
COUNTING STARS AND OTHER SMALL SUBGRAPHS
IN SUBLINEAR-TIME*

MIRA GONEN†, DANA RON‡, AND YUVAL SHAVITT§

Abstract. Detecting and counting the number of copies of certain subgraphs (also known as network
motifs or graphlets) is motivated by applications in a variety of areas ranging from biology to the study of the
WorldWideWeb. Several polynomial-time algorithms have been suggested for counting or detecting the num-
ber of occurrences of certain network motifs. However, a need for more efficient algorithms arises when the
input graph is very large, as is indeed the case in many applications of motif counting. In this paper we design
sublinear-time algorithms for approximating the number of copies of certain constant-size subgraphs in a graph
G. That is, our algorithms do not read the whole graph, but rather query parts of the graph. Specifically, we
consider algorithms that may query the degree of any vertex of their choice andmay ask for any neighbor of any
vertex of their choice. The main focus of this work is on the basic problem of counting the number of length-2
paths and more generally on counting the number of stars of a certain size. Specifically, we design an algorithm
that, given an approximation parameter 0 < ϵ < 1 and query access to a graphG, outputs an estimate ν̂s such
that with high constant probability, ð1− ϵÞνsðGÞ ≤ ν̂s ≤ ð1þ ϵÞνsðGÞ, where νsðGÞ denotes the number of
stars of size sþ 1 in the graph. The expected query complexity and running time of the algorithm are

O
�

n

ðνsðGÞÞ 1
sþ1

þmin
n
n1−1

s ; ns−1
s

ðνsðGÞÞ1−1
s

o�
· polyðlog n; 1 ∕ ϵÞ. We also prove lower bounds showing that this algo-

rithm is tight up to polylogarithmic factors in n and the dependence on ϵ. Our work extends the work of Feige
[SIAM J. Comput., 35 (2006), pp. 964–984] and Goldreich and Ron [Random Structures Algorithms, 32 (2008),
pp. 473–493] on approximating the number of edges (or average degree) in a graph. Combined with these
results, our result can be used to obtain an estimate on the variance of the degrees in the graph and corre-
sponding higher moments. In addition, we give some (negative) results on approximating the number of tri-
angles and on approximating the number of length-3 paths in sublinear-time.

Key words. sublinear-time algorithms, approximate counting, subgraphs

AMS subject classifications. 68Q17, 68Q25, 68R10

DOI. 10.1137/100783066

1. Introduction. This work is concerned with approximating the number of copies
of certain constant-size subgraphs in a graphG. Detecting and counting subgraphs (also
known as network motifs [MSOI+02] or graphlets [PCJ04]) is motivated by applications
in a variety of areas ranging from biology to the study of the World Wide Web (see, e.g.,
[MSOI+02], [KIMA04], [SIKS06], [PCJ04], [Wer06], [SSRS06], [GK07], [DSG+08],
[HBPS07], [ADH+08], [HA08], [GS09]), as well as by the basic quest to understand sim-
ple structural properties of graphs. Our work differs from previous works on counting
subgraphs (with the exception of counting the number of edges [Fei06], [GR08]) in that
we design sublinear algorithms. That is, our algorithms do not read the whole graph, but
rather query parts of the graph (where we shall specify the type of queries we allow when
we state our precise results). The need for such algorithms arises when the input graph is
very large (as is indeed the case in many of the application of motif counting).

*Received by the editors January 19, 2010; accepted for publication (in revised form) June 13, 2011;
published electronically September 20, 2011.

http://www.siam.org/journals/sidma/25-3/78306.html
†Department of Mathematics, Bar Ilan University (gonenm1@math.biu.ac.il). This work was done while

the author was at Tel Aviv University.
‡School of Electrical Engineering, Tel-Aviv University (danar@eng.tau.ac.il). This research was supported

by the Israel Science Foundation (grant no. 246/08).
§School of Electrical Engineering, Tel-Aviv University (shavitt@eng.tau.ac.il). This research was supported

by the Israel Science Foundation Center of Excellence Program (grant 1685/07).

1365

SIAM J. DISCRETE MATH.
Vol. 25, No. 3, pp. 1365–1411

© 2011 Society for Industrial and Applied Mathematics

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



The main focus of this work is on the problem of counting the number of length-2
paths and more generally on counting the number of stars of a certain size. We empha-
size that we count noninduced subgraphs. We shall use the term s-star for a subgraph
over sþ 1 vertices in which one single vertex (the star center) is adjacent to all other
vertices (and there are no edges between the other vertices). Observe that a length-2
path is a 2-star. We also give some (negative) results on approximating the number
of triangles and on approximating the number of length-3 paths.

Aswe show in detail below, we obtain almostmatching upper and lower bounds on the
query complexity and running time of approximating the number of s-stars. These bounds
are a function of the number, n, of graph vertices and the actual number of s-stars in the
graph, and have a nontrivial form. Our results extend the works [Fei06] and [GR08] on
sublinear-time approximation of the average degree in a graph, or equivalently, approxi-
mating the number of edges (where an edge is the simplest (nonempty) subgraph). Note
that ifwehaveanestimate for thenumberof length-2paths and for the averagedegree, then
we can obtain an estimate for the variance of the degrees in the graph, and the number of
larger stars corresponds to higher moments. Thus, the study of the frequencies of these
particular subgraphs in a graph sheds light on basic structural properties of graphs.

Our results. We assume graphs are represented by the incidence lists of the ver-
tices (or, more precisely, incidence arrays), where each list is accompanied by its length.
Thus, the algorithm can query the degree, dðvÞ, of any vertex v of its choice (a degree
query), and for any vertex v and index 1 ≤ i ≤ dðvÞ, it can query who is the ith neighbor
of v (a neighbor query).

Let νsðGÞ denote the number of s-stars in a graph G. Our main positive result is an
algorithm that, given an approximation parameter 0 < ϵ < 1 and query access to a
graph G, outputs an estimate ν̂s such that with high constant probability (over the coin
flips of the algorithm), ð1− ϵÞνsðGÞ ≤ ν̂s ≤ ð1þ ϵÞνsðGÞ. The expected query complex-
ity and running time of the algorithm are

O

�
n

ðνsðGÞÞ 1
sþ1

þmin

�
n1−1

s;
ns−1

s

ðνsðGÞÞ1−1
s

��
· polyðlog n; 1 ∕ ϵÞ:ð1:1Þ

The dependence on s is exponential, and is not stated explicitly as we assume s is a
constant.

The complexity of our algorithm as stated in (1.1) is best understood by viewing
Table 1.1, in which we see that there are three regions when considering νsðGÞ as a func-
tion ofn, and in each the complexity is governed by a different term. Observe the following:

• In the first range (νsðGÞ ≤ n1þ1
s), the complexity of the algorithm (which is at

its maximum when νsðGÞ is very small) decreases as νsðGÞ increases.

TABLE 1.1
The query complexity and running time of our algorithm for approximating the number of s-stars.

νsðGÞ Query and time complexity

νsðGÞ ≤ n1þ1
s O

�
n

ðνsðGÞÞ 1
sþ1

�
· polyðlog n; 1∕ ϵÞ

n1þ1
s < νsðGÞ ≤ ns O

�
n1−1

s

�
⋅ polyðlog n; 1∕ ϵÞ

νsðGÞ > ns O

�
ns−1

s

ðνsðGÞÞ1−1
s

�
· polyðlog n; 1∕ ϵÞ

1366 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



• In the second range (n1þ1
s < νsðGÞ ≤ ns), the complexity does not depend

on νsðGÞ.
• In the last range (νsðGÞ > ns), it again decreases as νsðGÞ increases (where

in the extreme case, when νsðGÞ ¼ Ωðnsþ1Þ, the complexity is just
polyðlog n; 1 ∕ ϵÞ).

For example, for s ¼ 3 and a constant ϵ, if ν3ðGÞ ¼ ΘðnÞ, then the query complexity and
running time of the algorithm are ~Oðn3 ∕ 4Þ, if ν3ðGÞ ¼ Θðn2Þ, then the query complexity
and running time are ~Oðn2∕ 3Þ, and if ν3ðGÞ ¼ Θðn4Þ, then the query complexity and
running time of the algorithm are polyðlog nÞ.

The expression in (1.1) might seem unnatural and hence merely an artifact of our
algorithm. However, we prove that it is tight up to polylogarithmic factors in n and the
dependence on ϵ. Namely, we show the following:

• Any multiplicative approximation algorithm for the number of s-stars must

perform Ω
�

n

ðνsðGÞÞ 1
sþ1

�
queries.

• Any constant-factor approximation algorithm for the number of s-stars must
perform Ωðn1−1

sÞ queries when the number of s-stars is OðnsÞ.
• Any constant-factor approximation algorithm for the number of s-stars must

perform Ω
�

ns−1
s

ðνsðGÞÞ1−1
s

�
queries when the number of s-stars is ΩðnsÞ.

We mention that another type of queries, which are natural in the context of dense
graphs, are vertex-pair queries. That is, the algorithm may query about the existence
of an edge between any pair of vertices. We note that our lower bounds imply that
allowing such queries cannot reduce the complexity for counting the number of stars
(except possibly by polylogarithmic factors in n).

Finally, we consider other small graphs that extend length-2 paths: triangles and
length-3 paths. We show that if an algorithm uses a number of queries that is sublinear
in the number of edges, then for triangles it is hard to distinguish between the case that a
graph contains ΘðnÞ triangles and the case that it contains no triangles, and for length-3
paths it is hard to distinguish between the case that there are Θðn2Þ length-3 paths and
the case that there are no such paths. These lower bounds hold when the number of
edges is ΘðnÞ.

Techniques. Our starting point is similar to the one in [GR08]. Consider a parti-
tion of the graph vertices intoOðlog n∕ ϵÞ buckets, where in each bucket all vertices have
the same degree (with respect to the entire graph) up to a multiplicative factor of
(1�OðϵÞ). (For a precise definition of the buckets, see section 3.1.) If we could get
a good estimate of the size of each bucket by sampling, then we would have a good
estimate of the number of s-stars (since the vertices in each bucket are the centers
of approximately the same number of stars). The difficulty is that some buckets
may be very small and we might not even hit them when sampling vertices. The ap-
proach taken in [GR08] to get a multiplicative estimate of (1� ϵ) is to estimate the
number of edges between large buckets and small buckets, and incorporate this estimate
into the final approximation.1

1We note that in the case of the average degree (number of edges), if we ignore the small buckets (for an
appropriate definition of “small”), then we can already get (roughly) a factor-2 approximation in Oð ffiffiffi

n
p Þ time

[Fei06], [GR08]. However, this is not the case for s-stars (even when s ¼ 2). To verify this, consider the case
that the graph G is a star. There are two buckets: one containing only the star center, and another containing
all other vertices. If we ignore the (very) small bucket that contains the star center, then we get an estimate of 0
while the graph contains Θðn2Þ length-2 paths (2-stars).

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1367

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Here we first observe that we need a more refined procedure. In particular, we need a
separate estimate for the number of edges between each large bucket and each small
bucket. Note that if we have an estimate ê of the number of edges incident to vertices
in a certain bucket, and all vertices in that bucket have degree roughly d, then the num-
ber of s-stars whose center belongs to this bucket is approximately 1

s ê · ðd−1
s−1Þ. To see why

this is true, consider an edge ðu; vÞ that is incident to a vertex u that has degree (roughly)
d. Then the number of stars that include this edge and are centered at u is (roughly)
ðd−1
s−1Þ. If we sum this expression over all ê edges that are incident to vertices in the bucket
of u, then each star (that is centered at a vertex in the bucket) is counted s times, and
hence we divide the expression ê · ðd−1

s−1Þ by s.
As a first attempt for obtaining such an estimate on the number of edges incident to

vertices in a bucket, consider uniformly sampling edges incident to vertices that belong
to large buckets. We can then estimate the number of edges between the large buckets
and each small bucket by querying the degree of the other endpoint of each sampled
edge. It is possible to show that for a sufficiently large sample of edges we can indeed
obtain a good estimate for the number of s-stars using this procedure. However, the
complexity of the resulting procedure, which is dominated by the number of edges that
need to be sampled, is far from optimal. The reason for this has to do with the variance
between the number of edges that different vertices in the same large bucket have to the
various small buckets. To overcome this and get an (almost) optimal algorithm, we
further refine the sampling process.

Specifically, we first define the notion of significant small buckets. Such buckets
have a nonnegligible contribution to the total number of s-stars (where each vertex ac-
counts for the number of stars that it is a center of). Now, for each large bucket Bi and
(significant) small bucket Bj, we further consider partitioning the vertices in Bi accord-
ing to the number of neighbors they have in Bj. The difficulty is that in order to de-
termine exactly to which subbucket a vertex in Bi belongs, we would need to query all its
neighbors, which may be too costly. Moreover, even if an estimate on this number suf-
fices, if a vertex in Bi has relatively few neighbors in Bj, then we would need a relatively
large sample of its neighbors in order to obtain such an estimate. Fortunately, we en-
counter a tradeoff between the number of vertices in Bi that need to be sampled in order
to get sufficiently many vertices that belong to a particular subbucket and the number of
neighbors that should be sampled so as to detect (approximately) to which subbucket a
vertex belongs. We exemplify this by an extreme case: consider the subbucket of vertices
for which at least half of their neighbors belong to Bj. This subbucket may be relatively
small (and still contribute significantly to the total number of edges between Bi and Bj),
but if we sample a vertex from this subbucket, then we can easily detect this by taking
only a constant sample of its neighbors. For more details, see subsection 3.4.

Related work. As noted previously, our work extends the works [Fei06], [GR08]
on approximating the average degree of a graph in sublinear-time. In particular, our
work is most closely related to [GR08], where it is shown how to get an estimate of
the average degree of a graph G that is within (1� ϵ) of the correct value d̄ðGÞ.
The expected running time and query complexity of the algorithm in [GR08] are
Oððn∕ d̄ðGÞÞ1 ∕ 2Þ · polyðlog n; 1 ∕ ϵÞ.

There are quite a few works that deal with finding subgraphs of a certain kind and of
counting their number in polynomial-time. One of the most elegant techniques devised is
color-coding, introduced in [AYZ95], and further applied in [AYZ97], [AR02], [AG10],
[ADH+08], [AG09]. In particular, in [AR02] the authors use color-coding and a technique
from [KL83] to design a randomized algorithm for approximately counting the number

1368 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



of subgraphs in a given graph G that are isomorphic to a bounded treewidth graph H .
The running time of the algorithm is kOðkÞ · nbþOð1Þ, where n and k are the number of
vertices in G and H , respectively, and b is the treewidth of H . In [AG10] the authors use
color-coding and balanced families of perfect hash functions to obtain a deterministic
algorithm for approximately counting simple paths or cycles of size k in time
2Oðk log log kÞnOð1Þ. In [ADH+08]these results are improved in terms of the dependence
on k. We note that sampling is also applied in [KIMA04], [Wer06], where the authors
are interested in uniformly sampling induced subgraphs of a given size k. Other related
work in this category includes [DLR95], [GK07], [BBCG08], [Kou08], [Wil09], [GS09],
[BHKK09], [AFS09], [KW09], [VW09]. In [FG04] the authors conclude that most likely
there is no f ðkÞ · nc algorithm for exactly counting cycles or paths of length k in a graph
of size n for any computable function f∶N → N and constant c.

Another related line of work deals with approximating other graph measures (such
as the weight of a minimum spanning tree) in sublinear-time and includes [CRT05],
[CS09], [CEF+05], [PR07], [NO08], [YYI09].

Organization. For the sake of the exposition, we first describe the algorithm and
the analysis, as well as the lower bounds, for the case s ¼ 2, that is, length-2 paths. This
is done in sections 3 and 4, respectively. In section 5 we explain how to adapt the algo-
rithm for length-2 paths in order to get an algorithm for s-stars, and in section 6 we
explain how to adapt the lower bounds. Finally, in section 7 we shortly discuss triangles
and length-3 paths.

2. Preliminaries. Let G ¼ ðV;EÞ be an undirected graph with jV j ¼ n vertices
and jEj ¼ m edges, where G is simple so that it contains no multiple edges. We denote
the set of neighbors of a vertex v by ΓðvÞ and its degree by dðvÞ. For two (not necessarily
disjoint) sets of vertices V 1, V 2 ⊆ V , we let EðV 1; V 2Þ¼deffðv1; v2Þ ∈ E∶v1 ∈ V 1;
v2 ∈ V 2g.

Since we shall use the multiplicative Chernoff bound very extensively, we quote it
next. Let χ1; : : : ;χm be m independent 0 ∕ 1 valued random variables, where
Pr½χi ¼ 1� ¼ p for every i. Then, for every η ∈ ð0; 1�, the following bounds hold:

Pr

�
1

m
·
Xm
i¼1

χi > ð1þ ηÞp
	
< exp ð−η2pm ∕ 3Þ

and

Pr

�
1

m
·
Xm
i¼1

χi < ð1− ηÞp
	
< exp ð−η2pm ∕ 2Þ:

We shall say that an event holds with high constant probability if it holds with prob-
ability at least 1− δ for a small constant δ.

Let μ be a measure defined over graphs, and let G be an unknown graph over n
vertices. An algorithm for estimating μðGÞ is given an approximation parameter ϵ,
the number of vertices, n, and query access to the graph G. Here we consider two types
of queries. The first are degree queries. Namely, for any vertex v, the algorithm may ask
for the value of dðvÞ. The second are neighbor queries. Namely, for any vertex v and for
any 1 ≤ i ≤ dðvÞ, the algorithm may ask for the ith neighbor of v.2 We do not make any

2Observe that a degree query can be emulated by log n neighbor queries, but for the sake of the exposition
we allow degree queries.

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1369

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



assumption on the order of the neighbors of a vertex. Based on the queries it performs,
we ask that the algorithm output an estimate μ̂ of μðGÞ such that with high constant
probability (over the random coin flips of the algorithm), μ̂ ¼ ð1� ϵÞ · μðGÞ, where for
γ ∈ ð0; 1Þ we use the notation a ¼ ð1� γÞb to mean that ð1− γÞb ≤ a ≤ ð1þ γÞb.

3. An algorithm for approximating the number of length-2 paths. In this
section we describe and analyze an algorithm for estimating the number of length-2
paths (2-stars) in a graph G, where we denote this number by lðGÞ (rather than
use the slightly more cumbersome notation νs2ðGÞ). In all that follows we consider
undirected simple graphs. Since we introduce quite a lot of notations, we gathered them
in Table 3.1 We start by giving the high-level idea behind the algorithm.

3.1. A high-level description of the algorithm. Let β ¼ ϵ ∕ c, where c > 1 is a
constant that will be set subsequently, and let t ¼ dlogð1þβÞ ne (so that t ¼ Oðlog n ∕ ϵÞ).
For i ¼ 0; : : : ; t, let

TABLE 3.1
Notations, their meaning, and the location of their exact definition, if appropriate.

