jN(v)j � 2))}
12: for all u 2 N(v) do
13: m4.3[v] m4.3[v] + m7[u]
14: m4.3[v] m4.3[v] � 2 �m7[v]
2.4. Counting four nodal cliques

Counting cliques is done in a similar fashion to [8]. We
show that the sorting of merged edge nodes neighbor-
hoods done in [8] is redundant, thus lowering the runtime
bound to O(djEj + jEj2). The algorithm shares the same
operational idea as that of the cycle with a chord count
(Algorithm 2): Instead of only selecting two nodes from
merged node list, the current algorithm also checks that
the two selected nodes from the merge list are connected
with an edge (lines 8–9 in Algorithm 4, see Fig. 2).

Theorem 4. Algorithm 4 finds, for every node v 2 V, all non-
induced occurrences of graphlet m1 v is part of, in total time
complexity of O(djEj + jEj2).
Proof. Correctness follows from [20]. Using computation
similar to those shown in the proof of Theorem 1, we get
the time complexity of Algorithm 4 to be:

O
X
v2V

X
u2NðvÞ

dþ
X

w2ðNðvÞ\NðuÞÞ
jNðwÞj

 ! !

¼ O
X
v2V

X
u2NðvÞ

ðdÞ þ
X
v2V

X
u2NðvÞ

X
w2ðNðvÞ\NðuÞÞ

jNðwÞj
 !

¼ OðdjEjÞ þ OðjEj2Þ: �
graphlet enumerator for large networks, Comput. Netw. (2011),
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Fig. 2. Counting cliques. Edge e(v,u) is first iterated after selecting node v and its neighboring node u (1). Node w is then selected from nodes u and v merged
neighbors (2), after which node t is selected from w neighbors (3). Finally, since node t is also a neighbor of both u and v a clique is found (4).
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Note that the runtime for this exact four nodal cliques
counting algorithm is better than the one in Gonen and
Shavitt [8].

Algorithm 4. Counting 4-cliques

1: procedure CLIQUECOUNT(G)
2: for all v 2 V(G) do
3: Varr[v] 0
4: for all v 2 V(G) do
5: for all u 2 N(v), v < u do
6: Merged MergeG, v, u, Varr

7: for all w 2Merged do
8: for all t 2 N(w), w < t do
9: if Varr[t] = 3 then//(⁄)

10: m1[v] m1[v] + 1
11: m1[u] m1[u] + 1
12: for all w 2 N(v) [ N(u) do
13: Varr[w] 0
14: for all v 2 V(G) do
15: m1[v] m1[v]/3

(⁄) Varr is set in the MERGE call (line 6). Varr[t] = 3
iff t is a neighbor of both v and u
2.5. Counting four nodal cycles

Theorem 5. Algorithm 5 finds, for every node v 2 V, all non-
induced occurrences of graphlet m3 that v is part of, in total
time complexity of O(djEj + jEj2).
Proof. Let Cyc(v,u) be the number of cycles size four going
through the edge e(v,u). Trivially, Cyc(v,u) is also the num-
ber of pairs w 2 N(v), t 2 N(u) such that e(w, t) 2 E. For all
nodes v 2 V, since every cycle adjacent to v has exactly
two edges connected to v, the exact amount of cycle
adjacent to v, Cycv is:
Please cite this article in press as: D. Marcus, Y. Shavitt, RAGE – A rapid
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Cycv ¼
P

u2NðvÞCycðv;uÞ
2

:

Using computation similar to those shown in the proof
of Theorem 1, the time complexity of Algorithm 5 is:

X
v2V

X
u2NðvÞ

dþ
X

w2NðvÞ
jNðwÞj

 ! !
¼ OðdjEjÞ þ OðjEj2Þ: �

Algorithm 5. Counting 4-cycles

1: procedure CYCLECOUNT(G)
2: for all v 2 V(G) do
3: Varr[v] 0
4: for all v 2 V(G) do
5: for all u 2 N(v) s.t. v < u do
6: Merge G, v, u, Varr

7: for all w 2 N(v)n{u} do
8: for all t 2 N(w) do
9: if Varr[t] = 1 or Varr[t] = 3 then

10: m3[v] m3[v] + 1
11: m3[u] m3[u] + 1
12: for all w 2 N(v) [ N(u) do
13: Varr[w] 0
14: for all v 2 V(G) do
15: m3[v] m3[v]/2
2.6. Counting four nodal path

