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Abstract

Consider the setting of randomly weighted graphs, namely,

graphs whose edge weights are chosen independently accord-

ing to probability distributions with finite support over the

non-negative reals. Under this setting, weighted graph prop-

erties such as the diameter, the radius (with respect to a

designated vertex), and the weight of a minimum spanning

tree become random variables and we are interested in com-

puting their expectation. Unfortunately, this turns out to be

#P-hard. In this paper, we define a family of weighted graph

properties (that includes the above three) and show that for

each property in this family, the problem of computing the

kth moment (and in particular, the expectation) of the cor-

responding random variable admits a fully polynomial-time

randomized approximation scheme (FPRAS) for every fixed

k.

1 Introduction

In the traditional setting of graph algorithms, the in-
put is typically a graph G whose edges are often as-
sociated with some weights. In most applications, G
represents a real-life network and the edge weights cor-
respond to some attributes of the network’s links which
are assumed to be known when one wishes to apply
some graph algorithm to G. Unfortunately, in many
scenarios these attributes of the real-life network can-
not be determined. Still, however, it is often believed
that the attributes of the network’s links are governed
by some known probability distributions. For example,
the latency along each communication link in the Inter-
net is usually assumed to be a random variable, rather
than a fixed value that can be determined a priori; In-
ternet tomography techniques are devised to reveal the
distributions of these random variables [13, 11]. The
random delay behavior also applies to overlay networks
(where each link corresponds to a path in the Inter-
net) and a recent Internet measurement indicates that
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some path delays exhibit strict bi-modal characteristics
[36]. A similar situation occurs in the emerging field
of networking called delay tolerant networks (DTNs)
[15] that includes sparse ad-hoc networks [41, 4], space
exploration networks [9], submarine networks [35], and
sensor networks.

Our goal in this paper is to advance the theoretic
foundations of graph algorithms operating in the con-
text of edge weights that obey some specified probabil-
ity distributions. In this context, various properties of
the graph become random variables and we wish to de-
sign better algorithms for the problems of computing
the statistical features of these random variables. This
turns out to be a non-trivial task even for basic and
fundamental graph properties which are easy to com-
pute in the traditional (deterministic) setting. Similar
challenges were previously tackled in many works (see
the survey of Ball et al. [3]), however the computational
angle of these problems received little treatment.

The model. A randomly weighted (RW) graph is
a graph1 G in which the edge weights are indepen-
dent random variables with finite support over the non-
negative reals. Specifically, every edge e ∈ E (G) is as-
sociated with some positive integer m(e) and with some
non-negative reals W 1

e , . . . ,W
m(e)
e and p1

e, . . . , p
m(e)
e ,

where
∑m(e)
i=1 pie = 1, such that the weight of e is

w(e) = W i
e with probability pie independently of all

other edges. The reals W 1
e , . . . ,W

m(e)
e are called the

phases of edge e. An RW graph in which all the edge
weights are identically distributed is referred to as an
identically distributed weighted graph.

Weighted graph properties. Let G be the col-
lection of all (not necessarily simple) connected graphs
G with (deterministic) non-negative edge weights w :
E (G)→ R≥0. Throughout, we think of a weighted graph
property as a function X : G → R≥0 that assigns a non-
negative real X (G) to each graph G ∈ G. A weighted
graph property X is said to be distance-cumulative if
it satisfies the following requirements for every graph

1Unless stated otherwise, all graphs in this paper are assumed
to be finite and undirected, though not necessarily simple. The

vertex set and edge set of graph G are denoted by V (G) and
E(G), respectively.



G ∈ G:
(R1) If G′ ∈ G is the graph obtained from G by mul-
tiplying all edge weights by some factor r ∈ R≥0, then
X (G′) = r · X (G).
(R2) If G′ ∈ G is the graph obtained from G by increas-
ing the weight of some edge e ∈ E (G) by an additive
term r ∈ R≥0, then X (G) ≤ X (G′) ≤ X (G) + r.
(R3) If w(e) = 0 for some edge e ∈ E (G), then
X (G/e) = X (G), where G/e ∈ G is the graph obtained
from G by contracting the edge e and removing self
loops.
(R4) If e, e′ ∈ E (G) are parallel edges and w(e) ≥
w(e′), then X (G − e) = X (G), where G − e ∈ G is the
graph obtained from G by removing the edge e.
(R5) If X (G) is strictly positive, then X (G) ≥
min{w(e) > 0 | e ∈ E (G)}.
(R6) X (G) = 0 if and only if the graph obtained from
G by removing all (strictly) positive weight edges is con-
nected.

Requirements (R1)–(R5) and the sufficiency di-
rection of requirement (R6) are naturally satisfied by
weighted graph properties in which the edge weights cor-
respond to time delays, routing costs, etc. The necessity
direction of requirement (R6) is slightly more restric-
tive. We extend the definition of distance-cumulative
weighted graph properties X by assuming that X (G) =
∞ for every disconnected graph G. A weighted graph
property X is said to be efficiently calculated if there ex-
ists a polynomial time algorithm that computes X (G)
for every (deterministically weighted) graph G.

Consider some graph G ∈ G. The diameter
of G, denoted diam(G), is defined as diam(G) =
max{distG(u, v) | u, v ∈ V (G)}, where distG(u, v)
is the distance between u and v in G, namely, the
length of a shortest (with respect to the edge weights)
path from u to v. For a designated vertex u ∈
V (G), the radius of G, denoted rad(G), is defined
as rad(G) = max{distG(u, v) | v ∈ V (G)}. The
weight of a minimum spanning tree of G, denoted
MST(G), is defined as MST(G) = min{

∑
e∈T w(e) |

T is a spanning tree of G}. It is easy to verify that
diam(G), rad(G), and MST(G) are distance-cumulative
weighted graph properties. Efficient algorithms that
compute them are described in most textbooks on graph
algorithms (e.g., [14]). Another distance-cumulative
weighted graph property is the diameter of a min-
diameter spanning tree, defined as min{diam(T ) |
T is a spanning tree of G}. The min-diameter span-
ning tree is also known to be efficiently calculated [21].

Two more efficiently calculated weighted graph
properties that fit into the definition of distance-
cumulative properties by slightly modifying require-
ment (R5) are the all pairs average distance and the sin-

gle source average distance with respect to some desig-
nated vertex. Our techniques can be adjusted to handle
such a modification, however, this is beyond the scope
of the current version of the paper.

Network reliability. A setting closely related to
RW graphs is that of network reliability. A network
reliability instance is depicted by a graph G (hereafter, a
network reliability graph) in which every edge e ∈ E (G)
is associated with a failure probability 0 ≤ pe < 1. It is
assumed that each edge e fails, i.e., removed from the
graph, with probability pe independently of all other
edges. With regards to the network reliability setting,
one is usually interested in the probability that the
graph remains connected, referred to as the all-terminal
network reliability (ATNR)), or in the probability that
two designated vertices remain in the same connected
component, referred to as the two-terminal network
reliability (TTNR).

