
Efficient Counting of Network Motifs
Dror Marcus

School of Computer Science
Tel-Aviv University, Israel

Email: drormarc@post.tau.ac.il

Yuval Shavitt
School of Electrical Engineering

Tel-Aviv University, Israel
Email: shavitt@eng.tau.ac.il

Abstract—Counting network motifs has an important role in
studying a wide range of complex networks. However, when
the network size is large, as in the case of Internet Topology
and WWW graphs counting the number of motifs becomes
prohibitive. Devising efficient motif counting algorithms thus
becomes an important goal.

In this paper, we present efficient counting algorithms for 4-
node motifs. We show how to efficiently count the total number
of each type of motif, and the number of motifs adjacent to a
node. We further present a new algorithm for node position-
aware motif counting, namely partitioning the motif count by
the node position in the motif. Since our algorithm is based on
motifs, which are non-induced we also show how to calculate
the count of induced motifs given the non-induced motif count.
Finally, we report on initial implementation performance result
using evaluation on a large-scale graph.

I. INTRODUCTION

A. Motif Discovery

Network motifs, also termed graphlets, are small sub-graphs
that can be found in larger graphs. In a seminal paper by
Milo et al. [1], network motifs were defined as interaction pat-
terns (or sub-graphs) occurring in a network more often than
those in randomized networks. Significant motifs were found
in various real world networks including protein interaction
networks, neurobiological networks, social networks, World
Wide Web (WWW) hyper-link networks, and the Internet
autonomous systems (AS) network [2].

Recently, an increased interest is appearing in exploring the
role of network motifs in networking. Feldman and Shavitt
[3] suggested that the bi-fan motif may indicate existence
of ”points of presence” (PoPs) in the Internet’s router level
network. The distribution of the local number of triangles and
the related clustering coefficient can be used to detect the
presence of spamming activity in large scale Web graphs [4].
Hales and Arteconi [5] presented results from a motif analysis
of networks produced by peer-to-peer protocols, showing that
the motif profiles of such networks closely match protein
structure networks.

Motif degree counting, namely, counting the number of
motifs in which a node participates, was recently suggested
as a method to classify nodes in the network into functional
classes using the distribution of motifs a node is part of as
an indication of its function in the network [6]. Stoica and
Prieur [7] further refined the counting by taking into account
the node position in the motif, and use it to analyze mobile
phone communication graphs.

Gonen and Shavitt [8] were the first to suggest efficient
algorithms for positional motif degree counting. However,
some of their algorithms only approximate the count with
high probability. We suggest here improved algorithms for this
task, giving an exact count of all the 4-node motifs, and with
better time complexity than the ones in [8]. We also present
a simple algorithm for counting triangles, thus covering with
efficient algorithm all motifs of size 4 and below. This leaves
the problem of efficient 5-node counting open, which is usually
the largest size motif used for classification.

For most network and node classification analysis we relate
only to induced motifs, meaning that a motif will be counted
only if it is spanned by the relevant nodes. However, the
algorithms presented here and in previous works [8] count
non induced motifs, namely a motif is counted even if addi-
tional edges exist between the motif nodes. Thus, we present
simple transformation that given the non-induced motif-count
calculates the corresponding induced-motif count.

B. Related Work

Batagelj and Mrvar [9] presented an algorithm which lists
all triangles in a graph with time complexity O(d|E|) =
O(n|E|), where d is maximum nodal degree in the graph.
This result was further improved to O(|E|3/2) [10].

Itzhack et al. [11] gave an algorithm for counting all
directed motifs up to size four, based on network decompo-
sition via node removal. They claimed a time complexity of
O(|E|d2 log d).

Wernicke [12] presented the ESU algorithm, that enumer-
ates all motifs of size k in a graph. The ESU algorithm
starts with individual nodes in the graph and iteratively adds
an additional node from the subgraph’s neighborhood, until
reaching subgraphs of size k. Stoica and Prieur [7] extended
the ESU algorithm to count the number of position-aware
motifs adjacent to each node in the graph.

