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Abstract— It was noted in recent years that the Internet
structure resembles a star with a highly connected core
and long stretched tendrils. In this work we present a new
quantity, the Internet geometric curvature, that captures
the above observation by a single number. We embed the
Internet distance metric in a hyperbolic space with an
optimal curvature and achieve an accuracy better than
achieved before for the Euclidean space. This proves our
hypothesis regarding the internet curvature. We demon-
strate the strength of our embedding with two applications:
selecting the closest server and building an application level
multicast tree.

I. INTRODUCTION

The internet structure has been the subject of many
recent works. Researchers have looked at various features
of the Internet graph, and proposed theoretical models to
describe its evolvement. Faloutsos et al. [1] experimen-
tally discovered that the degree distribution of the Internet
AS and router level graphs obey a power law. Barabási
and Albert [2], [3] developed an evolutional model of
preferential attachment, that can be used for generating
topologies with power-law degree distributions. The Inter-
net AS structure was shown to have a core in the middle
and many tendrils connected to it [4], [5]. A more detailed
descriptions is that around the core there are several rings
of nodes all have tendrils of varying length attached to
them. The average node degree decreases as one moves
away from the core.

In this paper we identified a new characteristic of the
Internet graph, its curvature. We use this curvature to
better represent the Internet distance map in a geometric
space. Using this realistic representation we were able to
improve performance of three applications: Delay estima-
tion (which can be used for QoS threshold estimation),
Server Selection, and Application Level Multicast.

The geometry of a distance matrix can be represented
by mapping its nodes in a real geometric space. Such a
mapping, called embedding, is designed to preserve the
distance between any pair of network nodes close to the
distance between their geometric images. The symmetric
pair distortion is defined for each pair as the maximum
of the ratio between the original and geometric distance
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and its inverse. An input metric can be embedded in two
classes of algorithms

1) All pair (AP) embedding. The entire n-nodes met-
ric, that is comprising n(n−1)/2 distance pairs, is
embedded at once.

2) Two phase (TP) embedding. First, a small subset of
t ≤ 15 nodes, called Tracers, is embedded, consid-
ering all t(t− 1)/2 pair distances. The coordinates
of the rest of the nodes are calculated from their



distance to several nearest Tracers by minimizing
the symmetric distortion of these node-Tracer pairs.

Using TP Euclidean embedding for predicting network
distances was first suggested in [6], which named it
Global-Network-Positioning (GNP), and was later im-
proved in [7]. In [7] we applied Euclidean embedding
to server selection application and compared its accuracy
with IDMaps triangulation [8]. While we achieved good
embedding in [7] the results are far from perfect due to
the Internet topology structure, which consists of a core of
well-connected nodes and many tendrils that are attached
to it. To understand the problem consider embedding of
the Internet in two dimensions. If the tendrils are placed
with the correct distance from the core and are well
spaced in all directions, the distance between them in the
plane makes a shortcut not passing through the core and
thus underestimates the real graph distance. Embedding in
higher dimension space enables us to spread the tendrils
tips farther apart, and thus improves the embedding, but at
some point an increase in the number of dimensions gives
us diminishing return. To overcome this effect and thus
improve distance estimation accuracy, we’ve introduced
in [7] a threshold criteria. Although this threshold can be
tuned, it doesn’t reveal the geometric shape of the graph.

In this paper we take a new and different approach
for embedding the Internet graph in a geometric space.
The idea is to bend the line between two points in the
tendrils to pass through the core and thus, follow the true
Internet route. To make this happen we use hyperbolic
geometric space where a distance unit decreases as one
moves away from the origin. As an Euclidean line, the
hyperbolic line between two points is defined, as the
parametric curve, connecting between the points, over
which the integral of arc length is minimized. Unlike the
Euclidean line, a hyperbolic line bents towards the origin
point, O. The amount of bent depends on the curvature of
the hyperbolic space. As the space curvature increases, the
bending becomes larger, and thus the hyperbolic distance
between the points increases.

Consider for example the eight node graph in Fig. 1.
The shortest path distance between its four exterior
nodes, denoted A,B,C, and D can’t be embedded with
no distortion in 2-dimensional Euclidean space. However,
as we show below, there exist an embedding of these
four points in a hyperbolic Poincaré disk with a specific
curvature for which the hyperbolic distance matches the
network distance between each of the node pairs. For
this optimal curvature the ratio between shorter and
longer pair hyperbolic distance, |AB| / |AC|, matches the
corresponding network distances ratio.