Notation Meaning Exact definition

ΓðvÞ, dðvÞ Set of neighbors of v, their number

EðV 1; V 2Þ fðv1; v2Þ ∈ E∶v1 ∈ V 1; v2 ∈ V 2g
ϵ Distance parameter

lðGÞ Number of length-2 paths

~l Given estimate (const. factor) of lðGÞ
β ϵ∕ 32

t dlogð1þβÞne
Bi ith bucket Equation (3.1)

ΓiðvÞ, diðvÞ ΓðvÞ ∩ Bi, jΓðvÞ ∩ Bij (resp.)
Ei;j, Ei EðBi; BjÞ,

S
t
j¼0 Ei;j (resp.)

Bi;j;r Subbucket of Bi Equation (3.2)

Ei;j;r EðBi;j;r; BjÞ
θ1 Threshold parameter for Algorithm 1 Step 1 in Algorithm 1

L Set of indices of large buckets Step 4 in Algorithm 1

θ2ðpÞ Threshold parameters for Algorithm 2 Step 1 in Algorithm 2

LARGEði; jÞ fr∶jBi;j;rj ≥ 1
4 θ2ðrÞg

p0 Smallest p such that 1
4 θ2ðpþ 1Þ ≤ n

sðpÞ, gðpÞ Sample sizes defined in Algorithm 2 Step 3 in Algorithm 2

S ðpÞ, S ðpÞ
i , Ŝ ðpÞ

i;j;p Samples/subsets defined in Algorithm 2 Step 3 in Algorithm 2

S
ðpÞ
i;j;r S ðpÞ ∩ Bi;j;r

γ
ðpÞ
j ðvÞ S ðpÞ ∩ ΓjðvÞ

êi;j Estimate of jEi;jj Step 4 in Algorithm 2

êi;j;r Contribution of v ∈ Bi;j;r to êi;j Equation (3.19)

lðσÞðG; L̄Þ Certain numbers of length-2 paths Definition 1

SIG Indices of significant buckets Definition 2

1370 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Bi¼deffv∶dðvÞ ∈ ðð1þ βÞi−1; ð1þ βÞi�g:ð3:1Þ

We refer to the Bi’s as (degree) buckets. Note that since degrees are integers, the interval
of degrees in each bucket is actually ðbð1þ βÞi−1c; bð1þ βÞic�, and some buckets are
empty. For simplicity we do not use floors unless it has an influence on our analysis,

and when we write ðabÞ for a that is not necessarily an integer (e.g.,
� ð1þ βÞj

2

�
) then

we interpret it as ðbacb Þ. We also have that ðabÞ ¼ 0 for a < b (and, in particular, when
a ≤ 0 < b).

Note that if ni is the number of nodes with degree i in the graph, then
lðGÞ ¼ P

n−1
i¼0 niði2Þ. Suppose that for each bucket Bi, we could obtain an estimate,

b̂i, such that ð1− βÞjBij ≤ b̂i ≤ ð1þ βÞjBij. If we let

l̂ ¼
Xt

i¼2

b̂i ·
� ð1þ βÞi

2

�
;

then

ð1− βÞ · lðGÞ ≤ l̂ ≤ ð1þ βÞ4lðGÞ

(where we have used the fact that
� ð1þ βÞi

2

�
≤ ð1þ βÞ3 ·

� ð1þ βÞi−1

2

�
for

ð1þ βÞi−1 ≥ 2). If we set β ≤ ϵ ∕ 8, then we get an estimate that is within (1� ϵ) of
the correct value lðGÞ. The difficulty is that in order to obtain such an estimate b̂i
of jBij in sublinear-time—that is, by sampling—the size of the sample needs to grow
with n∕ jBij (so that for small jBij the sample is large). Our algorithm indeed takes
a sample of vertices, but it uses the sample only to estimate the size of the “large” buckets
for an appropriate threshold of “largeness.”Using the estimated sizes of the large buckets
it can obtain an estimate on the number of length-2 paths whose midpoint belongs to the
large buckets.

As noted in the introduction, it is possible that only a small (or even zero) fraction of
the length-2 paths have a midpoint that belongs to a large bucket. This implies that we
must find a way to estimate the number of length-2 paths whose midpoint is in small
buckets (for those small buckets that have a nonnegligible contribution to the total num-
ber of length-2 paths).

To this end we do the following. Let Ei;j¼defEðBi; BjÞ. For each large bucket Bi and
small bucket Bj such that the number of length-2 paths whose midpoint is in Bj is non-
negligible, we obtain an estimate êi;j to the number jEi;jj of edges between the two buck-
ets. The estimate is such that if jEi;jj is above some threshold, then êi;j ¼
ð1� βÞjEi;jj, and otherwise êi;j is small. Our estimate for the number of length-2 paths
whose midpoint is in a small bucket is

1

2

X
i∈L

X
j∈=L

êi;j · ðð1þ βÞj − 1Þ;

where L denotes the set of indices of the large buckets. For an illustration, see Figure 3.1.
This estimate does not take into account length-2 paths in which no vertices on the path
belong to L. However, we shall set our threshold of “largeness” so that the number of such
paths is negligible. In addition, this estimate takes into account only half of the length-2

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1371

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



paths in which two vertices on the path do not belong to L and one of them is the
midpoint. We shall set our threshold of “largeness” so that the number of such paths
is also negligible.

One way to estimate êi;j (for i ∈ L and j ∈= L) is to uniformly select random neigh-
bors of vertices sampled in Bi and check what bucket they belong to. This will indeed
give us a good estimate with high probability for a sufficiently large sample. However,
the variance in the number of neighbors in Bj that different vertices in Bi have implies
that the sample size used by this scheme is significantly larger than necessary. In order to
obtain an estimate with a smaller sample, we do the following. For each i ∈ L and j ∈= L,
we consider partitioning the vertices in Bi that have neighbors in Bj into subbuckets.
Namely, for r ¼ 0; : : : ; i,

Bi;j;r¼deffv ∈ Bi∶ð1þ βÞr−1 < jΓðvÞ ∩ Bjj ≤ ð1þ βÞrg:ð3:2Þ

Figure 3.2 illustrates the definition of Bi;j;r. By the definition of Bi;j;r,

Xi

r¼0

jBi;j;rj · ð1þ βÞr ¼ ð1� βÞ · jEi;jj:

Now, if we can obtain good estimates of the sizes of the subsets jBi;j;rj, then we get a
good estimate for jEi;jj. The difficulty is that in order to determine to which subbucket
Bi;j;r a vertex v belongs, we need to estimate the number of neighbors that it has in Bj.
This is unlike the case in which we need to determine for a vertex v to which bucket Bi it
belongs, where we only need to perform a single degree query. In particular, if

FIG. 3.1. An illustration for the length-2 paths whose midpoint is in a small bucket.

FIG. 3.2. An illustration for the definition of Bi;j;r.

1372 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



v ∈ Bi;j;0—that is, v has a single neighbor in Bj—we must query all the neighbors of v in
order to determine that it belongs to Bi;j;0. What works in our favor is the following
tradeoff. When r is large, then jBi;j;rj may be relatively small (even if jEðBi;j;r; BjÞj
is nonnegligible) so that we need to take a relatively large sample of vertices in order
to “hit” Bi;j;r. However, in order to determine whether a vertex (in Bi) belongs to Bi;j;r

for large r, it suffices to take a small sample of its neighbors. On the other hand, when r is
relatively small, then Bi;j;r must be relatively big (if jEðBi;j;r; BjÞj is nonnegligible).
Therefore, it suffices to take a relatively small sample so as to “hit” Bi;j;r, and then
we can afford to perform many neighbor queries from the selected vertices.

We next present our algorithm in detail and then analyze it.

3.2. The algorithm. In what follows we assume that we have a rough estimate ~l
such that 1

2 lðGÞ ≤ ~l ≤ 2lðGÞ. We later remove this assumption. Recall that for any
two buckets Bi and Bj, we use the shorthand Ei;j for EðBi; BjÞ. The algorithm is given
in Algorithm 1.

THEOREM 1. If 12 lðGÞ ≤ ~l ≤ 2lðGÞ, then with probability at least 2 ∕ 3, the output, l̂,
of Algorithm 1 satisfies l̂ ¼ ð1� ϵÞ · lðGÞ. The query complexity and running time of the
algorithm are Oð n

~l1 ∕ 3 þmin fn1 ∕ 2; n
3 ∕ 2

~l1 ∕ 2gÞ · polyðlog n; 1 ∕ ϵÞ.
Table 3.2 gives the dominant term in the complexity of the algorithm in three

different regions of the value of lðGÞ as a function of n.
We first prove the second part of Theorem 1, concerning the complexity of the algo-

rithm, and then turn to proving the first part, concerning the quality of the output of the
algorithm. We later show how to remove the assumption that the algorithm has an
estimate ~l for lðGÞ.

3.3. Proof of the second part of Theorem 1. The running time of Algorithm 1
is linear in its query complexity, and hence it suffices to bound the latter. To be precise,

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1373

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



the running time is linear in the upper bound that we give on the query complexity,
where this bound sums over the number of queries performed in the different iterations
of Algorithm 2. Thus, there may be some recounting since in iteration p, queries are
performed on vertices in S ðpÞ, where Sp ⊂ Spþ1.

The query complexity of Algorithm 1 is thus bounded by the sum of
Θð nθ1 ·

log t
ϵ2

Þ ¼ Oð n
~l1 ∕ 3

· log n
ϵ4 logð1 ∕ ϵÞÞ (the size of the sample selected in step 2 of Algorithm

1) and the number of queries performed in the executions of Algorithm 2. In order

TABLE 3.2
The query and time complexity of Algorithm 1.

~l Query and time complexity

~l ≤ n3∕ 2 Oðn ∕ ~l1∕ 3Þ · polyðlog n; 1∕ ϵÞ
n3 ∕ 2 < ~l ≤ n2 Oðn1∕ 2Þ · polyðlog n; 1∕ ϵÞ

~l > n2 Oðn3∕ 2 ∕ ~l1∕ 2Þ · polyðlog n; 1∕ ϵÞ

1374 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



to bound the latter, we first observe that if Algorithm 1 did not terminate in step 4,
then

∀i ∈ L∶ð1þ βÞi ¼ O

� ~l1 ∕ 3 · t2 ∕ 3

ϵ1 ∕ 3

�
:ð3:3Þ

Similarly, if Algorithm 2 did not terminate in any of its executions in step 3c, then, since
β ¼ ΘðϵÞ,

∀i ∈ L and p0 ≤ p ≤ i∶jS ðpÞ
i j ¼ O

�
sðpÞ

n
·

~l
ð1þ βÞ2i

�
:ð3:4Þ

In addition, it trivially always holds that jSðpÞ
i j ≤ sðpÞ. Recall that p runs from i

down to p0, where p0 is the smallest value of p satisfying 1
4 θ2ðpþ 1Þ ≤ n, where

θ2ðpÞ¼def ϵ3 ∕ 2 ~l1 ∕ 2

c2t
5 ∕ 2ð1þβÞp ∕ 2. That is, p0 ¼ blog1þβ

ϵ3 ~l
c 02·t

5n2c for a certain constant c 02. This implies

that if ~l ≤ c 02·t
5

ϵ3
· n2, then p0 ¼ 0, and otherwise it may be larger. Therefore, the total

number of queries performed in the executions of Algorithm 2 is upper-bounded by

X
i∈L

Xi

p¼p0

0
BBB@sðpÞ þmin

8>><
>>:sðpÞ;

sðpÞ

n
·

4 ~l� ð1þ βÞi−1

2

�
9>>=
>>; · gðpÞ

1
CCCA

≤
X
i∈L

i · sðiÞ þ
X
i∈L

Xi

p¼p0

min

8>><
>>:sðpÞ;

sðpÞ

n
·

4 ~l� ð1þ βÞi−1

2

�
9>>=
>>; · gðpÞ:ð3:5Þ

For the first summand in (3.5), we apply (3.3), the definitions of sðiÞ and θ2ðiÞ, the
fact that β ¼ ΘðϵÞ, and the fact that i ≤ t, and we get

X
i∈L

i · sðiÞ ≤
X
i∈L

t · O
�

n

θ2ðiÞ
·
�
t

β

�
2

log t

�

¼
X
i∈L

t · O
�
n · t9∕ 2 log t · ð1þ βÞi∕ 2

ϵ7∕ 2 ~l1 ∕ 2

�

¼ O

0
@n · t13 ∕ 2 log t ·

�
~l1 ∕ 3·t2 ∕ 3
ϵ1 ∕ 3

�
1 ∕ 2

ϵ7 ∕ 2 ~l1∕ 2

1
A

¼ O

�
n

~l1∕ 3 ·
t7 log t

ϵ4

�
:ð3:6Þ

Turning to the second summand in (3.5) and again using the definitions of sðpÞ, θ2ðpÞ as
well as gðpÞ and β ¼ ΘðϵÞ, we get

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1375

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



X
i∈L

Xi

p¼p0

min

8>>><
>>>:
sðpÞ;

sðpÞ

n
·

4 ~l� ð1þ βÞi−1

2

�
9>>>=
>>>;

· gðpÞ

¼
X
i∈L

Xi

p¼p0

O

0
BBB@min

8>>><
>>>:

n

θ2ðpÞ
·
�
t

β

�
2

log t;
1

θ2ðpÞ
·
�
t

β

�
2

log t ·
4 ~l� ð1þ βÞi−1

2

�
9>>>=
>>>;

:
ð1þ βÞi−p logðtnÞ

β2

1
CCCA

¼
X
i∈L

Xi

p¼p0

O

�
min

�
n · ð1þ βÞp ∕ 2

~l1 ∕ 2 ·
t9∕ 2 log t

ϵ7∕ 2
;

~l1 ∕ 2

ð1þ βÞ2i−p ∕ 2 ·
t9 ∕ 2 log t

ϵ7 ∕ 2

�

:
ð1þ βÞi−p logðtnÞ

β2

�

¼
X
i∈L

Xi

p¼p0

O

�
min

�
n · ð1þ βÞi−p ∕ 2

~l1 ∕ 2 ;
~l1∕ 2

ð1þ βÞiþp ∕ 2

�
·
t9 ∕ 2 log t logðtnÞ

ϵ11 ∕ 2

�

¼
X
i∈L

O

�
min

�
n · ð1þ βÞi

~l1 ∕ 2 ;
~l1∕ 2

ð1þ βÞi
�

·
t9 ∕ 2 log t logðtnÞ

ϵ11∕ 2

�

· ð1þ βÞ−p0 ∕ 2 ·
Xi−p0

k¼0

ð1þ βÞ−k ∕ 2:ð3:7Þ

In order to bound the expression in (3.7), we first note that if ð1þ βÞi ≤ ~l1 ∕ 2

n1 ∕ 2, then
n·ð1þβÞi

~l1 ∕ 2 ≤ n1 ∕ 2, while if ð1þ βÞi ≥ ~l1 ∕ 2

n1 ∕ 2, then
~l1 ∕ 2

ð1þβÞi ≤ n1 ∕ 2 as well. Since ð1þ βÞ−p0 ∕ 2 ¼ 1

and
Pi−p0

k¼0 ð1þ βÞ−k ∕ 2 ¼ Oð1 ∕ βÞ, if p0 ¼ 0, then the right-hand side of (3.7) is upper-
bounded by

O

�
n1 ∕ 2 ·

t11∕ 2 log t logðtnÞ
ϵ13∕ 2

�
:ð3:8Þ

If p0 > 0, then the bound in (3.8) should be multiplied by ð1þ βÞ−p0 ∕ 2. By definition of
p0, we have that ð1þ βÞ−p0 ∕ 2 ¼ Oð t5 ∕ 2n

ϵ3 ∕ 2 ~l1 ∕ 2Þ, and so we get the (tighter) bound

O

�
n1∕ 2 ·

t11 ∕ 2 log t logðtnÞ
ϵ13∕ 2

�
· ð1þ βÞ−p0 ∕ 2 ¼ O

�
n3 ∕ 2

~l1∕ 2 ·
t8 log t logðtnÞ

ϵ10

�
:ð3:9Þ

The total number of queries performed in the executions of Algorithm 2 is hence
upper-bounded by

O

�
n

~l1 ∕ 3 þmin

�
n1∕ 2;

n3 ∕ 2

~l1∕ 2

��
· polyðlog n; 1 ∕ ϵÞ:ð3:10Þ

1376 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



3.4. Proof of the first part of Theorem 1. In what follows we claim that certain
events occur with high constant probability, and in some cases we claim that they hold
with larger probability (e.g., 1− 1

polyðtÞ). In all cases the statement holds for sufficiently
large constants in the Θð·Þ notations for the sample sizes used by the algorithm. Recall
that the algorithm takes a sample of size Θð nθ1 ·

log t
ϵ2

Þ, and S denotes the multiset of ex-
amples it got.

LEMMA 1. With high constant probability, for every i such that jBij ≥ θ1, it holds that
jSij
jS j ¼ ð1� ϵ

8Þ jBij
n , and for every i such that jBij < θ1, it holds that jSij

jS j < 2 θ1
n .

Proof. The proof follows by applying the multiplicative Chernoff bound and a un-
ion bound. Since the expected size of Si is

jBij
n · jS j, it holds that if jBij ≥ θ1, then

Pr

�jSij
jSj >

�
1þ ϵ

8

� jBij
n

	
< exp

�
−
ϵ2jBij · jS j
192 · n

�

< exp

�
−Ω

�
ϵ2θ1 · n · log t

n · θ1ϵ2

��
¼ 1

polyðtÞ :ð3:11Þ

In the same manner we get that Pr ½jSij
jS j < ð1− ϵ

8Þ jBij
n � < 1

polyðtÞ. On the other hand, if

jBij < θ1, then the expected size of Si is upper-bounded by θ1
n · jS j, so we get that

Pr

�jSij
jSj > 2

θ1
n

	
< exp

�
−
θ1
n

jS j
3

�
¼ exp

�
−Ω

�
ϵ2θ1 · n · log t

n · θ1ϵ2

��
¼ 1

polyðtÞ ;

and the lemma follows. ▯
As a direct corollary of Lemma 1 and the definition of L in Algorithm 1, we get the

following.
COROLLARY 2. With high constant probability, for every i ∈ L, we have that

jSij
jS j ¼ ð1� ϵ

8Þ jBij
n , and for every i ∈= L, we have that jBij < 4θ1.

The first part of Corollary 2 implies that (with high constant probability) the es-

timate
P

i∈Ln · jSij
jS j ·

� ð1þ βÞi
2

�
is close to the actual number of length-2 paths whose

midpoint belongs to a bucket Bi such that i ∈ L. It also implies that Algorithm 1 does
not terminate in step 4 (with high constant probability). To verify this, first observe that

since ~l ≥ 1
2 lðGÞ, for every 1 ≤ i ≤ t we have that jBij ·

� ð1þ βÞi−1

2

�
≤ lðGÞ ≤ 2 ~l. By

the definition of L, for every i ∈ L we have that jSij
jS j ≥

2θ1
n . If the termination condition

holds—that is, there exists an index i ∈ L for which 2θ1 ·
� ð1þ βÞi−1

2

�
> 4 ~l—then n ·

jSij
jS j ·

� ð1þ βÞi−1

2

�
> 4 ~l for that index i. But by Corollary 2, with high constant

probability, for every i ∈ L we have that jSij
jS j ¼ ð1� ϵ

8Þ jBij
n , which implies that

jBij ·
� ð1þ βÞi−1

2

�
> 2 ~l ≥ lðGÞ, and we reach a contradiction.

