
IEEE Communications Magazine • March 2000138

Active Networks for Efficient
Distributed Network Management

0163-6804/00/$10.00 © 2000 IEEE

ABSTRACT

The emerging next generation of routers
exhibit both high performance and rich function-
ality, such as support for virtual private networks
and QoS. To achieve this, per-flow queuing and
fast IP filtering are incorporated into the router
hardware. The management of a network com-
prising such devices and efficient use of the new
functionality introduce new challenges. A truly
distributed network management system is an
attractive candidate to address these challenges.
In this article we describe how active network
techniques can be used to allow fast and easy
deployment of distributed network management
applications in IP networks. We describe a proto-
type system where legacy routers are enhanced
with an adjunct active engine, which enables the
safe execution and rapid deployment of new dis-
tributed management applications in the network
layer. This system can gradually be integrated in
today’s IP network, and allows smooth migration
from IP to programmable networks. This is done
with an emphasis on efficient use of network
resources, which is somewhat obscure by many of
today's high-level solutions.

INTRODUCTION
The overwhelming majority of IP network manage-
ment systems are centralized around some man-
agement station. The manager queries the
managed objects, builds a view of the network, and
sends alerts if a problem is detected. The manager
can also try to take corrective actions by sending
configuration commands to network entities.

There are many drawbacks to a centralized
architecture, which become more evident with
the growth in network size and complexity. As
the number of controlled elements grows, the
requirements for computational power from the
management system and bandwidth from the
network that connects it grow, too. In a large
network, some of the controlled entities are dis-
tant from the management station; thus, control
loops have long delays, and control traffic wastes
bigger portions of the network bandwidth.

To alleviate the scalability problems, dis-
tributed control architectures have been pro-
posed in recent years. Most of these solutions
delegate some of the central management tasks

to distributed software agents or remote objects.
The use of distributed object paradigms abstracts
the implementation details. Abstractions, such as
Common Object Request Broker Architecture
(CORBA), Distributed Component Object
Model (DCOM), and Remote Method Invoca-
tion (RMI,) are helpful in designing and build-
ing distributed systems, but they hide the true
cost of the implementation details. As a result,
such distributed systems tend, in many cases, to
be inefficient in their use of network resources,
primarily in their use of bandwidth. Another
drawback of agent-based systems is that this type
of delegation does not support a truly distribut-
ed agent system where agents can communicate
with their neighbors to efficiently carry out dis-
tributed tasks. Our approach to network man-
agement calls for efficient distribution of the
management task in the network.

Another important issue in distributed agent
systems for management and control is the loca-
tion at which these agents reside. Clearly, this
has a major impact on the performance since it
affects the delay in the control loop. In general,
software agent solutions assume the existence of
available hosts to run their application-level pro-
grams. An optimal location for an agent would
be in the router kernel, where all the necessary
local information is available, and action can be
taken locally. However, such a solution is
deemed impractical due to the inability to inter-
fere with the router real-time operation con-
straints. Clearly, the closer the agent is to the
controlled system, the better it can perform.

In this work, we propose an architecture that
allows the easy deployment of distributed net-
work management applications in IP networks.
The architecture encourages the efficient use of
network resources, but still maintains the ease of
application development. We use the active net-
work as a framework which allows the distribu-
tion and execution of network management
applications in the network routers.

In our architecture a node comprises two log-
ical entities: a forwarding IP mechanism and a
general execution environment that we call the
active engine (AE). The forwarding IP mecha-
nism is responsible for the task currently done
by IP routers, namely, forwarding an IP packet
according to local tables. The active engine is a
user-level execution environment adjunct to the

Danny Raz and Yuval Shavitt, Bell Laboratories, Lucent Technologies

ACTIVE, PROGRAMMABLE, AND
MOBILE CODE NETWORKING

IEEE Communications Magazine • March 2000 139

forwarding mechanism. A well-defined interface
allows the active engine to both monitor and
control the forwarding component.