Gonen and Shavitt [8] presented algorithms with time com-
plexity O

(
(3e)k·n·|E|·log(1/δ)

ε2 + |E|2 + |E|n log n
)

that ap-
proximates the position aware motif degree, but only for k
length paths, k-cycles and k-cycles with a chord motifs, where
k is at most O(log n). They also count per all nodes all
non-induced and undirected motifs up to size four, in time
O

(
n|E| log(1/δ)

ε2 + |E|2 + |E|n log n
)

.

2

Fig. 1. All three and four node undirected position aware motifs. Location
of the node in the motif is marked by an additional circle (node position is
not marked in symmetric motifs).

C. Our Contribution

In this paper we present a set of algorithms that exactly
count all induced and non-induced position-aware motifs of
up to size four, adjacent to each node in the graph, with time
complexity of O(d · |E|+ |E|2).

Partly based on the algorithms of Gonen and Shavitt [8],
our algorithms are thus first to exactly count the non-induced
motif adjacent to a node. From the obtained non-induced count
results we later deduce the induced count, which are often of
more interest in network analysis.

Specifically, we present algorithms that count, for each
node, all non-induced Tailed Triangle, 4-node cycles with
chord (chordal cycles), and a path of length three motifs in
time complexity of O(d · |E|) and count non-induced cliques
and cycles in time complexity of O(d · |E| + |E|2). We also
present a method to obtain the induced motif count in an
undirected graph from the non-induced motif count, for motifs
up to size four. Since most real-world complex networks
are sparse (i.e. |E| � n2), analyzing the runtime of these
algorithms on such networks shows that the runtime bound is
significantly lower than the runtime of the trivial exhaustive
search over all possible edges/nodes.

Following analysis in Section II presents the non-induced
position-aware counting algorithms for all motifs up to size
four. Section III introduces the post-processing technique used
to convert the non-induced count to their respective induced
results. Finally, Section IV discusses further work and provides
initial test results using a customly written software-package,
implementing these algorithms.

II. NON-INDUCED MOTIF COUNT

All algorithms described in the following section assume an
undirected simple input graph G(V,E), which is represented
by an adjacency list. Furthermore it is assumed that the graph
vertices are labeled by the integers {1, 2, ..., n}∗. We denote
by N(v) the set of neighbor nodes of v (i.e., N(v) = {u ∈
V |(v, u) ∈ E}).

∗Any input graph can be converted to this form in O(n log n+ |E| log n)
preprocessing time using a dictionary data structure

A node v is adjacent to motif mi if v is a vertex of motif
mi. For each motif mi, u ∈ S (where S is the set of non-
isomorphic vertices in m), we say that v is adjacent at position
u, and denote it by mi.u, if v ≡ u or if v is adjacent to m and
is isomorphic to u. For simplicity, we say that v is adjacent to
mi.u, and mi.u are called position aware motifs. For example,
the cycle with a chord of size four has two position aware
motifs: one for the two nodes connected to the chord (m2.1

in Fig. 1) and one for the other two nodes (m2.2 in Fig. 1).

A. Counting Triangles

The following algorithm counts, for each node u ∈ V ,
all triangles (motif m7, Fig. 1) adjacent to u: The algorithm
(hereafter termed Algorithm 1) iterates over all edges in the
graph (lines 2-6). For each edge e(u, v) ∈ E, it counts all
triangles that are edge joint with e(u, v) (i.e., e(u, v) is an
edge in the triangle), updating the respected triangle count
values of both node u and node v. This edge joint triangle
count is obtained using the Merge procedure (line 9), which
returns all nodes sharing an edge with both u and v (note that
NodeArray is not useful for counting triangles, but will be
useful for subsequent algorithms calling the Merge procedure).
Finally, since each node is connected to two edges in each
triangle we count each triangle twice. This over-count is fixed
in the final post-processing loop (line 8).

