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We present an anti-pirate revocation scheme for broadcast encryption systems (e.g., pay TV), in

which the data is encrypted to ensure payment by users. In the systems we consider, decryption of

keys is done on smartcards and key management is done in-band. Our starting point is a scheme of

Naor and Pinkas. Their basic scheme uses secret sharing to remove up to t parties, is information-

theoretic secure against coalitions of size t, and is capable of creating a new group key. However, with

current smartcard technology, this scheme is only feasible for small system parameters, allowing

up to about 100 pirates to be revoked before all the smartcards need to be replaced. We first

present a novel implementation method of their basic scheme that distributes the work among the

smartcard, set-top terminal, and center. Based on this, we construct several improved schemes for

many revocation rounds that scale to realistic system sizes. We allow up to about 10,000 pirates

to be revoked using current smartcard technology before recarding is needed. The transmission

lengths of our constructions are on par with those of the best tree-based schemes. However, our

constructions have much lower smartcard CPU complexity: only O(1) smartcard operations per

revocation round (a single 10-byte field multiplication and addition), as opposed to the complexity

of the best tree-based schemes, which is polylogarithmic in the number of users. We evaluate the

system behavior via an exhaustive simulation study coupled with a queueing theory analysis. Our

simulations show that with mild assumptions on the piracy discovery rate, our constructions can

perform effective pirate revocation for realistic broadcast encryption scenarios.
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1. INTRODUCTION

1.1 Channel Model Definition

Many digital content and multimedia distribution systems are based on a uni-
directional broadcast distribution channel, such as satellite or cable. Access to
the content is regulated by encryption: only paying customers should have the
keys. In typical systems, a hierarchy of keys is used for access control: the keys
that encrypt the video stream are encrypted by program keys (often called key
encryption keys, or KEKs), which, in turn, are encrypted by weekly keys, etc.
Each user receives a set-top terminal (STT), which is coupled with a tamper-
resistant smartcard (SC). The STT decrypts the video stream, while the SC
stores the key material (KEKs), and uses them to perform the decryption of
lower level keys. The problem known as Broadcast Encryption is how the con-
tent provider can communicate securely with a subset of the users, over the
insecure broadcast channel, while minimizing the key management overhead.
Scalability is crucial, since typical systems are large: tens of millions of users.

We focus on systems that do not have a reverse (uplink) channel from the STT
back to the center through which key management functions can be performed,1

which is the case for most European satellite TV systems. We assume that
purchasing offers, changing a user’s subscription, etc, is performed through
voice/data side-band channels that are not via the STT.

1.2 Key Management Characteristics

The satellite TV industry is characterized by acute price sensitivity to the SCs
used. This is because the large numbers of users in these systems. Therefore,
very cheap SCs are often used. Such platforms typically have the following
limitations:2

� A very restricted amount of secure memory (EEPROM)—typically 1–8 KB.
This severely limits the number of keys that can be kept on the SC.

� A weak CPU: an 8-bit, 3.57MHz CPU is typical.
� The communication between the SC and the STT is extremely slow: 9.6–38.4

Kbit/sec.

Thus, in most systems the SC only decrypts keys and the STT decrypts the
content (video).

In the systems we consider, there is a single key that is used by the center
to encrypt the current content, and which is made known to all the users by
the hierarchy of KEKs, as explained in the previous section. When the center
needs to change this key, it broadcasts a message. Based on the content of this
transmission and the secret data (KEKs) already on the SCs, all the legitimate

1In our model, the center can distribute keys only via the broadcast channel. If an uplink exists,

user revocation is much easier: The user needs to connect to the center once every period to obtain

the keys for next period. Therefore, the center can simply refuse to provide the new keys to revoked

users.
2Numbers are typical for cheap SCs circa 2000.
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SCs should be able to compute the new key. We exclude solutions that use
public-key cryptography, since public-key operations are typically too slow for
the cheap SCs in use.

Note that the transmission overhead required by the key management is an
important parameter, since key material needs to be broadcast repeatedly (not
all STTs are powered up all the time; hence, the need for repetitions).

1.3 User Revocation

Piracy in digital content and multimedia distribution systems is very common:
commercial pirates duplicate and sell the key material of users who have access
to the content, causing a significant loss of revenue to the content providers. Our
goal is to design an efficient and practical revocation scheme, especially suited
for combating piracy, i.e., to render pirate decoders and SCs dysfunctional. The
general approach is to create new periodic keys that would be known to all the
legal users, but not to the pirates. The scheme should allow for many revocation
rounds in order to cope with a monotonically expanding pirate population. The
scheme should also perform permanent revocation, since the revocation of the
pirate users is not temporary, but rather “for good.”

Therefore, we consider the following scenario. A group of n users shares the
same key with which the content is encrypted. A center is responsible for con-
trolling the decryption capabilities of these users. The center prepares and gives
each user a set of secret data, which is stored on the user’s SC. By the beginning
of revocation round i, the center learns that some new ri pirate users are vio-
lating the terms of their usage license and wishes to disallow the subgroup of
accumulated Ri = ∑i

j=1 r j pirate users from decrypting any new content. The
center creates a new key, which should become known to the n− Ri nonrevoked
users. Further content should be encrypted with the new key.

For a given revocation scheme, the important factors that determine its effi-
ciency are:

� Communication overhead: the length of the messages sent by the center to
renew the keys.

� Storage overhead: the number of keys the users store in their SCs.
� Computational overhead: the computational load to renew the keys, espe-

cially by the users.

Revocation can be trivially achieved as follows: the center issues each user a
unique key. To revoke Ri users (of which ri are new), the center transmits a new
periodic key via unicast messages to each of the (n − Ri) nonrevoked users, en-
crypted with the unique key of each user. However, this scheme has a very high
communication overhead, which also translates into a very high response time.

We assume that the task of disabling the viewing capabilities of users that
voluntarily stop their subscription can be implemented in other ways. For in-
stance, by forcing the users to return their SCs (to get back a deposit), or by
sending each of them a “sleep” command encrypted with an individual unicast
key. Thus, we only need to consider revoking pirate users, whose number is
significantly smaller than that of users leaving the system voluntarily.
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Table I. Notation Used in this Paper

U the set of users in the system.

n the total number of users (i.e., legitimate keys) in the system; n = |U |.
t the maximal number of users that can be revoked before recarding is needed.

ri the number of newly revoked users (keys) in revocation round i.
Ri the aggregate number of revoked users (keys) up to and including revocation round i.
R the total number of revoked users (keys) in general (without referring to a particular

revocation round).

k an upper bound on the coalition size (number of keys) the adversary can assemble.

w the transmission length of the revocation messages (in keys).

d the dilation factor between the sizes of consecutive schemes.

s the number of keys stored in the SC (which is also the number of revocation schemes for

multiround revocation)

Much of the notation we use is summarized in Table I for quick reference.