Theorem 6. Algorithm 6 finds, for every node v 2 V, all non-
induced occurrences of graphlet m6 v is part of, in total time
complexity of O(djEj). For each edge e(u,v) 2 E the algorithm
counts all paths of length three having e(u,v) in the path center.
graphlet enumerator for large networks, Comput. Netw. (2011),
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Proof. Let Pu,v be the exact amount of paths having edge
e(u,v) in the center, P(u,v),(w,u) the exact amount of paths
starting with edge e(w,u) and having edge e(u,v) in the
center, it holds that:

Pu;v ¼ ðjNðvÞ n fugj � jNðuÞ n fvgjÞ � jNðvÞ \ NðuÞj;
Pðu;vÞ;ðw;uÞ ¼ jNðvÞ n fugj � jNðvÞ \ fwgj

and, "v 2 V:

m6:1½v � ¼
X

u2NðvÞ

X
w2NðuÞ

ðPðu;wÞ;ðv ;uÞÞ;

m6:2½v � ¼
X

u2NðvÞ
ðPu;vÞ:

The time complexity analysis is similar to that of Theorem
5. h

Algorithm 6. Counting 4-node paths

1: procedure PATHCOUNT(G)
2: for all v 2 V(G) do
3: Varr[v] 0
4: for all v 2 V(G) do
5: for all u 2 N(v) s.t. v < u do
6: Merged MergeG, v, u, Varr

7: m6.2[v]
8:
 m6.2[v] + (jN(v)n{u}j � jN(u)n{v}j) � jMergedj

9: m6.2[u]
10:
 m6.2[u] + (jN(v)n{u}j � jN(u)n{v}j) � jMergedj

11: for all w 2 N(v)n{u} do
12: if Varr[w] = 3 then
13: m6.1[w] m6.1[w] + jN(u)n{v}j � 1
14: else
15: m6.1[w] m6.1[w] + jN(u)n{v}j
16: for all w 2 N(u)n{v} do
17: if Varr[w] = 3 then
18: m6.1[w] m6.1[w] + jN(v)n{u}j � 1
19: else
20: m6.1[w] m6.1[w] + jN(v)n{u}j
21: for all w 2 N(v) [ N(u) do
22: Varr[w] 0
2.7. Counting claws

Counting claws (a four node star) is done in the same
way described in [8]. For each v 2 V the claw graphlet’s
count is obtained using the following equations:

m5:1½v � ¼
jNðvÞj

3

� �
;

m5:2½v � ¼
X

u2NðvÞ

jNðuÞj � 1
2

� �
:

3. Obtaining induced graphlets

The per-node and global non-induced graphlet count,
collected using the algorithms presented in the previous
section, can be converted to an induced count using a
Please cite this article in press as: D. Marcus, Y. Shavitt, RAGE – A rapid
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post-processing technique described in the following
section.

Denote by NI(m) the total number of non-induced
appearances of graphlet m in G, I(m) the total number of in-
duced appearances of graphlet m in graph G. In addition,
for each node v in graph G, we denote NIv(m) by the num-
ber of non-induced position aware graphlets for which v
participates in G, and Iv(m) the number of induced position
aware graphlets.

3.1. 4-Clique

Denote by m1 the 4-clique graphlet.
Trivially:

Iðm1Þ ¼ NIðm1Þ:

Since all nodes in the clique are isomorphic, there is one
position aware clique, so the above result also holds for
each node adjacent clique count (i.e. Iv(m1) = NIv(m1)).

3.2. 4-Cycle with a chord

Denote by m2 the 4-cycle with a chord graphlet. A non-
induced graphlet can be found only from an induced gra-
phlet with a node degree vector which is not smaller for
every component. Thus, m2 can only be obtained by
removing a single edge from m1. So the 4-cycle with a
chord induced count is obtained by:

Iðm2Þ ¼ NIðm2Þ � 6Iðm1Þ ¼ NIðm2Þ � 6NIðm1Þ:

Using similar calculations we get, for each node v 2 V:

Ivðm2:1Þ ¼ NIvðm2:1Þ � 3Ivðm1Þ;
Ivðm2:2Þ ¼ NIvðm2:2Þ � 3Ivðm1Þ:
3.3. 4-Cycle

Denote by m3 the 4-cycle graphlet. According to the
node degree vector of graphlet m3, m3 can be obtained from
either m1 or m2. Removing any two matching edges from m1

induces a cycle. Three such matchings exist. Removing the
chord edge from m2 induces a cycle. The 4-cycle induced
count is obtained by:

Iðm3Þ ¼ NIðm3Þ � Iðm2Þ � 3Iðm1Þ
¼ NIðm3Þ � NIðm2Þ þ 3NIðm1Þ:

Using similar calculations we get, for each node v 2 V:

Ivðm3Þ ¼ NIvðm3Þ � Ivðm2:1Þ � Ivðm2:2Þ � 3Ivðm1Þ:
3.4. Tailed triangles

Denote by m4 the Tailed triangles graphlet. According to
the node degree vector of graphlet m4, m4 can be obtained
from either m1 or m2. Removing any two edges from any
one node in m1 induces a tailed triangle. Removing any
edge from the cycle in m2 (All 4 edges other than the edge
between the two nodes with degree = 2) induces a Tailed
Triangle. Thus, I (m4) can be obtained by:
graphlet enumerator for large networks, Comput. Netw. (2011),
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Iðm4Þ ¼ NIðm4Þ � 4Iðm2Þ � 4 �
3
2

� �� �
Iðm1Þ

¼ NIðm4Þ � 4NIðm2Þ þ 12NIðm1Þ:

Using similar calculations we get, for each node v 2 V:

Ivðm4:1Þ ¼ NIvðm4:1Þ � 2Ivðm2:1Þ � 3Ivðm1Þ;
Ivðm4:2Þ ¼ NIvðm4:2Þ � 2Ivðm2:1Þ � 2Ivðm2:2Þ � 6Ivðm1Þ;
Ivðm4:3Þ ¼ NIvðm4:3Þ � 2Ivðm2:2Þ � 3Ivðm1Þ:
3.5. Claws

Denote by m5 the claw graphlet. According to the node
degree vector of graphlet m5, m5 is a subgraph isomor-
phism only of m1, m2, and m4.

For each node in m1, removing all the edges that are not
connected to it induces a claw, four such nodes exist. For
each node v in m2 with degree P3, removing all the edges
that are not connected to v induces a claw, two such nodes
exist. Finally, there is only one node in m4 with degree P3.
Removing all the edges that are not connected to this node
induces a claw. So I(m5) can be deduced by:

Iðm5Þ ¼ NIðm5Þ � Iðm4Þ � 2Iðm2Þ � 4Iðm1Þ
¼ NIðm5Þ � NIðm4Þ þ 2NIðm2Þ � NIðm1Þ:

Using similar calculations we get, for each node v 2 V:

Ivðm5:1Þ ¼ NIvðm5:1Þ � Ivðm4:1Þ � Ivðm2:1Þ � Ivðm1Þ;
Ivðm5:2Þ ¼ NIvðm5:2Þ � Ivðm4:2Þ � Ivðm4:3Þ

� Ivðm2:1Þ � 2Ivðm2:2Þ � 3Ivðm1Þ:
2 RAGE is available online at www.eng.tau.ac.il/�shavitt/RAGE/Rage.htm
3.6. Simple path of length three

Denote by m6 the simple path graphlet of length three
(a path with three edges). According to the node degree
vector of graphlet m6, m6 is a subgraph isomorphism in
all graphlets other than m5.

Removing an edge connecting a node of degree 3 and a
node of degree 2 from m4 induces a path. Two such edges ex-
ist. Removing any single edge from m3 induces a path. Four
such edges exist. Removing the chord and any other edge, or
removing two matching edges that are not the chord from
m2 induces a path, giving a total of six possible paths. In
m1 every node pair is connected. Therefore, any permutation
of the four nodes (4!) creates a legal path. The edges are
undirected so we count each path twice in the permutation
(once for each direction), giving us a total of 4!/2 = 12 dis-
tinct paths (removing all edges that are not in the selected
path induces m6). Finally, I(m6) can be deduced by:

Iðm6Þ¼NIðm6Þ�2Iðm4Þ�4Iðm3Þ�6Iðm2Þ�12Iðm1Þ
¼NIðm6Þ�2NIðm4Þ�4NIðm3Þþ6NIðm2Þ�12NIðm1Þ:

Using similar calculations we get, for each node v 2 V:

Ivðm6:1Þ ¼ NIvðm6:1Þ � Ivðm4:2Þ2Ivðm4:3Þ � 2Ivðm3Þ
� 2Ivðm2:1Þ � 4Ivðm2:2Þ � 6Ivðm1Þ;