Algorithm 1 Counting triangles
1: procedure TRIANGLECOUNT(G)
2: for all v ∈ V (G) do
3: for all u ∈ N(v), v < u do
4: Merged← MERGE(G, v, u, Varr)
5: m7[v]← m7[v] + |Merged|
6: m7[u]← m7[u] + |Merged|
7: for all v ∈ V (G) do
8: m7[v]← m7[v]/2

9: procedure MERGE(G, v, u, NodeArray)
10: for all w ∈ N(u) s.t. w 6= v do
11: NodeArray[w]← 1

12: for all w ∈ N(v), w 6= u do
13: if NodeArray[w] = 1 then
14: NodeArray[w]← 3
15: list← APPENDTOLIST(list, w)
16: else
17: NodeArray[w]← 2

18: return list

Theorem II.1. Algorithm 1 counts, for every node v ∈ V , the
exact amount of occurrences of the triangle motif (m7) that v
is part of, with time complexity of O(d|E|).

Proof: Assume, by contradiction, that there exists a node
v ∈ V , for which the algorithm outputs a wrong value.

If the algorithm outputs a value greater than the amount
of triangles adjacent to v, there must exist an additional node
u ∈ N(v) that shares a neighbor w with v, but the nodes v,u,w
do not form a triangle in G, in contradiction to the existence
of edges (v, u),(v, w),(u, w) in the graph.

3

Therefore, it must be that v is adjacent to more triangles the
algorithm outputs. So there must exist a triangle 4(v, u, w)
that is counted in the main iteration (lines 2-6) less than two
times for v. Assume, without loss of generality, that v < u <
w. Since u and v share an edge, there must be an iteration step
where v and u are selected. In this step, since c is a neighbor
of both u and v it is added to the merged list, and 4(v, u, w)
is counted for nodes a. Similarly there must be an iteration
step for (v = a, u = c) where 4(a, b, c) is counted again.

The time complexity for the Merge procedure run is
O(|N(v)| + |N(u)|) = O(d), the main loop (lines 2-
6) iterates over all edges in graph G, and the fixup loop
(line 8) iterates over all nodes, giving us the upper bound:
O(

∑
v∈V

∑
u∈N(v) d) + O(n) = O(d · |E|)

B. Counting Counting Cycle with a Chord

Theorem II.2. Algorithm 2 exactly counts, for every node
v ∈ V , all non-induced occurrences of motifs m2.1 and m2.2

v is part of, in total time complexity of O(d|E|).

Proof: ∀e(u, v) ∈ E, ∀w, t ∈ (N(v) ∩ N(u)) (w 6=
t 6= v 6= u) we get that nodes {u,v,w,t} induce a cy-
cle with e(u, v) as the chord. Also, for every cycle with
a chord m2(v, u, w, t) having e(u, v) ∈ E as the chord
edge it holds that w, t ∈ (N(v) ∩ N(u)). Therefore, there
are exactly

(|N(v)∩N(u)\{u,v}|
2

)
different cycles with chord

(chordal cycles), where e(u, v) is the chord, and, ∀w ∈
N(v) ∩ N(u)\{u, v}, exactly

(|N(v)∩N(u)\{u,v,w}|
1

)
of these

chordal cycles are adjacent to node w.
Since every chordal cycles has only one chord edge, and

since Algorithm 2 iterate over all edges once, we get that
each chordal cycles is counted exactly once for each adjacent
node and their respective position aware motifs.

Using similar runtime analysis shown in the proof of
Theorem II.1, we get that the time complexity is bounded
by

O
(∑

v∈V

∑
u∈N(v) (d + |N(v) ∩N(u)|)

)
= O(d|E|)

Note that the runtime for this exact counting algorithm is
better than Gonen and Shavitt[8] approximation count.