1.4 Related Work

The study of broadcast encryption was initiated in Berkovits [1991] and Fiat
and Naor [1994] and the efficiency of broadcast encryption schemes is stud-
ied in Blundo and Cresti [1994], Blundo et al. [1996], and Luby and Staddon
[1998]. Broadcast encryption schemes usually fall into one of three categories:
combinatorial constructions, secret-sharing constructions, and tree-based
constructions.

In the combinatorial approach [Luby and Staddon 1998; Abdalla et al. 2000;
Kumar et al. 1999; Garay et al. 2000], the keys of compromised SCs are no longer
used. Luby and Staddon [1998] showed a trade-off between the transmission
length w and the s keys in the SC, showing that these constructions either
have very long transmissions or prohibitive storage requirements on the SC.
Abdalla et al. [2000] allowed a factor f of free riders to enjoy the broadcast
content, breaking away from the Luby and Staddon [1998] bounds. The Kumar
et al. [1999] constructions are based on cover-free sets of combinatorial design
theory and have transmission length w = O(t log n) and w = O(t2). Garay et al.
[2000] introduced the notion of long-lived broadcast encryption, analyzing the
number of recardings needed per epoch.

Naor and Pinkas [2000] used secret sharing to revoke up to t users. The
scheme is information theoretic secure against coalitions of size k = t with only
w = t messages and O(t2) calculations at the user, or w = 2t messages and
only O(t) calculations at the user. For multiround revocation, they suggested
using t revocation schemes with sizes 1, 2, . . . , t, to be used one after the other.
This scheme can revoke a total of up to t users before recarding of all the SCs
is needed. We elaborate on this scheme later, as it is our starting point.

Tree-based revocation schemes were proposed in Wong et al. [2000], Wallner
et al. [1998], Canetti et al. [1999a], Canetti et al. [1999b], Naor et al. [2001],
Halevy and Shamir [2002], and Pinkas [2001], with stateless and stateful vari-
ants and are currently considered to have the best combination of properties.
In all of them, the number of keys that the SC stores is polylogarithmic in the
number n of users.

Quite a few stateful schemes are based on the LKH (Logical Key Hierarchy)
algorithm and its many variants [Wallner et al. 1998; Wong et al. 2000; Canetti
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et al. 1999a; Pinkas 2001]. The basic LKH scheme was suggested in the context
of secure multicast, which builds secure communications on top of the Internet’s
multicast layer. In LKH schemes, every user keeps a personal key composed of
log(n) keys and the center keeps a (binary) tree of keys. When a single user is
revoked, the center must change all the keys in the tree that are in the path
from the revoked user’s leaf to the root. All the nonrevoked users must change
their keys in the intersection between the path from their leaf to the root and
the path from the revoked user’s leaf to the root. Therefore, a message revoking
a single user consists of O(log n) keys. Graphically speaking, the LKH schemes
“rebuild” the key tree after revocation takes place.

A major drawback of the LKH family is that the users must modify (update)
their state whenever the group key is changed (either when users leave or join
the group). This means that a user that was off-line for a while, is required to
receive and process messages that enable him to “synchronize” with the group.
One approach is to retransmit the original revocation messages. Another ap-
proach [Pinkas 2001] is to tailor a special message for that particular rejoining
user, which corresponds to the number of updates that he missed. However,
both approaches raise the bandwidth requirements of the scheme.

In the stateless version, the two best schemes are those of Naor et al. [2001]
and Halevy and Shamir [2002]. Naor et al. [2001] designed the so-called Subset
Difference scheme that enables the center to revoke any subset of users, S ⊂ U .
In order to do that, they place the users in the leaves of a complete binary tree
and then use the tree representation in order to define a base family of subsets
of U with the property that for any S ⊂ U , its complement U \S may be covered
by a disjoint union of O(|S|) base subsets. The content is made accessible to all
nonrevoked users by sending an encrypted message containing the new key to
each of the base subsets in the cover of U \ S. In order to decrypt at least one
of those messages, each user has to store 1

2
log2(n) keys and perform O(log(n))

computations.
Subsequently, Halevy and Shamir [2002] introduced the Layered Subset Dif-

ference technique, which offers an improvement of the Subset Difference scheme
of Naor et al. They observed that the base family of subsets that “spans” all of
2U may be reduced, at the expense of a factor of 2 in the number of base subsets
that are required in order to cover a given subset. As a result, their scheme
requires that each user holds only log3/2(n) keys, while raising the revocation
message length by a factor of two.

The main strength of these stateless schemes is that they have very short
revocation messages, even when revoking a large part of the entire user pop-
ulation, as is the case in Pay-Per-View events, where revocation is temporary.
When performing multiround revocation, for the scenario when the revoked
user population is monotonically growing, they “carry” the “holes” in the tree
(previously revoked users) to future revocation rounds.

1.5 Contributions

Our starting point is the multiround secret-sharing-based revocation scheme of
Naor and Pinkas [2000]. This scheme can perform multiple revocation rounds,
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revoking a total of up to t pirates. However, with current technology, this scheme
is only feasible for small system parameters. Because of the SC’s weak CPU,
slow communication rate, and restricted RAM and EEPROM, the scheme is
only useful for t ≈ 100 after which recarding of all the SCs is required. Thus,
a priori this scheme seems inferior to the tree-based schemes of Wong et al.
[2000], Wallner et al. [1998], Canetti et al. [1999a, 1999b], Naor et al. [2001],
and Halevy and Shamir [2002].

We first show how to rearrange the computations of the scheme, so the work is
distributed better among the SC and the STT. Specifically, the O(t) calculations
at the user can be split into O(1) secret calculations that need to be done on
the SC (a single-field multiplication and addition, in a field of typically 80 bits),
and O(t) nonsecret calculations that can be done on the much more powerful
STT. This allows us to bypass the CPU, RAM, and communication bottlenecks
caused by the SC.