This architecture allows us to simultaneously
run multiple distributed network management
applications. A session is a collection of pro-
grams (agents) that are injected to the network
by authorized users and executed in the active
engines. The agents can migrate from node to
node and duplicate themselves. Agents belong-
ing to the same session in different nodes can
cooperate in their work by exchanging data mes-
sages. Using a well-defined network layer inter-
face, namely a management information base
(MIB), authorized agents can gather local infor-
mation and control the forwarding operation.
Other software distribution mechanisms can be
integrated as well; in particular, popular man-
agement programs can be grouped into libraries
that will be part of the active engine.

A major concern in adding a distributed con-
trol mechanism for IP is security and safety. A
system is safe if no application can destroy or
damage the appropriate execution of other
applications. A system is secure if all operations,
including access to data, are authenticated (i.e.,
only authorized sessions can perform actions
and/or access private data). In our architecture,
safety is achieved by separating the execution
environment from the forwarding mechanism,
and using a well-defined application program-
ming interface (API) between them. Our archi-
tecture uses several security and safety
mechanisms, discussed later.

An important issue in deploying a scalable
distributed network application is the addressing
scheme to be used. Agents should be able, of
course, to send messages to a known destination.
However, in many cases, agents do not know the
addresses of remote agents with which they wish
to communicate. This may be due to the size of
the network, or changes in network topology.
Naming systems such as those used by CORBA
can help communicating in such scenarios, but
the cost of using them is high and often unpre-
dictable. In contrast, we use a very simple and
efficient addressing mode that allows agents to
send messages to the nearest relevant agents. It
is based on the ability of the forwarding mecha-
nism to intercept specially marked packets and
redirect them to the active engine.

The logical separation of the router allows us
to define a uniform environment and API for
management programs (agents). Our active
engine isolates the software agents from the ven-
dor-dependent router API. It can also help in
the analysis of algorithm performance. Physical-
ly, the forwarding mechanism and active engine
may either reside on different machines or core-
side inside the same box. This structure enables
the upgrade of any commercial off-the-shelf IP
(COTS) router to a node in our architecture
simply by adding an adjunct active engine. This
presents a natural evolution path from today’s IP
networks to future manageable networks.

We implemented our architecture and built a
working network prototype. The active engine is
written mostly in C, and is demonstrated on a
network comprising software routers running on
FreeBSD PCs and COTS routers (currently

CISCO 2500) with an adjunct active engine.
Currently we support Java as the programming
language for the active code, but the architec-
ture is built with handles to allow the use of
other languages.

The rest of the article is organized as follows.
We give a short overview of the system we built.
We discuss related work in the fields of network
management and active networks. We describe
the system architecture and flow of information.
We demonstrate the architecture capabilities with
two implementation examples. We then discuss
future work and give our concluding remarks.

A SYSTEM OVERVIEW
In this section, we provide a general overview of
our architecture. For convenience we use active
network terminology. In particular, our network
node is called an active node, and the packets
that carry the agents’ code and the communica-
tion among them are called active packets (this
traffic is termed active traffic).

As mentioned before, an active node in our
system comprises two entities: an IP router and
an adjunct active engine (AE). The IP router
component performs the IP forwarding, basic
routing, and filtering that are part of the func-
tions performed by today's COTS IP routers.
The IP filtering enables the diversion of active
packets (or other packets specified by an autho-
rized session) to the active engine.

The active engine is an environment in which
code encapsulated in active packets can be exe-
cuted. This code can specify how code and data
related to a specific task should be handled. A
logical distributed task is identified by a globally
unique number called a session id (the unique id
is a combination of the session originator IP
number and a locally assigned unique number).
When code associated with a nonexisting session
arrives, it is executed and creates a process that
handles all the packets of that session. Such a
process can either handle only a single data
packet and terminate (capsule), or exist in the
AE for a long period of time, handling many
data packets as required by many network man-
agement applications.