We shall make an extensive use of the notion of a
weighted network reliability (WNR) graph which is the
weighted counterpart of network reliability graphs: In a
WNR graph G every edge e ∈ E (G) is associated with
a non-negative real weight w(e) apart from the failure
probability 0 ≤ pe < 1. In this context we will usually
be interested in the random variable X (G), where X is
some weighted graph property.

Our contribution. Let X be some distance-
cumulative weighted graph property and assume that
it is efficiently calculated. Given some connected RW
graph G, X (G) is a random variable — denote it by
X — and we are interested in approximating its kth

moment, i.e., E[Xk], for any fixed k ≥ 1. Specifically,
we develop a fully polynomial time randomized approx-
imation scheme (FPRAS) for the problem, namely, a
randomized algorithm that runs in time poly(|G|, 1/ε)
for any choice of ε > 0, where |G| stands for the number
of bits required to encode G in a standard binary repre-
sentation2, and returns a (1+ε)-approximation of E[Xk]
with probability3 at least 3/4. The following theorem
is established in Sections 3, 4, and 5.

Theorem 1.1. The problem of computing the kth mo-
ment of X (G) on connected RW graphs G admits an
FPRAS for every fixed k.

In general, Theorem 1.1 is best possible. This is
because exact solutions to the problems of computing
E[diam(G)] and E[rad(G)] are #P-hard to obtain even

2The running time of our FPRAS is measured with respect

to |G|, rather than |V (G)| + |E(G)|, hence it is not strongly
polynomial.

3Using the median of means method, the success probability

of an FPRAS can be increased to 1− ε̂ for any choice of ε̂ > 0 at
the cost of increasing the run-time by an O(log(1/ε̂)) factor.



when the input is restricted to identically distributed
weighted graphs. Refer to Section 6 for a proof of this
rather simple observation.

To the best of our knowledge, our FPRAS yields
the first provably polynomial time algorithm with guar-
anteed approximation ratio for any non-trivial statisti-
cal feature of a weighted graph property in randomly
weighted graphs. Moreover, it seems that most related
literature focuses on individual weighted graph proper-
ties and does not attempt to provide a framework for
a more general theory of such properties; indeed, Sny-
der & Steele call for such a framework in their survey
[37]. We hope that our technique which is suitable for
all distance-cumulative weighted graph properties will
be a significant step in that direction.

Related work. The algorithmic aspects of ran-
domly weighted graphs have been extensively studied
since the early 60’s (cf. Fulkerson [19]) mainly in the
context of the shortest (s, t)-path, the longest (s, t)-
path (a.k.a. the PERT problem), and maximum (s, t)-
flow. A comprehensive account of the various methods
developed for the computation (and approximation) of
the statistical features corresponding to these weighted
graph properties is provided by Ball et al. [3] who also
observe that an exact computation of the expected val-
ues of these weighted graph properties4 is #P-hard.
Note that except for a few special cases (e.g., series-
parallel networks with a specific type of edge distribu-
tions), none of the algorithms developed in that context
is provably polynomial with guaranteed approximation
ratio.

Distance-cumulative weighted graph properties
were also investigated under this setting. Hassin &
Zemel [22] prove that the diameter (and radius) of a
complete n-vertex graph whose edge weights are uni-
formly and independently distributed in [0, 1] is almost
surely Θ(log(n)/n). The hidden constants in this ex-
pression were resolved by Janson [25] who shows that
the (s, t)-distance, radius with respect to s, and diame-
ter of a complete n-vertex graph whose edge weights are
uniformly and independently distributed in [0, 1] con-
verge in probability to lnn/n, 2 lnn/n, and 3 lnn/n,
respectively. Frieze [16] shows that for every distribu-
tion function F with finite variance whose derivative at
zero exists and satisfies F ′(0) = D > 0, if the edge
weights in a complete n-vertex graph G are indepen-
dently distributed according to F , then the weight of
a minimum spanning tree of G converges in probability
to ζ(3)/D, where ζ(3) =

∑∞
j=1 1/j3. This is general-

ized by Steele [38] who shows that the assumption on

4In Section 6 we establish a similar hardness result for the
diameter and radius which are not among the weighted graph

properties covered by Ball et. al. [3].

the finite variance can be lifted. For the special case of
F being the uniform distribution over [0, 1], Beveridge
et al. [7] establish a variant of this bound for r-regular
graphs.

Asymptotic results for minimum spanning trees on
n points uniformly and independently distributed in the
Euclidean unit ball are established by Bertsimas & van
Ryzin [6]. Kulkarni [31] and Alexopoulos & Jacobson
[1] present algorithms that compute the distribution
of MST(G) for graphs G whose edge weights obey ex-
ponential and discrete distributions, respectively. The
run-times of their algorithms are not necessarily polyno-
mial, though. A non-trivial upper bound on E[MST(G)]
is established by Jain & Mamer [24].

The network reliability setting was introduced by
Moore and Shannon [34]; refer to [3] for a comprehen-
sive survey. Valiant [39] showed that the exact com-
putation of both two-terminal and all-terminal network
reliability are #P-hard. An FPRAS for the probability
that a network reliability graph becomes disconnected
following an edge failure event (that is, for the proba-
bility that complements ATNR) is developed by Karger
[26]. As described later on, some of the ingredients of
Karger’s technique are fundamental to the development
of our FPRAS.

A different, yet, related subject that admits a
plethora of literature is average case analysis for graph
algorithms (e.g. [17, 27, 12, 32]). There it is assumed
that the edge weights in the input of some graph algo-
rithm are drawn from a specified probability distribu-
tion and the goal is to analyze the expected run-time
of the algorithm with respect to that distribution; re-
fer to [18] for a survey. It is important to point out
that upon invocation of the graph algorithm, the actual
edge weights are determined, and in particular, known
to the algorithm, in contrast to the RW graphs setting
in which the challenge is to cope with the uncertainty
in the edge weights.

Techniques. We now provide an informal
overview of the construction of an FPRAS for E[X (G)],
where X is some efficiently calculated distance-
cumulative weighted graph property and G is an RW
graph; approximating higher moments is very similar.
Note that if the variance of X (G) is at most some
polynomial times E[X (G)]2 (that is, the critical ratio
is polynomial), then E[X (G)] can be approximated
by means of direct sampling (a.k.a. Monte Carlo
method). However, there exist some simple examples
(cf. Appendix A) in which the variance is too large,
and therefore a different approach must be sought.