Ivðm6:2Þ ¼ NIvðm6:2Þ � 2Ivðm4:1Þ � Ivðm4:2Þ � 2Ivðm3Þ
� 2Ivðm2:1Þ � 4Ivðm2:2Þ � 6Ivðm1Þ:
Please cite this article in press as: D. Marcus, Y. Shavitt, RAGE – A rapid
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4. Evaluation

We implemented our algorithms, creating a tool named
RAGE 2 and used it for evaluating their performance, scala-
bility and applicability on the Internet Autonomous Systems
(AS) graph.

The Internet is comprised of tens of thousands of ASes.
The AS-graph is the coarsest view of the Internet, com-
prised of ASes as nodes. A link between two ASes exists
when the two ASes have a peering agreement that allows
them to directly exchange information (in the shape of IP
packets) without the mediation of a third AS.

The AS connection graphs we used were obtained from
the DIMES project [21], collected during August 2009, and
from Dhamdhere et al. [16]. All runtime tests were run on
an Intel Core 2 Quad Q8400 CPU machine having Windows
XP as its operating system.

We compared RAGE with FANMOD [22], which is the
previous fastest tool available for this task. We also com-
pared our algorithm with our implementation of the ap-
proach suggested by Itzhack et al. [11], converted to
count per node graphlets. We hereby refer to the latter as
the IML approach.

The FANMOD tool can detect graphlets up to a size of
eight vertices by enumerating all subgraphs of a given size
within the input network or by uniformly sampling them
using the algorithm described by Wernicke [13]. FANMOD
may also determine the frequency of graphlets in a user-
specified number of random graphs, thereby detecting gra-
phlets which are over (under) represented in the original
network. For the purpose of our performance analysis we
limited both FANMOD run modes, i.e. sampling and full-
enumeration, to run only on the input graph, while the
number of random networks was set to zero.

Using an AS graph collected over the month of August
2009 by the DIMES project [21], which contains 26,561
nodes and 92,584 edges, the run time for counting all the
network graphlets was 40 min while FANMOD’s sampling
algorithm and FANMOD’s full enumeration algorithm per-
formed the same task at 2 h and at 48 h, respectively. We
also used smaller scale-free graphs (i.e. sparse graphs that
exhibit power law degree distribution), generated with the
iNet Internet Topology Generator [23], in order to see how
the three algorithms’ run time depends on the graph size.
Runtime results on the AS graph and iNet graphs, contain-
ing 5k nodes and 8k edges, 10k nodes and 20k edges, and
20k nodes and 52K edges are summarized in Table 1.

RAGE greatly outperforms FANMOD’s accurate count
(using full enumeration), running 2–5% of the runtime
compared to FANMOD. Moreover RAGE also outperforms
FANMOD’s less accurate sampling algorithm. Finally, the
table shows that RAGE achieves a speedup of 10 times over
our implementation of the IML algorithms.

To further evaluate the runtime properties of RAGE, we
ran our algorithms on three sets of random graphs, having
1k, 10k, and 100k nodes. Each graph set was built using the
Erdös–Rényi model[24] with increasing number of edges
as input, ranging from 5k to 2M edges. As the runtime
graphlet enumerator for large networks, Comput. Netw. (2011),
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Fig. 3. RAGE runtime in seconds (log scale) on random Erdös–Rényi generated graphs with 1k, 10k, and 100k nodes and varying edge count. Results show
RAGE preforms best on sparse graphs, even when run on large graphs.

Table 1
Comparison of runtimes (in seconds) of RAGE and FANMOD using the synthetic and the AS graph.

Method 5k nodes 10k nodes 20k nodes AS-Graph (26k nodes)

RAGE 11 64 720 2400
FANMOD (sampling) 57 210 1020 7200
FANMOD (full-enum) 420 2040 25200 172800
IML 140 1203 9850 25000
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results show (Fig. 3), the algorithm preforms best on sparse
graphs: While the runtime for a 1k node graph having 300k
edges is 16611 s (approximately 4.5 h) the runtime for the
same edge count on a 10k node graph is 35 s and for a 100k
node graph only 13 s.