In general, the metric curvature is defined as the
Gaussian curvature of the geometric space in which

this metric can be embedded with optimal embedding
accuracy, that is with minimal embedding distortion. We
embed the metric in a d-dimensional hyperbolic target
space of varying curvature values, and deduct the optimal
curvature by comparing their distance error results. If the
longer original distances are underestimated, it indicates
that target space curvature is too small (see Fig. 1). We
found that the Internet AS graph (see Section III), has
the same normalized optimal metric curvature for any
uniformly distributed weighting as well as the unweighted
hops graphs. A similar optimum was found for weighted
Barabási-Albert model topologies, section IV.

The curvature, when selected properly (not necessarily
optimally) is shown to improve the performance of all
three applications mentioned above. With adequate curva-
ture values, our method estimates all distances excluding
the very short ones, while GNP suffers from underes-
timation for most distances and IDMaps suffers from
overestimation for medium to short distances. While the
performance of all applications depends on the accuracy
of the distance estimation, application level multicast is
more sensitive to the accuracy of estimating short virtual
links (distances) because these links are reused by many
of the multicast tree paths. In general, short distances
are harder to estimate using all scalable methods, but as
we see we are able to achieve a good enough estimation
of these, as well. For server selection, the estimation
accuracy of long distances, which we want to avoid, is
more important.

II. HYPERBOLIC EMBEDDING MODEL

In this section we discuss the embedding of network
distances in hyperbolic spaces. First we review hyperbolic
geometry models and the principles of the Poincaré disk
model. Next we quote, in II-B.1, the formulas of arc-
length, distance and Gaussian curvature of this model,
and demonstrate the curvature on hyperbolic embedding
of the simple graph depicted in Fig. 1. Finally, we define
in II-C.1 the embedding potential function using the ’Loid
model of hyperbolic space, and derive the field forces
inducded on BBS particle in II-C.2.

A. Models of Hyperbolic Spaces

There are five models of hyperbolic spaces [9, ch 7]
• H, the Half-space model.
• I, the Interior of, or Poincaré, disk model.
• J, the Jemisphere model
• K, the Klein model
• L, the ’Loid model (short for hyperboloid)

Our embedding solver described in II-C.1 uses the ’Loid
model. However, most of our analysis here utilizes the
interior disk model, since it makes the derivation clearer.



The distance formula for the ’Loid model, as well as
the transformation between the two models, are detailed
in the full version of this paper. The interior of
unit disk D

d in Euclidean space can be taken as a map
of the d-dimensional hyperbolic space. In case d = 2
this disk becomes the unit circle depicted in Fig. 2. A
hyperbolic line in this model (see Fig. 2 left pan) is any
Euclidean circle that is perpendicular to the boundary
∂D

d of the unit disk. This model is conformally correct,
i.e., hyperbolic angles agree with Euclidean angles. A
hyperbolic circle maps to an Euclidean circle. Except
when their center is at the origin, the two circles are not
concentric. Distances in the hyperbolic space are greatly
distorted, due to the element of arc length |ds| given by

|dsD| = 2
1−‖x‖2 |dx| (1)

where |dx| is Euclidean arc length, and ‖·‖ is Euclidean
norm. Indeed, the Euclidean image of a hyperbolic object,
Fig. 2 right pan, as it moves away from the origin, shrinks
in size roughly in proportion to the Euclidean distance
from ∂D

d (when this distance is small).

Lines People

Fig. 2. Poincaré Disk Model 1

Anderson [11] covers in details the upper half-plane
model and has a chapter on the Poincaré disk model in
case d = 2.

B. Analysis of Hyperbolic Space

In order to be able to embed an input metric in
a geometric space, e.g. Poincaré disk model, we must
first calculate the geometric distance determined by the
element of arc-length defined for that space.