The desired approximation would have been
straightforward to obtain if we could have efficiently
approximated P(X (G) > x) for arbitrary choices of real



x ≥ 0. Unfortunately, obtaining such an approxima-
tion to within a multiplicative error of 1 + O(ε) seems
to be a challenging task. In fact, when X = MST
(namely, we are required to approximate the expected
weight of a minimum spanning tree), an efficient imple-
mentation of this task would yield an FPRAS for the
Tutte polynomial TG(x, y) of arbitrary graphs G for ev-
ery x, y > 1 (refer to Bollobás [8] for a comprehensive
treatment of the Tutte polynomial and its many appli-
cations); whether or not such an FPRAS exists is an
important open question [2, 20].

Instead, we use a careful “sliding window” argument
to show that the desired approximation of E[X (G)]
can be efficiently obtained by repeatedly invoking a
procedure called Procedure Estimate: given a positive
real x, Procedure Estimate approximates P(X (G) > x)
to within an additive error of O(ε) · P(X (G) > 0). In
other words, we show that it suffices to produce a weaker
approximation of P(X (G) > x); the quality of this
weaker approximation is determined by P(X (G) > 0).
The “sliding window” argument, presented in Section 3,
is based on iteratively setting to 0 all edge phases in
G smaller than some threshold for a carefully chosen
sequence of thresholds.

Procedure Estimate itself is presented in Section 4.
As a preliminary step, we transform the RW graph
G into a WNR graph H (see Section 5), so that the
challenge becomes to approximate P(X (H) > x) to
within an additive error of O(ε) · P(X (H) > 0) for a
given WNR graph H.5 To that end, we consider the
subgraph H0 consisting of the zero weight edges of H
and formulate the real valued random variable Y that
maps each instance I of the probability space defined
by E (H) − E (H0) to P(X (H) > x | I). Since E[Y ] =
P(X (H) > x), it is sufficient to approximate E[Y ]. We
would have wanted to do so by sampling instances I
of the probability space defined by E (H)− E (H0) and
then computing P(X (H) > x | I). Sampling instances
of the probability space defined by E (H)− E (H0) is a
straightforward task. The problem is that given such
an instance I, it is not clear how to efficiently compute
P(X (H) > x | I).

To tackle this obstacle, we revisit Karger’s FPRAS
for the ATNR problem [26]. Karger’s technique is based

5Approximating P(X (H) > x) to within an additive error
of O(ε) · P(X (H) > 0) can be done via another method. This
method, which was suggested to us by an anonymous reviewer,
is simpler than the one we describe in Section 4, however, it
relies on randomly sampling satisfying assignments to a DNF

formula. Although such sampling can be done by employing the
method of Karp, Luby, and Madras [29, 30], the time bound

guarantee of the resulting randomized algorithm is polynomial
only on expectation, and thus does not yield a “proper” FPRAS.
This is discussed in more detail in the full version of the paper.

on identifying a collection C of polynomially many (2-
way) cuts in H0 such that the probability that all edges
of some cut not in C fail is small. For each instance I,
we identify those cuts in C that conditioned on I, imply
X (H) > x. For that to work, we must extend Karger’s
construction of C to r-way cuts for all r ≥ 2. This
extension builds upon the recent Bell number bound
of Berend & Tassa [5]. We then employ the method
of Karp, Luby, and Madras [29, 30] for probabilistic
DNF satisfiability to approximate the probability that
at least one of these cuts is induced by the failing edges
in E (H0).

2 Preliminaries

Randomly weighted graphs. Throughout we
consider some distance-cumulative weighted graph
property X . Let G be some n-vertex connected RW
graph and let X denote the random variable that takes
on X (G). By requirement (R1), we may assume without
loss of generality that the edge phases of G are scaled
so that the smallest non-zero phase is exactly 1. Conse-
quently requirement (R5) implies that X is either 0, or
it is bounded from below by 1. On the other hand, re-
quirements (R2) and (R4) guarantee that X is bounded
from above by xmax = n2 ·max{W i

e | e ∈ E (G) and 1 ≤
i ≤ m(e)}.

Weighted network reliability graphs. Let G
be some WNR graph and let F ⊆ E (G) be some
edge subset. Recall that each edge e ∈ F fails with
probability pe — this defines a probability space. It will
be convenient to view an instance I of this probability
space as a Boolean function I : F → {0, 1}, where

I(e) =
{

0 if e fails;
1 otherwise.

At the risk of abusing notation, we may sometime write
F when we actually refer to the probability space it
defines; our intentions will be clear from the context.

Cuts and compact cuts. Consider some con-
nected graph G. An r-way cut C of G is a partition
of V (G) to r pairwise disjoint subsets, that is, C =
{U1, . . . , Ur}, where

⋃
1≤i≤r Ui = V (G) and Ui∩Uj = ∅

for every i 6= j. The subsets U1, . . . , Ur are referred to
as the clusters of C. A cut refers6 to an r-way cut for
any r ≥ 2.

Consider some r-way cut C = {U1, . . . , Ur} of G.
We say that an edge e ∈ E (G) crosses C if e ∈ Ui × Uj
for some i 6= j. The set of edges crossing C is denoted by
E (C). The cardinality |E (C)| is referred to as the size

6In some literature, a cut refers to a 2-way cut, while an r-way

cut for r > 2 is called a multiway cut. We do not make this
distinction.



of C; if the edges of G are assigned with positive costs
c : E (G)→ R>0, then the sum

∑
e∈E(C) c(e) is referred

to as the cost of C. The cut C is called compact if G(Ui)
is connected for every 1 ≤ i ≤ r. Note that every r-way
cut is a compact r′-way cut for some r′ ≥ r. A min cut
(respectively, min cost cut) is a cut of minimum size
(resp., cost). It is easy to verify that a min cut (resp.,
min cost cut) must be a compact 2-way cut.

Consider some subset F ⊆ E (G) and a compact
cut C of G. We say that F induces the cut C if the
connected components of the graph obtained from G by
removing the edges in F agree with the clusters of C.
In particular, F must be a superset of E (C); it may
contain additional edges as long as the removal of these
edges does not disconnect any cluster of C.

Monte Carlo method and approximators.
Consider some probability space with sample space Ω
and let X : Ω → R be a real valued random variable
over this probability space. Suppose that the expecta-
tion of X is defined and denote it by µ. Let X1, . . . , Xn

be n independent samples of X and fix X̄ =
∑n
i=1Xi/n.

Evaluating µ by X̄ is referred to as the Monte Carlo
method (cf. [29]). Let ε and ε̂ be some positive reals.
The following two theorems are direct consequences of
Chernoff’s inequality [10] (Theorem 2.1) and Hoeffd-
ing’s inequality [23] (Theorem 2.2).