To perform network layer tasks, sessions
must have access to the router's network layer
data, such as topological data (neighbor ids),
routing data, performance data (packets
dropped, packets forwarded, CPU usage, etc.),
and more. We use Simple Network Management
Protocol (SNMP) as the interface between the
router and the AE. Standard SNMP agents exist
in all routers and enable a read/write interface
to a standard MIB.

In order to perform distributed tasks, an active
node must have some means to communicate with
other active nodes. Maintaining full topology
information at all the nodes does not scale. To
tackle this problem we support a topology-blind
addressing mode that enables a node to send a
packet to the nearest active node in a certain
direction. This mode is useful for topology learn-
ing, robust operation, support of heterogeneous
(active and nonactive) environments, and so on.
We also support the explicit addressing mode in
which a packet is sent to a specific active node.

The active

engine is an

environment in

which code

encapsulated in

active packets

can be executed.

This code can

specify how code

and data related

to a specific

task should

be handled.

IEEE Communications Magazine • March 2000140

RELATED WORK

The first generation of distributed network man-
agement systems used delegation to alleviate the
load of the management station by allowing the
manager to run processes in remote locations
[1]. This paradigm has a strict parent-child (or
client-server) relationship between the manager
and its agents. The next generation used
CORBA to handle distributed tasks [2]. Later,
distributed object infrastructures such as DCOM
and Java RMI use the same basic ideas for object
communication.

Most agent-based systems (not necessarily for
network management) [3] reside in the applica-
tion layer, and thus do not have access to network
layer information. A recent first step in address-
ing the need of agents to interface with network
layer information was presented by Zapf et al. [4].
They allowed their application layer agents to
access router information through an intermedi-
ate resident application in the router using SNMP.
Other interesting work was presented by
Hjálmtýsson et al. [5]. They built a system where
installed agents can manipulate data streams in a
router, and suggested a new router design.
Although similar in flavor to this work,
Hjálmtýsson's work suggested a new router design
which is not easily deployable in current net-
works.

Most of the work on active networks [6]
aimed to replace the current IP paradigm and
thus neglected IP-based applications. While the
desirability of this is debatable, our aim is to use
active network techniques to manage IP net-
works and gradually enhance them with mature
active network techniques. Similar goals were
sought in the BBN Smart Packet project [7],
which uses small one-packet scripts for manage-
ment applications. This project is restricted by
the small maximum program size and the lack of
soft state maintenance.

In our design, we separate the active engine
from the router forwarding mechanism. A simi-
lar approach was recently reported by Amir et al.
[8]; however, they limit the scope of their active
server to the application level, and thus limit its
capabilities. Bhattacharjee et al. [9] also suggest-
ed a similar approach, but for a very restricted
active server that can support only a given set of
functions. In most other work, the active and
nonactive parts are not well separated.

Interestingly, SNMP escaped the notice of most
active network projects except a few (e.g., [10]). In
general, most of the research on active networks
[6] failed to notice the need to access local network
layer information. We believe the use of SNMP is
the most attractive option to integrate active net-
work technology with existing routers.

ARCHITECTURE

DESIGN PRINCIPLES
Our goal is to design a system that allows easy
and fast deployment of distributed network man-
agement applications. The following principles
guided our design.

Generality and Simplicity — Building applica-
tions should be easy for a large base of program-

mers. Thus, the system should not be limited to
one language, and should support languages in
general use. The node should also be general
enough to support both long-- and short-lived
applications.

Modularity — We divide the node into modules
with a clearly defined API between them. In par-
ticular, we chose to separate the forwarding
mechanism of a regular router from the operating
environment where the packets are executed. We
also use, as much as possible, well accepted stan-
dards, such as Java, SNMP, and Active Network
Encapsulation Protocol (ANEP) [11], for the API.

Interoperability and Heterogeneity — Most
likely, active nodes will coexist with nonactive
routers. Furthermore, incremental deployment of
active nodes with coexisting routers seems a natu-
ral evolution path. In such a scenario it is very
unlikely that an application running on an active
node could explicitly know the addresses of its
active neighbors. To this end we support “blind”
addressing, in which the active node need not
know the address or location of other active nodes.