1) Distance, Metric, and Stretching: Consider the in-
terior disk model with the canonical element of arc length
given in (1) for the case of d = 2. The hyperbolic distance
between x , y ∈ D

2, denoted dD(x, y), is given [11, 4.1]
by

1
2 (cosh [dD(x, y)] − 1) = ϕ(x, y) (2)

1This picture and the discussion of Poincaré disk, are taken from [10,
2.1]

where,

ϕ(x, y) =
|x− y|2

(1− |x|2)(1− |y|2) (3)

With the contracted element of arc length

|ds∗
D
| = 1√

κ
|dsD| , (4)

the hyperbolic distance is also contracted by
√
κ, i.e.,

d∗
D
(x, y) = 1√

κ
dD(x, y) . (5)

Let (∆ij) denote an input metric, being embedded into
a Hyperbolic space with the contracted element of arc
length defined by (4). Consider a stretched metric, (∆∗

ij),
being embedded in hyperbolic space with canonical
element of arc length, dsD. The canonical hyperbolic
distance approximates the stretched metric, that is

dD(xi, xj) ≈ ∆∗
ij =

√
κ∆ij i, j = 1 . . . n (6)

Dividing by
√
κ and substituting (5) we find

d∗
D
(xi, xj) = dD(xi,xj)√

κ
≈ ∆ij .

Thus embedding of the stretched metric, (∆∗
ij), in space

with canonical arc length, is equivalent to embedding of
the input metric in space with the contracted element of
arc length, ds∗

D
.

2) Hyperbolic Curvature: The Gaussian curvature of
a metric induced by an element of arc length dsD =
g(x) |dx| is given by

curv(g) = −∇
2log(g)
g2

, (7)

where ∇2(·) denote the Laplacian

∇2(f) ≡ ∂2f

∂x2
1

+
∂2f

∂x2
2

For the interior disk model, the element of arc length
given in (1) is g = 2

1−‖x‖2 , yielding

curvD = 1−‖x‖2

4

[
∂2log(1−‖x‖2)

∂x2
1

+ ∂2log(1−‖x‖2)
∂x2

2

]

= 1−‖x‖2

2

[
∂

∂x1

−x1

1− ‖x‖2 + ∂
∂x2

−x2

1− ‖x‖2
]

= −1 . (8)

Similarly the Gaussian curvature for the contracted ele-
ment of arc length (4) is given by

curv∗
D

= − 1

(
1√
κ

)2
= −κ . (9)

Namely, by contracting the element of arc length we can
achieve any curvature in the Interior disk model.



3) Embedding Example in D
2 Disk: Examine the eight

node graph of Fig. 1 and consider the four exterior nodes,
denoted A, B, C, and D. These four nodes measure
the internodal distances among themselves. The induced
metric is ∆AB = ∆BC = ∆CD = ∆DA = 2a + b and
∆AC = ∆BD = 2a +2b . Dividing the two metric values
we have

∆AC

∆AB
=

2a + 2b
2a + b

=
2r + 2
r + 2

(10)

where r = b
a is the ratio between the length of the

inner (b) and outer (a) edges of the graph. Embedding
of this metric in Euclidean plane must form a A-B-
C-D square with diagonal length of ∆AC =

√
2∆AB .

Substituting in (10) and extracting, we see that only the
ratio r =

√
2 can be exactly embedded in Euclidean

plane.
However in the Hyperbolic disk, the metric curvature
−κ can be adjusted to achieve an exact embedding of all
r values. We normalize the multiplier

√
κ by the maximal

metric value, and define

cmax ≡
√
κmaxi,j ∆ij =

√
κ∆AC (11)

Due to metric symmetry the four points must be placed
on a circle centered at the unit disk origin. We can assume
that the points reside on the XY axis at coordinate x =
(±ρ, 0) ; y = (0,±ρ). Substituting the stretched distance
pairs

√
κAB and

√
κAC for dD(x, y) in (2) we get

cosh
(
cmax

∆AB

∆AC

)
− 1 = 2 2ρ2

(1−ρ2)2 (12)

cosh(cmax)− 1 = 2 (ρ−(−ρ))2

(1−ρ2)(1−(−ρ)2) (13)

Multiplying (12) by 2, subtracting it from (13), and
substituting (10) we obtain

cosh(cmax)− 2 cosh
(
cmax

r + 2
2r + 2

)
+ 1 = 0 . (14)

This implicit function can be solved numerically, and the
analytic derivative dcmax

dr (cmax(r), r) can then be calcu-
lated. Fig. 3 depicts the resulting normalized curvature
and its first derivative for the interval 0 < r ≤ √2.