Theorem 2.1. If X is an indicator random variable
(namely, X ∈ {0, 1}), then taking n ≥ 4 ln(2/ε̂)µ/ε2

samples guarantees that P(|X̄ − µ| > ε) ≤ ε̂.

Theorem 2.2. If X is almost surely in the interval
[a, b], where b− a = ρ, then taking n ≥ ln(2/ε̂)ρ2/(2ε2)
samples guarantees that P(|X̄ − µ| > ε) ≤ ε̂.

This leads us to the notion of approximators. Con-
sider some non-negative real value v that we would like
to approximate with the real v′. Then v′ is said to be
an (ε, ε̂)-approximator of v if it satisfies the inequality
|v − v′| ≤ ε with probability at least 1 − ε̂, where the
probability is taken over the randomness used to gen-
erate v′. Under this terminology, Theorems 2.1 and 2.2
provide sufficient conditions to guarantee that X̄ is an
(ε, ε̂)-approximator of µ.

Proposition 2.1. If v1 is an (ε1, ε̂1)-approximator of
v0 and v2 is an (ε2, ε̂2)-approximator of v1, then v2 is
an (ε1 + ε2, ε̂1 + ε̂2)-approximator of v0.

Proposition 2.2. If v′i is an (ε, ε̂)-approximator of vi
for every 1 ≤ i ≤ n, then

∑n
i=1 v

′
i/n is an (ε, n · ε̂)-

approximator of
∑n
i=1 vi/n.

3 An FPRAS for RW graphs

In this section we consider some n-vertex RW graph
G and some small performance parameter ε > 0; our

goal is to approximate E[Xk] to within a multiplicative
error of 1 +O(ε). Here, we restrict our attention to the
case k = 1, that is, we approximate E[X]. Extending
our result to larger (yet fixed) values of k is mainly a
matter of notation and we omit it from this version of
the paper. The approximation presented in this section
builds upon the more sophisticated Procedure Estimate
which is presented in Section 4.

Theorem 3.1. There exists a randomized algorithm
that with probability at least 3/4, approximates E[X]
to within a multiplicative error of 1 + O(ε) in time
poly(|G|, 1/ε).

Let N be the smallest integer such that xmax <
(1+ε)N . (Note that N is proportional to log(xmax)/ε =
poly(|G|, 1/ε)). Clearly, we have 0 ≤ X < (1 + ε)N . Fix
πi = P(X ≥ (1 + ε)i) for every 0 ≤ i ≤ N . Towards the
approximation of E[X], we first define

A =
N∑
i=1

(1 + ε)i−1 · P
(
(1 + ε)i−1 ≤ X < (1 + ε)i

)
=

N∑
i=1

(1 + ε)i−1 · [πi−1 − πi]

= π0 +
N−1∑
i=1

ε · (1 + ε)i−1 · πi − (1 + ε)N−1 · πN

= π0 +
N−1∑
i=1

ε · (1 + ε)i−1 · πi ,(3.1)

where (3.1) is due to the fact that πN = 0. It is easy to
verify that

(3.2) E[X]/(1 + ε) ≤ A ≤ E[X] ,

so our next goal is to approximate A. Note that (3.1)
enables the computation of a (1 + ε)-approximation of
E[X] based on (1 + ε)-approximations of P(X ≥ x) for
sufficiently many values of x. Unfortunately, we do not
know how to obtain such an approximation directly and
we are forced to apply some modifications to G.

The shrunk graphs. Fix κ =⌈
log1+ε

(
(n2)(1+ε)

ε

)⌉
. For i = 0, 1, . . . , N − 1, let Gi be

the RW graph obtained from G by setting Wϕ
e ← 0 for

every edge e ∈ E (G) and phase 1 ≤ ϕ ≤ m(e) such
that Wϕ

e < (1 + ε)i−κ. We refer to a phase that was
set to 0 in this process as a shrunk phase; the graphs
G0, . . . , GN−1 are called the shrunk graphs.

Let Xi be the random variable that takes on X (Gi).
Requirement (R2) guarantees that X0 ≥ X1 ≥ · · · ≥
XN−1. The assumption that the minimum positive



phase is scaled to 1 implies that G = G0 = G1 = · · · =
Gκ, hence X = X0 = X1 = · · · = Xκ. If i > κ, then Xi

may be smaller than X, however it is not much smaller
as depicted in the following proposition.

Proposition 3.1. If X ≥ (1 + ε)i for some 0 ≤ i ≤
N − 1, then X/(1 + ε) < Xi ≤ X.

Proof. Fix some instance I of the probability space
defined by E (G). By (R4), we may assume that
the (deterministically) weighted graph resulting from I
contains at most

(
n
2

)
edges. Since phase Wϕ

e shrinks in
Gi only if Wϕ

e < (1 + ε)i−κ ≤ (1 + ε)i · ε

(n2)(1+ε)
, (R2)

guarantees that, subject to I,

Xi > X −
(
n

2

)
· ε(1 + ε)i(

n
2

)
(1 + ε)

> X − εX

1 + ε
= X/(1 + ε) .

The assertion follows as this argument holds for every
instance I.

Fix π′i = P(Xi ≥ (1 + ε)i) for every 0 ≤ i ≤ N − 1
and define

A′ = π′0 +
N−1∑
i=1

ε · (1 + ε)i−1 · π′i .

Clearly, π′i ≤ πi for every 0 ≤ i ≤ N − 1, thus A′ ≤ A.
On the other hand, for every 1 ≤ i ≤ N − 1, we have

π′i−1 = P(Xi−1 ≥ (1 + ε)i−1)

≥ P(Xi ≥ (1 + ε)i−1)

≥ P(X ≥ (1 + ε)i) = πi ,

where the last inequality is due to Proposition 3.1.
Since, π′0 = π0, we get

A
(1 + ε)

=
π0

(1 + ε)
+
N−1∑
i=1

ε · (1 + ε)i−2 · πi

≤ π′0
(1 + ε)

+
N−1∑
i=1

ε · (1 + ε)i−2 · π′i−1

= π′0 +
N−1∑
i=2

ε · (1 + ε)i−2 · π′i−1

= π′0 +
N−2∑
i=1

ε · (1 + ε)i−1 · π′i ≤ A′ ,

therefore

(3.3) A/(1 + ε) ≤ A′ ≤ A .

So, our next goal is to approximate A′.

Relying on local approximators. Consider
some n-vertex RW graph H and denote the random
variable that takes on X (H) by XH . Let δ, δ̂ > 0 be
some performance parameters. In Section 4 we present
Procedure Estimate that given some x > 0, runs in time
poly(n, 1/δ, log(1/δ̂)) and returns a real E that serves as
a (δ · P(XH > 0), δ̂)-approximator of P(XH ≥ x). Set
the performance parameters

δ ← ε

(1 + ε)κ
≈ (ε/n)2 and δ̂ ← 1/(4N) .