Since the scheme requires recarding of all the SCs after t pirate cards have
been revoked, there is a high incentive to contemplate much larger t val-
ues, such as t ≈ 10000. For such a large t, the SC’s limited EEPROM size
prevents having s = t schemes as suggested by Naor and Pinkas [2000],
since each scheme requires keeping a share on the SC. Hence, we separate
the number of schemes s from t and use s � t, s being an unconstrained
parameter.

Our first multiround construction is the Triangular system. It has s schemes
of sizes d , 2d , . . . , t, with d = t/s. In the Triangular system, the center is
capable of revoking an average of d = t/s new users per round, but an overall
total of t users, since users revoked in different rounds can collude.

Next, we recall that if a secret-sharing scheme is of degree d , but the center
needs only to revoke r < d pirate cards, it can use the scheme by “revoking” an
additional d − r dummy users with fake identities. This leads us to construct
a Rectangular system, which has s schemes, all with size t. In this system,
the overall number of revoked users is still t, but the center has the flexibility
of revoking a large number of users in a single round at a cost of a single
polynomial.

The transmission length of the Triangular scheme is O(R) per round, which
is on par with tree-based systems. The Rectangular scheme has a transmission
length of O(t) per round, regardless of the actual number of users revoked in
that round. For s revocation rounds, the total length of transmission is O(st)
for both schemes. However, the total for the Triangular scheme is smaller by
a factor of 2 and, furthermore, the Triangular scheme’s first rounds use much
shorter transmissions.

Both schemes can use various operational strategies to trigger the revoca-
tion rounds. We evaluate both schemes, with several possible strategies, under
mild assumptions on the piracy discovery rate, via an exhaustive simulation
study coupled with a queueing theory analysis. Our simulations show that our
constructions can perform effective pirate revocation for realistic broadcast en-
cryption scenarios, allowing several years of operation before recarding becomes
necessary, arguably competing with the best tree-based schemes.

A preliminary version of this paper can be found in Kogan et al. [2003].
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1.6 Organization of This Paper

In Section 2, we describe the attack model we are protecting against. In
Section 3, we show how to reduce the computational, communication and mem-
ory load on the SC. In Section 4, we introduce the details of our new schemes.
The simulation study and queueing analysis are described in Section 5; we
conclude with Section 6.

2. ATTACK AND DEFENSE MODELS

2.1 Attack Model

Piracy in digital content and multimedia distribution systems is very common.
Commercial pirates duplicate and sell the key material of users who are entitled
to use (watch) the content. Content providers are estimated to suffer $100M
each year in lost revenue because piracy [cf. BBC 2001; Hackwatch 2002].

By far, the most common attack scenario is for the pirates to extract the
keys from a SC and create many duplicates (clones) of that SC. This is feasible
because even though the SC is supposed to be tamper resistant, in reality there
are ways to compromise it—some quite cheap [cf. Anderson and Kuhn 1996;
Anderson and Kuhn 1997].

We argue that the pirates are limited in the number of SCs they can obtain
and hack in any given time period. Therefore, the large number of cloned SCs
originate (cryptographically) from a much smaller number legal SCs, whose
key material (SC) was compromised. Note that the revocation scheme is only
concerned with the original compromised SCs and not with the clones: revoking
the key of the original SC will also revoke all its clones. Therefore, when we
speak of a pirate card, we are referring to a hacked (original) card rather than
a clone.

2.2 Revocation Process

We assume a reactive enforcement system to combat piracy. We assume that
on an ongoing basis, law enforcement agencies and content provider companies
capture cloned SCs. These cards are analyzed by the content provider, who then
identifies the original pirate card from which the clones were made.

As detailed in Section 1.3, the purpose of revocation is to create a new system
key, which would enable all the paying users to access the content and which
would be unknown to the pirate users. Such scenarios are described in Briscoe
[1999].

We assume that the revocation process works in epochs: once a new pirate
card is identified, its key can be scheduled for revocation in the next revoca-
tion round. Since the revocation process entails a communication overhead,
the content provider has a trade-off between communication overhead in
the broadcast channel—if the compromised SC is immediately revoked (and,
consequently, all the cloned SCs originating from it), and potential revenue
loss—if the content provider performs revocation of all the compromised SCs
each predefined epoch (which lets the pirate users watch more content for free).
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3. AVOIDING THE SC COMMUNICATION, RAM, AND CPU BOTTLENECKS

In this section, we show how to implement the basic Naor and Pinkas [2000]
scheme for a single revocation round in a way that dramatically reduces both
the computation on the SC and the data that needs to be transferred to the SC
over the slow channel between it and the STT. We offload almost all of the work
to the much stronger (and possibly insecure) processor in the STT and let the
weak SC handle the secret part of the computation—which turns out to consist
of a single-field multiplication and one addition.

3.1 The Naor and Pinkas [2000] Secret-Sharing Revocation Scheme
for a Single Round

Before presenting our modifications, we briefly describe the Naor and Pinkas
[2000] revocation scheme for a single revocation round. The basic Naor–Pinkas
one-round scheme can revoke up to t users, with a communication overhead
of O(t), and is information-theoretic secure against a coalition of all the t
revoked users. The scheme is based on threshold secret sharing, using Shamir’s
polynomial based (t +1)-out-of-n secret sharing [Shamir 1979]. The secret shar-
ing is performed over a field F whose elements are encryption keys and user
identities: typically, 80 bits suffice for the field elements.

3.1.1 The Basic Scheme

� Initialization: The center generates a random polynomial P of degree t over
the field F , s.t. P (0) = S, S being the randomly chosen key of a symmetric
algorithm (e.g., |F | ≥ 80 bit), to be used after the revocation. The center
provides each user with an identifier u and a corresponding share P (u). Given
any t + 1 shares, a user can interpolate the polynomial and reveal S = P (0).

� Revocation: The center learns the identities of t users whose keys should be
revoked. Subsequently, it broadcasts the identities and the personal shares
of these users:

{u1, P (u1)}, . . . , {ut , P (ut)}
Each nonrevoked user u can combine his personal share P (u) with these t
shares and interpolate P to compute the key S = P (0) via the Lagrange
interpolation formula. The center uses S as the new group key with which it
encrypts further content to the nonrevoked users.