C. Hyperbolic Embedding Solver

Embedding of network distances in geometric space
is a mapping between its n nodes to n points in the
d-dimensional space, such that the geometric distances
between pairs of points approximates the input network
distances metric (∆ij)i,j=1...n.
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1) BBS Embedding Method: For calculating this map-
ping we use the same minimization method we used
earlier for Euclidean embedding [7], with adaptations to
Hyperbolic space. This method, Big-Bang Simulation or
BBS, minimizes the energy of a set of particles, traveling
in the geometric space under the affect of a force field.
Each of the network nodes is represented by a particle.
We define the potential energy as the embedding error

ET (v1, v2, . . . , vn) =
n∑∑∑

i, j=1
i>j

Eij(vi, vj) . (15)

Here vk, k = 1, . . . , n are vectors designating the
coordinates of the n network nodes in the Hyperbolic
space D

d. The distance embedding error of a pair of
particles, the ’pair embedding error’ is denoted by Eij .

Our embedding solver uses the ’Loid model of hyper-
bolic space, which averts the distance singularity on the
boundary of the poincaré disk. As in [7] we divide the
embedding into four calculation phases. The phase pair
embedding error function denoted by E

〈p〉
ij , assumes the

form

E
〈p〉
ij (vi, vj) = F(dS(vi, vj), ∆ij) , (16)

for i �= j and vi �= vj

where dS(x, y) is the Hyperbolic distance in Sd, the
upper sheet of hyperboloid

Sd =
{
ξ : ξ21 + . . . + ξ2d − ξ2d+1 = −1

}
(17)

ξ =


ξ1, . . . ξd,

√√√√1 +
d∑

i=1

ξ2i


 . (18)

For simplicity, we denote ξd+1 =
√

1 +
∑d

i=1 ξ
2
i . At

the end of each phase, the particles reach a least energy



configuration. Finally, at the end of the last phase, each
network node is mapped to the coordinates of the corre-
sponding particle in the final low energy configuration.

2) Potential Field Force: The particle movement equa-
tions and their initial conditions were derived in [7, sec. 2]
that discusses friction force and other implementation
details. The potential force field in Hyperbolic space is
different from the Euclidean space, since the two distance
expressions differ. We thus redo here the calculation of
potential force field for Hyperbolic case.

The field force �Fi0 that is derived from the potential
energy (15), is given by

�Fi0 = −∇vi0
ET (v1, . . . , vn) (19)

= −
n∑

j=1
j �=i0

Fx(x,∆i0j)|x=dS
i0j
∇vi0

dS
i0j , (20)

where dS
ij ≡ dS(vi, vj) denotes the pair hyperbolic

distance between ξ = vi and ψ = vj , and its gradient
with respect to ξ is given by

∇vi
dS

ij ≡
(

∂
∂ξk

dS
ij

)
=

(
ξk
ψd+1

ξd+1
− ψk

)
÷ sinh dS

ij . (21)

III. THE CURVATURE OF THE AS GRAPH

This section presents the AS topology curvature mea-
sured on a single2 instance from U. of Oregon Route-
Views database dated January 2nd 2000, by embedding
its weighted and unweighted graph with different cur-
vatures of the target hyperbolic space, and comparing
the resulting distance distortion. The effect of increasing
embedding dimension is also discussed. We compare our
embedding results with two other Euclidean embedding
methods

• Down-Hill-Simplex (DHS), the method used in
Global-Network-Positioning (GNP) [6].

• Multi-Dimensional-Scaling (MDS), a method used
in many fields [7].

We chose to compare only with GNP and not our Eu-
clidean BBS, [7], although there we shown that BBS is
more accurate and scalable than GNP. However [7] com-
pared AP embedding, while in this paper we focus on TP
embedding. For TP embedding the two methods produce
similar results, since they both accurately calculate the
coordinates of the t ≤ 15 Tracers, while the coordinates
of the rest nodes are calculated separately for each node
in both methods.

2Since the curvature may slightly change in time we use only a single
instance to show the stability of the curvature to link weights. In section
V, where we present the performance of server selection application
with our embedding, we use two sets of 9 different AS topologies each.