Network Layer Interface — It is very impor-
tant for an application to have easy and standard
access to the local information at a node, since
in many applications the action taken by the
packet depends on this information. This access
should support read and write operations since a
management application should be able to take
corrective actions.

Cost Visibility — Although we wish to abstract
most of the technical details in order to simplify
the development of applications, we believe that
the application must be aware of the costs, in
terms of both node resources (CPU, memory,
etc.) and global network resources (bandwidth
and delay). Therefore, we do not use advanced
distributed tools such as CORBA and Java RMI,
which in general hide much of the actual cost
from the programmer.

Safety and Security — Adding new functional-
ity should not affect the legacy network opera-
tion. Furthermore, an unauthorized management
application should not be able to affect any
other application. The system should support
security and robustness at all levels.

In view of the above principles, we chose to
use the active network technology for our
needs. This technology allows a flexible execu-
tion environment for management applications,
without the need to define new protocols and
standards. This resulted in the architecture
described earlier. This simple modular struc-
ture supports inter-operability, and does not
require the specific address of the next active
hop to be known. This structure allows easy
incremental deployment in heterogeneous net-
works, and is also robust since no-active traffic
cannot be affected by active traffic. A signifi-
cant entity in our design is the session. Logical-
ly, a session is a distributed task performed in
the network. A session has a unique network
id; thus, different programs on various nodes
can belong to the same session, and exchange

Building

applications

should be easy

to a large base

of programmers.

Thus, the system

should not be

limited to one

language, and

should support

languages

that are in

general use.

IEEE Communications Magazine • March 2000 141

information using active data packets. This
notion of a session is general enough to sup-
port both long-lasting processes and short-term
capsules. The fine details of the design are
described below.

DETAILED DESIGN
The main components of the system are (Fig. 1):
• Diverter — A part of the router that enables

it to divert packets to the AE based on their
IP/UDP headers. The new generation of
high-performance IP routers has this option
implemented as part of the router hardware
[12]. Edge routers that handle low-band-
width links may perform this function in
software, as demonstrated in our prototype.

• Active manager — The core of the AE is
the active manager. This module generates
the sessions, coordinates data transfer to
and from sessions, and cleans up after a
session when it terminates. While a session
is alive, the active manager monitors ses-
sion resource usage, and can decide to ter-
minate its operation if it consumes too
much resources (CPU time or bandwidth)
or tries to violate its action permissions.

• Security stream module — This module
resides in kernel space below the IP output
routine. Every connection the session wish-
es to open must be registered with this
module to allow monitoring of network
usage by sessions. The registration will be
done by our supplied objects, transparent to
the application developer. The module is
not fully implemented yet.

• Router interface — This module allows ses-
sions to access the router MIB. It is imple-
mented as a Java object that communicates
with the router using SNMP. We are cur-
rently working on enhancing performance
by caching popular MIB objects.
The design allows multiple languages to be

implemented simultaneously, but since the cur-
rent implementation handles only Java packets
we will restrict the description to details of the
Java implementation. Implementation of other
languages may require some adaptation accord-
ing to the language specifics.

Next, we describe the flow of packets through
the system. Note that a nonactive packet does
not pass through the AE, since the diverter rec-
ognizes it as such, and thus the packet takes the
fast track to its output port.

All active packets include a default option
that contains the unique session id of the pack-
et, a content description (data, language), and
more (Fig. 2). All the diverted packets are sent
to the active manager. If a packet does not
belong to an existing session and contains
code, it triggers creation of a session. If it is a
data packet, it is discarded and an Internet
Control Messages Protocol (ICMP)-like error
packet may be sent. A session creation involves,
among other things, authentication (not imple-
mented), creation of a control block for the
session, creation of a protected directory to
store session files, opening of a private com-
munication channel through which the session
receives and sends active packets, and execu-
tion of the code.