The remainder of the analysis deals with the quality of the estimate for the number
of length-2 paths in G whose midpoint is not in L.

DEFINITION 1. For j ∈= L and σ ∈ f1; 2; 3g, let lðσÞ
j ðG; L̄Þ denote the number of length-

2 paths in G whose midpoint belongs to Bj and such that the number of vertices on the

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1377

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



path that belong to Bk for k ∈= L (including j) is σ. For σ ∈ f1; 2; 3g, let lðσÞðG; L̄Þ ¼P
j∈=Ll

ðσÞ
j ðG; L̄Þ and for every j ∈= L, let ljðG; L̄Þ ¼ P

3
σ¼1 l

ðσÞ
j ðG; L̄Þ.

We first observe that with high constant probability both lð3ÞðG; L̄Þ and lð2ÞðG; L̄Þ
are relatively small.

LEMMA 3. With high constant probability, lð3ÞðG; L̄Þ ≤ ϵ
4 lðGÞ and lð2ÞðG; L̄Þ ≤

ϵ
4 lðGÞ.

Proof. First observe that by the second part of Corollary 2 and the definition of θ1
we have that with high constant probability,

X
j∈=L

jBjj <
1

8t1∕ 3
ϵ2 ∕ 3 ~l1 ∕ 3:

By our assumption that ~l ≤ 2lðGÞ,

lð3ÞðG; L̄Þ ≤
�P

j∈=L
jBjj
3

�
≤

�
ϵ2 ∕ 3 ~l1∕ 3 ∕ ð8t1 ∕ 3Þ

3

�
<

ϵ

8
~l ≤

ϵ

4
lðGÞ:

In order to bound lð2ÞðG; L̄Þ we observe that since the total number of length-2 paths is

lðGÞ, for every bucket Bj we have that
� ð1þ βÞj−1 þ 1

2

�
≤ lðGÞ ∕ jBjj, and so

ð1þ βÞj ≤ 2
l1 ∕ 2ðGÞ
jBjj1 ∕ 2

:

Therefore,

lð2ÞðG; L̄Þ ≤
X
j∈=L

jBjj · ð1þ βÞj ·
X
k∈=L

jBkj

≤
ϵ2 ∕ 3 ~l1∕ 3

4t1∕ 3
·
X
j∈=L

ðl1∕ 2ðGÞ · jBjj1 ∕ 2Þ

≤
ϵ2 ∕ 3 ~l1∕ 3

4t1∕ 3
· l1 ∕ 2ðGÞ · t · ϵ

1∕ 3 ~l1 ∕ 6

2
ffiffiffi
2

p
t2 ∕ 3

<
ϵ

4
lðGÞ;

and the proof is completed. ▯
Lemma 3 implies that in order to obtain a good estimate on the number of length-2

paths whose midpoint belongs to small buckets, it suffices to get a good estimate on the
number of such paths that have at least one endpoint in a large bucket.3 We next define
the notion of significant buckets for buckets Bj such that j ∈= L. Roughly speaking,
nonsignificant small buckets are buckets that we can ignore, or, more precisely, we
can undercount the number of edges between vertices in them and vertices in large
buckets.

DEFINITION 2 (significant small buckets). For every j ∈= L, we say that j is
significant if

3The assertion follows from the first part of Lemma 3, which bounds lð3ÞðG; L̄Þ. The reason that we also
need a bound on lð2ÞðG; L̄Þ will be made clear subsequently.

1378 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



jBjj ·
� ð1þ βÞj

2

�
≥

ϵ

c3t
~l;

where c3 is a constant that will be set in the analysis. We denote the set of indices of
significant buckets Bj (where j ∈= L) by SIG.

Note that by the definition of SIG,X
j∈=L;j∈=SIG

ljðG; L̄Þ < ϵ

c3
~l ≤

2ϵ

c3
lðGÞ:ð3:12Þ

Let

Ej¼def
[t
k¼0

Ej;k;ð3:13Þ

and recall that θ2ðrÞ¼def ϵ3 ∕ 2 ~l1 ∕ 2

c2t
5 ∕ 2ð1þβÞr ∕ 2. We have the following lemma concerning significant

buckets.
LEMMA 4. If j ∈ SIG, then for every r such that jBi;j;rj > 0 for some i, we have that

jEjj ≥
ðc2 ∕ c1∕ 23 Þt2

ϵ
θ2ðrÞ · ð1þ βÞr:

The implication of Lemma 4 is roughly the following. Consider any j ∈ SIG and a
nonempty subbucket Bi;j;r. Recall that by the definition of Bi;j;r the number of edges
between Bi;j;r and Bj is approximately jBi;j;rj · ð1þ βÞr. Suppose that Bi;j;r is small,
and, in particular, that it is smaller than θ2ðrÞ. Then the number of edges between
Bi;j;r and Bj as a fraction of all the edges incident to Bj—that is, Ej—is Oðϵ ∕ t2Þ, which
is negligible. This means that we may underestimate the size of such small subbuckets
without incurring a large error.

Proof. Since j is significant,

ð1þ βÞj >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ ~l

c3tjBjj

s
:ð3:14Þ

Since the graph contains no multiple edges, jBjj ≥ ð1þ βÞr for each r such that Bi;j;r is
not empty. Therefore,

jEjj ≥ jBjj · ð1þ βÞj−1ð3:15Þ

≥
1

1þ β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ ~ljBjj
c3t

s
ð3:16Þ

≥
1

c1 ∕ 23 t1∕ 2
· ϵ1 ∕ 2 ~l1∕ 2ð1þ βÞr ∕ 2ð3:17Þ

≥
ðc2 ∕ c1 ∕ 23 Þt2

ϵ
θ2ðrÞ · ð1þ βÞr;ð3:18Þ

where (3.15) follows from the definitions of jEjj and jBjj, (3.16) follows from (3.14),
(3.17) follows from the lower bound just stated on jBjj, and (3.18) follows from the

definition of θ2ðrÞ ¼ ϵ3 ∕ 2 ~l1 ∕ 2

c2t
5 ∕ 2ð1þβÞr ∕ 2), and the proof is completed. ▯

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1379

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Armed with Lemmas 3 and 4 we now turn to analyzing Algorithm 2.We start with a
high-level discussion and then turn to the precise details.

The high-level structure of the analysis of Algorithm 2. Recall that the al-
gorithm works iteratively as follows. It first takes (uniformly, independently, at random)
a sample Si from V , and in further iterations 0 ≤ p < i the sample SðpÞ is selected
(uniformly, independently, at random) from S ðpþ1Þ. Since the same vertex may be se-
lected more than once, the SðpÞ’s may actually be multisets. For each p, the algorithm
tries to estimate jBi;j;pj by deciding for each vertex v ∈ S ðpÞ ∩ Bi whether it belongs to
Bi;j;p. This is done by sampling from the neighbors of v and checking what fraction of its

neighbors belong to Bj. If the fraction is within the interval ½ð1þβÞp−1

dðvÞ ; ð1þβÞp
dðvÞ �, then v is

assumed to belong to Bi;j;p and is put in a corresponding subset ŜðpÞ
i;j;p.

The difficulty is that this estimate of the fraction of neighbors in Bj may deviate
somewhat from its expected value. As a result, vertices that belong to Bi;j;p may not be
deemed so. In particular, consider a vertex v such that ΓjðvÞ (the number of neighbors
that v has in Bj) is close to the lower bound of ð1þ βÞp−1 (or the upper bound ð1þ βÞp).
It is then possible that the fraction of neighbors of v in Bj that belong to the sample falls

below ð1þβÞp−1

dðvÞ (or above ð1þβÞp
dðvÞ , respectively), in which case v will not be added to Ŝ

ðpÞ
i;j;p.

Similarly, vertices that do not belong to Bi;j;p but have a number of neighbors in Bj that
is close to ð1þ βÞp−1 or ð1þ βÞp—that is, vertices that belong to Bi;j;p−1 or Bi;j;pþ1—

may be added to Ŝ
ðpÞ
i;j;p.

If the size of the sample S ðpÞ was the same for all p, then the above would not really
be a difficulty: we could take a single sample S ¼ Si and work iteratively from p ¼ i

down to p ¼ 0. For each p, we would consider only those vertices v that were not

yet added to Ŝ
ðp 0Þ
i;j;p 0 for p

 0 > p and decide whether to add v to Ŝ
ðpÞ
i;j;p. By the above dis-

cussion, for every r and every v ∈ Bi;j;r, the vertex v would be put in Ŝ
ðrþ1Þ
i;j;rþ1, Ŝ

ðrÞ
i;j;r, or

Ŝ
ðr−1Þ
i;j;r−1. The algorithm would then output, as an estimate for jEi;jj, the sum over all 0 ≤

p ≤ i of n
jS j · jŜ ðpÞ

i;j;pjð1þ βÞr. If S ∩ Bi;j;r is close to its expected size for each r, then the

deviation of the final estimate from jEi;jj can be easily bounded.

However, as p decreases from i to 0, we need to use a smaller sample S ðpÞ. Recall that
a smaller sample suffices since θ2ðpÞ increases when p decreases, and it is necessary to use
a smaller sample because the cost of estimating the number of neighbors in Bj increases

as p decreases. Thus, in each iteration p, the new, smaller sample, S ðpÞ, is selected from
the sample S ðpþ1Þ of the previous iteration. What we would like to ensure is that (1) the

size of each subset SðpÞ
i;j;r¼defSðpÞ ∩ Bi;j;r is close to its expectation, and (2) if some fraction

of S ðpþ1Þ
i;j;r was added to Ŝðpþ1Þ

i;j;pþ1 for r ¼ pþ 1 or r ¼ p, then in the new sample SðpÞ, the size

of S ðpÞ ∩ ðS ðpþ1Þ
i;j;r \ Ŝ ðpþ1Þ

i;j;pþ1Þ is close to its expectation. Here, when we say “close to its ex-
pectation,” we mean up to a multiplicative factor of (1�OðϵÞ). This should be the case
unless the expected value is below some threshold (which is determined by θ2ðrÞ). If the
expected value is below the threshold, then it suffices that we do not get a significant
overestimate. To understand the idea for why this suffices, see the discussion following
Lemma 4. Further details follow.

1380 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Recall that sðpÞ denotes the size of the sample S ðpÞ, where sðpÞ ¼ Θð n
θ2ðpÞ · ð tβÞ2 log tÞ.

The next lemma establishes that by our choice of sðpÞ, if a fixed subset of S ðpþ1Þ is suffi-
ciently large, then the number of its vertices that are selected in S ðpÞ is close to the ex-
pected value, and if it is small, then few of its vertices will appear in S ðpÞ. Lemma 5
follows directly by applying a multiplicative Chernoff bound (and will be applied to
various subsets of the samples SðpÞ).

LEMMA 5. For any fixed choice of ~S ðpþ1Þ ⊆ S ðpþ1Þ, if j ~Sðpþ1Þj
sðpþ1Þ ≥ θ2ðpÞ

8n , then, with prob-
ability at least 1− 1

32t4
,

1

1þ β
2ðiþ1Þ

·
j ~S ðpþ1Þj
sðpþ1Þ ≤

jS ðpÞ ∩ ~S ðpþ1Þj
sðpþ1Þ ≤

�
1þ β

2ðiþ 1Þ
�

·
j ~S ðpþ1Þj
sðpþ1Þ ;

and if j ~S ðpþ1Þj
sðpþ1Þ < θ2ðpÞ

8n , then with probability at least 1− 1
32t4

,

jSðpÞ ∩ ~S ðpþ1Þj
sðpÞ

<
�
1þ β

2ðiþ 1Þ
�

·
θ2ðpÞ
8n

:

Let S
ðpÞ
i ¼defS ðpÞ ∩ Bi and let S

ðpÞ
i;j;r¼defS ðpÞ ∩ Bi;j;r. (Note that Siþ1

i ¼ Bi and Siþ1
i;j;r ¼

Bi;j;r.) Since θ2ðpÞ is monotonically decreasing with p (so that sðpÞ is monotonically

increasing with r), and because ð1þ β
2ðiþ1ÞÞiþ1 ≤ 1þ β, Lemma 5 implies the next

corollary.
COROLLARY 6. With high constant probability, for every i ∈ L and j ∈= L, and for

every r such that jBi;j;rj ≥ 1
4 θ2ðrÞ, we have that for every r − 1 ≤ p ≤ i,

�
1

1þ β
2ðiþ1Þ

�
i−pþ1

·
jBi;j;rj

n
≤

jS ðpÞ
i;j;rj
sðpÞ

≤
�
1þ β

2ðiþ 1Þ
�

i−pþ1

·
jBi;j;rj

n
:

On the other hand, if jBi;j;rj < 1
4 θ2ðrÞ, then

jS ðpÞ
i;j;rj
sðpÞ

< ð1þ βÞ · θ2ðrÞ
4n

for every p.
Lemma 5 also implies that with high constant probability, Algorithm 2 does not

terminate in step 3c. Recall that the algorithm terminates in step 3c if

n · jS
ðpÞ
i j

sðpÞ ≥ 1
4ð1þβÞ θ2ðpÞ and n · jSðpÞ

i j
sðpÞ ·

� ð1þ βÞi−1

2

�
> 4 ~l. By Lemma 5, with probability

at least 1− 1
32t2

, for every i and p, if jBij < 1
6 θ2ðpÞ, then n · jS

ðpÞ
i j

sðpÞ
≤ ð1þ βÞ 1

6 θ2ðpÞ, and if

jBij ≥ 1
6 θ2ðpÞ, then n · jS

ðpÞ
i j

sðpÞ ≤ ð1þ βÞjBij. Assuming this is in fact the case, if

jBij < 1
6 θ2ðpÞ, then n · jSðpÞ

i j
sðpÞ < 1

4ð1þβÞ θ2ðpÞ, so that the algorithm will not terminate.

On the other hand, if jBij ≥ 1
6 θ2ðpÞ, then

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1381

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



n ·
jS ðpÞ

i j
sðpÞ

·
� ð1þ βÞi−1

2

�
≤ ð1þ βÞjBij ·

� ð1þ βÞi−1

2

�
≤ ð1þ βÞlðGÞ < 4 ~l;

so that the algorithm will not terminate in this case as well.
The next lemma deals with the estimates we get for the number of neighbors that a

vertex in Bi has in Bj, and it too follows from the multiplicative Chernoff bound. In the

lemma and what follows, we shall use the notations ΓjðvÞ¼defΓðvÞ ∩ Bj and djðvÞ¼defjΓjðvÞj.
LEMMA 7. Let i ∈ L, j ∈= L and for each 0 ≤ p ≤ i, let gðpÞ ¼ Θðð1þβÞi−p·logðt·nÞ

β2 Þ. For
any r ≥ p− 1 and for any fixed choice of a vertex v ∈ S

ðpÞ
i;j;r, if we take a sample of size gðpÞ

of neighbors of v and let γðpÞ
j ðvÞ be the number of neighbors in the sample that belong to

ΓjðvÞ, then with probability at least 1− 1
16·t·n,

1

1þ β
·
djðvÞ
dðvÞ ≤

γ
ðpÞ
j ðvÞ
gðpÞ

≤ ð1þ βÞ · djðvÞ
dðvÞ :

In addition, for each r ≤ p− 2 and v ∈ S
ðpÞ
i;j;r, with probability at least 1− 1

16·t·n,

γ
ðpÞ
j ðvÞ
gðpÞ

<
ð1þ βÞp−1

dðvÞ :

The next lemma is central to our analysis. Ideally we would have liked each vertex in
the sample to be added to its “correct” subset. That is, if v ∈ S

ðrÞ
i;j;r ð¼ S ðrÞ ∩ Bi;j;rÞ, then

ideally it should be added to Ŝ
ðrÞ
i;j;r. However, since the decision concerning whether to

add a vertex to a particular subset depends on sampling its neighbors and estimating the
number of neighbors that it has in Bj, we cannot ensure that it will be added to precisely
the right subset. However, we can ensure (with high probability) that it will not be
added to a subset ŜðpÞ

i;j;p for p that differ significantly from r.
LEMMA 8. With high constant probability, for every i ∈ L, j ∈= L, 0 ≤ r ≤ i, and v ∈

Bi;j;r such that v is selected in the initial sample Si, the vertex v may belong to Ŝ
ðrþ1Þ
i;j;rþ1,

Ŝ
ðrÞ
i;j;r, or Ŝ

ðr−1Þ
i;j;r−1, but not to any other Ŝ

ðr  0Þ
i;j;r  0 . In other words, Ŝ ðrÞ

i;j;r ⊆ Bi;j;rþ1 ∪ Bi;j;r ∪
Bi;j;r−1.

Proof. By the definition of Bi;j;r, if v ∈ Bi;j;r, then ð1þ βÞr−1 < djðvÞ ≤ ð1þ βÞr.
By Lemma 7, for each p ≤ r þ 1 with probability at least 1− 1

16·t·n,

1

1þ β
·
ð1þ βÞr−1

dðvÞ <
γ
ðpÞ
j ðvÞ
gðpÞ

≤ ð1þ βÞ · ð1þ βÞrþ1

dðvÞ :

That is, for each p ≤ r þ 1 and, in particular, for r − 1 ≤ p ≤ r þ 1,

ð1þ βÞr−2

dðvÞ <
γ
ðpÞ
j ðvÞ
gðpÞ

≤
ð1þ βÞrþ2

dðvÞ :

On the other hand, for p ≥ r þ 2, with probability at least 1− 1
16·t·n,

1382 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



γ
ðpÞ
j ðvÞ
gðpÞ

<
ð1þ βÞp−1

dðvÞ :

By taking a union bound over all vertices v, and for each v ∈ Bi;j;r over all 0 ≤ p ≤ i, this
implies the following:

1. For r þ 2 ≤ p ≤ i, no vertex in S
ðpÞ
i;j;r is added to Ŝ

ðpÞ
i;j;r.

2. For r − 1 ≤ p ≤ r þ 1, the following holds: If a vertex v belongs to S ðrþ1Þ
i;j;r , then it

may be added to Ŝ
ðrþ1Þ
i;j;rþ1, and if not, then it may be added to Ŝ

ðrÞ
i;j;r (assuming

v ∈ SðrÞ). If it was added to neither of the two subsets and it is selected in S ðr−1Þ,
then it is added to Ŝ

ðr−1Þ
i;j;r−1 (and it will not be added to Ŝ

ðpÞ
i;j;r for any p < r − 1).