Algorithm 2 Counting non-induced 4-cycles with a chord
1: procedure CHORDCYCLECOUNT(G)
2: for all v ∈ V (G) do
3: for all u ∈ N(v), v < u do
4: Merged← MERGE(G, v, u, Varr)
5: m2.1[v]← m2.1[v] +
6: |Merged| · (|Merged| − 1)/2
7: m2.1[u]← m2.1[u] +
8: |Merged| · (|Merged| − 1)/2
9: for all w ∈Merged do

10: m2.2[w]← m2.2[w] + (|Merged| − 1)

C. Counting Tailed Triangles

The tailed triangles counting algorithm is based on the
algorithm presented by Gonen and Shavitt [8]. Our algorithm
uses the triangle count results obtained using Algorithm 1
rather than Gonen’s cycle approximation count algorithm.

Furthermore, m4.3 is computed in a more efficient manor.
For each v ∈ V , in order to count occurrences of m4.3

adjacent to v, the algorithm needs to count all triangles in v’s
neighborhood that v is not a part of. Rather than recounting
all triangles on the graph not connected to v, the algorithm
uses the original triangles count (computed only once for all
nodes of the graph) to compute m4.3, and only later fixes any
error that occurred due to falsely counting triangles adjacent
to v.

Theorem II.3. Algorithm 3 finds, for every node v ∈ V , all
non-induced occurrences of motifs m4.1, m4.2 and m4.3 v is
part of, in total time complexity of O(d|E|).

Proof: By Theorem II.1 counting triangles can be done
correctly in time O(d · |E|). Correctness of counting m4.2 and
m4.1 is given by Gonen and Shavitt. It remains show that motif
m4.3 is counted correctly. For every node v, define TR(u) as
the number of triangles adjacent to node u, and TRv(u) the
number of triangles adjacent to u that are not adjacent to v.
The number of motifs of type m4.3 that adjacent to v is given
by∑
u∈N(v)

TRv(u) =
∑

u∈N(v)

(TR(u)− (TR(u)− TRv(u)))

=
∑

u∈N(v)

TR(u)−
∑

u∈N(v)

(TR(u)− TRv(u))

=
∑

u∈N(v)

(TR(u))− 2TR(v)

Runtime complexity analysis is divided into three parts:
counting triangles in O(d|E|) time (line 2), first edge iteration
(lines 3 - 9), last edge iteration (lines 10 - 15). Using similar
analysis used in Theorem II.2 we get that the time complexity
for the first iteration is O(d|E|). Thus the total time complexity
of Algorithm 3 is:

O(d|E|) + O(d|E|) + O(|E|) = O(d|E|)

The above runtime result, given for the exact tailed triangle
counting algorithm, is significantly better then Gonen and
Shavitt [8] approximation count.

Algorithm 3 Counting non-induced tailed triangles
1: procedure TAILTRIANGLECOUNT(G)
2: TRIANGLECOUNT(G)
3: for all v ∈ V (G) do
4: for all u ∈ N(v), v < u do
5: Merged← MERGE(G, v, u, Varr)
6: tailsv ← max{0, (|N(v)| − 2)}
7: tailsu ← max{0, (|N(u)| − 2)}
8: for all w ∈Merged do
9: m4.2[w]← m4.2[w] + tailsv + tailsu

10: for all v ∈ V (G) do
11: tailsv ← max{0, (m7[v] · (|N(v)| − 2))}
12: m4.1[v]← m4.1[v] + tailsv

13: for all u ∈ N(v) do
14: m4.3[v]← m4.3[v] + m7[u]

15: m4.3[v]← m4.3[v]− 2 ·m7[v]

4

D. Counting Four Nodal Cliques

Counting cliques is done in a similar fashion to [8].
We show that the merged neighbors sort done in the main
edge loop is redundant, thus lowering the runtime bound to
O(d|E|+ |E|2).

Theorem II.4. Algorithm 4 finds, for every node v ∈ V , all
non-induced occurrences of motif m1 v is part of, in total time
complexity of O(d|E|+ |E|2).