A. Experiment Details and Legend

We use the following measures to compare the embed-
ding efficiency and accuracy

• CPU Time The CPU time to calculate an AP embed-
ding, or with TP embedding, the CPU time to embed
the distances among Tracers, and excluding the time
consumed for triangulating the rest of nodes.

• Symmetric Pair Distortion Defined for each nodes
pair as the maximum of the ratio of the measured to
the geometric distance, and its inverse.

• Directional relative error Defined by [6, Eq. 4]
as the ratio of the difference between the geometric
and measured distance, to the minimum of the two
distances.

• 95-5 percentile ratio Defined as the ratio of the 95
percentile of the ratio between the geometric and the
measured distance, to the 5 percentile of this ratio.

We experiment with different curvatures of the target
hyperbolic space. In Section II-B.2 we showed that em-
bedding a given metric in hyperbolic space with curvature
κ is equivalent to embedding the

√
κ− stretched metric

in canonical hyperbolic space. Before stretching we first
normalize the metric either by the mean of all distances
or by their maximum that is the diameter of the metric.

The following legend notations were used in all the
figures: HYP, MDS, and GNP where used to denote our
hyperbolic embedding, MDS, and DHS (which was used
by GNP), correspondingly. The number following HYP
indicates the stretch where positive stretch values indicate
normalization by the mean of all distances, and negative
stretch value indicate normalization by the diameter of
the metric.

In each experiment just a small group of the AS nodes
were embedded. The groups we selected throughout the
paper are all selected at random among the lowest degree
nodes, or stub ASs.

B. Embedding Alternatives Comparison

The input to our calculation was the Jan-00 AS topol-
ogy. To increase the confidence each experiment was
conducted using 5 sets of random weights. The weights
drawn here, and throughout the paper, are i.i.d. random
variables, distributed uniformly in the interval [1, 1000].
¿From each random weights graph we embedded two
random subsets of nodes. Namely each point in the
comparison graph results from 10 embedding experiments

Fig. 4 compare the AP Embedding (top) and TP
Embedding (bottom) for a subset of 150 nodes. The nor-
malization for the AP Embedding was by mean distance,
whereas the normalization for the TP Embedding was by
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DTr, the Tracers sub-graph diameter, due to the small
number of Inter-Tracers distances. MDS doesn’t support
TP Embedding since it uses O(n2) distances, thus we
use AP embedding for its both experiments. We used
t = 10 Tracers and 6 measurements in the TP embedding
for all dimensions, except for dimension 6 in which 7
measurements were used.

It is clear from Fig. 4 that HYP accuracy is much better
than MDS and GNP for both embedding classes and
for all tested stretch values. For both embedding classes
an optimal metric stretch exists, which minimizes the
average symmetric pair distortion and the 95-5 percentile
ratio. The optimal stretching for AP embedding is 6/∆ij ,
for the entire range of dimensions. In TP embedding
the optimal stretch decreases with an increase in the
embedding dimension. For 2, 3 and 4-dimensional space
the optimal metric stretch factor is 21/DTr, while for
5 and 6 dimensional the optimum is 18/DTr.

AP embedding yields better accuracy than TP em-
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bedding, as expected, however, the difference is not
significant. On the other hand, TP embedding requires
two orders of magnitude smaller CPU time, and achieves
very good embedding for only 3 or 4 dimensions. This
makes TP embedding the better choice in practice.

Fig. 5 depicts the symmetric pair distortion histogram,
for 3-dimensional embedding using t = 10 Tracers with
6 measurements. The histogram is calculated over all
pairs of nodes in the graph. For (21/DTr) − stretched
HYP, more than 99% of pairs, compared to 70% of
GNP pairs, have symmetric pair distortion less than 2,
which corresponds directional relative error in interval
(−1, 1). Moreover, 20% of GNP pairs, compared to
.003% of optimal HYP pairs (1 ÷ 6000 of GNP pairs),
have symmetric pair distortion larger than 3.

C. Hop Distance Estimation

The distribution of the directional relative error, esti-
mating hop distance in the same AS topology, using HYP,
GNP and IDMaps methods, is depicted in Fig. 6.

For all methods we select two subsets of t = 10
Tracers randomly, and used 6 measurements per each of
6474 nodes. Next we triangulated a randomly selected
source node, and calculated the 5-dimensional geometric
distance of this node from all the rest of the nodes in
the AS graph. We repeated this for 100 different source
nodes.