The proof is completed. ▯
We are now ready to prove that the estimates êi;j computed by Algorithm 2 are

essentially close to the corresponding values of jEi;jj. Recall that SIG denotes the set
of all significant indices (as defined in Definition 2) and that Ej¼def

S
t
k¼0 Ej;k.

LEMMA 9. For an appropriate choice of c2 (in the definition of θ2ð·Þ in step 1 of
Algorithm 2) and of c3 (in Definition 2), with high constant probability, for all j ∈= L,
if j ∈ SIG, then �

1−
ϵ

8

�X
i∈L

jEi;jj−
ϵ

16
jEjj ≤

X
i∈L

êi;j ≤
�
1þ ϵ

4

�
jEjj;

and if j ∈= SIG, then

X
i∈L

1

2
êi;j · ðð1þ βÞj − 1Þ ≤ ϵ

4t
lðGÞ:

Proof. Recall that

êi;j ¼
Xi

p¼p0

n

sðpÞ
· jŜ ðpÞ

i;j;pj · ð1þ βÞp:

By Lemma 8, with high constant probability, for every i, j, r such that r ≥ p0 þ 1, the
contribution of vertices in Bi;j;r to this sum is

n ·
�jŜ ðrþ1Þ

i;j;rþ1 ∩ Bi;j;rj
sðrþ1Þ · ð1þ βÞrþ1 þ jŜ ðrÞ

i;j;r ∩ Bi;j;rj
sðrÞ

· ð1þ βÞr
�

þ n ·
�jŜðr−1Þ

i;j;r−1 ∩ Bi;j;rj
sðr−1Þ · ð1þ βÞr−1

�
:ð3:19Þ

Assume from now on that this is in fact true and denote this sum by êi;j;r. Consider
first the case that jBi;j;rj < 1

4 θ2ðrÞ.
Claim 10. With high constant probability, for every i, j, r such that jBi;j;rj <

1
4 θ2ðrÞ, if j ∈ SIG, then

êi;j;r ≤
ϵ

c4t
2
jEjj for c4 ¼ c2 ∕ c

1 ∕ 2
3 ;

and if j ∈= SIG, then

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1383

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



êi;j;r · ðð1þ βÞj − 1Þ ≤ ϵ

c5t
3 lðGÞ for c5 ¼ c2c

1 ∕ 2
3 ∕ 2:

Proof. By Corollary 6, with high constant probability, for every i, j, r, if jBi;j;rj <
1
4 θ2ðrÞ, then

jSðpÞ
i;j;r j
sðpÞ

< ð1þ βÞ · θ2ðrÞ4n for every p. Assuming this is in fact the case, we have
that

êi;j;r ≤
3

4
· θ2ðrÞ · ð1þ βÞrþ2:ð3:20Þ

If j ∈ SIG, then by Lemma 4 we have that jEjj ≥ ðc2 ∕ c1 ∕ 23 Þt2
ϵ θ2ðrÞ · ð1þ βÞr. Therefore,

êi;j;r ≤
ϵ

c4t
2
jEjjð3:21Þ

for c4 ¼ c2 ∕ c
1∕ 2
3 (using β ≤ 1 ∕ 32).

If j ∈= SIG, then ð1þ βÞj ≤ 2

c1 ∕ 23

ð ϵ ~l
tjBjjÞ

1 ∕ 2. Using the fact that ð1þ βÞr ≤ jBjj
(because there are no multiple edges) and by the definition of θ2ðrÞ, we get that

êi;j;r · ðð1þ βÞj − 1Þ ≤ 1

c2t
5∕ 2 · ϵ

3 ∕ 2 · ~l1 ∕ 2 · jBjj1 ∕ 2 ·
2

c1∕ 23

�
ϵ ~l

tjBjj
�1 ∕ 2

≤
ϵ

c5t
3
~l ≤

ϵ

c5t
3
lðGÞð3:22Þ

for c5 ¼ c2c
1∕ 2
3 ∕ 2. (Claim 10) ▯

We now turn to the case that jBi;j;rj ≥ 1
4 θ2ðrÞ.

Claim 11. With high constant probability, for every i, j, r such that jBi;j;rj ≥
1
4 θ2ðrÞ, if j ∈ SIG, then

ð1þ βÞ−3jEi;j;rj−
ϵ

c 04t
2 jEjj ≤ êi;j;r ≤ ð1þ βÞ3jEi;j;rj þ

ϵ

c 04t
2 jEjj

for c 04 ¼ c2 ∕ ð2c1 ∕ 23 Þ, and for j ∈= SIG,

êi;j;r · ðð1þ βÞj − 1Þ ≤ ð1þ βÞ3jEi;j;rj · ðð1þ βÞj − 1Þ þ ϵ

c 05t
3
~l

for c 05 ¼ c2c
1∕ 2
3 ∕ 4.

Proof. By Corollary 6, with high constant probability, for every i, j, r, if jBi;j;rj ≥
1
4 θ2ðrÞ, then for every r − 1 ≤ p ≤ i,

�
1

1þ β
2ðiþ1Þ

�
i−pþ1

·
jBi;j;rj

n
≤

jSðpÞ
i;j;rj
sðpÞ

≤
�
1þ β

2ðiþ 1Þ
�

i−pþ1

·
jBi;j;rj

n
:ð3:23Þ

Assume from this point on that this is in fact the case. Fixing such a choice of i, j, r,
let

~S
ðrþ1Þ
i;j;r ¼defS ðrþ1Þ

i;j;r \ Ŝ ðrþ1Þ
i;j;rþ1 and ~S

ðrÞ
i;j;r¼defS ðrÞ

i;j;r \ ðŜ ðrþ1Þ
i;j;rþ1 ∪ Ŝ

ðrÞ
i;j;rÞ:

1384 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



That is, ~S
ðrþ1Þ
i;j;r is the subset of vertices in S

ðrþ1Þ
i;j;r ð¼ S ðrþ1Þ ∩ Bi;j;rÞ that were not

added to Ŝ
ðrþ1Þ
i;j;rþ1, and ~S

ðrÞ
i;j;r is the subset of vertices in S

ðrÞ
i;j;r ð¼ S ðrÞ ∩ Bi;j;rÞ that were

added to neither Ŝ ðrþ1Þ
i;j;rþ1 nor to Ŝ

ðrÞ
i;j;r. Let

α1¼def
j ~S ðrþ1Þ

i;j;r j
jS ðrþ1Þ

i;j;r j
and α2¼def

j ~SðrÞ
i;j;rj

j ~S ðrþ1Þ
i;j;r ∩ SðrÞj

:

Since S
ðrþ1Þ
i;j;r ¼ ðŜ ðrþ1Þ

i;j;r ∩ Bi;j;rÞ ∪ ~S
ðrþ1Þ
i;j;r (where the two subsets on the right-hand side

are disjoint), according to the definition of α1 we have that jŜðrþ1Þ
i;j;r ∩ Bi;j;rj ¼

ð1− α1ÞjSðrþ1Þ
i;j;r j. By (3.23),

jŜ ðrþ1Þ
i;j;rþ1 ∩ Bi;j;rj

sðrþ1Þ ¼ ð1− α1Þ · jS ðrþ1Þ
i;j;r j

sðrþ1Þ ≤ ð1þ βÞð1− α1Þ
jBi;j;rj

n
;

and similarly

jŜ ðrþ1Þ
i;j;rþ1 ∩ Bi;j;rj

sðrþ1Þ ≥ ð1− βÞð1− α1Þ
jBi;j;rj

n
:

The case of large α1 and α2. In order to obtain bounds on the second and third terms
in (3.19), assume first that both

j ~S ðrþ1Þ
i;j;r j

sðrþ1Þ ≥
θ2ðrÞ
4n

and
j ~SðrÞ

i;j;rj
sðrÞ

≥
θ2ðrÞ
4n

:

That is,

α1 · jS ðrþ1Þ
i;j;r j

sðrþ1Þ ≥
θ2ðrÞ
4n

and
α2 · j ~S ðrþ1Þ

i;j;r ∩ SðrÞj
sðrÞ

≥
θ2ðrÞ
4n

:

Under this assumption, by Lemma 5, with probability at least 1− 1
32t4

,

j ~Sðrþ1Þ
i;j;r ∩ S ðrÞj

sðrÞ
≤

�
1þ β

2i

� j ~Sðrþ1Þ
i;j;r j

sðrþ1Þ ¼
�
1þ β

2i

�
α1 · jS ðrþ1Þ

i;j;r j
sðrþ1Þð3:24Þ

and

j ~S ðrþ1Þ
i;j;r ∩ SðrÞj

sðrÞ
≥

�
1−

β

2i

�
α1 · jS ðrþ1Þ

i;j;r j
sðrþ1Þ :ð3:25Þ

Similarly, with probability at least 1− 1
32t4

,

j ~SðrÞ
i;j;r ∩ S ðr−1Þj

sðr−1Þ ≤
�
1þ β

2i

� j ~S ðrÞ
i;j;rj
sðrÞ

¼
�
1þ β

2i

�
α2 · j ~Sðrþ1Þ

i;j;r ∩ S ðrÞj
sðrÞ

ð3:26Þ

and

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1385

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



j ~SðrÞ
i;j;r ∩ S ðr−1Þj

sðr−1Þ ≥
�
1−

β

2i

�
α2 · j ~S ðrþ1Þ

i;j;r ∩ SðrÞj
sðrÞ

:ð3:27Þ

Assume that (3.24)–(3.27) indeed hold. Observe that ~S
ðrþ1Þ
i;j;r ∩ S ðrÞ ¼ ðŜðrÞ

i;j;r ∩ Bi;j;rÞ ∪
~S
ðrÞ
i;j;r (where the two subsets on the right-hand side are disjoint), so that by the definition

of α2 we have that jŜ ðrÞ
i;j;r ∩ Bi;j;rj ¼ ð1− α2Þj ~S ðrþ1Þ

i;j;r ∩ SðrÞj. By (3.23) and (3.24),

jŜ ðrÞ
i;j;r ∩ Bi;j;rj

sðrÞ
¼ ð1− α2Þ

j ~Sðrþ1Þ
i;j;r ∩ S ðrÞj

sðrÞ

≤
�
1þ β

2i

�
ð1− α2Þα1 ·

jS ðrþ1Þ
i;j;r j

sðrþ1Þ

≤ ð1þ βÞð1− α2Þα1 ·
Bi;j;r

n
;ð3:28Þ

and similarly (by (3.23) and (3.25)),

jŜðrÞ
i;j;r ∩ Bi;j;rj

sðrÞ
≥ ð1− βÞð1− α2Þα1 ·

Bi;j;r

n
.

Finally, by our assumption (which holds with high probability) that sampled

vertices in Bi;j;r are added to Ŝ
ðrþ1Þ
i;j;rþ1, Ŝ

ðrÞ
i;j;r, or Ŝ

ðr−1Þ
i;j;r−1, all vertices in ~S

ðrÞ
i;j;r ∩ Sðr−1Þ

are added to Ŝ
ðr−1Þ
i;j;r−1. Therefore, by (3.23), (3.24), and (3.26) (and the definitions of

α1 and α2),

jŜðr−1Þ
i;j;r−1 ∩ Bi;j;rj

sðr−1Þ ¼ j ~S ðrÞ
i;j;r ∩ Sðr−1Þj

sðr−1Þ

≤
�
1þ β

2i

� j ~S ðrÞ
i;j;rj
sðrÞ

¼
�
1þ β

2i

�
α2

j ~Sðrþ1Þ
i;j;r ∩ S ðrÞj

sðrÞ

≤
�
1þ β

2i

�
2

α2

j ~S ðrþ1Þ
i;j;r j

sðrþ1Þ

¼
�
1þ β

2i

�
2

α2α1

jSðrþ1Þ
i;j;r j

sðrþ1Þ

≤ ð1þ βÞα2α1 ·
Bi;j;r

n
:ð3:29Þ

Similarly (by (3.23), (3.25), and (3.27)),

jŜ ðr−1Þ
i;j;r−1 ∩ Bi;j;rj

sðr−1Þ ≥ ð1− βÞα2α1 ·
Bi;j;r

n
:ð3:30Þ

The case of small α1 or small α2. The bounds in (3.28)–(3.30) were obtained
for the case that both α1 and α2 are above certain thresholds. If

1386 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



α1 · jSðrþ1Þ
i;j;r j∕ sðrþ1Þ < θ2ðrÞ ∕ ð4nÞ—that is, j ~S ðrþ1Þ

i;j;r j ∕ sðrþ1Þ < θ2ðrÞ ∕ ð4nÞ—then by
Lemma 5, with probability at least 1− 1

16t4
,

j ~S ðrþ1Þ
i;j;r ∩ SðrÞj

sðrÞ
≤ ð1þ βÞ θ2ðrÞ

4n

and

j ~S ðrÞ
i;j;r ∩ S ðr−1Þj

sðr−1Þ ≤ ð1þ βÞ θ2ðrÞ
4n

as well. Similarly, if α2 · j ~S ðrþ1Þ
i;j;r ∩ S ðrÞj ∕ sðrÞ < θ2ðrÞ ∕ ð4nÞ—that is, j ~SðrÞ

i;j;rj ∕ sðrÞ <
θ2ðrÞ ∕ ð4nÞ—then with probability at least 1− 1

32t4
,

j ~S ðrÞ
i;j;r ∩ S ðr−1Þj

sðr−1Þ ≤ ð1þ βÞ θ2ðrÞ
4n

:

By combining all the bounds above we get that (for jBi;j;rj ≥ 1
4 θ2ðrÞ)

êi;j;r ≤ ð1þ βÞ
�
ð1− α1ÞjBi;j;rjð1þ βÞrþ1 þ α1ð1− α2ÞjBi;j;rjð1þ βÞr

þ α1α2jBi;j;rjð1þ βÞr−1

�
þ 2θ2ðrÞð1þ βÞr

≤ jBi;j;rjð1þ βÞrþ2 þ 2θ2ðrÞð1þ βÞrð3:31Þ

and

êi;j;r ≥ jBi;j;rjð1þ βÞr−2 − θ2ðrÞð1þ βÞrþ1:ð3:32Þ

Similar to what we have shown for the case that jBi;j;rj < 1
4 θ2ðrÞ (see (3.20)–(3.22)), if

we let Ei;j;r¼defEðBi;j;r; BjÞ, then we get that for j ∈ SIG,

ð1þ βÞ−3jEi;j;rj−
ϵ

c 04t
2
jEjj ≤ êi;j;r ≤ ð1þ βÞ3jEi;j;rj þ

ϵ

c 04t
2
jEjj;ð3:33Þ

and for j ∈= SIG,

êi;j;r · ðð1þ βÞj − 1Þ ≤ ð1þ βÞ3jEi;j;rj · ðð1þ βÞj − 1Þ þ ϵ

c 05t
3
~lð3:34Þ

for c 04 ¼ c2 ∕ ð2c1 ∕ 23 Þ and for c 05 ¼ c2c
1 ∕ 2
3 ∕ 4. (Claim 11) ▯

Let LARGEði; jÞ denote the subset of indices r for which jBi;j;rj ≥ 1
4 θ2ðrÞ. By

Claim 10 (for the case that jBi;j;rj < 1
4 θ2ðrÞ) and Claim 11 (for the case that

jBi;j;rj ≥ 1
4 θ2ðrÞ), and by taking a union bound, we get that the following bounds hold

with high constant probability. First, for every j ∈ SIG,

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1387

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



X
i∈L

êi;j ¼
X
i∈L

Xi

p¼p0

n

sðpÞ
· jŜ ðpÞ

i;j;pj · ð1þ βÞp

≤
X
i∈L

X
r∈LARGEði;jÞ

êi;j;r þ
X
i∈L

X
r∈=LARGEði;jÞ

êi;j;r

≤
�
1þ ϵ

8

�X
i∈L

X
r∈LARGEði;jÞ

jEi;j;rj þ
ϵ

c 04
jEjj þ

ϵ

c4
jEjj

≤
�
1þ ϵ

8

�X
i∈L

jEi;jj þ
ϵ

c 04
jEjj þ

ϵ

c4
jEjj

≤
�
1þ ϵ

4

�
jEjj;

where the last inequality holds conditioned on c4 and c 04 (which are functions of c2 and
c3) being sufficiently large (and, in particular, holds for any c3 ≥ 1 and c2 ≥ 32 · c1 ∕ 23 ).
Recall that p0 is the smallest value of p satisfying 1

4 θ2ðpþ 1Þ ≤ n. Since jBi;j;rj ≤ n for
every i, j, r while jBi;j;rj ≥ 1

4 θ2ðrÞ for every r ∈ LARGEði; jÞ, we have that r ≥ p0 þ 1
for every r ∈ LARGEði; jÞ. Therefore,

X
i∈L

êi;j ≥
X
i∈L

X
r∈LARGEði;jÞ

êi;j;r

≥
�
1−

ϵ

8

�X
i∈L

X
r∈LARGEði;jÞ

jEi;j;rj−
ϵ

c 04
jEjj

≥
�
1−

ϵ

8

�X
i∈L

�Xi

r¼0

jEi;j;rj−
X

r∈=LARGEði;jÞ
jEi;j;rj

�
−

ϵ

c 04
jEjj

≥
�
1−

ϵ

8

�X
i∈L

jEi;jj− ϵ

�
1

c4
þ 1

c 04

�
· jEjj

≥
�
1−

ϵ

8

�X
i∈L

jEi;jj−
ϵ

16
· jEjj;

where the last inequality holds for sufficiently large c4 and c 04 (and, in particular, when-
ever c3 ≥ 1 and c2 ≥ 64 · c1∕ 23 ). On the other hand, for j ∈= SIG,

X
i∈L

1

2
êi;j · ðð1þ βÞj − 1Þ ¼

X
i∈L

1

2

X
r∈LARGEði;jÞ

êi;j;r · ðð1þ βÞj − 1Þ

þ
X
i∈L

1

2

X
r∈=LARGEði;jÞ

êi;j;r · ðð1þ βÞj − 1Þ

≤
�
1þ ϵ

8

�
1

2

X
i∈L

X
r∈LARGEði;jÞ

jEi;j;rj · ðð1þ βÞj − 1Þ

þ ϵ

c 05t
lðGÞ þ ϵ

c5t
lðGÞ

≤
�
1þ ϵ

8

�
ϵ

c3t
~lþ ϵ

t

�
1

c 05
þ 1

c5

�
lðGÞð3:35Þ

1388 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



<
ϵ

4t
lðGÞ;ð3:36Þ

where in (3.35) we built on the definition of significant buckets and the last equation
holds for sufficiently large c3, c5, and c 05 (and, in particular, for any choice of c3 ≥ 32
and c2 ≥ 64 ∕ c1 ∕ 23 ). By taking c3 ≥ 32 and c2 ≥ 64 · c1 ∕ 23 , the proof of Lemma 9 is
completed. ▯