Four UDP port numbers (3322–5) are
assigned to active network research. In our sys-
tem we use the first two in the following way.
The first, the blind addressing port, is used to
send active packets to unspecified nodes in a
certain direction (i.e., toward some distant desti-
nation). The diverter in the first active node on
the route to that destination intercepts the pack-
et and sends it to the AE. Therefore, the sender
is not required to know the address of the next
active node. The second UDP port number (the
explicit active port) is used to send an active
packet to a specific active node. This packet is
forwarded through the fast track of all the inter-
mediate active nodes, and is not diverted until it
reaches its destination.

Since we expect most network programming
to be stable, we do not try to optimize the cap-
sule model. Thus, we are less concerned about
program size since programs are not going to
be transmitted frequently. A mechanism to
reassemble a program from a chain of up to
256 UDP packets is currently implemented in
the AE.

■■ Figure 1. The general architecture. Thick lines between components represent
possible flows of data, thin lines logical connections.

Fixed

Network connections

• • • Router

SNMP

Session 1

Active manager
ip

Kernel

Active engine

Security stream module

Session 2

•

•

•

Session n

Diverter
Routing

Processing

Fixed

IEEE Communications Magazine • March 2000142

SECURITY

Security and safety are of major concern in the
deployment of active networks. A system is safe
if no application can destroy or damage the
appropriate execution of other applications. In
particular, the AE as a whole should not effect
the routing of nonactive packets. A system is
secure if all operations, including access to
data, are authenticated (i.e., only authorized
sessions can perform actions and/or access pri-
vate data).

Our architecture supports both security and
safety, although currently it is not fully imple-
mented. In any design, one faces the dilemma
of choosing between the freedom to allow
more sophisticated session behavior (e.g., set-
ting MIB variables, diverting nonactive pack-
ets) and the fear of a possible safety/security
hole. Our approach allows multiple levels of
security via authentication and session classifi-
cation. Each session is authorized to use spe-
cific services (MIB access for read or write,
divert nonactive packets) and resources (CPU
time, bandwidth, memory). Since it is impor-
tant to ensure both safety and security in order
to promote the use of active networks, one can
initially select to be more restrictive in autho-
rizing services, and gradually allow more
sophisticated services.

Our first concern is to make sure that nonac-

tive packets are not affected by active packets.
This is easily achieved by the logical separation
of the AE from the router. Where the AE is a
separate machine and the separation is physical
not only logical, which we foresee as the natural
evolution path of IP networks, even a crash of
the AE will not affect nonactive data.

The next step in safety is to ensure that a ses-
sion will not corrupt or even poke at other ses-
sion data. We achieve this through the use of
Java SecurityManager. It allows us to control the
session running environment; in particular, we
prevent sessions from using native methods and
restrict the use of the file system.

Malicious or erroneous overuse of system
resources is of great concern. To this end, we
intend to monitor the use of CPU time by ses-
sions. We implemented tight control over usage
of the communication channel to the outside
world. TCP connections can be opened only by a
permitted session using our supplied methods
that monitor the bandwidth consumption. An
attempt to use Java methods is blocked by con-
trolling the IP layer in the AE. An unauthorized
connection will be dropped. UDP packets can be
sent only through the manager, which again can
monitor the bandwidth usage.

PERFORMANCE
We built a small heterogeneous network com-
prising both FreeBSD-based active routers and
COTS routers (currently we use CISCO 2500
routers and Lucent Technologies RABU Port-
Master3) with an adjunct active component. The
FreeBSD routers are PCs running FreeBSD,
using routed for routing. In these PCs, the AE
and router coreside in the same machine. Figure
3 shows the topology used for performance mea-
surements.

In building the prototype we aimed for func-
tionality, not performance. Thus, many parts of
the system were not optimized for performance.
Nevertheless, we tested the capabilities of our
prototype. Thus, the delay of an active packet
through the system should be treated as an
upper bound on what can be accomplished and
the load measures as a lower bound.