Proof: Correctness follows from [8]. Using computation
similar to those shown in the proof of Theorem II.1, we get
the time complexity of Algorithm 4 to be:

O

∑
v∈V

∑
u∈N(v)

d +
∑

w∈(N(v)∩N(u))

|N(w)|

= O

∑
v∈V

∑
u∈N(v)

(d) +
∑
v∈V

∑
u∈N(v)

∑
w∈(N(v)∩N(u))

|N(w)|

= O(d|E|) + O(|E|2)

Note that the runtime for this exact counting algorithm is
better then Gonen and Shavitt [8] exact clique count.

Algorithm 4 Counting 4-cliques
1: procedure CLIQUECOUNT(G)
2: for all v ∈ V (G) do
3: Varr[v]← 0

4: for all v ∈ V (G) do
5: for all u ∈ N(v), v < u do
6: Merged← MERGE(G, v, u, Varr)
7: for all w ∈Merged do
8: for all t ∈ N(w), w < t do
9: if Varr[t] = 3 then

10: m1[v]← m1[v] + 1
11: m1[u]← m1[u] + 1

12: for all w ∈ N(v) ∪N(u) do
13: Varr[w]← 0

14: for all v ∈ V (G) do
15: m1[v]← m1[v]/3

E. Counting Four Nodal Cycles

Theorem II.5. Algorithm 5 finds, for every node v ∈ V , all
non-induced occurrences of motif m3 v is part of, in total time
complexity of O(d|E|+ |E|2).

Proof: Let Cyc(v,u) be the number of cycles size four
going through the edge e(v, u). Trivially, Cyc(v,u) is also the
number of pairs w ∈ N(v), t ∈ N(u) such that e(w, t) ∈ E.
For all nodes v ∈ V , since every cycle adjacent to v has
exactly two edges connected to v, the exact amount of cycle
adjacent to v, Cycv is:

Cycv =

∑
u∈N(v) Cyc(v,u)

2

Using computation similar to those shown in the proof of
Theorem II.1, the time complexity of Algorithm 5 is:

O

∑
v∈V

∑
u∈N(v)

d +
∑

w∈N(v)

|N(w)|

 = O(d|E|) + O(|E|2)

Algorithm 5 Counting 4-cycles
1: procedure CYCLECOUNT(G)
2: for all v ∈ V (G) do
3: Varr[v]← 0

4: for all v ∈ V (G) do
5: for all u ∈ N(v) s.t. v < u do
6: MERGE(G, v, u, Varr)
7: for all w ∈ N(v)\{u} do
8: for all t ∈ N(w) do
9: if Varr[t] = 2 or Varr[t] = 3 then

10: m3[v]← m3[v] + 1
11: m3[u]← m3[u] + 1

12: for all w ∈ N(v) ∪N(u) do
13: Varr[w]← 0

14: for all v ∈ V (G) do
15: m3[v]← m3[v]/2

F. Counting Four Nodal Path

Theorem II.6. Algorithm 6 finds, for every node v ∈ V , all
non-induced occurrences of motif m6 v is part of, in total
time complexity of O(d|E|). For each edge e(u, v) ∈ E the
algorithm counts all paths of length three having e(u, v) in
the path center.

Proof: Let Pu,v be the exact amount of paths having
edge e(u, v) in the center, P(u,v),(w,u) the exact amount of
paths starting with edge e(w, u) and having edge e(u, v) in
the center it holds that:

Pu,v = (|N(v)\{u}| · |N(u)\{v}|)− |N(v) ∩N(u)|
P(u,v),(w,u) = |N(v)\{u}| − |N(v) ∩ {w}|

And, ∀v ∈ V :

m6.1[v] =
∑

u∈N(v)

∑
w∈N(u)

(P(u,w),(v,u))

m6.2[v] =
∑

u∈N(v)

(Pu,v)

The time complexity analysis is similar to that of Theorem
II.5.