Putting it all together: Proving the first part of Theorem 1. Recall that

l̂ ¼
X
i∈L

n ·
jSij
jSj ·

� ð1þ βÞi
2

�
þ
X
j∈=L

1

2

X
i∈L

êi;j · ðð1þ βÞj − 1Þ:ð3:37Þ

Let lðG;LÞ denote the number of length-2 paths in G whose midpoint belongs to a
bucket Bi such that i ∈ L, and let lðG; L̄Þ denote the number of length-2 paths whose
midpoint belongs to a bucket Bj such that j ∈= L (so that lðG;LÞ þ lðG; L̄Þ ¼ lðGÞ). By
the first part of Corollary 2 (and the setting of β), we have that with high constant
probability

X
i∈L

n ·
jSij
jSj ·

� ð1þ βÞi
2

�
¼

�
1� ϵ

4

�
lðG;LÞ:ð3:38Þ

Turning to the second summand in (3.37), by Lemma 9,

X
j∈=L

1

2

X
i∈L

êi;j · ðð1þ βÞj − 1Þ ¼
X

j∈=L;j∈SIG

1

2

X
i∈L

êi;j · ðð1þ βÞj − 1Þ

þ
X

j∈=L;j∈=SIG

1

2

X
i∈L

êi;j · ðð1þ βÞj − 1Þ

≤
X

j∈=L;j∈SIG

1

2
·
�
1þ ϵ

4

�
jEjj · ðð1þ βÞj − 1Þ þ ϵ

4
lðGÞ

≤
�
1þ ϵ

4

�
·
X
j∈=L

1

2
jEjj · ðð1þ βÞj − 1Þ þ ϵ

4
lðGÞ

≤
�
1þ ϵ

2

�
lðG; L̄Þ þ ϵ

4
lðGÞ:ð3:39Þ

In the other direction, recall that lðσÞðG; L̄Þ ¼ P
j∈=Ll

ðσÞ
j ðG; L̄Þ, where for j ∈= L and

σ ∈ f1; 2; 3g, we let lðσÞ
j ðG; L̄Þ denote the number of length-2 paths whose midpoint be-

longs to Bj and such that the number of vertices on the path that belong to Bk for k ∈= L
(including j) is σ,

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1389

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



X
j∈=L

1

2

X
i∈L

êi;j · ð1þ βÞj ≥
X

j∈=L;j∈SIG

1

2

�X
i∈L

�
1−

ϵ

8

�
jEi;jj−

ϵ

16
jEjj

�
· ðð1þ βÞj − 1Þ

≥
X
j∈=L

1

2

X
i∈L

�
1−

ϵ

8

�
jEi;jj · ðð1þ βÞj − 1Þ− ð1þ βÞϵ

16
lðGÞ

−
X

j∈=L;j∈=SIG

1

2

X
i∈L

�
1−

ϵ

8

�
jEi;jj · ðð1þ βÞj − 1Þ

≥
�
1−

ϵ

8

�
ðlð1ÞðG; L̄Þ þ 1

2
lð2ÞðG; L̄ÞÞ− ϵ

4
lðGÞð3:40Þ

≥
�
1−

ϵ

8

�
ðlð1ÞðG; L̄Þ þ lð2ÞðG; L̄Þ þ lð3ÞðG; L̄ÞÞ

−
1

2
lð2ÞðG; L̄Þ− lð3ÞðG; L̄Þ− ϵ

4
lðGÞ

≥
�
1−

ϵ

8

�
lðG; L̄Þ− 3ϵ

4
lðGÞ;ð3:41Þ

where in (3.40) we used (3.12) (based on the definition of SIG and taking c3 ≥ 32 as it
was set previously), and in the last inequality we applied Lemma 3. By combining (3.38),
(3.39), and (3.41), we get that l̂ ¼ ð1� ϵÞlðGÞ with high constant probability.

3.5. Removing the assumption on ~l. Our analysis builds on the assumption
that 1

2 lðGÞ ≤ ~l ≤ 2lðGÞ. In order to get rid of this assumption, we observe that if
we run Algorithm 1 with ~l > 2lðGÞ, then our analysis implies that with high constant
probability l̂ ≤ ð1þ ϵ

2ÞlðGÞ þ ϵ
8
~l. This is true because (1) the algorithm still obtains

(with high probability) an estimate of lðG;LÞ that does not overestimate lðG;LÞ by
more than a factor of (1þ ϵ

4), (2) for the number of length-2 paths whose midpoint
is in a bucket Bj, where j ∈= L and j ∈ SIG, the approximation factor is at most
(1þ ϵ

2), and (3) the additional error caused by overestimating the number of length-
2 paths whose midpoint is in a bucket Bj, where j ∈= L and j ∈= SIG, is at most ϵ

8
~l.

Suppose we run Algorithm 1 with ~l > 2lðGÞ. Then with high constant probability
l̂ < ð12 þ ϵ

2Þ ~l. On the other hand, if we run Algorithm 1 with 1
2 lðGÞ ≤ ~l < lðGÞ, then

with high constant probability, l̂ ≥ ð1− ϵÞlðGÞ > ð1− ϵÞ ~l, which is greater than
ð12 þ ϵ

2Þ ~l for every ϵ < 1 ∕ 3.
Therefore, we do the following. Starting from ~l ¼ n · ðn2Þ, we repeatedly call a slight

variant of Algorithm 1 with our current estimate ~l. The variant is that we increase all
sample sizes by a factor of Θðlog log nÞ so as to reduce the failure probability of each
execution to Oð1 ∕ log nÞ, and we run the algorithm with ϵ ¼ minfϵ; 1 ∕ 4g. In each ex-
ecution we reduce the previous value of ~l by a factor of 2, and stop once l̂ > ð1− ϵÞ ~l, at
which point we output l̂. By the above discussion, with high constant probability we do
not stop before ~l goes below 2lðGÞ, and conditioned on this, with high probability
(1−Oð1 ∕ log nÞ) we do stop once 1

2 lðGÞ ≤ ~l < lðGÞ (or possibly, one iteration earlier,
when lðGÞ ≤ ~l < 2lðGÞ) with l̂ ¼ ð1� ϵÞlðGÞ.

Since there is a nonzero probability that the algorithm does not stop when
1
2 lðGÞ ≤ ~l < lðGÞ, we next bound the expected running time of the algorithm. The
total running time of all executions until 1

2 lðGÞ ≤ ~l < lðGÞ is Oð n
lðGÞ1 ∕ 3 þ

min fn1 ∕ 2; n3 ∕ 2

lðGÞ1 ∕ 2gÞ · polyðlog n; 1 ∕ ϵÞ. Once ~l < 1
2 lðGÞ, the algorithm may terminate

1390 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



in step 4 of Algorithm 1 or in step 3c of Algorithm 2, but if it does not, then the prob-
ability that l̂ ≤ ð1− ϵÞ ~l in any particular execution is upper-bounded by Oð1 ∕ log nÞ.
Since the executions are independent, the expected running time is Oð n

lðGÞ1 ∕ 3 þ
min fn1 ∕ 2; n3 ∕ 2

lðGÞ1 ∕ 2gÞ · polyðlog n; 1 ∕ ϵÞ.
We thus have the following theorem.
THEOREM 2. With probability at least 2 ∕ 3, the aforementioned algorithm, which uses

Algorithm 1 as a subroutine, returns an estimates l̂ that satisfies l̂ ¼ ð1� ϵÞ · lðGÞ. The
expected query complexity and running time of the algorithm are Oð n

ðlðGÞÞ1 ∕ 3 þ
min fn1 ∕ 2; n3 ∕ 2

ðlðGÞÞ1 ∕ 2gÞ · polyðlog n; 1 ∕ ϵÞ.

4. Lower bounds for approximating the number of length-2 paths. In the
next theorem we state three lower bounds that together match our upper bound in terms
of the dependence on n and lðGÞ. In what follows, when we refer to a multiplicative
approximation algorithm for the number of length-2 paths, we mean an algorithm that
outputs an estimate l̂ that with high probability satisfies lðGÞ ∕ C ≤ l̂ ≤ ClðGÞ for
some (predetermined) approximation factor C (where C may depend on the size of
the graph). If C is a constant, then the algorithm is a constant-factor approximation
algorithm.

THEOREM 3.
1. Any multiplicative approximation algorithm for lðGÞ must perform Ωð n

l1 ∕ 3ðGÞÞ
queries.

2. Any constant-factor approximation algorithm for lðGÞ must perform Ωð ffiffiffi
n

p Þ
queries when the number of length-2 paths is Oðn2Þ.

3. Any constant-factor approximation algorithm for lðGÞ must perform Ωð n3 ∕ 2

l1 ∕ 2ðGÞÞ
queries when the number of length-2 paths is Ωðn2Þ.

4.1. Proof of item 1 in Theorem 3. To establish the first item in Theorem 3, we
show that every n and for every value of l, there exists a family of n-vertex graphs for
which the following holds. For each graph G in the family, we have that lðGÞ ¼ ΘðlÞ,
but it is not possible to distinguish (with high constant probability) by making
oðn∕ l1 ∕ 3Þ queries, between a random graph in the family and the empty graph (for
which lðGÞ ¼ 0). Each graph in the family simply consists of a clique of size
b ¼ dl1 ∕ 3e and an independent set of size n− b. The number of length-2 paths in
the graph is b · ðb−1

2 Þ ¼ ΘðlÞ. However, in order to distinguish between a random graph
in the family and the empty graph, it is necessary to perform a query on a vertex in the
clique. The probability of hitting such a vertex in oð n

l1 ∕ 3ðGÞÞ queries is oð1Þ.
4.2. Proof of item 2 in Theorem 3. Since we have already established in item 1

in Theorem 3 that there is a lower bound of Ωð n
l1 ∕ 3ðGÞÞ, and since for lðGÞ ≤ n3 ∕ 2, we

have that n
l1 ∕ 3ðGÞ ≥ n1 ∕ 2, we may consider the case that lðGÞ > n3∕ 2 > n. To establish

item 2 in Theorem 3 we show that for every n, every constant c, and every
n < l < ðn∕ 2cÞ2 there exist two families of n-vertex graphs for which the following
holds. In both families the number of length-2 paths is ΘðlÞ, but in one family this num-
ber is a factor c larger than in the other family. However, it is not possible to distinguish
with high constant probability between a graph selected randomly in one family and a
graph selected randomly in the other family using oð ffiffiffi

n
p Þ queries. We first present two

families that include some graphs with multiple edges and self-loops, and then modify
the construction to obtain simple graphs.

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1391

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



The graph families. In the first family, denoted G1, each graph is a union of d ¼
b ffiffiffiffiffiffiffiffiffiffiffiffi

2l ∕ n
p c matchings. Thus, each vertex has degree d ¼ b ffiffiffiffiffiffiffiffiffiffiffiffi

2l ∕ n
p c and

lðGÞ ¼ n ·
�
d
2

�
< l:

A random graph in G1 is determined by simply selecting d random matchings. In the
second family, denoted G2, each graph is determined as follows. There is a small subset,
S , of c vertices, where each vertex in S has degree d 0 ¼ d ffiffiffiffiffiffi

2l
p e þ 1, and each vertex in

V \ S has degree d ¼ b ffiffiffiffiffiffiffiffiffiffiffiffi
2l∕ n

p c (like all vertices in the graph in G1). If we view each
vertex in S as having d 0 ports (one for each incident edge) and each vertex in V \ S
as having d ports, then a graph is the family G2 is defined by a perfect matching between
the ðn− cÞ · dþ c · d 0 ports (we assume this number is even, otherwise, d and d  0 can be
slightly modified). For an illustration, see the left-hand side of Figure 4.1. Thus,

lðGÞ > c ·
�
d 0

2

�
¼ c ·

�
d ffiffiffiffiffiffi

2l
p e þ 1

2

�
> cl:

Processes that construct graphs in the families. In order to show that it is
hard to distinguish between graphs selected randomly from the two families in oð ffiffiffi

n
p Þ

queries, we follow [GR02], [KKR04] and define two processes, P1 and P2, that interact
with an approximation algorithm A. The process P1 answers the queries of A while
constructing a random graph in G1, and the process P2 answers the queries of A while
constructing a random graph in G2. We consider the distributions over the respective
query-answer histories, hðq1; a1Þ; : : : ; ðqt; atÞi, and show that for histories of length
oð ffiffiffi

n
p Þ, the distributions are very close, implying that A must have a high failure prob-

ability if it performs only oð ffiffiffi
n

p Þ queries. Details follow.
For simplicity we assume that for every vertex that appears in either a neighbor

query or an answer to such a query, both processed give the degree of the vertex
“for free,” so there is no need for degree queries. We also assume that an answer u to
a neighbor query ðv; iÞ comes with the label i 0 of the edge from u’s side of the edge.

FIG. 4.1. An illustration for the proof of item 2 in Theorem 3. On the left-hand side is a graph in G2, and on
the right-hand side are the corresponding neighborhood tables, ΓV \S and ΓS . Each row in ΓV \S corresponds to a
vertex in V \ S and each row in ΓS corresponds to a vertex in S. A connecting line between a pair of entries in
the two tables indicates that there is an edge between the two corresponding vertices.

1392 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Clearly any lower bound under these assumptions gives a lower bound without the as-
sumptions.

The process P1. The process P1 maintains an n× d table Γ. A graph in G1 cor-
responds to a perfect matching between the table entries. That is, if there is an edge
ðv; uÞ in the graph, and the edge is labeled i from v’s side and i 0 from u’s side, then
Γðv; iÞ ¼ ðu; i 0Þ and Γðu; i  0Þ ¼ ðv; iÞ. Thus, a random selection of a graph in G1 corre-
sponds to a random selection of a perfect matching between the entries of Γ. Such a
matching can be constructed iteratively, where in each iteration an unmatched entry
in the table is selected arbitrarily and matched to a uniformly selected entry that is
not yet matched. The process P1 fills the entries of Γ in the course of answering the
queries of the algorithm A: Given a query qtþ1 ¼ ðv; iÞ, the process P1 answers with
a uniformly selected unmatched entry, ðu; i  0Þ

The processP2. The processP2 maintains two tables: one ðn− cÞ× d table, ΓV \S ,
and one c× d 0 table, ΓS . The rows of ΓV \S correspond to vertices in V \ S , and the rows
of ΓS correspond to vertices in S. A random graph in G2 can be determined in the follow-
ing iterative manner. In each step, a pair ðv; iÞ is selected arbitrarily among all pairs
such that

• either there is already a row labeled by v in one of the two tables, but the entry
ðv; iÞ is not yet matched, or

• there is no row labeled by v.
In the latter case, we first select, uniformly at random, a row that is not yet labeled in one
of the two tables, and label it by v. We then select, uniformly at random, an entry in one
of the two tables that is not yet matched. If the row of the selected entry is not yet
labeled, then we give it a random label (among all the labels in f1; : : : ; ng that have
not been used yet).

The process P2 fills the entries of ΓV \S and ΓS in the course of answering the queries
of the algorithm A in the following manner. First note that once a vertex v that appears
in either a query or an answer is determined to belong to S, then we may assume that A
terminates, since it has evidence to distinguish between the two families (recall that the
degree of a vertex is revealed when it appears in a query or an answer). Now, given a
query qtþ1 ¼ ðv; iÞ, if v is a vertex that was not yet observed in the query-answer history
(that is, it does not label any row), then P2 first determines whether v belongs to S or to
V \ S , that is, if v labels a row in ΓS or in ΓV \S . Let the number of vertices already de-
termined to be in V \ S be denoted by b (so that b ≤ 2t). With probability c

n−b, the ver-
tex v is determined to belong to S (at which pointA can terminate) and with probability
1− c

n−b, it is determined to belong to V \ S , so that it labels an unlabeled row in ΓV \S .
Next, an entry that is not yet matched is selected uniformly among all such entries in
ΓV \S and ΓS . If the selected entry is in ΓS , then A can terminate. Otherwise, let i 0 be the
column to which the entry belongs (in ΓV \S). If the entry belongs to a row that is already
labeled by some u ∈ f1; : : : ; ng, then P2 answers ðu; i 0Þ, and if the row is unlabeled, then
P2 uniformly selects a label u ∈ f1; : : : ; ng among all row labels that are not yet used,
and answers ðu; i  0Þ.

Analyzing the distributions on query-answer histories. Consider P2, and
observe that if the number of queries performed is oð ffiffiffi

n
p Þ, then the probability that

a vertex v in a query ðv; iÞ is determined to belong to S is oð ffiffiffi
n

p Þ · c
n−oð ffiffiffi

n
p Þ ¼ oð 1ffiffiffi

n
p Þ.

The second observation about P2, the probability that the answer to a query ðv; iÞ will

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1393

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



be ðu; i 0Þ, where u ∈ S and t queries have already been performed, equals the number of
entries in ΓS , which is c · d 0, divided by the number of entries in both tables that are not
yet matched, which is ðn− cÞ · dþ c · d 0 − 2t. That is, we get c·d 0

ðn−cÞ·dþc·d 0−2t ¼ Oð 1ffiffiffi
n

p Þ,
and so the probability that such an event occurs in a sequence of oð ffiffiffi

n
p Þ queries is oð1Þ.

Finally, for both processes, the probability that an answer to a query qtþ1 ¼ ðv; iÞ is
ðu; i  0Þ for u that has already appeared in the query-answer history is upper-bounded by
2t
n ¼ oð 1ffiffiffi

n
p Þ, and so the probability that such an event occurs in a sequence of oð ffiffiffi

n
p Þ

queries is oð1Þ. Therefore, in both processes, if the number of queries performed is
oð ffiffiffi

n
p Þ, then for any algorithm A, with probability 1− oð1Þ, the sequence of answers

to the queries of A is a sequence of uniformly selected distinct pairs ðu; i 0Þ. This implies
that the statistical distance between the corresponding distributions on query-answer
histories is oð1Þ, and so it is not possible to distinguish between a random graph in G1 and
a random graph in G2 with probability greater than 1

2 þ oð1Þ.

The issue of multiple edges. As defined above, the graphs may have multiple
edges and self-loops. In order to avoid multiple edges and self-loops, the distribution on
answers to queries given any particular history should be conditioned on the randomly
constructed graph not containing any multiple edges and self-loops. While the precise
form of the probability distribution on answers may be more complicated due to this
conditioning, we only need to upper bound the probability of certain events. We first
observe that we can use the same bound as above for the probability that a vertex v in a
query ðv; iÞ is determined to belong to S , and conclude that the probability that such an
event occurs in a sequence of oð ffiffiffi

n
p Þ queries is oð1Þ.

We next bound the probability that an answer to a query qtþ1 ¼ ðv; iÞ is ðu; i 0Þ for u
that has already appeared in the query-answer history. Our analysis follows a similar
analysis in [BKKR10]. Starting with the family G1, consider the set of all graphs (with no
multiple edges and no self-loops) that are consistent with the query-answer history. That
is, they contain the subgraph H corresponding to this history. Let u be a vertex that
appears in the query-answer history, and let w be a vertex that does not appear in the
history. Thus, the degree of u in H is at least 1 and the degree of w in H is 0. Let Cu
denote the set of graphs in G1 that contain H as a subgraph and in which there is an edge
between v and u, and let Cw denote the set of graphs in G1 that contain H as a subgraph
and in which there is an edge between v and w. We claim that jCwj ≥ jCuj, from which it
follows that the probability that the answer to a neighbor query from v is answered by
any specific vertex u that appears in the query-answer history is upper-bounded by the
probability that it is answered by any specific vertex w that has not yet appeared in the
history.