For i = 0, 1, . . . , N − 1, we invoke Procedure Estimate
on H ← Gi with x← (1 + ε)i to produce E → π′′i which
serves as a (δ · P(Xi > 0), δ̂)-approximator of π′i.

Fix A′′ = π′′0 +
∑N−1
i=1 ε · (1+ε)i−1 ·π′′i and note that

|A′ −A′′| =

∣∣∣∣∣π′0 − π′′0 +
N−1∑
i=1

ε · (1 + ε)i−1 · (π′i − π′′i )

∣∣∣∣∣
≤ |π′0 − π′′0 |+

N−1∑
i=1

ε · (1 + ε)i−1 · |π′i − π′′i | .

By the choice of δ̂ = 1/(4N), we may use a union bound
argument to conclude that the inequalities

|π′i − π′′i | ≤ δ · P(Xi > 0)

hold simultaneously for all 0 ≤ i ≤ N − 1 with
probability at least 3/4; the remainder of this section
is conditioned on that event. So,

|A′ −A′′|

≤ δ · P(X0 > 0) +
N−1∑
i=1

ε · (1 + ε)i−1 · δ · P(Xi > 0)

= δ

(
P(X0 > 0) +

N−1∑
i=1

ε · (1 + ε)i−1 · P(Xi > 0)

)
.

Recall that X0 = X1 = · · · = Xκ, hence

P(Xi > 0) = P(X0 > 0) ∀0 ≤ i ≤ κ .

For larger values of the index i, we note that by the
definition of the shrunk graphs, if Wϕ

e is a positive phase
in Gi, then Wϕ

e ≥ (1 + ε)i−κ, thus

P(Xi > 0) = P(Xi ≥ (1 + ε)i−κ)

≤ P(Xi−κ ≥ (1 + ε)i−κ) ∀κ < i ≤ N − 1 .



Therefore,

|A′ −A′′|

≤ δ

(
P(X0 > 0) +

κ∑
i=1

ε · (1 + ε)i−1 · P(X0 > 0)

+
N−1∑
i=κ+1

ε · (1 + ε)i−1 · P(Xi > 0)

)

≤ δ

(
P(X0 > 0)

(
1 + ε

(1 + ε)κ − 1
ε

)

+
N−1∑
i=κ+1

ε · (1 + ε)i−1 · P(Xi−κ ≥ (1 + ε)i−κ)

)

= δ · (1 + ε)κ
(

P(X0 > 0)

+
N−κ−1∑
i=1

ε · (1 + ε)i−1 · P(Xi ≥ (1 + εi))

)
≤ δ · (1 + ε)κ · A′ .

By the choice of δ = ε
(1+ε)κ , it follows that

|A′ −A′′| ≤ ε · A′

which, in combination with (3.2) and (3.3), establishes
Theorem 3.1.

4 Procedure Estimate

In this section we present and analyze Proce-
dure Estimate. Let H be some n-vertex RW graph and
consider some positive real x and two performance pa-
rameters ε, ε̂ > 0. Given H and x, Procedure Estimate
runs in time poly(n, 1/ε, log(1/ε̂)) and outputs an (ε ·
P(X (H) > 0), ε̂)-approximator of P(X (H) ≥ x).

In Section 5 we show that the RW graph H can be
efficiently transformed into a WNR graph G with the
guarantee that the random variable X (G) is stochasti-
cally equivalent to the random variable X (H). We de-
note the random variable X (G) by X and subsequently
focus on producing an (ε ·P(X > 0), ε̂)-approximator of
P(X ≥ x).

Fix E = E (G). It will be convenient to partition
the edges in E according to their weights to E0 = {e ∈
E | w(e) = 0} and to E − E0 = {e ∈ E | w(e) > 0}.
By Requirement (R3), we may assume that pe > 0 (and
hence 0 < pe < 1) for every edge e = (u, v) ∈ E0 as
otherwise, the vertices u and v can be contracted. Let
G0 be the restriction of G to the edges in E0.

Let P0 denote the probability of the event X =
X (G) > 0. Requirement (R6) implies that this event
depends only on the probability space E0; specifically,

X (G) > 0 if and only if X (G0) > 0. Observe that if
G0 is disconnected, then X (G0) = ∞ and the event
X (G) > 0 occurs with probability 1. Assuming that G0

is connected, we employ requirement (R6) once more to
conclude that X (G0) > 0 if and only if the edges that
fail under the probability space E0 induce a cut on G0.

Fix c = (5 +
√

17)/2 ≈ 4.56. If P0 is suf-
ficiently large, specifically, at least n−c, then the
desired approximation can be obtained by a direct
Monte Carlo method. Indeed, Theorem 2.1 guarantees
that a Monte Carlo method with O(log(1/ε̂)nc/ε2) =
poly(n, 1/ε, log(1/ε̂)) trials suffices to generate an (ε ·
P0, ε̂)-approximator of P(X ≥ x). (The random vari-
able for which we apply the Monte Carlo method is
simply the indicator of the event X ≥ x.) This ap-
plies in particular to the case where G0 is disconnected
which means that P0 = 1. Therefore in what follows we
may assume that P0 < n−c and in particular, that G0

is connected. Note that if P0 is extremely small (e.g.,
exponentially small in n), then the above Monte Carlo
method requires too many samples in order to obtain
an (ε · P0, ε̂)-approximator of P(X ≥ x).

Dealing with small P0. How do we efficiently
generate an (ε · P0, ε̂)-approximator of P(X ≥ x) when
P0 is small? For that purpose we introduce the real
valued random variable Y which is defined over the
probability space E − E0 by mapping each instance
I : E − E0 → {0, 1} to P(X ≥ x | I), namely, I
is mapped to the probability that X (G) is at least x
conditioned on I. This can be viewed as decomposing
the probability space E into the Cartesian product of
the probability spaces E − E0, from which I is chosen,
and E0, over which P(X ≥ x | I) is defined. A crucial
observation here is that

E[Y ] =
∑

I:E−E0→{0,1}

P(I) · P(X ≥ x | I)

=
∑

I:E−E0→{0,1}

P(X ≥ x ∧ I)

= P(X ≥ x) ,

hence our goal is to provide a good approximation for
E[Y ]. Another important observation is that

P(X ≥ x | I) ≤ P(X > 0 | I) = P(X > 0) = P0

for every instance I : E − E0 → {0, 1} (recall that the
event X > 0 does not depend on the probability space
E − E0), therefore Y ∈ [0, P0] with probability 1.