Our first experiment was to measure the

■■ Figure 2. The structure of the default option in our ANEP header. version is the software version (cur-
rently 1); lang is the language id, 0 identify data, 1 is for Java; only the most significant bit in the flags
field is currently assigned to identify the last segment; seg is the segment number. ses_seq and ses_id
constitute the session id.

0 1 2 3 4 5 6 7

00H 04H

8 6 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0

0 1 2 3

1

version lang flags seg

ses_seq

ses_seq

■■ Figure 3. The prototype network architecture.

Tishrey Heshvan Kislev

Adar

Router

Active engine Shvat

Razcisco
Internet

Tevet

Internet

IEEE Communications Magazine • March 2000 143

delay of an active packet through one active
node. To this end we used a session on heshvan
that forwards every packet it receives to the des-
tination on the packet. Java applications on
tishrey and kislev (Fig. 3) exchange UDP
packets using either blind addressing (diverted at
heshvan) or explicit addressing (forwarded by
heshvan's router). The packets were about 500
bytes long, and the network was kept without
additional traffic to prevent queuing delay from
affecting the results.

The average round-trip delay (RTD) for a
packet without diversion was 1.37 ms. The 90
percent confidence interval is 1.37 ± 0.0047 ms,
about 0.68 percent wide. The average RTD for a
packet with diversion was 11.20 ms. The 90 per-
cent confidence interval is 11.20 ± 0.022 ms,
about 0.39 percent wide. Thus, the average delay
through heshvan’s active engine was (11.2 –
1.37)2 = 4.915 ms. Note that heshvan is a Pen-
tium machine with 64 Mbytes memory running
at 200 MHz.

It is obvious that for network management
applications the AE performance is bounded by
the memory access speed, not by the computa-
tion power of the processor. We did not conduct
a full-scale stress test, but repeated the above
experiment with ten sessions active in heshvan,
and the delay through the AE did not change.

APPLICATIONS
Traceroute is an important network manage-
ment application. We describe several imple-
mentations of a generalization of the
traceroute program in [13]. Our programs can
collect any available network information along
a route via SNMP. In addition, the program
can be started at any node, not necessarily on
the route, and the reports can be sent to any
host in the network. Different implementations
aim to optimize different criteria, such as mini-
mizing termination time or bandwidth over-
head. A full detailed description of the
implementation and performance analysis, as
well as descriptions of other applications, such
as bottleneck detection and ad hoc message
dissemination, appear in [13].

DISCUSSION AND FUTURE WORK
Since the inception of the active network idea
there has been a search for the “killer applica-
tion,” the one that will strongly require active
network technology. We believe network man-
agement is a domain where active network tech-
nology could prove to be very significant.
Applications like adaptive control, router config-
uration, element detection, network mapping,
and security management (intruder detection,
fighting denial-of-service attacks) are only some
examples where active network technology can
be successfully applied. Our architecture also
supports solutions to other problems not neces-
sarily part of network management, such as
search worms, smart mail, multicast, hop-to-hop
flow control, and more.

The additional delay seen by packets in active
networks is an issue that has been addressed in
the past, and as others have pointed out, we

believe the small slow-down is compensated for
by the big savings that can be achieved in traffic
volume. In our prototype, nonactive packets suf-
fer only the negligible additional delay of the
diverter, and a reasonable delay at the AE. The
design and analysis of algorithms for such an
environment is an important problem. We took
a first step in this direction in [14].

REFERENCES
[1] Y. Yemini, G. Goldszmidt, and S. Yemini, "Network

Management by Delegation," 2nd IFIP/IEEE Int'l. Symp.
Integrated Network Mgmt., Washington, DC, Apr.
1991, pp. 95–107.

[2] S. Mazumdar, "Inter-Domain Management between
CORBA and SNMP," 7th IFIP/IEEE Int'l. Wksp. Dist. Sys.:
Ops. and Mgmt., L'Aquila, Italy, Oct. 1996.

[3] J. Kiniry and D. Zimmerman, "A Hands-On Look at Java
Mobile Agents," IEEE Internet Comp., vol. 1, no. 4,
July/Aug. 1997, pp. 21–30.