Given the identities ui of the revoked users, and their shares P (ui) in the
degree t polynomial P (), the Lagrange interpolation formula is

P (0) =
t∑

i=0

∏
j �=i

u j

u j − ui
P (ui)

where u0 is the identity of the user performing the calculation, and ui is the
identity of the ith revoked user (i = 1, . . . , t). P (0) is the new key that is
set after the revocation. The construction of the secret sharing ensures that
even the coalition of all the t revoked users will not have enough shares to
compute P (0), whereas every nonrevoked user will.
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� Storage and communication overhead: The secret data that each user has to
keep is just a single element of F (the identity u need not be kept secret). The
revocation message is of length t(|F | + log(n)), if the identities are defined in
a small subset of F .

3.1.2 Reducing the Computational Overhead at the User End. Naor and
Pinkas [2000] offer a way to reduce the computational overhead at the user
end. As described in the previous section, the computation of the new group
key by a user involves the interpolation of the free coefficient of P and requires
O(t2) multiplications using Lagrange interpolation.

Let ci denote the inner-product function on the identities except ui. The
Lagrange interpolation formula can then be rewritten as:

ci =
∏
j �=i

u j

u j − ui
for i, j = 0, . . . , t ; P (0) =

t∑
i=0

ci P (ui)

In order to solve for P (0), a user needs t + 1 shares P (ui), one of which is
his own, and t + 1 ci coefficients. Calculating the t + 1 ci coefficients requires
O(t2) calculations. However, almost all of this calculation is identical for all the
users and can be precomputed by the center. Only O(t) of these calculations
differ between users: these are the calculations involving the identity of each
nonrevoked user u0. Therefore, Naor and Pinkas [2000] suggests that the center
should compute t coefficients, denoted by c′

i, as follows:

c′
i =

∏
j �=i

u j

u j − ui
for i, j = 1, . . . , t

Each nonrevoked user u0 who receives the broadcast completes the calcu-
lation of the ci coefficients with O(t) calculations and computes his own c0, as
follows:

ci = c′
i

u0

u0 − ui
for i = 1, . . . , t ; c0 =

t∏
j=1

u j

u j − u0

Each user then uses his own share P (u0), together with the t broadcast shares
of the revoked users and the computed ci coefficients to compute P (0) according
to the Lagrange interpolation formula.

3.2 Moving Computation Out of the Smartcard

Performing O(t) calculations on the SC has several drawbacks. First, the STT
needs to transmit O(t) data (for an 80-bit field we have 14 bytes per revoked
user for the identity (4 bytes) and share (10 bytes)) to the SC over the slow
communication channel. Second, the SC needs enough RAM to keep this data
during computation. Third, the SC CPU needs to perform O(t) field operations
on 80-bit numbers. With current technology, each of these bottlenecks individ-
ually constrains the maximal value of t, which is also the maximal number of
pirate cards that can be revoked before recarding is needed, t, to ≈ 100.

Our observation is that almost all the O(t) calculations at the user are
nonsecret. In fact, all the information that is received in the broadcast is not
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secret: this includes the t shares P (ui) of all the revoked users, their t identities
ui, and the t coefficients c′

i (which were computed from the nonsecret identities).
The only reason that the center does not compute all the ci coefficients is that
the interpolation performed by each user u0 involves that user’s own identity.

This means that the computation of all the ci coefficients, including c0, can
be performed in the untrusted STT. The SC only needs to compute the terms
that involve its secret share.

Note that each STT should know the identity u0 of it’s SC (but not the secret
share P (u0)). Thus, the STT can also sum all but one of the terms that comprise
P (0):

P (0)′ =
t∑

i=1

ci P (ui)

The STT only needs to transmit the values P (0)′ and c0 to the SC. The SC only
needs to compute one term that involves its secret share P (u0):

P (0) = P (0)′ + c0 P (u0)

Therefore, all of the computation, RAM memory, and communication with the
SC are O(1): The computation is a single-field multiplication and addition in
the field, the communication size is 2 elements in the field, which are 10 bytes
each (and possibly some additional bytes of management data), and only a few
dozen bytes of SC RAM are needed, only to perform the field multiplication and
addition.

This observation allows us to bypass the CPU, RAM, and communication
bottlenecks caused by the SC, and we can contemplate using much larger secret-
sharing scheme sizes.

4. THE NEW MULTIROUND REVOCATION SCHEMES

In this section, we present our two multiround constructions. For comparison,
we first describe some details of the multiround scheme of Naor and Pinkas
[2000].

4.1 Multiround Revocation

The Naor and Pinkas [2000] multiround scheme has t revocation schemes
RS1, RS2, . . . , RSt of secret-sharing sizes 1, 2, . . . , t, respectively (requiring to
store s = t keys on the SC), which are used one after the other: in round i,
revocation scheme RSRi is used for revoking the aggregated set of Ri users. If
more than ri > 1 new users are revoked in round i, then ri − 1 schemes will be
skipped ahead.

The scheme has a transmission length of w = O(ri) (the broadcast includes
the IDs and shares of the ri newly revoked users), with an additional off-line
“maintenance” channel, which is assumed to enable the center to broadcast
data to users at times when bandwidth is less expensive, e.g., at night. The
center uses this maintenance channel to broadcast to each of the n users the
O(ri · t) shares of the revoked users in all the polynomials with higher degrees
than RSRi . This effectively reduces the degree of the other polynomials by ri.
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If it is required to maintain the capability to revoke up to t users after each
revocation round, then recarding of all the SCs is needed: the center generates
new shares and sends them (in unicast) to all the nonrevoked users, in order to
renew the schemes.

The authors [Naor and Pinkas 2000] also propose another scheme for multi-
round revocation, which lifts Shamir’s secret-sharing scheme to the exponent
and relies upon the Decisional Diffie–Hellman problem for the scheme’s secu-
rity. We do not repeat the details of this scheme, since, as explained in Section
1.2, we focus on schemes that do not utilize public-key cryptography.

4.2 Avoiding the Maintenance Channel

At the end of each revocation round, Naor and Pinkas [2000] propose to use an
“offline” maintenance channel, with a goal of to keeping future revocation mes-
sages short. Using the maintenance channel, the center broadcasts the shares
of the revoked users in all the future polynomials. The users are supposed to
store these shares for future revocation rounds. This way, the revocation mes-
sage in round i would be of length O(ri), the number of new pirate cards in
round i, as opposed to O(Ri), the aggregate number of revoked pirate cards in
rounds 1, . . . , i. Unfortunately, this idea has several shortcomings.