Fix k = 2 ln(4/ε̂)/ε2 and repeat the following
process for j = 1, . . . , k. Choose some instance Ij :
E − E0 → {0, 1} with probability P(Ij) (this can be
easily generated by randomly deciding for each edge in
E−E0, whether it fails or not independently of all other



edges) and let Yj = P(X ≥ x | Ij); in other words, Yj
is a random sample of Y . Unfortunately, we do not
know how to efficiently compute the exact value of Yj
for a given instance Ij . Instead, we will generate an
approximate sample Y ′j which is an (ε · P0/2, ε̂/(2k))-
approximator of Yj .

We will soon explain how the Y ′j s are generated,
but first let us explain how they are employed to ob-
tain the desired (ε · P0, ε̂)-approximator of E[Y ]. Let
Ȳ =

∑k
j=1 Yj/k and Ȳ ′ =

∑k
j=1 Y

′
j /k. Theorem 2.2

guarantees that Ȳ is an (ε · P0/2, ε̂/2)-approximator of
E[Y ]. By Proposition 2.2, we conclude that Ȳ ′ is an
(ε · P0/2, ε̂/2)-approximator of Ȳ . Therefore Proposi-
tion 2.1 implies that Ȳ ′ is an (ε · P0, ε̂)-approximator of
E[Y ] = P(X ≥ x) as desired.

Generating the approximate samples. It re-
mains to present the process through which the ap-
proximate samples Y ′j are generated (recall that each
approximate sample should be an (ε · P0/2, ε̂/(2k))-
approximator of P(X ≥ x | I) for some given instance
I : E − E0 → {0, 1}). The technique we use for this
process is an extension of Karger’s technique [26]. In
order to simplify the description of this process, we first
assume that there exists some real p such that pe = p
for all edges e ∈ E0. This assumption is removed later
on.

Given some compact cut C of G0, let F(C) denote
the event that all edges in E (C) ⊆ E0 fail. Let C be
some min cut of G0 and let χ = |E (C)| be its size.
Since P(F(C)) = pχ, the assumption that P0 < n−c

implies that pχ < n−c. The following two theorems are
established in [26] for the case of 2-way cuts. Building
upon the recent bound of Berend & Tassa on the Bell
number [5], we extend them to (compact) r-way cuts
for all r ≥ 2 simultaneously.

Theorem 4.1. For every real α ≥ 1, there are less than
13n2α compact cuts of size at most αχ in G0.

Proof. The theorem is established by presenting a ran-
dom process that generates each compact cut of size at
most αχ in G0 with probability greater than 1

13n
−2α.

Observe first that if an r-way cut C satisfies |E (C)| ≤
αχ, then r must be at most 2α as otherwise there ex-
ists some cluster U of C with less than χ edges crossing
between U and V (G0) − U , in contradiction to the as-
sumption that χ is the size of a min cut of G0.

Fix k = d2αe. Our random process first per-
forms random edge contractions in G0 until k vertices
v1, . . . , vk remain in the graph (cf. Section 2.2.1 in [26]);
each vertex vi corresponds to some subset Vi ⊆ V (G0)
so that {V1, . . . , Vk} is a partition of V (G0) (the sub-
graph induced on G0 by Vi is connected). We then
take P = {Q1, . . . , Q`}, 1 ≤ ` ≤ k, to be a parti-

tion of {v1, . . . , vk} chosen uniformly at random out
of the Bk possible partitions of {v1, . . . , vk}, where Bk
is the kth Bell number. The cut Ĉ = {U1, . . . , U`}
generated by our random process is defined by setting
Uj =

⋃
{Vi | vi ∈ Qj} for j = 1, . . . , `. It is important to

note that Ĉ is not necessarily a compact cut, however,
if C is any compact cut of size at most αχ in G0, then
it can be generated by our random process. Our goal in
the remainder of this proof is to show that C is indeed
generated with probability greater than 1

13n
−2α.

Karger [26] shows that the probability that none of
the edges crossing C is contracted during the random
edge contractions is at least(

1− 2α
n

)(
1− 2α

n− 1

)
· · ·
(

1− 2α
k + 1

)
=

(
k
2α

)(
n
2α

) ,
where generalized binomial coefficients7 are used when

2α is not an integer. It remains to prove that ( k2α)
( n2α)

B−1
k >

1
13n
−2α. Indeed,(

k
2α

)(
n
2α

)B−1
k ≥

(
k

2α

)2α(2α
en

)2α

B−1
k

>

(
k

en

)2α( ln(k + 1)
0.792k

)k
(4.4)

> n−2α · 1
k

(
ln(k + 1)

0.792e

)k
,

where inequality 4.4 is due to Berend & Tassa [5]. The

assertion follows as 1
k

(
ln(k+1)
0.792e

)k
> 1

13 when k ≥ 2.

Theorem 4.2. For every real α ≥ 1, the probability
that there exists some compact cut C of size at least αχ
in G0 such that F(C) occurs is O(n−αη), where η is
defined by fixing pχ = n−(2+η).

Proof. Let C1, . . . , Ct be the compact cuts of size at
least αχ and for each 1 ≤ i ≤ t, let χi = |E (Ci)|. We
assume without loss of generality that αχ ≤ χ1 ≤ · · · ≤
χt. Denote pi = pχi = P(F(Ci)) and consider some
real β ≥ 1. By Theorem 4.1, there are less than 13n2β

compact cuts of size at most βχ. It follows that χ13n2β

must be greater than βχ.

7Generalized binomial coefficients are a generalization of the
standard binomial coefficients

`x
y

´
to non-integral x and y. This

generalization is based on replacing the factorial in the standard
definition with the Gamma function. Many of the identities and
bounds that hold for the standard binomial coefficients also hold
in the generalized case, including the bounds

“
x
y

”y
≤

`x
y

´
≤“

ex
y

”y
.



We shall bound the probability that F(Ci) occurs
for some (at least one) 1 ≤ i ≤ t by bounding the sum∑t
i=1 pi. The first t′ = 13n2α+1/ ln(n) terms are bounded

simply by observing that

t′∑
i=1

pi ≤ 13n2α+1/ ln(n) · pαχ

= 13e · n2α · n−α(2+η) = 13e · n−αη .

Thus it remains to bound the remaining t− t′ terms.
Given some β ≥ α, we write s = 13n2β+1/ ln(n) and

conclude that χs >
(
β + 1

2 ln(n)

)
χ = ln(s)−ln(13)

2 lnn · χ.
Therefore

ps < (pχ)
ln(s)−ln(13)

2 lnn

=
(
n−(2+η)

) ln(s)−ln(13)
2 lnn

=
(
e

ln(s)−ln(13)
2

)−(2+η)

= s−(1+η/2) · 131+η/2 .