In order to better understand the distribution of the
estimation error, we group the embedding pair distances
for the same network hop distance pairs. The vertical lines
correspond to integral hop distance, in the unweighted
AS graph. The method marker is placed at the average
directional relative error, and the star marker depicts the



median. Each line has whiskers at the 5, 25, 75, and 95
percentiles.

As we reported in [7], GNP underestimates longer
hop distances, having negative relative errors. Naturally
IDMaps triangulation overestimates all distances, due to
its additive estimation. The (18/diameter) − stretched
metric has the best relative hop error, with the 5 to
95 percentiles in (−0.4 . . . 0.5) for hop distances longer
than 2. IDMaps estimation error is larger for small hop
distances. For instance at 2-hops distance IDMaps have
5 to 95 percentile in (1, 2), compared to (−.7, .6) for
optimally stretched metric.
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IV. THE CURVATURE OF GENERATED POWER-LAW

GRAPHS

We generated 5 random power-law topologies accord-
ing to the Barabási-Albert (BA) algorithm [3]. To increase
the confidence each experiment was conducted using 3
sets of random weights per each of the generated topolo-
gies. From each random weights graph we embedded two
random subsets of nodes. Namely each point in the com-
parison graph results from 30 embedding experiments.

We used t = 10 Tracers and 6 measurements in the
TP embedding for all dimensions, except for dimension
6 in which 7 measurements were used, and except MDS
which uses AP embedding (see III-B).

Fig. 7 depicts TP embedding of the distances among a
subset of 150 nodes.

The accuracy of our method is far better than MDS
and GNP for all tested hyperbolic metric stretch values,
marked as number following the HYP legend. The op-
timal curvature, which achieves the minimum pair dis-
tortion, decreases with increased embedding dimension.
For 2 and 3-dimensional space the optimal metric stretch

factor is 18/DTr, while for 4, 5 and 6-dimensional the
optimal value is approximately 12/DTr.

V. APPLICATIONS

In this section, we evaluate the effect of hyperbolic cur-
vature, with TP embedding, on delay estimation, server
selection, and application level multicast.

A. Delay Estimation

In this application we are interested in estimating the
delay between a single source node and all other nodes
of the graph. This can be used by a VoIP exchange that
can connect its clients either through its (almost) free
Internet connection, or if the delay is too long through the
POTS system. We compared our hyperbolic embedding
with the optimal curvature (a stretch of 18/DTr) in 5-
dimensional hyperbolic space, with GNP and IDMaps
estimations. In GNP and HYP we estimate the delay
by the 5-dimensional geometric distance between the
TP embedding coordinates of the node pairs. For all
methods we randomly selected two subsets of t = 10
Tracers and have used 6 measurements per node. We
repeated the above experiments with 100 source nodes,
selected randomly from each of the 5 weighted AS graphs
described in Section III-B.

In order to capture the distribution of estimation error,
we group the pair distances from 75mS wide network
distance intervals. The directional relative delay error, for
weighted AS graph, are depicted on the left hand side
of Fig. 8. The method marker is placed at the average
directional relative error, and the star marker depicts the
median. Each line has whiskers at the 5, 25, 75, and
95 percentiles. IDMaps highly overestimates distances,
especially for delays below 1000ms, due to its additive
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Fig. 8. AS Graph Relative Delay Error

estimation. As we reported in [7], GNP underestimates
delays above 500ms, due to the curvature of the AS
graph. However when using a target space with optimal
curvature, the median and average relative error of our
embedding remains approximately 0, in all delays, except
for very short delays below 200ms.

In our simulations, 18/DTr proved to be the best
stretch factor. Note that the same stretch value was also
the optimal stretch for hop distance estimation discussed
above (Section III-C).

By combining local information from the underlying
network topology with the measurements to the Tracers,
we can improve low-degree nodes embedding estima-
tions. A relatively easy improvement is to calculate the
geometric distance of degree-1 node using the coordinates
of its degree-2 neighbor, and then add to the result
the delay between the degree-1 node and its degree-
2 neighbor. This leaf correction effect is depicted on
the right hand side of Fig. 8. Clearly, IDMaps isn’t
affected by the correction due to its additive nature. GNP
performance improves significantly, however, our optimal
curvature embedding benefits most from this correction.
For delays longer than 400ms, more than 50% of our
relative errors fall inside (−.1, .1), and more than 90%
fall inside (−.2, .2) for delays longer than 600ms3.