First, the revocation message itself does not contain all the information
needed for the calculation of the new group key. Thus, the users need to re-
ceive and store all the identities and shares of the previous Ri−1 revoked users.
This requires O(t(t − 1)/2) nonvolatile storage on the STT, which may not be
available.

Next, the “maintenance channel” idea is problematic for new users, or for
users who missed one or more revocation rounds. If all the previous revocation
messages are to be repeatedly retransmitted, it would raise the real length of
the transmission to O(t2) for each repetition.

Finally, with this approach, the center cannot reduce the computational load
at the user by precomputing most of the Lagrange interpolation formula, since
broadcasting the c′

i ’s would raise the transmission length to be w = O(Ri).
Therefore, the users would need to either perform O(R2) calculations, or store
O(Ri) values in nonvolatile memory and perform O(Ri ri) calculations.

Instead of using a maintenance channel, we take the simpler approach, which
is to broadcast the appropriate shares on the revocation round in which the
polynomial is used. Using our approach, the user does not require nonvolatile
memory, the computational load at the user can return to being O(Ri) (of which
only O(1) is done on the SC), and a rejoining user is not required to process all
the past revocation messages.

4.3 Dealing with a Partial Revocation

The basic Naor and Pinkas [2000] scheme is good for a single revocation. Fur-
thermore, Naor and Pinkas [2000] explains that to revoke more than d users
it is not safe to use multiple schemes with different polynomials of the same
degree d , one per revocation round, since pirates revoked in different rounds
can collude: A coalition of pirates that compromised d SCs in one round and
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d SCs in another round, has (together with the broadcast revocation message)
access to 2d shares in each of the polynomials, which suffice to compute both
new keys. Instead, the authors use t polynomials Pi of degrees 1, 2, . . . , t.

However, if the secret-sharing scheme is of degree d , but the center only
needs to revoke r < d pirate cards, it can use the scheme by “revoking” an
additional d − r dummy users with fake identities. Broadcasting such dummy
shares in polynomial P1 does not give pirates any information about shares
in some other polynomial P2. Therefore, there is no problem in using multiple
secret-sharing schemes with the same degree t, as long as the aggregate number
of revoked users is R ≤ t and all the partial revocations use fake user identities.

In this scheme, if a pirate card was revoked in round i, the center has to
continue revoking this card in future revocation rounds (rounds j > i). Note
that this is required in stateless tree-based revocation schemes such as Naor
et al. [2001] and Halevy and Shamir [2002], as well.

4.4 The Triangular Construction

Instead of using s = t polynomials of degrees 1, 2, . . . , t, we introduce a dilation
factor d and build s schemes RS1, . . . , RSs of degrees d , 2d , . . . , t, with d = t/s.
Scheme RSi is capable of revoking d · i users. Each SC stores a share in each of
the s schemes. Since we have decoupled the maximal number of revoked users
t from the number s of schemes, we can use a large t ≈ 10, 000 with an s that
can fit in the SCs’ limited EEPROM, e.g., s ≈ 100. We call a scheme designed
with increasing size (i.e., increasing degree of the secret-sharing polynomial) a
Triangular system.

In the ith revocation round, the center revokes the Ri known pirate users
(of which ri are new), subject to the constraint that ri ≤ d · i − Ri−1. If not all
of the new ri pirates can be revoked with scheme RSi of degree d · i, then we
skip ahead one or more revocation schemes. For the ith round, we have two
possible candidate schemes, RSj−1 and RSj , for which d ( j − 1) ≤ Ri ≤ d · j .
We select scheme RSj (“round up”) if Ri − d ( j − 1) ≥ d/2 and select RSj−1

(“round down”) otherwise. Note that if we round down, then up to d/2 known
pirates are not revoked in this round. Furthermore, in each revocation round,
either the number of pirates in carry (“leftovers”) or the dummy users used
(revocation “credit”3) are zero. It is possible to choose a different threshold for
skipping ahead schemes.

The transmission length of the Triangular scheme is linear: wi = O(d · i).
The center is capable of revoking an average of d = t/s new users per round, but
an overall total of t users, since users revoked in different rounds can collude.

4.5 The Rectangular Construction

Our second construction, called the Rectangular construction, has s revocation
schemes, of equal secret-sharing sizes t each. In this system, the overall number
of revoked users is still t, but the center has the flexibility of revoking up to t
users in a single round.

3Dummy users can be replaced with real ones in future rounds.
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In the ith revocation round, the center revokes all the known pirate users,
subject to the constraint that Ri ≤ t, and completes the round by also “revoking”
t − Ri fake users.

The Rectangular scheme has a transmission length of O(t) per round re-
gardless of the actual number of users revoked in that round. For s revocation
rounds, the total length of transmission is O(st) for both schemes, however,
the total for the Triangular scheme is smaller by a factor of 2 and Triangular
scheme’s first rounds use much shorter transmissions.

4.6 Incremental Computation at The Center

We observe that for a large t, the O(t2) calculations required at the center can
become a bottleneck as well. However, the O(t2) calculations at the center can be
performed incrementally: performing only O(rt) computations for a revocation
round with r new users to revoke. The steps needed in the Rectangular scheme
follow. The Triangular scheme uses a similar procedure.

� At initialization of the revocation scheme, the center chooses (t + 1) dummy
values for all the identities (ui ’s), and performs O(t2) calculations to obtain
the t c

′
i ’s, that are ready to be broadcast for this choice of revoked users. Note

that this calculation can be carried out outside the system (for example, in a
strong off-line computer), and be imported to the center.

� With each new user ua to revoke, the center takes out a dummy user ud from
the list2 and updates the t c

′
i ’s, by performing for each of them :

c
′new
i = c

′old
i

ua

ua − ui

/ ud

ud − ui

The new ci coefficients are now ready to be broadcast for the new revocation
list. This requires O(t) calculations.

This incremental approach allows us to bypass the potential CPU bottle-
neck at the center, for large values of t. In addition, if significantly less than t
users are revoked, then the calculations the center actually performs are cor-
respondingly lowered, since the initial calculations involving the identities of
the dummy users remain part of the revocation message.