G. Counting Claws

Counting Claws is done in the same way described in [8].
For each v ∈ V the claw motifs count is obtained using the
following equations:

m5.1[v] =
(
|N(v)|

3

)
m5.2[v] =

∑
u∈N(v)

(
|N(u)| − 1

2

)

5

Algorithm 6 Counting 4-node paths
1: procedure PATHCOUNT(G)
2: for all v ∈ V (G) do
3: Varr[v]← 0

4: for all v ∈ V (G) do
5: for all u ∈ N(v) s.t. v < u do
6: Merged← MERGE(G, v, u, Varr)
7: m6.2[v]
8: ← (|N(v)\{u}| · |N(u)\{v}|)− |Merged|
9: m6.2[u]

10: ← (|N(v)\{u}| · |N(u)\{v}|)− |Merged|
11: for all w ∈ N(v)\{u} do
12: if Varr[w] = 3 then
13: m6.1[w]← |N(u)\{v}| − 1
14: else
15: m6.1[w]← |N(u)\{v}|
16: for all w ∈ N(u)\{v} do
17: if Varr[w] = 3 then
18: m6.1[w]← |N(v)\{u}| − 1
19: else
20: m6.1[w]← |N(v)\{u}|
21: for all w ∈ N(v) ∪N(u) do
22: Varr[w]← 0

III. OBTAINING INDUCED MOTIFS

The per node non-induced motif count, collected using the
algorithms presented in the previous section, can be converted
to an induced count using a post-processing technique de-
scribed in the following section.

Denote by NI(m) the total number of non-induced appear-
ances of motif m in G, I(m) the total number of induced
appearances of motif m in graph G. In addition ∀v ∈ V (G)
denote NIv(m) by the number of non-induced position aware
motifs v participates in G, and Iv(m) the number of induced
position aware motifs.

A. 4-Clique

Denote by m1 the 4-Clique motif.
Trivially:

I(m1) = NI(m1)

Since all nodes in the clique are isomorphic, there is one
position aware clique, so the above result also holds for each
node adjacent clique count (i.e. Iv(m1) = NIv(m1)).

B. 4-Cycle with a chord

Denote by m2 the 4-Cycle with a chord motif. A non-
induced motif can be found only from an induced motif with a
node degree vector which is not smaller for every component.
Thus, m2 can appear as a subgraph isomorphism only in m1

and only by removing a single edge. So the 4-cycle with a
chord induced count is obtained by:

I(m2) = NI(m2)− 6I(m1) = NI(m2)− 6NI(m1)

Using similar calculation we get, for each node v ∈ V :

Iv(m2.1) = NIv(m2.1)− 3Iv(m1)
Iv(m2.2) = NIv(m2.2)− 3Iv(m1)

C. 4-Cycle

Denote by m3 the 4-Cycle motif. According to the node
degree vector of motif m3, m3 can appear as a subgraph
isomorphism only in m1 and m2. Removing any two matching
edges from m1 induces a cycle. Three such matching exists.
Removing the chord edge from m2 induces a cycle. The 4-
cycle induced count is obtained by:

I(m3) = NI(m3)− I(m2)− 3I(m1)
= NI(m3)−NI(m2) + 6NI(m1)− 3NI(m1)

Using similar calculation we get, for each node v ∈ V :

Iv(m3) = NIv(m3)− Iv(m2.1)− Iv(m2.2)− 3Iv(m1)

D. Tailed Triangles

Denote by m4 the Tailed Triangles motif. According to the
node degree vector of motif m4, m4 can appear as a subgraph
isomorphism only in the m1 and m2. Removing any two
edges from any one node in m1 induces a ”Tailed Triangle”.
Removing any edge from the cycle in m2 (All 4 edges other
than the edge between the two nodes with degree = 2) induces
a ”Tailed Triangle”. Thus, I(m4) can be obtained by:

I(m4) = NI(m4)− 4I(m2)− (4 ·
(

3
2

)
)I(m1)

= NI(m4)− 4NI(m2) + 12NI(m1)

Using similar calculation we get, for each node v ∈ V :

Iv(m4.1) = NIv(m4.1)− 2Iv(m2.2)− 3Iv(m1)
Iv(m4.2) = NIv(m4.2)− 2Iv(m2.1)− 3Iv(m1)
Iv(m4.3) = NIv(m4.3)− 2Iv(m2.1)− 2Iv(m2.2)− 6Iv(m1)

E. Claws

Denote by m5 the Claw motif. According to the node degree
vector of motif m5, m5 can appear as a subgraph isomorphism
only in m1, m2, and m4.