Summing over all i > t′, we get∑
i>t′

pi < 131+η/2 ·
∑
s>t′

s−(1+η/2)

≤ 131+η/2 ·
∫ ∞
t′

s−(1+η/2)ds

= 131+η/2 ·
(
−(η/2) · s−η/2

∣∣∣∣∞
13n2α+1/ ln(n)

)
= 131+η/2 · (η/2) · 13−(η/2) · n−αη · e−η/2

≤ 13 · n−αη .

The assertion follows.

Notice that the compact cuts addressed in Theo-
rems 4.1 and 4.2 may have an arbitrary number of clus-
ters, but their size is compared to αχ, where χ is the size
of the smallest 2-way cut in G0. This point is crucial
for the validity of the arguments.

Write pχ = n−(2+η). We must have η > c − 2
as pχ < n−c. Fix α = c−1+ln(1/ε)/ ln(n)

2 and let C be
the collection of all compact cuts of size at most αχ in
G0. By Theorem 4.1, C consists of O(n2α) = O(nc−1/ε)
compact cuts. These cuts can be enumerated with high
probability in time Õ(n2α) by the algorithm of [28]; they
can also be enumerated deterministically by the slightly
slower algorithm of [40].

Given some collection B of compact cuts in G0, let

ψ(B) = P

( ∨
C∈B
F(C)

)

be the probability that all crossing edges of some (at
least one) cut in B fail. Theorem 4.2 guarantees that 0 ≤
P0 − ψ(C) ≤ γn−αη for some universal constant γ. The
choice of c = (5 +

√
17)/2 and of α = c−1+ln(1/ε)/ ln(n)

2
and the assumption that η > c−2 ensure that γn−αη ≤
εn−(2+η)/4 = εpχ/4 as long as (4γ)4 ≤ (1/ε)c−4, which
yields the following corollary.

Corollary 4.1. The probability that there exists some
compact cut C /∈ C such that F(C) occurs is at most
εpχ/4 ≤ ε · P0/4.

Consider some instance I : E − E0 → {0, 1}.
Our goal is to efficiently generate an (ε · P0/2, ε̂/(2k))-
approximator of P(X ≥ x | I). For a given compact
r-way cut C = {U1, . . . , Ur} of G0, we construct the
graph GC,I as follows. The vertex set of GC,I is
V (GC,I) = {u1, . . . , ur}. For every edge e ∈ E − E0

with one endpoint in the cluster Ui and the other in the
cluster Uj , i 6= j, such that I(e) = 1 (that is, e does
not fail under I), we add an edge (ui, uj) to E (GC,I)
whose weight is w(e). The following proposition is due
to requirement (R3).

Proposition 4.1. Conditioned on the instance I : E−
E0 → {0, 1}, and on the event that the set of failing
edges in E0 induces the compact r-way cut C on G0, we
have X (GC,I) = X.

Let BI be the collection of all compact cuts C of
G0 such that X (GC,I) ≥ x. Proposition 4.1 implies
that P(X ≥ x | I) = ψ(BI). By Corollary 4.1, we know
that ψ(BI −C) ≤ ε ·P0/4, and hence ψ(BI)− ε ·P0/4 ≤
ψ(BI∩C) ≤ ψ(BI). Consequently, it suffices to generate
an (ε · P0/4, ε̂/(2k))-approximator of ψ(BI ∩ C).

Probabilistic DNF satisfiability. The approx-
imation of ψ(BI ∩ C) is performed by the method of
Karp, Luby, and Madras [29, 30] for approximating the
probability that a formula in disjunctive normal form
(DNF) is satisfied. Given some DNF formula φ, and
given the probability qi that xi is assigned to true for
each variable xi (independently of all other variables),
the method of Karp et al. generates a (δ · q(φ), δ̂)-
approximator of the probability q(φ) that φ is satisfied
in time O(|φ| log(1/δ̂)/δ2), where |φ| stands for the size
of the formula (number of literals).

Cast into that framework, the event
∨
C∈BI∩C F(C)

is encoded as a DNF formula whose variables correspond
to whether or not the edges in E0 fail and whose clauses
correspond to the cuts in BI ∩ C. Such a DNF formula
has |BI ∩ C| ≤ |C| = O(nc−1/ε) clauses, each with at
most n literals. Therefore an (ε · ψ(BI ∩ C)/4, ε̂/(2k))-
approximator of ψ(BI ∩ C), which also serves as an
(ε·P0/4, ε̂/(2k))-approximator of ψ(BI∩C) since ψ(BI∩



C) ≤ P0, can be generated in time O(log(k/ε̂)nc/ε3) =
poly(n, 1/ε, log(1/ε̂)).

Varying failure probabilities. Recall that in
attempt to simplify the description of the process that
generates approximate samples of the random variable
Y , we assumed that pe = p for all edges e ∈ E0. We
now turn to lift this assumption. The technique we use
here is essentially identical to that used by Karger [26]
for a similar purpose; we describe it for completeness.

The WNR graph G0 with varying failure probabil-
ities 0 < pe < 1 is transformed into a WNR graph
H, V (H) = V (G0), with uniform failure probabilities
p = 1 − θ for some sufficiently small θ > 0. For each
edge e = (u, v) ∈ E0 with failure probability 0 < pe < 1,
we introduce a bundle of ke = ln(1/pe)/θ parallel (u, v)
edges in H; all edges in H have zero weight (just like
all edges in G0 have zero weight). The probability that
all ke edges in this bundle fail is (1− θ)ln(1/pe)/θ which
converges to pe as θ → 0. By requirement (R3), it is
sufficient to generate approximate samples for the ran-
dom variable Y with respect to the graph H in the limit
as θ → 0. The technique we introduced earlier in this
section is suitable for that asH has uniform failure prob-
abilities. In particular it is sufficient to enumerate all
the small compact cuts C of H, identify those inducing
X (GC,I) ≥ x for a given instance I : E − E0 → {0, 1},
and then approximate the probability that all crossing
edges of at least one of them fail.

Note that changing the parameter θ scales the size
of cuts in H without changing their relative sizes. We
construct a graph H ′, V (H ′) = V (G0), with positive
costs on the edges by assigning cost ln(1/pe) to each
edge e ∈ E0. The small cost cuts in H ′ correspond to
the small sized cuts in H; they can be enumerated by
known techniques.

Given the small cuts in H that induce X (GC,I) ≥ x,
we have to approximate the probability, as θ → 0,
that all crossing edges of at least one of them fail. We
already argued that this is exactly the probability that
all crossing edges of at least one of the corresponding
cuts in G0 fail. Approximating this probability is done
as before by constructing the appropriate DNF formula
and employing the method of Karp et al. [29, 30].

5 Transforming RW graphs into WNR graphs

In this section we present an efficient transformation
that takes an RW graph G and outputs a WNR graph
G′ such that the random variable X (G′) is stochastically
equivalent to the random variable X (H). This is similar
to a method presented by Mirchandani [33] (see also [3]).