5. SIMULATION

In this section we evaluate the system’s behavior via an exhaustive simulation
study. We examine different piracy rates, explore the operational aspects of
several revocation triggers, and evaluate the following parameters: transmis-
sion length, scheme lifetime (without recarding at all), average piracy levels,
a pirate’s lifetime, sensitivity to bursts of pirates, and pirate “leftovers” after
revocation.

5.1 Model Definition

In our model, the number of pirate users that exist in the system, and the
number of hacked SCs from which they originate (pirate cards), are unknown
to the center. What the center does know is the number of pirate cards that are
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discovered by enforcement authorities and the content provider companies per
time period.

We set the total number of pirate cards that the schemes need to be able to
revoke at R = 10,000. This seems to be a reasonably large number of hacked
cards for a population of n ≈ 108: R ≈ √

n. Therefore, the maximal degree
of the polynomials that the schemes use is t = 10,000. We chose the number
of shares each SC needs to store to be s = 40, which is a value that even the
cheapest SCs can handle (all the shares can fit in about 640 bytes of EEPROM).

We simulated both the Rectangular construction, which has s = 40 schemes
of a secret-sharing size of t = 10,000, and the Triangular construction,
which has s = 40 schemes with linearly increasing secret-sharing sizes
250, 500, 750, . . . , 9750, 10, 000.

For each scheme, we evaluated two possible triggers for performing the re-
vocation. The first trigger for a revocation round is the accumulation of 250
pirate cards. The second trigger is time: perform a revocation round if 3 months
have passed from the last revocation round (i.e., four revocation rounds per year,
one round each quarter). The two constructions and two trigger mechanisms
give us four variants to compare:

1. Scheme A: Rectangular construction with a revocation trigger of each
3 months.

2. Scheme B: Rectangular construction with a revocation trigger of accumulat-
ing 250 pirate cards.

3. Scheme C: Triangular construction with a revocation trigger of each
3 months.

4. Scheme D: Triangular construction with a revocation trigger of accumulat-
ing 250 pirate cards.

Note that the two trigger types are essentially equivalent for a discovery rate
of λ = 250/13 ≈ 19.2 pirate cards per week. At such a rate (250 pirate cards per
quarter), all four variants finish 40 revocation rounds, on average, in 10 years’
time.

We model the number of discovered pirate cards as a random variable having
a Poisson distribution with an average value of λ pirate cards discovered per
week. We varied λ between 2 ≤ λ ≤ 50 pirate cards per week. The simulation’s
time unit is one day. For each simulated day, we randomly generate new pirate
cards (according to their weekly discovery rate) and check whether a revocation
round should be performed.

5.2 Results

5.2.1 The Number of Known Pirate Cards in the System. Figure 1 shows
the number of known pirate cards as a function of time, for a discovery rate of
λ = 14 and λ = 28 pirate cards per week. In all four schemes we see that the
number of known pirate cards in the system grows linearly and then drops at
each revocation point. In Figure 1(top), schemes A and C, which revoke each
quarter, accumulate 13 × 14 = 182 pirate cards on average before revocation
occurs, while schemes B and D have 250/14×7 = 125 days on average between
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Fig. 1. The number of pirates in the system as a function of time: (top) for λ = 14, (bottom) for

λ = 28.

revocations. Thus, for a relatively low discovery rate, the time-based trigger
(every 3 months) occurs more frequently—but causes partial revocations (of
less than 250 per round).

In Figure 1 (bottom), the discovery rate is λ = 28. The figure shows that
for such a discovery rate, the Triangular construction with a revocation trig-
ger each quarter (scheme C) maintains the number of pirates after revocation
below d/2 and zeroes it in case either the rounding operation (Section 4.4)
is up or ri < d . By comparison, scheme A zeroes the number of pirate cards
after each revocation, since all its secret-sharing schemes are of degree t =
10,000. Schemes B and D have 250/28 × 7 = 62.5 days, on average, between
revocations.

5.2.2 The Revocation Message Length. Figure 2 shows the length of the
revocation messages in each revocation round. The same figure also shows the
system’s lifetime: i.e., the time by which either all s = 40 revocation rounds are
done, or t = 10,000 pirate cards have been revoked, whichever arrives sooner.

The figure shows how the transmission length of the Triangular construc-
tions grows linearly with the round number. The Rectangular constructions
have a fixed transmission length of w = t = 10,000. (We omitted the constant
factor of 2 incurred by precomputing the ci coefficients.)
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Fig. 2. Revocation message length (in keys) as a function of time, for (top) λ = 14, (bottom) λ = 28.

At a low discovery rate of λ = 14 (Figure 2, top) the schemes that re-
voke only when 250 pirate cards are discovered (B and D) complete their s
rounds much later than the 10 years the systems were designed for: the figures
show these schemes to last about 13.7 years. For a discovery rate of λ = 28
(Figure 2, bottom), the system lifetime for all schemes is shortened to an aver-
age of 6.9 years, since 10,000 pirate cards would already be revoked by then.

5.2.3 Varying the Pirate Discovery Rate λ. To check the scheme’s sensitivity
to the pirate discovery rate, we increased λ from 2 to 50 and plotted the system
lifetime, average number of known pirates, and average pirate’s lifetime. Each
curve in Figures 3, 4–5, shows the average of 32 simulation runs. For each
curve, we also computed the 95% confidence interval values (cf. [Jain 1991] for
the definition). The confidence intervals were roughly as small as the symbols
on the curves, so we omit them for clarity.

Figure 3 depicts the average system lifetime as a function of the discovery
rate for each of the four schemes. Schemes B and D, performing revocation upon
accumulating 250 pirate cards, have a very high lifetime for a low discovery
rate, while schemes A and C, performing revocation upon a time trigger, have a
constant lifetime of 10 years for a low discovery rate. For high discovery rates,
all the schemes have a lifetime that behaves approximately as 10,000/λ.

5.2.4 Levels of Piracy. Figure 4 shows the average number of known pirate
cards over the system lifetime as a function of the discovery rate for each of the
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Fig. 3. System lifetime as a function of λ.

four schemes. Schemes B and D, performing revocation upon accumulating 250
pirate cards, have a constant average piracy level of 125 pirates, which is one-
half of the accumulation trigger, independent of the discovery rate. Schemes A
and C, performing revocation upon a time trigger, have a linear average piracy
level of ≈ 13/2λ for a low discovery rate. For high discovery rates, scheme A
retains the same linear average piracy level, since the Rectangular construction
can revoke all existing pirate cards. Scheme C however, has an additional offset
of size d/8, since the Triangular construction does not revoke all the existing
pirate cards when the rounding operation (Section 4.4) is down. The number
of pirate cards left after revocation can be approximated by a random variable
uniformly distributed in [0 . . d/2];4 thus its average is d/4. The rounding down
operation is done with probability 1/2, giving us an average offset of d/8.