To verify this we define an auxiliary bipartite graph in which there is a node on the
left-hand side for every graph in C  0u ¼ Cu \ Cw and a node on the right-hand side for every
graph in C  0w ¼ Cw \ Cu. We put an edge in this bipartite graph between a node corre-
sponding to graph F ∈ C  0u and a node corresponding to a graph ~F ∈ C  0w if the following
holds. In F (which contains the edge ðv; uÞ but not the edge ðv;wÞ), there is vertex x such
that the edge ðx;wÞ belongs to F and the edge ðx; uÞ does not belong to F , while in ~F
(which contains the edge ðv;wÞ but not the edge ðv; uÞ), there is an edge between u and x
but not betweenw and x. The two graphs agree on all other edges. We next partition the
nodes (graphs) on both sides of the auxiliary bipartite graph according to the size of the
intersection of the neighborhood sets of u and w, and note that there are edges in the
auxiliary biparatite graph only between nodes that correspond to graphs for which
this number is the same. Focusing on each such subbipartite auxiliary graph, the main

1394 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



observation is that because u is incident to at least one edge in H (on which graphs in C  0u
and C  0w cannot differ), while there is no such constraint on w, the degree of nodes on the
left-hand side is upper-bounded by the degree of nodes on the right-hand side, implying
that jC  0wj ≥ jC  0uj, and hence jCwj ≥ jCuj, as claimed.

The argument for graphs in G2 is essentially the same, where we consider the case
that H does not contains any vertex in S (the probability that such an event occurs,
allowing the algorithm to terminate, is addressed subsequently). In fact, since the degree
of vertices in S (which do not appear in the query-answer history) is larger than the
degree of vertices in V \ S, the claim is even slightly stronger. Thus, it still holds that
the probability that a neighbor query is answered by a vertex that has appeared in the
query-answer history in a sequence of oð ffiffiffi

n
p Þ queries is oð1Þ.

Finally consider the probability (for the case of G2) of answering a query qt ¼ ðv; iÞ
with ðu; i 0Þ, where u ∈ S. By the preceding analysis, there is a positive bias for answer-
ing with a vertex that has not appeared in the query-answer history (where this is the
case for all vertices in S, or else the algorithm could have terminated). As observed
previously, the number of vertices that have appeared in the query-answer history
after t queries is at most 2t, and so the number of vertices in V \ S that have not
appeared in the query-answer history after t queries is at least n− c− 2t ¼ ΩðnÞ.
We claim that for any fixed choice of u ∈ V \ S and w ∈ S that have not appeared
in the query-answer history, the probability that the query qt ¼ ðv; iÞ is answered with
ðw; i 0Þ is Oðd  0 ∕ dÞ times larger than the probability that it is answered with ðu; i  0  0Þ.
This follows by an argument very similar to the one just presented for comparing be-
tween the probability of answering with a vertex that has appeared in the query-
answer history, and the probability of answering with a vertex that has not appeared
in this history.

Specifically, for u ∈ V \ S and w ∈ S, we define C  0u and C  0w in the same manner as
defined previously, and we define the auxiliary bipartite graph in the same manner. Here
too we partition the auxiliary graph into subgraphs (with no edges between them) ac-
cording to the size of the intersection of the set of neighbors of u and the set of neighbors
of w. As long as this size is at most d∕ 2, the degree of nodes on the left-hand side is a
factor of Oðd 0 ∕ dÞ-larger than the degree of nodes on the right-hand side. However, the
relative number of graphs for which the size of this intersection is greater than d∕ 2 is
very small. It follows that the probability that a query qt ¼ ðv; iÞ is answered with ðu; i  0Þ,
where u ∈ S in a sequence of oð ffiffiffi

n
p Þ queries, is oð1Þ.

4.3. Proof of item 3 in Theorem 3. Similarly to the proof of item 2 in Theorem 3,
to establish item 3 in Theorem 3 we show that for every n, every constant c, and every
l ¼ Ωðn2Þ, l < n3 ∕ ð16c2Þ, there exist two families of n-vertex graphs for which the fol-
lowing holds. In both families the number of length-2 paths is ΘðlÞ, but in one family this
number is a factor c larger than in the other family. However, it is not possible to
distinguish with high constant probability between a graph selected randomly in one
family and a graph selected randomly in the other family using oðn3 ∕ 2

l1 ∕ 2Þ queries. (Note that
when l ¼ Ωðn3Þ, and in particular, l ≥ n3 ∕ ð16c2Þ, the lower bound is Ωð1Þ, which is
trivial.)

The first family, G1, is identical to the one defined in the proof of item 2 in
Theorem 3. That is, each graph is determined by d ¼ b ffiffiffiffiffiffiffiffiffiffiffiffi

2l ∕ n
p c matchings so that each

vertex has degree d and lðGÞ ¼ n · ðd2Þ < l. In the second family, denoted G2, each graph
is defined as follows. There is a subset, S , of s ¼ d4cl

n2 e vertices, and a complete bipartite
graph between S and V \ S. In addition, there are d− s perfect matchings between ver-
tices inV \ S. For an illustration, see Figure 4.2. Thus, each vertex inV \ S has degree d,

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1395

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



just like in G1. Now, for every G ∈ G2, using our assumption that l < n3 ∕ ð16c2Þ so that
s < n∕ 4,

lðGÞ ≥ s ·
�
n− s
2

�
> s ·

�
3n∕ 4
2

�
¼



4cl
n2

�
·
�
3n∕ 4
2

�
> cl:

The argument for proving that no algorithm can distinguish with high constant
probability between a graph selected randomly in G1 and a graph selected randomly
in G2 is similar to the one presented in the proof of item 2 in Theorem 3, and is actually
somewhat simpler. As in the proof of item 2 in Theorem 3, we define two processes, P1

and P2, where P1 is exactly as defined in the proof of Item 2 in Theorem 3.

The process P2. The process P2 maintains an ðn− sÞ× d table, ΓV \S , and an s×
ðn− sÞ table, ΓS . The rows of ΓV \S correspond to vertices in V \ S , and the rows in ΓS

correspond to vertices in S . A graph in G2 is determined by a perfect matching between
the union of the entries in the two tables, where each row in ΓV \SðvÞ contains exactly s
entries that are matched with entries of ΓS , one from each row. Here too we may assume
that once a vertex v that appears in either a query or an answer is determined to belong
to S (i.e., to label a row in ΓS), then A terminates, since it has evidence to distinguish
between the two families.

Given a query qtþ1 ¼ ðv; iÞ, if v is a vertex that was not yet observed in the query-
answer history, then P2 first determines whether it belongs to S or to V \ S. Let the
number of vertices already determined to be in V \ S be denoted by b (so that
b ≤ 2t). With probability s

n−b, the vertex v is determined to belong to S (at which point
A can terminate) and with probability 1− s

n−b, it is determined to belong to V \ S , so
that it labels a randomly chosen unlabeled row in ΓV \S . Next, the process decides
whether the entry ðv; iÞ corresponds to an edge whose other endpoint is in S or in
V \ S . Let bðvÞ be the number of entries in the row of v that have already been deter-
mined. Then, with probability s

d−bðvÞ, the entry is matched to a uniformly selected entry
in ΓS (so thatA can terminate), and with probability 1− s

d−bðvÞ, it is matched to an entry
in ΓV \S that is not yet matched. This entry is selected as follows. For each row r in ΓV \S
(labeled or unlabeled), let bðrÞ be the number of entries in r that are already matched.

FIG. 4.2. An illustration for the proof of item 3 in Theorem 3. On the left-hand side is a graph in G2, and on
the right-hand side are the corresponding tables, ΓV \S and ΓS . A connecting line between a pair of entries
indicates that there is an edge between the two corresponding vertices.

1396 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Then a row r is selected with probability d−bðrÞ−sP
r
ðd−bðrÞ−sÞ. If the row is not yet labeled, then

P2 uniformly selects a label u ∈ f1; : : : ; ng among all unused row labels. The index i  0 is
selected uniformly among all entries in the row r that are not yet matched.

Analyzing the distributions on query-answer histories. Consider P2, and
observe that if the number of queries performed is oðn3∕ 2 ∕ l1∕ 2Þ, then the probability
that a vertex v in a query ðv; iÞ is determined to belong to S is

oðn3 ∕ 2 ∕ l1 ∕ 2Þ · s

n− oðn3∕ 2 ∕ l1∕ 2Þ ¼ oðn3∕ 2 ∕ l1 ∕ 2Þ · dð4clÞ ∕ n
2e

n
¼ o

�
l1∕ 2

n3∕ 2

�
¼ oð1Þ:

The second observation about P2 is that for every t ¼ oðn3 ∕ 2 ∕ l1∕ 2Þ, the probability
that the answer to a query ðv; iÞ will be ðu; i 0Þ, where u ∈ S is upper-bounded by

s

d− bðvÞ ¼
dð4clÞ∕ n2e

b ffiffiffiffiffiffiffiffiffiffiffiffi
2l ∕ n

p c− oðn3 ∕ 2 ∕ l1 ∕ 2Þ ¼ Oðl1∕ 2 ∕ n3∕ 2Þ;

and so the probability that such an event occurs in a sequence of oðn3∕ 2 ∕ l1∕ 2Þ queries is
oð1Þ. Finally, for both processes, the probability that an answer to a query qtþ1 ¼ ðv; iÞ is
ðu; i  0Þ for u that has already appeared in the query-answer history is upper-bounded by
2t
n ¼ oðn1 ∕ 2l1 ∕ 2Þ, and so the probability that such an event occurs in a sequence of
oðn3 ∕ 2 ∕ l1∕ 2Þ queries is oðn2 ∕ lÞ ¼ oð1Þ.

Therefore, in both processes, if the number of queries performed is oðn3 ∕ 2 ∕ l1∕ 2Þ,
then for any algorithm A, with probability 1− oð1Þ, the sequence of answers to the
queries of A is a sequence of uniformly selected distinct pairs ðu; i 0Þ. This implies that
the statistical distance between the corresponding distributions on query-answer his-
tories is oð1Þ, and so it is not possible to distinguish random graphs from the two families
with probability greater than 1

2 þ oð1Þ. The issue of multiple edges is dealt with as in the
proof of item 2 in Theorem 3.

5. Extending the algorithm to stars. In this section we explain how our result
for approximating the number of length-2 paths can be extended to larger stars. The new
notations introduced in this section are collected in Table 5.1.

TABLE 5.1
New notations for stars, their meaning, and the location of their exact definition, if appropriate.

Notation Meaning Exact definition

νsðGÞ Number of s-stars in G

~νs Given estimate (const. factor) of νsðGÞ
β ϵ ∕ 32s

θ1 Threshold parameter for Algorithm 3 Step 1 in Algorithm 3

L Set of indices of large buckets Step 4 in Algorithm 3

θ2ðpÞ Threshold parameters for variant of Algorithm 2 Equation (5.1)

ν
ðσÞ
s ðG; L̄Þ Certain numbers of stars Definition 3

SIG Indices of significant buckets Definition 4

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1397

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Recall that an s-star is a graph over sþ 1 vertices in which one single vertex (the
star center) is adjacent to all other vertices (and there are no edges between the other
vertices). In particular, a length-2 path is a 2-star. The algorithm for approximating the
number of s-stars for s > 2 is a natural extension of the algorithm we presented for the
case of s ¼ 2, and its analysis is very similar. Here we describe the modifications in the
algorithm and its analysis. Recall that νsðGÞ denotes the number of s-stars in a graphG.
Here too we assume the algorithm is given a rough estimate ~νs for νsðGÞ such that
1
2 νsðGÞ ≤ ~νs ≤ 2νsðGÞ, and this assumption is removed in the same manner as in the
case of length-2 paths. We assume for simplicity that s is a constant, though it can also
be a very slowly growing function of n (since the dependence on s is exponential).

The variant of Algorithm 2 (referred to in Algorithm 3) used to get the estimates
fêi;jgj∈=L is the following. For each 0 ≤ p ≤ i, let

θ2ðpÞ¼def
ϵ
sþ1
s ~ν

1
s
s

c2ðsÞt2sþ1
s ð1þ βÞps ;ð5:1Þ

where c2ðsÞ grows at most exponentially with s. The minimum value p0 of p is still the
smallest value of p satisfying 1

4 θ2ðpþ 1Þ ≤ n. The sample size sðpÞ is still

sðpÞ ¼ Θ
�

n

θ2ðpÞ
�
t

β

�
2

log t

�
;ð5:2Þ

and in step 3c we have the following:
3c. If jS ðpÞ

i j < sðpÞ
n · 1

4ð1þβÞ θ2ðpÞ, then go to step 4. Else, if jS ðpÞ
i j > sðpÞ

n · 4 ~νs

ðð1þβÞi−1

s Þ
, then

terminate and return 0.

1398 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



THEOREM 4. If 12 νsðGÞ ≤ ~νs ≤ 2νsðGÞ, then with probability at least 2 ∕ 3, the output,
ν̂s, of Algorithm 3 satisfies ν̂s ¼ ð1� ϵÞ · νsðGÞ. The query complexity and running time
of the algorithm are

O

�
n

~ν
1

sþ1
s

þmin

�
n1−1

s;
ns−1

s

~ν
1−1

s
s

��
· polyðlog n; 1 ∕ ϵÞ:

As noted previously, the assumption that the algorithm has an estimate ~νs for νsðGÞ
is removed similarly to the way it was removed in the case of 2-stars.

5.1. Analyzing the complexity of Algorithm 3. As in the case of Algorithm 1,
the running time of Algorithm 3 is linear in its query complexity, and hence it suffices to
bound the latter. Recall that we restrict our attention to constant s, and hence, in our
bounds, we shall ignore terms that depend only on s. The query complexity of
Algorithm 3 is the sum of Θð nθ1 ·

log t
ϵ2

Þ ¼ Oð n

~ν
1

sþ1
s

Þ · polyðlog n; 1 ∕ ϵÞ (the size of the sample

selected in step 2 of the algorithm) and the number of queries performed in the execu-
tions of the variant of Algorithm 2. In order to bound the latter, we first observe that if
Algorithm 3 did not terminate in step 4, then

∀i ∈ L∶ð1þ βÞi ¼ O

�
~ν

1
sþ1
s · t

2
sþ1

ϵ
1

sþ1

�
:ð5:3Þ

Similarly, if the variant of Algorithm 2 did not terminate in any of its executions in step
3c (where this step is as described following (5.2)), then

∀i ∈ L and p0 ≤ p ≤ i∶jS ðpÞ
i j ¼ O

0
BB@sðpÞ

n
·

~νs� ð1þ βÞi−1

s

�
1
CCA:ð5:4Þ

In addition, it trivially always holds that jS ðpÞ
i j ≤ sðpÞ ¼ Oð n

θ2ðpÞ ð tβÞ2 log tÞ. Recall that p
runs from i down to p0, where p0 is the smallest value of p satisfying 1

4 θ2ðpþ 1Þ ≤ n,
where θ2ðpÞ is as defined in (5.1). That is,

p0 ¼
�
log1þβ

ϵsþ1 ~vs
c 02ðsÞ ⋅ t2sþ1ns




for an appropriate choice of c 02ðsÞ. This implies that if

~νs ≤
c 02ðsÞ · t2sþ1

ϵsþ1
· ns;

then p0 ¼ 0, and otherwise it may be larger. Therefore, the total number of queries
performed in the executions of the variant of Algorithm 2 is upper-bounded by

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1399

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



X
i∈L

Xi

p¼p0

0
BBB@sðpÞ þmin

8>>><
>>>:
sðpÞ;

sðpÞ

n
·

4 ~νs� ð1þ βÞi−1

s

�
9>>>=
>>>;

· gðpÞ

1
CCCA

≤
X
i∈L

i · sðiÞ þ
X
i∈L

Xi

p¼p0

min

8>>><
>>>:
sðpÞ;

sðpÞ

n
·

4 ~νs� ð1þ βÞi−1

s

�
9>>>=
>>>;

· gðpÞ:ð5:5Þ

For the first summand in (5.5) we apply (5.3) and get (similarly to (3.6))

X
i∈L

i · sðiÞ ≤
X
i∈L

t · O
�
n · t4þ1

s log t · ð1þ βÞis
ϵ3þ

1
s · ~ν

1
s
s

�

¼ O

�
n · t6þ1

s log t

ϵ3þ1
s · ~ν

1
s
s

·
�
~ν

1
sþ1
s · t3þ1

s

ϵ
1

sþ1

�1
s
�

¼ O

�
n

~ν
1

sþ1
s

�
· polyðlog n; 1 ∕ ϵÞ:ð5:6Þ

Turning to the second summand in (5.5), the following is derived similarly to (3.7):

X
i∈L

Xi

p¼p0

min

8>>><
>>>:
sðpÞ;

sðpÞ

n
·

4 ~νs� ð1þ βÞi−1

s

�
9>>>=
>>>;

· gðpÞ

¼
X
i∈L

Xi

p¼p0

O

�
min

�
n · ð1þ βÞps

~ν
1
s
s

;
~ν
1−1

s
s

ð1þ βÞsi−p
s

�
· ð1þ βÞi−p

�
· polyðlog n; 1 ∕ ϵÞ

¼
X
i∈L

O

�
min

�
n · ð1þ βÞi

~ν
1
s
s

;
~ν
1−1

s
s

ð1þ βÞðs−1Þi

�
· polyðlog n; 1 ∕ ϵÞ

�

· ð1þ βÞ−ð1−1
sÞp0 ·

Xi−p0

k¼0

ð1þ βÞ−ð1−1
sÞk:ð5:7Þ

In order to bound the expression in (5.7), we first note that if ð1þ βÞi ≤ ~ν1 ∕ ss

n1 ∕ s,

then n·ð1þβÞi
~ν1 ∕ ss

≤ n1−1∕ s, while if ð1þ βÞi ≥ ~νs
1 ∕ s

n1 ∕ s , then ~νs
1−1 ∕ s

ð1þβÞðs−1Þi ≤ n1−1 ∕ s as well. Since

ð1þ βÞ−ð1−1 ∕ sÞp0 ¼ 1 and
Pi−p0

k¼0 ð1þ βÞ−ð1−1∕ sÞk ¼ Oð1 ∕ βÞ, if p0 ¼ 0, then the right-
hand side of (5.7) is upper-bounded by

Oðn1−1
sÞ · polyðlog n; 1 ∕ ϵÞ:ð5:8Þ

If p0 > 0, then the bound in (5.8) should be multiplied by ð1þ βÞ−ð1−1 ∕ sÞp0 . By the de-
finition of p0, we have that ð1þ βÞ−ð1−1 ∕ sÞp0 ¼ Oð ns−1

~ν1−1 ∕ s
s

Þ · polyðlog n; 1 ∕ ϵÞ, and so we get

the (tighter) bound:

1400 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Oðn1−1
s · ð1þ βÞ−ð1−1

sÞp0Þ · polyðlog n; 1 ∕ ϵÞ ¼ O

�
ns−1

s

~ν
1−1

s
s

�
· polyðlog n; 1 ∕ ϵÞ:ð5:9Þ

The total number of queries performed in the executions of the variant of Algorithm 2 is
hence upper-bounded by

O

�
n

~ν
1

sþ1
s

þmin

�
n1−1

s;
ns−1

s

~ν
1−1

s
s

��
· polyðlog n; 1 ∕ ϵÞ:ð5:10Þ

5.2. Analyzing the correctness of Algorithm 3. We first note that the size of
the sample S selected by Algorithm 3 is Θð nθ1 ·

log t
ϵ2

Þ, that is, the same, as a function of θ1,
as the sample size selected by Algorithm 1. Therefore, Lemma 1 and Corollary 2 hold as
is (for θ1 as defined in step 1 of Algorithm 3). The first part of Corollary 2 implies that

(with high constant probability) the estimate
P

i∈Ln · jSij
jS j ·

� ð1þ βÞi
s

�
is close to the

actual number of s-stars whose center belongs to a bucket Bi such that i ∈ L. It also
implies (similar to what was shown in the case of 2-stars) that Algorithm 3 does not
terminate in step 4 (with high constant probability).