Let G be an arbitrary RW graph and consider
some edge e ∈ E (G). Recall that there exist some
positive integer m(e) and some non-negative phases

W 1
e , . . . ,W

m(e)
e and probabilities p1

e, . . . , p
m(e)
e , where∑m(e)

i=1 pie = 1, such that w(e) = W i
e with probability pie

independently of all other edges. We assume without
loss of generality that the phases of e are distinct
(identical phases can be merged into one) and ordered
so that W 1

e < · · · < W
m(e)
e .

The WNR graph G′ is obtained by taking V (G′) =
V (G) and transforming every edge e = (u, v) ∈ E (G)
into m(e) parallel (u, v)-edges e1, . . . , em(e) in G′. The
weight of edge ei is set to w(ei) ← W i

e for each
1 ≤ i ≤ m(e). The failure probabilities pe1 , . . . , pem(e)

are designed to guarantee that the random variable
Me = min{w(ei) | 1 ≤ i ≤ m(e), ei did not fail} in
G′ is stochastically equivalent to the random variable
w(e) in G. This is achieved by setting

pei ← 1− pie

1−
∑i−1
j=1 p

j
e

=
1−

∑i
j=1 p

j
e

1−
∑i−1
j=1 p

j
e

for every 1 ≤ i ≤ m(e)− 1; and pem(e) ← 0. Indeed, for
every 1 ≤ i ≤ m(e), we have

P(Me = W i
e) = (1− p(ei)) ·

i−1∏
j=1

p(ej)

=
pie

1−
∑i−1
j=1 p

j
e

·
i−1∏
j=1

1−
∑j
l=1 p

l
e

1−
∑j−1
l=1 p

l
e

= pie ,

where the last equation holds by telescoping. Require-
ment (R4) implies that X (G′) is stochastically equiva-
lent to X (G).

6 Hardness

In this section we prove that the problem of computing
the expected diameter of an RW graph is #P-hard.
The problem remains #P-hard even when restricted
to identically distributed weighted graphs. Our line
of arguments immediately implies that computing the
radius of an identically distributed weighted graph with
respect to a designated vertex is also #P-hard.

Hardness is established by reduction from the
TTNR problem defined as follows. On input connected
graphG and two vertices s, t ∈ V (G), the goal is to com-
pute the probability PG that s and t remain in the same
connected component when each edge in E (G) fails with
probability 1/2 independently of all other edges. The
#P-hardness of TTNR is established by Valiant [39].
Since the support of PG consists of integer multiples of
2−m, where m = |E (G)|, we conclude that it is #P-hard
to approximate PG to within a one-sided additive error
of ε for any ε < 2−m.



Given a graph G with two vertices s, t ∈ V (G) as
input of TTNR, we construct an identically distributed
weighted graphG′ with parameters m(e) = 2, p1

e = p2
e =

1/2, W 1
e = 0, and W 2

e = 1 for every edge e ∈ E (G′). G′

is obtained from G by adding a new edge e = (s, t) and
augmenting the resulting graph with two simple paths,
one connecting s to the new vertex s′ and the other
connecting t to the new vertex t′. Each new simple
path consists of k = Θ(m) new vertices. The reduction
is cast in the following lemma.

Lemma 6.1. Let D be the random variable that takes
on diam(G′). Then

PG − 2−m < 1− 2(E[D]− k) ≤ PG .

Proof. Let D′ be the random variable that takes on
distG′(s′, t′). By definition, we know that D′ ≤ D with
probability 1. We shall take k to be sufficiently large so
that Chernoff’s inequality implies that P(distG′(s′, s) <
n ∨ distG′(t, t′) < n) < 2−(m+1)/n, where n = |V (G)|.
By the construction of G′, it follows that P(D > D′) <
2−(m+1)/n. Since D − D′ < n, we conclude that
0 ≤ E[D]− E[D′] < 2−(m+1).

By the linearity of expectation, we have

E[D′] = E[distG′(s′, s)] + E[dist(s, t)] + E[distG′(t, t′)]
= k + E[dist(s, t)] ,

where the last term can be rewritten as

E[dist(s, t)] = E[dist(s, t) | w(e) = 1] · P(w(e) = 1)
+ E[dist(s, t) | w(e) = 0] · P(w(e) = 0)

= E[dist(s, t) | w(e) = 1]/2 .

The assertion is established by arguing that E[dist(s, t) |
w(e) = 1] = 1 − PG. Indeed, when w(e) = 1, then
distG′(s, t) ∈ {0, 1}. The argument holds since the
distG′(s, t) = 0 instances (respectively, the distG′(s, t) =
1 instances) of the probability space E (G′) correspond
to the instances of TTNR in which s and t remain
connected (resp., become disconnected).

7 Conclusions

We study the setting of graphs whose edge weights
are independent random variables and show that for
the wide family of efficiently calculated8 distance-
cumulative weighted graph properties, the problem of
computing the kth moment admits an FPRAS. This

8In fact, our results also hold for distance-cumulative weighted
graph properties that can be efficiently approximated to within a

multiplicative error of ρ > 1. For such properties our scheme only
guarantees a ρ(1 + ε)-approximation.

turns out to be a non-trivial task; in particular, a
straightforward application of the Monte Carlo method
for approximating, e.g., the expectation (i.e., the first
moment) fails when the variance is large as too many
samples are required in order to take into account low
probability events9 that may drastically affect the ex-
pectation.

Our technique does not guarantee a (multiplicative)
approximation for the kth central moment (and in
particular, the variance) when this is close to zero. (This
is in contrast to the kth moment about zero for which
the approximation is guaranteed regardless.) However,
it does provide us with the ability to decide if the kth

central moment is indeed close to zero.
There are still some fundamental weighted graph

properties which are not distance-cumulative, and hence
cannot be dealt with via our technique, such as the
shortest (s, t)-path and the weight of a maximum
matching. It is also natural to consider the directed
analogue of randomly weighted graphs and in partic-
ular, various network flow problems. Another aspect
that calls for further research, once encoding issues are
resolved, is that of continuous distributions for the edge
weights.
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APPENDIX

A High critical ratio

Consider the identically distributed weighted graph G
consisting of 2 vertices and m parallel edges connecting
them, where each edge is of weight 1 with probability
1/2; and of weight 22m otherwise. Let X denote the
random variable that takes on the diameter of G. It is
easy to verify that E[X] ≈ 2m, while Var[X] ≈ 23m, so
the critical ratio here is roughly 2m. Indeed, a Monte
Carlo method with significantly less than 2m samples
would most probably estimate the expected diameter of
G to be 1 which is an awful approximation.
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