Another interesting parameter is the length of time between the discovery of
a new pirate card and its revocation, which we call the “pirate lifetime.” Figure 5
shows the average lifetime of a pirate card, as a function of the discovery rate.
Schemes B and D, performing revocation upon accumulating 250 pirate cards,
suffer a high pirate lifetime for low discovery rates (since revocations are well

4The offset at λ = 38 on the curve is smaller than d/8 due to integrality conditions. For λ = 38, the

quarterly rate is 13∗38 = 494 new pirates, which is numerically close to 500 = 2×250. This causes

the approximation of a uniform distribution to be inaccurate when only 40 revocation rounds are

simulated (in this case, the average number of leftover pirates stabilizes more slowly).
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Fig. 4. The average number of pirates throughout the system lifetime, as a function of λ.

spaced in time). The pirate lifetime decreases like 250/2λ when the discovery
rate grows under these schemes. Schemes A and C have a fixed pirate card
average lifetime of 6.5 = 13/2 weeks for low discovery rates. For high discovery
rates, scheme A retains the same average, while, as we have already seen,
scheme C has a higher average pirate lifetime because of all the rounds that
have pirate “leftovers.”

5.2.5 Hybrid Triggers. Neither the time trigger or number-of-pirates trig-
ger is universally superior. Revoking only upon a time trigger causes the ac-
cumulation of pirate cards at high discovery rates. Revoking only upon the
accumulation of pirate cards has the disadvantage of a high pirate lifetime for
low discovery rates.

However, it is straight-forward for the center to perform revocation upon
both triggers, whichever arrives first. If revocation is performed upon the com-
bination of both triggers, then the Triangular construction has the same sys-
tem lifetime, average pirate card number, and average pirate lifetime as the
Rectangular construction (the lower parts of Figures 3, 4–5). The aggregate
transmission length (over all revocation rounds) of the Triangular schemes is
ts/2, while for the Rectangular schemes it is ts. Thus, overall, the Triangular
scheme is better by a factor 2. Note, though, that the savings are much higher
during the early revocation rounds.
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Fig. 5. The average lifetime of a Pirate (from discovery to revocation), as a function of λ.

We can conclude that of the variants we have examined, the best solution is
to use the Triangular scheme, using a hybrid revocation-round trigger: A revo-
cation round should be triggered by the earlier of a time period and exceeding
a threshold of discovered pirate cards.

5.2.6 Sensitivity to Bursts of Pirates. Modeling the discovery of pirates
as a random Poisson process can be somewhat limiting. In order to check the
sensitivity of both schemes (Rectangular and Triangular) and both trigger types
(time and pirate number) to fluctuations in the pirate discovery rate, we have
generated a burst of pirates on the 245th day of the simulation, instead of the
pirates that are generated by the Poisson process. The burst of pirates was set
to be of size 1630 pirate users. Although these two values are arbitrary, the
behavior of the system is essentially the same for other values.

Figure 6 shows the average system lifetime including the burst, as a func-
tion of the pirate discovery rate, for each of the four schemes. For the sake
of comparison, the figure also shows the approximate lifetime of the schemes
without the burst (Figure 3), shown in the dash–dot line. For low discovery
rates, when the lifetime of the system is limited by the number of polynomials
(s = 40), the Triangular scheme C has a shortened lifetime compared to both its
Rectangular counterpart (scheme A), whose lifetime is unchanged, and to
scheme C without the burst. This is due to “skipping ahead” polynomials to
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Fig. 6. System lifetime as a function of λ, including a burst of 1630 pirates on day 245.

handle the pirate burst. Schemes B and D have also a shortened lifetime com-
pared to Figure 3, since more revocation capacity is spent on handling the burst.
For high discovery rates, when the lifetime is limited by the total revocation
capacity t = 10,000, all four schemes have a shortened lifetime compared to
Figure 3, since more revocation capacity is spent on handling the burst.

Figure 7 shows the total number of pirate cards revoked during the lifetime
of the system, as a function of the discovery rate, for each of the four schemes.
Schemes B and D, performing revocation upon accumulating 250 pirate cards,
revoke ≈ 10,000 pirate cards during the lifetime of the system, independent of
the discovery rate. For low discovery rates, schemes A and C, performing revo-
cation upon a time trigger, revoke a linearly increasing number of pirates (with
respect to λ) during the system’s lifetime. Scheme A behaves like the Poisson
arrival, to which the burst is added. Scheme C, however, manages to revoke
less pirate cards, since the burst shortens the usable number of polynomials,
which translates also to a shortened system lifetime. For high discovery rates,
schemes A and C also revoke ≈ 10,000 pirate cards during the lifetime of the
system.

5.3 Queueing Theory Analysis of Pirate “Leftovers”

In this section, we study the behavior of the pirate “leftovers” using queueing
theory. As explained in Section 4.4, pirate “leftovers” exist after revocation in
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a function of λ, including a burst of 1630 pirates on day 245.

the Triangular constructions when the round operation is “down” and represent
pirates that were not “served” (revoked). Note that the Rectangular construc-
tions (A and B) do not suffer from pirate “leftovers,” so its queue analysis con-
forms to Little’s theorem [Jain 1991]: N = λt, where t is the average lifetime
of a pirate, N is the average number of pirates, and λ is their average arrival
rate. Our analysis is performed on scheme C. We assume scheme D can check
the revocation trigger in a continuous manner and thus refrain from having
pirate “leftovers.”

We model the number of pirates in the system by a queue, whose size in-
creases with the discovery of new pirates (modeled by the Poisson process),
and decreases upon revocation (by an integer multiple of the dilation factor d ).
Next, we develop the equations governing the queue of scheme C, solve them
numerically, and present the results.