In the above example, while the node count increases
the edge count remains constant. This lowers the ratio be-
tween edges and nodes which in turn causes the graph to
become more sparse and less inter-connected, e.g., the 1k
node, 300k edges graph has an average degree of 600 and
clustering coefficient of 0.6, whereas the 10k node graph
has an average degree of 60 and a clustering coefficient
of 0.67 � 10�2.

5. Application example: classification of ASes

There are various types of ASes, often classified by their
commercial role. Dhamdhere and Dovrolis [16] described
five different types of ASes: Large Transit Providers (LTP) –
international ISPs that have a large customer base and cover
a wide geographical areas; Small Transit Providers (STP) –
regional ISPs that provide both Internet access and transit
services; Access or Hosting Providers (AHP) – ISPs which
provide Internet access or hosting services both for
Please cite this article in press as: D. Marcus, Y. Shavitt, RAGE – A rapid
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residential users and for enterprise customers which do
not have AS numbers; Content Providers (CP) – provide
information for user consumption, e.g., Amazon or Google.
Enterprise Customers (EC) – organizations, universities
and companies that are more users of the Internet rather
than providers of content, Internet access or transit services.
EC ASes composes the main part of the AS set, being the long
low degree tail with approximately 25,000 out of a total
27,000 ASes [16].

Classifying ASes is an important step towards better
understanding of the Internet structure, as it helps position
an AS in the commercial Internet ecosystem. However, the
classification of the AS to their types is not a trivial task,
more so when trying to distinguish between AHP and CP,
mostly since there is an overlap in their behavioral
patterns. Therefore, following [16], we refer to ASes of type
AHP and CP as one type – AHCP. Note that it is impossible to
distinguish between the different classes (except perhaps
LTP) using only the undirected AS degree [16].

We applied RAGE on the AS graph, and used the result-
ing graphlet counts for the AS classification. Our premise is
that these count results can be leveraged for AS classifica-
tion, giving similar accuracy as previous classification
methods [16,25], without the need of additional informa-
graphlet enumerator for large networks, Comput. Netw. (2011),
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Table 2
AS classification accuracy per AS type, RAGE (with and without position-
aware indication) compared to Dhamdhere et al. [16].

AS type Accuracy (%)

RAGE (position aware) RAGE (position blind) [16]

EC 86 81 78
STP 84 86 86
AHCP 70 71 86

Total 79 79 83
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tion such as the type of relationship between each con-
nected AS pair.

Since only a few LTP exist (top 30� ASes) [16], they are all
well known, and can be easily identified by their large de-
gree. Thus, we focus on identifying STP, AHCP and EC ASes.

We computed the AS adjacent graphlets count of the AS
graph from August 2009 obtained from Dhamdhere and
Dovrolis [16]. The per-AS graphlet counts are normalized
(according to the L1 norm) since we are interested in the
relative count of each graphlet in comparison to the other
graphlets.

We use the random forest classifier [26],3 using the
above counts, along with the AS degree, as features. To train
the classifier we used a subset 3000 ASes, taken from
Dhamdhere and Dovrolis AS classification [16]. Note that
these classifications contain inherent noise. Testing and
training of the classifier was done using a 10-fold cross val-
idation method. We then further validated the resulting
classification model using a separate set of 140 known ASes
(40 STP, 40 AHCP and 60 EC). Similar to previous classifica-
tion studies [16,25], we define our accuracy according to the
percentage of correctly classified ASes out of the known AS
set. We found our classification accuracy to be 79% (Table
2), a result close to those reported before [16,25]. We ob-
tained similar results when testing other classifiers, such
as SimplisticLogistic [28] logistic regression and J48 decision
tree [29] aving a total accuracy of 79% and 76% respectively.
Finally, using the same classification approach as above, we
used position-blind graphlet count, counting all node adja-
cent graphlet without separating the graphlets into their po-
sition-aware classes. The classification results for this
approach have not been significantly different from the
one using the position-aware count (see Table 2).

6. Conclusion

Counting graphlets and motifs was shown in the last
decade to be an important tool in analyzing complex net-
works in diverse fields. As our data collection tools become
better, the networks we need to analyze are growing, and
thus the task of graphlet counting becomes more challeng-
ing. In this paper we present efficient algorithms for count-
ing graphlets of size 3 and 4, and prove their correctness
and efficiency. Finally, we demonstrate the usage of gra-
phlet enumeration for the problem of Internet AS
classification.
3 The random forest classifier was run using the WEKA [27] data mining
software, configured to run with the classifier’s default settings.
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