For each node in m1, removing all the edges that are not
connected to it induces a claw, four such nodes exist. For
each node v in m2 with degree ≥ 3, removing all the edges
that are not connected to v induces a claw, two such nodes
exist. Finally, there is only one node in m4 with degree ≥ 3.
Removing all the edges that are not connected to this node
induces a claw. So I(m5) can be deduced by:

I(m5) = NI(m5)− I(m4)− 2I(m2)− 4I(m1)
= NI(m5)−NI(m4) + 2NI(m2)−NI(m1)

Using similar calculation we get, for each node v ∈ V :

Iv(m5.1) = NIv(m5.1)− Iv(m4.2)− Iv(m2.1)− Iv(m1)
Iv(m5.2) = NIv(m5.2)− Iv(m4.1)− Iv(m4.3)− Iv(m2.1)

−2Iv(m2.2)− 3Iv(m1)

6

F. Simple Path of Length Three

Denote by m6 the simple path motif of length three(a path
with three edges). According to the node degree vector of
motif m6, m6 can appear as a subgraph isomorphism in all
motifs other than m5.

Removing an edge, connecting a node with degree 3 and
a node with degree 2, from m4 induces a path, 2 such edges
exist. Removing any single edge from m3 induces a path, 4
such edges exist. Removing the chord and any other edge, or
removing 2 matching edges that are not the chord from m2

induces a path, giving a total of 6 possible paths. In m1 every
node pair are connected. Therefore, any permutation of the
4 nodes (4!) creates a legal path. The edges are undirected
so we count each path twice in the permutation (once for
each direction), giving us a total of 4!/2 = 12 distinct paths
(removing all edges that are not in the selected path induces
m6). Finally, I(m6) can be deduced by:

I(m6) = NI(m6)− 2I(m4)− 4I(m3)− 6I(m2)− 12I(m1)
= NI(m6)− 2NI(m4)− 4NI(m3) + 6NI(m2)
−12NI(m1)

Using similar calculation we get, for each node v ∈ V :

Iv(m6.1) = NIv(m6.1)− 2Iv(m4.1)− Iv(m4.3)
−2Iv(m3 − 2Iv(m2.1)− 4Iv(m2.2)
−6Iv(m1)

Iv(m6.2) = NIv(m6.2)− 2Iv(m4.2)− Iv(m4.3)
−2Iv(m3 − 2Iv(m2.1)− 4Iv(m2.2)
−6Iv(m1)

IV. IMPLEMENTATION AND DISCUSSION

We compared our algorithm with FANMOD [13], which is
the previous fastest algorithm for this task, using an Intel Core
2 Quad Q8400 CPU machine.

The FANMOD algorithm can detect motifs up to a size
of eight vertices by enumerating all subgraphs of a given size
within the input network or by uniformly sampling them using
the algorithm described by Wernicke [12]. FANMOD may also
determine the frequency of motifs in a user-specified number
of random graphs, thereby detecting motifs which are over
(under) represented in the original network. For the purpose
of our performance analysis we limited both FANMOD run
modes, i.e., sampling and full-enumeration, to run only on the
input graph, while the number of random networks, was set
to zero.

Using an Internet autonomous systems (AS) graph collected
over a month by the DIMES project [14], which contains
26,561 nodes and 92,584 edges, the run time for counting all
the network motifs was 40 min while FANMOD’s sampling
algorithm and FANMOD’s full enumeration algorithm per-
formed the same task at 2 hours and at 48 hours respectively.