B. Server Selection

This experiment used the Oregon route-views and
the Oregon combined route-view plus looking glass and
router registry, as described in [12]. The nine cou-
ples of peering data sets were collected weekly starting

3These delay numbers are synthetic because the median delay with
our weighting is at least twice than the one of real Internet

Mar. 2001. To increase the confidence each experiment
was conducted using 3 sets of random weights per each
of the peering topologies.

Following [8] we randomly selected 10 mirror servers
and estimated the closet mirror to each of the rest of
the graph nodes acting as clients. A client’s decision is
considered correct if it selects the mirror whose client-
mirror distance is at most 1+α times the optimal distance.
We used α = 0.5. For each mirror group rank accuracy
is defined as the percentage of correct client decisions.
Fig. 9 depicts the average cumulative distribution function
(CDF) of rank accuracy for IDMaps GNP and HYP
methods. The number following HYP indicates the metric
stretch factor. For all methods, due to the size of the
Oregon topologies, we used in this experiment t = 15
Tracers and 8 measurements per node. Each mark is the
average of the CDFs from the 9 × 3 = 27 simulated
graphs, where each CDF consists of 300 mirror group
experiments performed on a single graph. Marks denoted
with the postfix 08lc represent the usage of the leaf
correction described in Section V-A.

The top graph depicts the results for the Oregon
route-views, while the bottom one depicts the results
for the combined ’Oregon+’ views. IDMaps ranking
performance are nearly perfect, achieving at least 98.5%
correct answers in 99% of the mirror experiments. GNP
method however has the least ranking accuracy, due to
underestimating of all distances, and is thus ruled out
as practical method for server selection with accuracy
α = 0.5. Our method ranking accuracy improves with
increasing the embedding curvature, and is comparable
with IDMaps performance for the stretch of 30/DTr (see
inset). For Oregon route views, depicted on top inset, our



performance even slightly supercedes IDMaps, achieving,
at least, 99% correct answers in 99% of the mirror group
experiments.
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C. Application Level Multicast

In application level multicast [13], [14], [15], we wish
to build a multicast tree without network support. To
make the tree efficient, we need to know the distances
among the multicast group nodes. Otherwise, one may
build a tree where the delay to some nodes is a large
multiple of the unicast delay.

The first scalable approach for building application
layer multicast trees was CAN [16], [17] and its deriva-
tives [18], [19]. Due to the high accuracy of our em-
bedding we are presenting smaller stretch factors for
distances, i.e., the delays on our trees are shorter, while
maintaining good stress factor distribution, namely most
of our tree links are not congested.

An alternative tree-first approach is NICE application
multicast [20], which creates a hierarchy of clusters while
selecting the same or adjacent cluster for all nodes that
are ”close by”. CAN and NICE both have low, and thus
scalable, link stress and control overhead. However NICE
incurs higher control load on the root node and its direct
descendants.

We are given a multicast group, M , which is a subset of
graph nodes, a source node, m, and construct T (VT , AT ),
a multicast tree from m to all nodes in M . We assume
no topology or routing information from the underlying
’physical’ network. Our Geometric-Multicast-Tree (see
Fig. 10) uses the geometric space coordinates, assigned
by the embedding of each node, in order to make greedy
geometric decisions. For given core ratio c, the core nodes
radius rc is selected such that

|{v ∈M : ‖v‖ <= rc}| = c |M | ; (22)

we used c = .05. Recall that an angle θ in a hyperbolic
triangle with edge lengths a, b, c that is facing the edge
a is given by the hyperbolic law of cosine I [11, 5.7]:

cos θ = cosh(b) cosh(c)−cosh a
sinh(b) sinh(c) (23)

Estimation accuracy of short distances has significant
effect on the output tree. Indeed, the algorithm elects
tree children among unelected neighboring points of the
current parent, satisfying the following two conditions

• Local Sparseness Rule. Refrain from electing as
child of the current parent, a neighbor residing inside
the θc-cones around other elected children of this
parent.