The remainder of the analysis deals with the quality of the estimate for the number
of s-stars in G whose center is not in L. First observe that by the second part of
Corollary 2 we have that with high constant probability,

X
j∈=L

jBjj < 4θ1t:ð5:11Þ

In the next definition we generalize Definition 1.
DEFINITION 3. For j ∈= L and σ ∈ f1; 2; : : : ; sþ 1g, let νðσÞs ðj; G; L̄Þ denote the num-

ber of s-stars in G whose center belongs to Bj and such that the number of vertices in the
star that belong to Bk for k ∈= L (including j) is σ. Let νðσÞs ðG; L̄Þ ¼ P

j∈=Lν
ðσÞ
s ðj; G; L̄Þ and

let νsðj; G; L̄Þ ¼ P
sþ1
σ¼1 ν

ðσÞ
s ðj; G; L̄Þ.

We first observe that
P

sþ1
σ¼2 ν

ðσÞ
s ðG; L̄Þ (stars that include at least one vertex from Bj

such that j ∈= L in addition to the center vertex) is relatively small (with high prob-
ability).

LEMMA 12. With high constant probability,
P

sþ1
σ¼2 ν

ðσÞ
s ðG; L̄Þ ≤ ϵ

8 νsðGÞ.
Proof. We first observe that since the total number of s-stars is νsðGÞ, for every

bucket Bj we have that ð ð1þ βÞj−1 þ 1
s

Þ ≤ νsðGÞ ∕ jBjj. Hence,

ð1þ βÞj ≤ ð1þ βÞ ·
��

s! · νsðGÞ
jBjj

�1
s þ ðs− 1Þ

�
:

For each j ∈= L, we have that
P

sþ1
σ¼2 ν

ðσÞ
s ðj; G; L̄Þ is the number of s-stars whose center, v,

is in Bj and that have at least one additional vertex in a bucket Bk, where k ∈= L. (The
remaining s− 1 vertices may belong to any of the at most ð1þ βÞj neighbors of v.)
Therefore,

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1401

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Xsþ1

σ¼2

ν
ðσÞ
s ðG; L̄Þ ≤

X
j∈=L

jBjj ·
X
k∈=L

jBkj ·
� ð1þ βÞj

s− 1

�

≤ 4θ1t ·
X
j∈=L

jBjj ·
� ð1þ βÞ ·

��
s!·νsðGÞ
jBjj

�1
s þ ðs− 1Þ

�
s− 1

�
:ð5:12Þ

Let J 1 ¼ fj ∈= L∶ðs!·νsðGÞ
jBjj Þ1s ≤ sg and let J 2 ¼ fj ∈= L∶ðs!·νsðGÞ

jBjj Þ1s > sg. Then,

4θ1t ·
X
j∈J1

jBjj ·
� ð1þ βÞ ·

��
s!·νsðGÞ
jBjj

�1
s þ ðs− 1Þ

�
s− 1

�

≤ 16ðθ1 · tÞ2 · 24s <
ϵ

32
~νs;ð5:13Þ

where the last inequality holds for c1ðsÞ ≥ 24sþ9. Turning to J 2, we have that

4θ1t ·
X
j∈J2

jBjj ·
0
@ ð1þ βÞ ·

��
s!·νsðGÞ
jBjj

�1
s þ ðs− 1Þ

�
s− 1

1
A

≤ 4θ1t ·
X
j∈J2

jBjj ·
0
@ 4 ·

�
s!·νsðGÞ
jBjj

�1
s

s− 1

1
A

≤ 4θ1t ·
X
j∈J2

4sðs!Þ1s
ðs− 1Þ! · jBjj1s · ðνsðGÞÞ1−1

s

≤
4sðs!Þ1s
ðs− 1Þ! · 4θ1t · t · ð4θ1Þ

1
s · ðνsðGÞÞ1−1

s

≤
4sþ2ðs!Þ1s
ðs− 1Þ! · t

2 · θ1þ
1
s

1 · ðνsðGÞÞ1−1
s

≤
4sþ2ðs!Þ1s
ðs− 1Þ! · t

2 ·
�

ϵ
s

sþ1 ~ν
1

sþ1
s

c1ðsÞt 2s
sþ1

�1þ1
s

· ðνsðGÞÞ1−1
s

≤
ϵ

32
~νs;ð5:14Þ

where the last inequality holds for an appropriate choice of c1ðsÞ. The lemma follows by
combining (5.12), (5.13), and (5.14). ▯

We next modify the notion of significant buckets (for buckets Bj such that j ∈= L).
DEFINITION 4 (significant small buckets). For every j ∈= L we say that j is

significant if

jBjj ·
� ð1þ βÞj

s

�
≥

ϵ

c3ðsÞt
~νs;

where c3ðsÞ grows at most exponentially with s. We denote the set of indices of significant
buckets Bj (where j ∈= L) by SIG.

1402 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Note that by the definition of SIG,X
j∈=L;j∈=SIG

νsðjÞ <
ϵ

c3ðsÞ
~νs ≤

2ϵ

c3ðsÞ
νsðGÞ:ð5:15Þ

The next lemma is proved very similarly to Lemma 4.
LEMMA 13. If j ∈ SIG, then for every r such that jBi;j;rj > 0 for some i, we have that

jEjj ≥
c4ðsÞt2

ϵ
· θ2ðrÞ · ð1þ βÞr−1

for c4ðsÞ ¼ ðc2ðsÞ ∕ c3ðsÞ1 ∕ sÞ · ðs!Þ1 ∕ s.
Proof. Since j is significant,� ð1þ βÞj

s

�
≥

ϵ

c3ðsÞtjBjj
~νs:

Using the fact that � ð1þ βÞj
s

�
≤

ðð1þ βÞjÞs
s!

;

we get that

ð1þ βÞj >
�

s!

c3ðsÞ
�1

s

·
�

ϵ ~νs
tjBjj

�1
s

:

Since the graph contains no multiple edges, jBjj ≥ ð1þ βÞr for every r such that Bi;j;r is
not empty. Therefore (similar to the proof of Lemma 4),

jEjj ≥ jBjj · ð1þ βÞj−1

≥
ðs!Þ1s

c3ðsÞ1sð1þ βÞ ·
ϵ
1
s ~ν

1
s
sjBjj1−1

s

t
1
s

≥
ðs!Þ1s

c3ðsÞ1sð1þ βÞt1s · ϵ
1
s ~ν

1
s
sð1þ βÞrð1−1

sÞ

≥
ðc2ðsÞ ∕ c3ðsÞ1sÞt2

ϵ
θ2ðrÞ · ð1þ βÞr−1;

and the proof is completed. ▯
We now turn to explaining what needs to be modified in the analysis of the variant

of Algorithm 2 that is used in Algorithm 3. Recall that sðpÞ denotes the size of the sample
S ðpÞ, where sðpÞ ¼ Θð n

θ2ðpÞ · ð tβÞ2 log tÞ. That is, the sample size is the same, as a function of

θ2ðpÞ, as in Algorithm 2. Hence, Lemma 5 and Corollary 6 hold as is, and here we also
have that with high constant probability, the variant of Algorithm 2 does not terminate
in step 3c. Lemmas 7 and 8 also hold without any changes. We do, however, need to
modify (the second part of) Lemma 9, and the modified version is stated next.

LEMMA 14. For an appropriate choice of c2ðsÞ (in the definition of θ2ð·Þ, that is,
(5.1)) and of c3ðsÞ (in Definition 2), with high constant probability, for all j ∈= L, if
j ∈ SIG, then

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1403

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



�
1−

ϵ

8

�X
i∈L

jEi;jj−
ϵ

16
jEjj ≤

X
i∈L

êi;j ≤
�
1þ ϵ

4

�
jEjj;

and if j ∈= SIG, then

X
i∈L

1

s
êi;j ·

� ð1þ βÞj
s− 1

�
≤

ϵ

4t
νsðGÞ:

The proof of Lemma 14 is very similar to the proof of Lemma 9. The only difference
is that here we use the modified definition of significant buckets (Definition 4) and the
corresponding lemma (Lemma 13) rather than the original definition (Definition 2) and
lemma (Lemma 4). Note that in both lemmas, if j ∈ SIG, then jEjj is lower bounded by
Ωðt2ϵ θ2ðrÞ · ð1þ βÞrÞ (for each r such that Bi;j;r is not empty). As shown in the proof of
Lemma 9 (based on the lemmas that hold as is for the case of s-stars), when
jBi;j;rj ≤ 1

4 θ2ðrÞ, the upper bound on êi;j;r is of the order of θ2ðrÞ · ð1þ βÞr (see
(3.20)), and when jBi;j;rj > 1

4 θ2ðrÞ, the additive term in the deviation from jEi;j;rj is
of the same order (see (3.31) and (3.32)). Therefore, when j ∈ SIG, they both translate
to expressions of the form ϵ

c4ðsÞt2 jEjj, as in the proof of Lemma 9 (see (3.21) and (3.33)).
On the other hand, when j ∈= SIG, we need to show that

θ2ðrÞ · ð1þ βÞr ·
� ð1þ βÞj

s− 1

�
≤

ϵ

c5ðsÞt3
νsðGÞ

for an appropriate choice of c5ðsÞ.
If j ∈= SIG, then

� ð1þ βÞj
s

�
≤ ϵ

c3t
~νs

jBjj, and so ð1þ βÞj ≤ ðϵs!c3t
· ~νs
jBjjÞ

1 ∕ s þ ðs− 1Þ. If
ðϵs!c3t

~νs
jBjjÞ

1 ∕ s ≤ s, then ð1þ βÞj ≤ 2s so that

θ2ðrÞ · ð1þ βÞr ·
� ð1þ βÞj

s− 1

�
≤

ϵ
sþ1
s ~ν

1
s
s

c2ðsÞt2þ1
sð1þ βÞrs · ð1þ βÞr · 22s

≤
ϵ
sþ1
s ~ν

1
s
s

c2ðsÞt2þ1
s

· ð1þ βÞð1−1
sÞ · 22s

≤
ϵ
sþ1
s ~ν

1
s
s

c2ðsÞt2þ1
s

· ð4θ1Þ1−1
s · 22s

≤
ϵ
sþ1
s ~ν

1
s
s

c2ðsÞt2þ1
s

·
�
4ϵ

s
sþ1 ~νs

1
sþ1

c1ðsÞt 2s
sþ1

�1−1
s

· 22s

¼ ϵ

c5ðsÞt3
νsðGÞ

for an appropriate setting of c5ðsÞ (that is a function of c1ðsÞ, c2ðsÞ, and s). We have used
the fact that ð1þ βÞr ≤ jBjj (since there are no multiple edges) and that j ∈= L (so that

jBjj ≤ 4θ1 ¼ 4ϵ
s

sþ1 ~ν
1

sþ1
s

c1ðsÞt
2s
sþ1

). On the other hand, if ð ϵs!
c3ðsÞt

~νs
jBjjÞ

1 ∕ s > s, then ð1þ βÞj ≤
2ð ϵs!

c3ðsÞt
~νs

jBjjÞ
1∕ s so that

1404 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



θ2ðrÞ · ð1þ βÞr ·
� ð1þ βÞj

s− 1

�
≤

ϵ
sþ1
s ~ν

1
s
s

c2ðsÞt2þ1
s

· ð1þ βÞrð1−1∕ sÞ · 2s−1 ·
�

ϵs!

c3ðsÞt
·

~νs
jBjj

�
1−1

s

<
s2s

c2ðsÞc3ðsÞ
·
ϵ

t3
· ~νs ¼

ϵ

c 05ðsÞt3
νsðGÞ

for an appropriate setting of c 05ðsÞ, which is a function of c2ðsÞ, c3ðsÞ, and s (where here
too we used the fact that ð1þ βÞr ≤ jBjj).

The remainder of the proof is essentially as in the proof of Lemma 9, where the only
difference is in the constraints on c2ðsÞ and c3ðsÞ.

5.3. Putting it all together: Proving the first part of Theorem 4. Recall
that

ν̂s ¼
X
i∈L

n ·
jSij
jS j ·

� ð1þ βÞi
s

�
þ
X
j∈=L

1

s

X
i∈L

êi;j ·
� ð1þ βÞj − 1

s− 1

�
:ð5:16Þ

Let νsðG;LÞ denote the number of s-stars inG whose center belongs to a bucket Bi such
that i ∈ L, and let νsðG; L̄Þ denote the number of s-stars whose center belongs to a buck-
et Bj such that j ∈= L (so that νsðG;LÞ þ νsðG; L̄Þ ¼ νsðGÞ). By the first part of
Corollary 2 (and the setting of β ¼ ϵ

32s), we have that with high constant probability

X
i∈L

n ·
jSij
jSj ·

� ð1þ βÞi
s

�
¼

�
1� ϵ

4

�
νsðG;LÞ:ð5:17Þ

Turning to the second summand in (5.16), by Lemma 14,

X
j∈=L

1

s

X
i∈L

êi;j ·
� ð1þ βÞj − 1

s− 1

�

¼
X

j∈=L;j∈SIG

1

s

X
i∈L

êi;j ·
� ð1þ βÞj − 1

s− 1

�

þ
X

j∈=L;j∈=SIG

1

s

X
i∈L

êi;j ·
� ð1þ βÞj − 1

s− 1

�

≤
X

j∈=L;j∈SIG

1

s
·
�
1þ ϵ

4

�
jEjj ·

� ð1þ βÞj − 1

s− 1

�
þ ϵ

4
νsðGÞ

≤
�
1þ ϵ

4

�
·
X
j∈=L

1

s
jEjj ·

� ð1þ βÞj − 1

s− 1

�
þ ϵ

4
νsðGÞ

≤
�
1þ ϵ

2

�
νsðG; L̄Þ þ ϵ

4
νsðGÞ:ð5:18Þ

In the other direction, recall that νðσÞs ðG; L̄Þ ¼ P
j∈=Lν

ðσÞ
s ðj;G; L̄Þ, where for j ∈= L and

σ ∈ f1; : : : ; sþ 1g, we let νðσÞs ðj;G; L̄Þ denote the number of s-stars whose center be-
longs to Bj and such that the number of vertices in the star that belong to Bk for k ∈=
L (including j) is σ,

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1405

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



X
j∈=L

1

s

X
i∈L

êi;j ·
� ð1þ βÞj − 1

s− 1

�

≥
X

j∈=L;j∈SIG

1

s

�X
i∈L

�
1−

ϵ

8

�
jEi;jj−

ϵ

16
jEjj

�
·
� ð1þ βÞj − 1

s− 1

�

≥
X
j∈=L

1

s

X
i∈L

�
1−

ϵ

8

�
jEi;jj ·

� ð1þ βÞj − 1
s− 1

�
−

ð1þ βÞs−1ϵ

16
νsðGÞ

−
X

j∈=L;j∈=SIG

1

s

X
i∈L

�
1−

ϵ

8

�
jEi;jj ·

� ð1þ βÞj − 1
s− 1

�

≥
�
1−

ϵ

8

�
·
Xs

σ¼1

s− ðσ− 1Þ
s

ν
ðσÞ
s ðG; L̄Þ− ϵ

4
νsðGÞ

ð5:19Þ

≥
�
1−

ϵ

8

�
·
Xsþ1

σ¼1

ν
ðσÞ
s ðG; L̄Þ−

Xsþ1

σ¼2

ν
ðσÞ
s ðG; L̄Þ− ϵ

4
νsðGÞ

≥
�
1−

ϵ

8

�
νsðG; L̄Þ− ϵ

8
νsðGÞ− ϵ

4
νsðGÞ

ð5:20Þ

¼
�
1−

ϵ

8

�
νsðG; L̄Þ− 3ϵ

8
νsðGÞ;ð5:21Þ

where in (5.19) we used (5.15) (based on the definition of SIG and for an appropriate
choice of c3ðsÞ), and in (5.20) we applied Lemma 12. By combining (5.17), (5.18), and
(5.21), we get that ν̂s ¼ ð1� ϵÞνsðGÞ with high constant probability.

6. Lower bounds for approximating the number of s-stars. We also have
matching lower bounds similar to what we had for the case of length-2 paths. For sim-
plicity we state them for constant s, but they can be extended to nonconstant s.

THEOREM 5. Let s be a constant.
1. Any (multiplicative) approximation algorithm for the number of s-stars must

perform Ωð n

ðνsðGÞÞ 1
sþ1
Þ queries.

2. Any constant-factor approximation algorithm for the number of s-stars must
perform Ωðn1−1

sÞ queries when the number of s-stars is OðnsÞ.
3. Any constant-factor approximation algorithm for the number of s-stars must

perform Ωð ns−1
s

ðνsðGÞÞ1−1
s
Þ queries when the number of s-stars is ΩðnsÞ.

Since the constructions are very similar to those used in the proofs of items 1–3 of
Theorem 3, we only describe the needed modifications in the constructions and the ana-
lysis. Here too we allow multiple edges in the constructions, and this assumption can be
removed in a similar manner to the way it was dealt with in Theorem 3.

Proof sketch of item 1 in Theorem 5. For any choice of ~νs, consider the family of all

n-vertex graphs that each consists of a clique of size b ¼ d ~ν
1

sþ1
s e and an independent set of

size n− b. The number of s-stars in the graph is b · ðb−1
s Þ ¼ Θð ~νsÞ (recall that we assume

that s is a constant). However, in order to distinguish between a random graph in the
family and the empty graph, it is necessary to perform a query on a vertex in the clique.
The probability of hitting such a vertex in oð n

ν
1

sþ1
s ðGÞ

Þ queries is oð1Þ.