We also used smaller scale free graphs, which were gen-
erated using the iNet Internet Topology Generator [15], in
order to see how the three algorithms’ run time depends

on the graph size. Execution runtimes for our algorithm for
graphs generated with 5000 nodes, 10000 nodes, and 20000
nodes were 11 sec, 64 sec, and 12 min, respectively. Using
FANMOD with sampling the corresponding runtimes were
57 sec, 3.5 min, and 17 min. Finally, the FANMOD full
enumeration algorithm runtimes were 7 min, 34 min, 7 hours.
Clearly, the algorithm presented in this report greatly outper-
forms FANMOD’s full enumeration algorithm and moreover
outperformed FANMOD’s less accurate sampling algorithm.
Further performance analysis is currently being conducted
for comparing our algorithm with the approach suggested by
Itzhack et al. [11].

Future work will focus on using the obtained results to
classify nodes of the Internet. Similar to [6], we intend to
use the motif enumeration per node in order to classify the
nodes of the Internet AS graph, based on their functionality
as it is expressed in their motif count vector.

REFERENCES

[1] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: Simple building blocks of complex net-
works,” Science, vol. 298, pp. 824–827, 2002.

[2] R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat,
M. Sheffer, and U. Alon, “Superfamilies of evolved and designed
networks,” Science, vol. 303, pp. 1538–1542, 2004.

[3] D. Feldman and Y. Shavitt, “Automatic large scale generation of internet
PoP level maps,” in GLOBECOM, 2008, pp. 2426–2431.

[4] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis., “Effcient semi-
streaming algorithms for local triangle counting in massive graphs,” in
ACM SIGCOMM international conference on Knowledge discovery and
data mining (KDD), 2008, pp. 16–24.

[5] D. Hales and S. Arteconi, “Motifs in evolving cooperative networks
look like protein structure networks,” The Journal of Networks and
Heterogeneous Media, vol. 3, no. 2, pp. 239–249, 2008, special Issue
of ECCS’07.

[6] T. Milenkovic and N. Przulj, “Uncovering biological network function
via graphlet degree signatures,” Social Networks, vol. 6, pp. 257–273,
2008.

[7] A. Stoica and C. Prieur, “Structure of neighborhoods in a large social
network,” in International Conference on Computational Science and
Engineering (SocialCom), Aug. 2009.

[8] M. Gonen and Y. Shavitt, “Approximating the number of network
motifs,” in WAW ’09: Proceedings of the 6th International Workshop
on Algorithms and Models for the Web-Graph, Feb. 2009, pp. 13–24.

[9] V. Batagelj and A. Mrvar, “A subquadratic triad census algorithm for
large sparse networks with small maximum degree,” Social Networks,
vol. 23, pp. 237–243, 2001.

[10] M. Latapy, “Main-memory triangle computations for very large (sparse
(power-law)) graphs,” Theor. Comput. Sci., vol. 407, no. 1-3, pp. 458–
473, 2008.

[11] R. Itzhack, Y. Mogilevski, and Y. Louzoun, “An optimal algorithm for
counting network motifs,” Physica A, vol. 381, pp. 482–490, 2007.

[12] S. Wernicke, “Efficient detection of network motifs,” IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics (TCBB), vol. 3,
pp. 347–359, Oct. 2006.

[13] S. Wernicke and F. Rasche, “FANMOD: a tool for fast network motif
detection,” Bioinformatics, vol. 22, pp. 1152–1153, 2006.

[14] Y. Shavitt and E. Shir, “DIMES: Let the internet measure itself,” ACM
SIGCOMM Computer Communication Review, vol. 35, pp. 71–74, Oct.
2005.

[15] C. Jin, C. J. Qian, and S. Jamin, “Inet: Internet topology generator,”
2000, http://topology.eecs.umich.edu/inet.