• Global Expansion Rule. Our algorithm starts from
the node nearest to the hyperbolic origin. It then
spans neighboring core nodes with the local sparse-
ness rule4. Upon discovering child nodes located
further away from hyperbolic origin, the algorithm
only elect a child if the corresponding origin-parent-
child angles are larger then θp.

Latency Stretch is defined per member m′ ∈M, m′ �= m
and is the ratio of the path length along the tree T from m
to m′ to the length of the direct unicast path. Link Stress
is defined per link of the underlying topology and count
the number of identical packets sent between members
of M over that link. This definition of stress, following
[21], is from the network’s perspective, rather then the
application’s.

4In Euclidean space however, no special geometric region exists for
the core, and thus we use a local expansion rule, (see footnote 5).

5 For Euclidean space the expansion rule is ∠u p p′ ≥ θp, where p′
denotes the parent of p in T ,



Init: (different for Euclid/Hyp space)

Var. Hyperbolic Euclidean
P m0 : ‖m0‖ = minv∈M ‖v‖ m
T VT = {m}; AT = {(m, m0)} ∅

While P �= ∅
1) VT ← VT ∪ P ; C ← ∅
2) For each point p ∈ P , selected at arbitrary order,

a) C1 ← ∅
b) For i = 1 to N0

i) Select u ∈ (M \ (VT ∪ C)), the ith
nearest point to p

ii) Sparsness:
∀v ∈ C1 holds ∠u p v > θc

iii) Expansion5:
[∠u p0 ≥ θp] ∨ [‖p‖ ≤ rc]

iv) If ii and iii holds then C1 ← C1 ∪
{u}; AT ← AT ∪ {(p, u)}

c) C ← C ∪ C1

3) P ← C

Fig. 10. The Geometric-Multicast-Tree algorithm

To evaluate our algorithm we performed the following
experiment. Select members of M randomly among low-
degree, ≤ 2, nodes of the graph. Use TP embedding with
t = 10 Tracers and 6 measurements per node to embed
these nodes in 5-dimesional Hyperbolic and Euclidean
space. Run6 our tree algorithm from 40 different source
nodes m1, m2, . . .. Fig. 11 depicts the calculation
results for |M | = 800 on the Jan-00 AS topology. We
mark Hyperbolic and Euclidean space trees by HYP and
GNP respectively. Also shown, in black, is the optimal
minimum spanning tree of the with clique O(|M |2) net-
work distances. The complementary distribution function,
depicted on the left hand side, was aggregated from
latency stretches of all the nodes m′ ∈ M , from each
of the 40 source nodes. The average stress frequency,
depicted on the right hand side, is the total number of
links having a given stress value, averaged over the 40
source node trees.

Fig. 11 shows a clear trade-off between stretch and
stress. An increase in the HYP curvature yields smaller
(better) stretch and larger (worse) stress. The stress
of GNP is similar to our stress with curvature factor
18/DTr. However the 95 percentile stretch of HYP with
this curvature is 3.5, compared to 11.4 of GNP.

For comparison with [17], [21] we performed the

6We used the tresholds cos θc = .85; cos θp = .8 and the neighbors
limit N0 = 20 in all Hyperbolic runs.
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above experiment also for Transit-Stub topology of 10000
nodes. Fig. 12 depicts the effect of multicast tree size
on stretch. With curvature factor 9/DTr (◦ marker) our
average stretch depicted on the left graph, is comparable
with topology aware CAN [17, Fig 9]. Comparing with
the more detailed data in [21], our high percentile stretch
values (depicted by top line in the right graph), is similar
to the 90th percentile with the best routing heuristic for
topology aware CAN. Note that results for CAN assume
global and perfect knowledge of the topology.

VI. CONCLUDING REMARKS

We introduced a new quantity, the Internet geometric
curvature, and showed how embedding the Internet metric
in hyperbolic space with adequate curvature results in
superb accuracy. We believe that the curvature is an



intrinsic characteristic of the Internet, and thus can be
used to test network generators against true Internet
topologies.

We demonstrated the quality of our embedding with
three important applications. We are working on distribut-
ing our tree construction algorithm to enable its scaling to
large peer-to-peer networks. For this end we will reverse
the node attachment process, s.t., a node will search for
the parent unlike the present algorithm where parents
select children.
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