1406 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Proof sketch of item 2 in Theorem 5. First note that the lower bound in item 1, that
is, Ωð n

ðνsðGÞÞ 1
sþ1
Þ, is higher than the lower bound in this item, that is, Ωðn1−1

sÞ for

νsðGÞ < n1þ1
s, and hence we may restrict our attention to the case that νsðGÞ ≥

n1þ1
s. We modify the construction of the two families of graphs from the proof of item

2 in Theorem 3 in the following manner. We start with the second family, denoted G2. As
in the proof of item 2 in Theorem 3, each graph in this family is determined by two
subsets: S of a constant-size c (which determines the gap between the number of s-stars
in the two families), and V \ S . Each vertex in S has d 0 ¼ dðs! · ~νsÞ1se þ s neighbors in

V \ S , and each vertex in V \ S has d ¼ bðs! ~νsn Þ1sc neighbors (in V \ S and possibly in S).
Thus, the difference between the family G2 as defined here and as defined in the proof of
item 2 in Theorem 3 is only in the setting of d and d 0.

The family G1 is also very similar to the one defined in the proof of item 2 in
Theorem 3, but we perform a small modification, which slightly simplifies the analysis.
Consider taking a graph in G2 and matching the edges between V \ S and S . That is, we
replace pairs of edges ðv;wÞ, ðu; zÞ, where u, v ∈ V \ S and w, z ∈ S , by a single edge
between v and u. We shall refer to these edges as special edges. Note that the degree of
each vertex in V \ S remains d, and the set S becomes an independent set. Let G1 be the
family of graphs resulting from performing this operation on graphs in G2 (where the
matching may be arbitrary). Observe that the number of s-stars in each graph
G ∈ G1 satisfies

νsðGÞ ¼ ðn− cÞ ·
�
d
s

�
< ~νs;

and the number of s-stars in each graph G ∈ G2 satisfies

νsðGÞ > c ·
�
d  0

s

�
¼ c ·

�
dðs! · ~νsÞ1se þ s

s

�
> c · ~νs:

Given the above description, the two processes (that answer the queries of the algorithm
and construct a random graph along the way) are essentially as in the proof of item 2 in
Theorem 3. The only difference is in the setting of d and d 0 and in the fact that the first
process also has a small probability of “hitting” a vertex in S (at which point the
algorithm can terminate, since the vertices in S have degree 0). We also assume that
the first process notifies the algorithm when a special edge is revealed (at which point the
algorithm can terminate).

Consider both processes and observe that if the number of queries performed is
oðn1−1

sÞ, then for both processes the probability of the event that a vertex v in a query
ðv; iÞ is determined to belong to S is

oðn1−1
sÞ · c

n− c− oðn1−1
sÞ ¼ oðn−1

sÞ:

The second observation is that for every t ¼ oðn1−1
sÞ, the probability of the event that

the answer of P2 to a query qt ¼ ðv; iÞ will be ðu; i 0Þ, where u ∈ S , and similarly, that the
answer of P1 corresponds to a special edge, is upper-bounded by

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1407

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



c · d 0

ðn− cÞ · d− 2t
¼ c · ðdðs! · ~νsÞ1se þ sÞ

ðn− cÞ ·
��

s! ~νs
n

�1
s



− oðn1−1

sÞ
¼ Oðn−ð1−1

sÞÞ:

Hence, the probability that such an event occurs in a sequence of oðn1−1
sÞ queries is oð1Þ.

For a neighbor query qtþ1 ¼ ðv; iÞ, consider the probability that the answer to this
query is ðu; i  0Þ for u that has already appeared in the query-answer history. In the proof
of item 2 of Theorem 3, we showed that this probability is sufficiently small. Here we do
not (and cannot) make such a claim. However, given the way we modified the construc-
tion, as long as neither of the above-mentioned events occur, the distributions on the
query-answer histories are identical.

Proof sketch of item 3 in Theorem 5. We modify the construction of the two families
of graphs from the proof of item 3 in Theorem 3 in the following manner, where we start
with the second family, G2. In G2 each graph contains a subset S of b ¼ dc·4s! ~νsns e vertices.
There is a complete bipartite graph between S and V \ S , and there are d− b perfect
matchings between vertices in V \ S, where d ¼ bðs! ~νsn Þ1sc, so that every vertex in V \ S
has degree d. In order to define the first family, G1, we perform the same “edge-contrac-
tion” procedure as in the proof of item 2. That is, given a graph in G2, we replace pairs of
edges between V \ S and S with single edges between vertices in V \ S . Here too we
maintain the degrees of vertices in V \ S , and S becomes an independent set. Observe
that by the choice of d, the number of s-stars in each graph in G1 is upper-bounded by ~νs.
Assuming ~νs < nsþ1 ∕ c 0 for some sufficiently large constant c 0, for everyG ∈ G2, we have
that b < n∕ ð2sÞ and so

νsðGÞ ≥ b ·
�
n− b
s

�
> b ·

�
nð1− 1 ∕ ð2sÞÞ

s

�
≥

c · 4s! ~νs
ns ·

�
n

�
1− 1

s

��
s

s!
> c · ~νs:

The processes P1 and P2 are defined very similarly to the way they were defined in
the proof of item 3 in Theorem 3, where d and jS j ¼ b are as defined above. Other than
the different setting of the parameters, here we take into account (in the definition ofP1)
the fact that in each graph in G1, the d perfect matchings are only between vertices in
V \ S , and that there is a probability of “hitting” vertices in S . For both processes, if the
number of queries performed is oðns−1

s ∕ ~νs
1−1

sÞ, then the probability that a vertex v in a
query ðv; iÞ is determined to belong to S is

oðns−1
s ∕ ~νs

1−1
sÞ · b

n− oðns−1
s ∕ ~ν

1−1
s

s Þ
¼ oðns−1

s ∕ ~ν
1−1

s
s Þ · c · 4s! ~νs ∕ ns

n

¼ oð ~ν1
s
s ∕ nð1þ1

sÞÞ ¼ oð1Þ:
Next, for every t ¼ oðn1−1

sÞ, the probability that the answer of P2 to a query qt ¼ ðv; iÞ
will be ðu; i  0Þ, where u ∈ S , and similarly, that the answer of P1 corresponds to a special
edge, is upper-bounded by

O

�
~νs ∕ ns

ð ~νs ∕ nÞ1s
�

¼ 0ð ~ν1−1
s

s ∕ ns−1
sÞ:

Therefore, the probability that such an event occurs in a sequence of oðns−1
s ∕ ~νs

1−1
sÞ

queries is oð1Þ. If none of the above events occur, then we get the same distribution
on query-answer histories.

1408 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



7. Other small subgraphs. Other than s-stars, two additional natural extensions
of length-2 paths are triangles and length-3 paths (or, more generally, length-L paths).

We first observe that there are lower bounds that are linear in the number of edgesm
whenm ¼ ΘðnÞ, both for triangles and for length-3 paths. These lower bounds hold in the
query model studied in this paper, that is, assuming the algorithm is allowed only degree
queries and neighbor queries. Moreover, these lower bounds hold even if the algorithm is
also allowed to sample edges uniformly. However, they do not hold if the algorithm is
allowed vertex-pair queries, that is, if it may ask whether there is an edge between
any two vertices u and v of its choice. Thus, it is possible that there are sublinear algo-
rithms for approximating the number of these subgraphs assuming the algorithm is al-
lowed vertex-pair queries. It can be verified that in the case of length-2 paths, and
more generally, s-stars, the lower bounds hold even when allowed vertex-pair queries.4

THEOREM 6. For m ¼ OðnÞ, it is necessary to perform ΩðmÞ queries in order to dis-
tinguish with high constant probability between the case that a graph contains ΘðnÞ tri-
angles and the case that it contains no triangles. This bound holds when neighbor and
degree queries are allowed.

Proof. Consider the following two families of graphs. In the first family each graph
consists of a complete bipartite graph between two vertices and all other vertices. In the
second family each graph consists of a complete bipartite graph between two vertices
and all other vertices but one, where this vertex is an isolated vertex. In addition there is
an edge between the two vertices. Within each family the graphs differ only in the label-
ing of vertices and in the labeling of the edges incident to each vertex. Observe that in
both families the two high-degree vertices have degree n− 2 and the rest of the vertices
have degree 2, with the exception of the single isolated vertex in the second family. By
construction, each graph in the first family contains no triangles and each graph in the
second family contains n− 3 triangles. However, in order to distinguish between a ran-
dom graph in the first family and a random graph in the second family, it is necessary to
either hit the isolated vertex in graphs of the second family or to hit the edge between the
two high-degree vertices in graphs of the second family, or to observe all neighbors of one
of the high-degree vertices in the first family. In the latter case, n− 2 queries are ne-
cessary, and in the former cases ΩðnÞ queries are necessary (in order for one of these
events to occur with constant probability). ▯

THEOREM 7. For m ¼ OðnÞ, it is necessary to perform ΩðmÞ queries in order to dis-
tinguish with high constant probability between the case that a graph contains Θðn2Þ
length-3 paths and the case that it contains no length-3 paths. This bound holds when
neighbor and degree queries are allowed.

Proof. Consider the following two families of graphs, where we assume for simpli-
city that n is even (otherwise there is an isolated vertex and the graph is defined over
n− 1 vertices, where n− 1 is even). In the first family, each graph consists of two stars,
where in each star there are n∕ 2 vertices (including the center vertex). In the second
family, each graph consists of two stars, where in each star there are n ∕ 2− 1 vertices
(including the center vertex). In addition, there are two isolated vertices, and there
is an edge between the two star centers. Graphs in the two families differ only in
the labeling of vertices and in the labeling of the edges for the star centers. Observe
that in both families, the star centers have degree n∕ 2. By construction, each graph
in the first family contains no length-3 paths and each graph in the second family

4To verify this note that the lower bounds are essentially based on “hitting” a certain subset of vertices,
either by querying one of these vertices or receiving one of them in an answer to a neighbor queries. If vertex-
pair queries are allowed, then the algorithm still needs to hit a vertex in this subset in one of its queries.

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1409

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



contains Θðn2Þ length-3 paths. However, in order to distinguish between a random
graph in the first family and a random graph in the second family, it is necessary to
either hit one of the isolated vertices in graphs of the second family or to hit the edge
between the centers in graphs of the second family, or to observe all neighbors of one of
the centers in the first family. In the latter case, n∕ 2 queries are necessary, and in the
former cases, ΩðnÞ queries are necessary (in order for one of these events to occur with
constant probability). ▯

Acknowledgments. We would like to thank the anonymous reviewers of
SODA 2010 and the anonymous reviewers of this manuscript for their helpful
comments.

REFERENCES

[ADH+08] N. ALON, P. DAO, I. HAJIRASOULIHA, F. HORMOZDIARI, AND S. C. SAHINALP, Biomolecular
network motif counting and discovery by color coding, Bioinformatics, 24 (2008),
pp. 241–249.

[AFS09] O. AMINI, F. FOMIN, AND S. SAURABH, Counting subgraphs via homomorphisms, in Proceedings of
the 38th International Colloquium on Automata, Languages and Programming, 2009,
pp. 71–82.

[AG09] N. ALON AND S. GUTNER,Balanced hashing, color coding and approximate counting, in Proceedings
of the 4th International Workshop on Parameterized and Exact Computation (IWPEC),
2009, pp. 1–16.

[AG10] N. ALON AND S. GUTNER, Balanced families of perfect hash functions and their applications, ACM
Trans. Algorithms, 6 (2010), article 54.

[AR02] V. ARVIND AND V. RAMAN, Approximation algorithms for some parameterized counting problems,
in Proceedings of the 13th International Symposium on Algorithms and Computation
(ISAAC), 2002, pp. 453–464.

[AYZ95] N. ALON, R. YUSTER, AND U. ZWICK, Color coding, J. ACM, 42 (1995), pp. 844–856.
[AYZ97] N. ALON, R. YUSTER, AND U. ZWICK, Finding and counting given length cycles, Algorithmica, 17

(1997) pp. 209–223.
[BBCG08] L. BECCHETTI, P. BOLDI, C. CASTILLO, AND A. GIONIS, Efficient semi-streaming algorithms

for local triangle counting in massive graphs, in Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD), 2008,
pp. 16–24.

[BHKK09] A. BJÖRKLUND, T. HUSFELDT, P. KASAKI, ANDM. KOIVISTO,Counting paths and packings in halves, in
Proceedings of the Seventeenth Annual European Symposium on Algorithms (ESA), Lecture
Notes in Comput. Sci. 5747, Springer, Berlin, 2009, pp. 578–586.

[BKKR10] I. BEN-ELIEZER, T. KAUFMAN, M. KRIVELEVICH, AND D. RON, Comparing the strength of query types
in property testing: The case of testing k-colorability, in Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, ACM, New York, 2008, pp. 1213–1222.

[CEF+05] A. CZUMAJ, F. ERGUN, L. FORTNOW, A. MAGEN, I. NEWMAN, R. RUBINFELD, AND C. SOHLER, Approx-
imating the weight of the Euclidean minimum spanning tree in sublinear time, SIAM J.
Comput., 35 (2005), pp. 91–109.

[CRT05] B. CHAZELLE, R. RUBINFELD, AND L. TREVISAN,Approximating the minimum spanning tree weight in
sublinear time, SIAM J. Comput., 34 (2005), pp. 1370–1379.

[CS09] A. CZUMAJ AND C. SOHLER, Estimating the weight of metric minimum spanning trees in sublinear
time, SIAM J. Comput., 39 (2009), pp. 904–922.

[DLR95] R. DUKE, H. LEFMANN, AND V. RÖDL, A fast approximation algorithm for computing
the frequencies of subgraphs in a given graph, SIAM J. Comput., 24 (1995),
pp. 598–620.

[DSG+08] B. DOST, T. SHLOMI, N. GUPTA, E. RUPPIN, V. BAFNA, AND R. SHARAN, QNet: A tool for querying
protein interaction networks, J. Comput. Biol., 15 (2008), pp. 913–925.

[Fei06] U. FEIGE, On sums of independent random variables with unbounded variance and estimating the
average degree in a graph, SIAM J. Comput., 35 (2006), pp. 964–984.

[FG04] J. FLUM AND M. GROHE, The parameterized complexity of counting problems, SIAM J. Comput., 33
(2004), pp. 892–922.

1410 MIRA GONEN, DANA RON, AND YUVAL SHAVITT

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



[GK07] J. GROCHOW AND M. KELLIS, Network motif discovery using subgraph enumeration and symmetry-
breaking, in Proceedings of the 11th Annual International Conference Research in
Computational Molecular Biology (RECOMB), 2007, pp. 92–106.

[GR02] O. GOLDREICH AND D. RON, Property testing in bounded degree graphs, Algorithmica, 32 (2002),
pp. 302–343.

[GR08] O. GOLDREICH AND D. RON, Approximating average parameters of graphs, Random Structures
Algorithms, 32 (2008), pp. 473–493.

[GS09] M. GONEN AND Y. SHAVITT,Approximating the number of network motifs, Internet Math., 6 (2009),
pp. 349–372.

[HA08] D. HALES AND S. ARTECONI, Motifs in evolving cooperative networks look like protein structure
networks, Netw. Heterog. Media, 3 (2008), pp. 239–249.

[HBPS07] F. HORMOZDIARI, P. BERENBRINK, N. PRZULJ, AND S. C. SAHINALP, Not all scale-free networks are
born equal: The role of the seed graph in ppi network evolution, PLoS: Computational Biology,
3 (2007), p. e118.

[KIMA04] N. KASHTAN, S. ITZKOVITZ, R. MILO, AND U. ALON, Efficient sampling algorithm for estimating
subgraph concentrations and detecting network motifs, Bioinformatics, 20 (2004),
pp. 1746–1758.

[KKR04] T. KAUFMAN, M. KRIVELEVICH, AND D. RON,Tight bounds for testing bipartiteness in general graphs,
SIAM J. Comput., 33 (2004), pp. 1441–1483.

[KL83] R. KARP AND M. LUBY, Monte-carlo algorithms for enumeration and reliability problems, in
Proceedings of the Twenty-Fourth Annual Symposium on Foundations of Computer Science
(Annual IEEE Symposium on Foundations of Computer Science), 1983, pp. 56–64.

[Kou08] I. KOUTIS, Faster algebraic algorithms for path and packing problems, in Proceedings of the 38th
International Colloquium on Automata, Languages and Programming, Lecture Notes in
Comput. Sci. 5125, Springer, Berlin, 2008, pp. 575–586.

[KW09] I. KOUTIS AND R. WILLIAMS, Limits and applications of group algebras for parameterized problems,
in Proceedings of the 38th International Colloquium on Automata, Languages and
Programming, 2009, pp. 653–664.

[MSOI+02] R. MILO, S. SHEN-ORR, S. ITZKOVITZ, N. KASHTAN, D. CHKLOVSKII, AND U. ALON, Network motifs:
Simple building blocks of complex networks, Science, 298 (2002), pp. 824–827.

[NO08] H. N. NGUYEN AND K. ONAK, Constant-time approximation algorithms via local improvements., in
Proceedings of the Forty-Ninth Annual Symposium on Foundations of Computer Science
(Annual IEEE Symposium on Foundations of Computer Science), 2008, pp. 327–336.

[PCJ04] N. PRZULJ, D. G. CORNEIL, AND I. JURISICA, Modeling interactome: Scale-free or geometric?,
Bioinformatics, 20 (2004), pp. 3508–3515.

[PR07] M. PARNAS AND D. RON, Approximating the minimum vertex cover in sublinear time and a con-
nection to distributed algorithms, Theoret. Comput. Sci., 381 (2007), pp. 183–196.

[SIKS06] J. SCOTT, T. IDEKER, R. KARP, AND R. SHARAN, Efficient algorithms for detecting signaling pathways
in protein interaction networks, J. Comput. Biol., 13 (2006), pp. 133–144.

[SSRS06] T. SHLOMI, D. SEGAL, E. RUPPIN, AND R. SHARAN, QPath: A method for querying pathways in a
protein-protein interaction network, BMC Bioinf., 7 (2006), article 199.

[VW09] V. VASSILEVSKA AND R. WILLIAMS, Finding, minimizing, and counting weighted subgraphs, in
Proceedings of the Fourty-First Annual ACM Symposium on the Theory of Computing,
2009, pp. 455–464.

[Wer06] S. WERNICKE, Efficient detection of network motifs, IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 3 (2006), pp. 347–359.

[Wil09] R. WILLIAMS, Finding paths of length k in o�ð2kÞ time, Inform. Process. Lett., 109 (2009),
pp. 315–318.

[YYI09] Y. YOSHIDA, M. YAMAMOTO, AND H. ITO, An improved constant-time approximation algorithm for
maximum matchings, in Proceedings of the Forty-First Annual ACM Symposium on the
Theory of Computing, 2009, pp. 225–234.

COUNTING STARS AND OTHER SMALL SUBGRAPHS 1411

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.