[4] M. Zapf et al., "Decentralized SNMP Management with
Mobile Agents," 6th IFIP/IEEE Int'l. Symp. Integrated
Network Mgmt., Boston, MA, May 1999.

[5] G. Hjalmtysson and A. Jain, "Agent-Based Approach to
Service Management - Towards Service Independent
Network Architecture," 5th IFIP/IEEE Int'l. Symp. Inte-
grated Network Mgmt., San Diego, CA, May 1997, pp.
715–29.

[6] K. Psounis, "Active Networks: Applications, Security,
Safety, and Architectures," IEEE Commun. Surveys, vol.
2, no. 1, 1st qtr. 1999, http://www.comsoc.org/pubs/
surveys/1q99issue/psounis.html

[7] B. Schwartz et al., "Smart Packets for Active Networks,"
OPENARCH ’99, Mar. 1999, pp. 90–97.

[8] E. Amir, S. McCanne, and R. Katz, "An Active Service
Framework and Its Application to Real-Time Multimedia
Transcoding," SIGCOMM ’98, Sept. 1998, pp. 178–89.

[9] S. Bhattacharjee, K. Calvert, and E. W. Zegura, "An Archi-
tecture for Active Networking," HPN ’97, Apr. 1997.

[10] Y. Yemini and S. da Silva, "Towards Programmable Net-
works," Wksp. Dist. Sys. Ops. and Mgmt., Oct. 1996.

[11] D. S. Alexander et al., “The Active Network Encapsula-
tion Protocol (ANEP),” http://www.cis.upenn.edu/
~switchware/ANEP/docs/ANEP.txt, 1997.

[12] V. P. Kumar, T. V. Lakshman, and D. Stiliadis, “Beyond
Best Effort: Router Architectures for the Differentiated
Services of Tomorrow's Internet,” IEEE Commun. Mag.,
vol. 36, no. 5, May 1998, pp. 152–64.

[13] D. Raz and Y. Shavitt, “An Active Network Approach
to Efficient Network Management,” Tech. rep. 99-25,
DIMACS, May 1999, http://dimacs.rutgers.edu/Technical
Reports/1999/99-25.ps.gz

[14] D. Raz and Y. Shavitt, New Models and Algorithms for
Programmable Networks, Tech. rep. ITD-99-38382S,
Lucent Technologies, Nov. 1999.

BIOGRAPHIES
DANNY RAZ (raz@lucent.com) received his doctoral degree
from the Weizmann Institute of Science, Israel, in 1995.
From 1995 to 1997 he was a post-doctoral fellow at the
International Computer Science Institute (ICSI), Berkeley,
CA, and a visiting lecturer at the University of California,
Berkeley. Since October 1997 he has been with the Net-
work and Service Management Research Department at
Bell Laboratories, Lucent Technologies. His primary research
interest is the theory and application of management-relat-
ed problems in IP networks.

YUVAL SHAVITT (shavitt@lucent.com) received a B.Sc. in com-
puter engineering (cum laude), an M.Sc. in electrical engi-
neering, and a D.Sc. from the Technion — Israel Institute
of Technology, Haifa, in 1986, 1992, and 1996, respective-
ly. From 1986 to 1991 he served in the Israel Defense
Forces, first as a system engineer and the last two years as
a software engineering team leader. After graduation he
spent a year as a postdoctoral fellow at the Department of
Computer Science, Johns Hopkins University, Baltimore,
Maryland. Since 1997 he has been a member of technical
staff in the Network and Service Management Research
Department at Bell Laboratories, Lucent Technologies,
Holmdel, New Jersey. His recent research focuses on active
networks and their use in network management, QoS rout-
ing and partitioning, and location problems.

Since the

inception of the

active network

idea there has

been a search

for the “killer

application,” the

one that will

strongly require

active network

technology.

We believe that

network

management is a

domain where

active network

technology could

prove to be

very significant.