We denote the state of the system after revocation round i by ni: positive
values of ni represent pirate “leftovers,” while negative values represent revo-
cation “credit.” In order to write compact equations, we use the additive property
of a Poisson process (an average of λ per week equals an average of 13 × λ per
quarter). Recalling that the number of newly discovered pirates per quarter is
ri, and setting δi to be the difference in size between the previous scheme and
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the current one, we get:

ni = ni−1 + ri − δi = ni−1 + ri − y × d ; y = max

{
1,

⌊
ni−1 + ri

d
+ 0.5

⌋}

The numerical solution is based on steady-state analysis, i.e., each value of
the queue, after revocation, is assumed to have a fixed probability and, for each
state, the probability of entering it and leaving it are equal. This means that
scheme C is analyzed as if it has an unlimited number of polynomials.

We identify two regions the system can be in. In the first, λ < 250/13 ≈ 19.2,
the system has a high chance of emptying the queue upon each revocation, in
which case the pirates average number and lifetime can be trivially derived
by using Little’s theorem [Jain 1991], as before. In the second region, where
λ > 250/13 ≈ 19.2, the phenomenon of pirate “leftovers” becomes interesting.
From here on, we focus on this region.

Intuitively the state of the queue after revocation varies between a “credit” of
−d/2 to d/2−1 “leftovers.” However, the accumulated “credit” may occasionally
go below −d/2. This happens when the queue is already in “credit,” for example,
of −d/2, and the following round has less than d discovered pirates (which can
happen even for λ > 19.2). Thus, in principle, the accumulated credit can be
unbounded. In order to have a finite (and compact) state-machine, we bound the
accumulated “credit” by −d , since the probability of going below it is negligibl.5

5.3.1 Numerical Solution. Define qu,v as the probability to pass from state
nu to state nv, after ri new pirates have been discovered and revocation round
i has taken place. Then:

qu,v =
∑

ri

λri e−λ

ri!
;

{
ri | ri = v − u + d max

(
1,

⌊u + ri

d
+ 0.5

⌋)}

Let ψu be the steady-state probability of state u. Therefore, the probability of
entering state v has to be equal to the probability of leaving state v:

∀v :

d/2−1∑
u=−d

ψu qu,v = ψv

d/2−1∑
s=−d

qv,s  ψv

This yields 3d/2 equations with 3d/2 variables. In vector notation, we make
the following standard manipulation:

�ψ1×3d/2 × �q3d/2×3d/2 = �ψ1×3d/2

�ψ1×3d/2 × (�q − I )3d/2×3d/2 = �01×3d/2

�ψ1×3d/2 × �q′
3d/2×3d/2 = �01×3d/2

5Assume that the queue is in a “credit” state of ni = −d/2, the discovery rate is λquarter = d , and

the additional d/2 “credit” accumulates consecutively and linearly in z rounds. Then, Prob(ni+z <

−d ) ≤ (
∑d/(2z)

k=0
dk · e−d

k!
)z . The maximal value of this expression is obtained for 5 ≤ z ≤ 10 and it is

upper bounded by 10−6.
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where q′ is defined as

q′
i, j =

{
qi, j for i �= j
qi,i − 1 for i = j

The 3d/2 equations are dependent and thus one can be omitted. In order to
solve the system, we replace the omitted equation with the probability conser-
vation rule, namely:

d/2−1∑
u=−d

ψu = 1

which finally yields the following set of equations:

�ψ1×3d/2 × �q′′
3d/2×2d/2 = −−−−−−−−→

(0 0 . . . 0 1)1×3d/2

where

q′′
i, j =

{
q′

i, j for i �= 3d/2

1 for i = 3d/2

We solved this set of equations numerically using Matlab. Formally, each
qu,v is a sum of an infinite number of terms (ri is formally unlimited). However,
since the probability of a Poisson variable to be greater than a few times its
average is negligibly small,6 a limit on ri was used.

5.3.2 Results. Figure 8 shows the probability to be in each of the states of
the queue after revocation for different λ values. The figure shows that when
λ > 22 pirates per week, the steady-state size of the queue after revocation
behaves almost as a uniform random variable between [−d/2 . . d/2 − 1] 7 as
was assumed in Section 5.2.4. However, for 19.2 < λ ≤ 22 (the six values of
λ that are visibly distinguishable in this resolution), we notice that the states
between [−d . . −d/2−1] have a nonnegligible probability, and the probability of
the states of the queue with high pirate “leftovers” is correspondingly lowered.

The pirate “leftovers” contribute to the average number of pirates in the
system and to the lifetime of a pirate. Figure 9 shows the average number of
pirate “leftovers” after revocation, for different λ values. For λ > 22 pirates per
week, we see that this average reaches 31, which is exactly the expected value
for a uniformly distributed random variable.8 For lower λ values, the average
number of leftovers grows rapidly with λ, until the approximation holds.

6. CONCLUSIONS

Over the last few years, it has been generally accepted that tree-based broad-
cast encryption schemes, such as those of Wong et al. [2000], Wallner et al.
[1998], Canetti et al. [1999a, 1999b], Naor et al. [2001] and Halevy and Shamir
[2002], offer the best mix of features, and are superior to combinatorial or secret-
sharing schemes for the same problem. We have shown that this superiority is

6For example Prob(ri > 3 λ) < 2 × 10−13 ; 19.2 < λ < 50.
7Which creates the impression of a step function because of the y axis resolution.
8
∑d/2−1

i=1
i = d

8
− 1

4
= 31, when d = 250.
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Fig. 8. Queue size probability in steady state, for different λ values.

less clear-cut than was previously assumed, by demonstrating a secret-sharing-
based broadcast-encryption revocation scheme, that is competitive with the best
known tree-based solutions in combating piracy. Specifically, our best scheme
enjoys the following properties:

� Computational load: Our Triangular construction uses minimal resources
on the SC: CPU, RAM, and STT-to-SC communication. The SC has to per-
form only a single-field multiplication and addition in a field. This is sig-
nificantly better than the O(log2 n) or O(log3/2 n) computation required for
tree-based schemes. Although harder to quantify, we argue that, because the
scheme’s simplicity, the SC-resident code of our scheme should be much sim-
pler to write and will require much less system ROM than that of tree-based
schemes. In fact it is hard to imagine anything simpler.

� Transmission length: Our Triangular construction has linear transmission
lengths that are on par with the best tree-based schemes ([Naor et al. 2001;
Halevy and Shamir 2002]). These latter schemes offer much shorter trans-
mission lengths under favorable conditions. However, when the application
is pirate card revocation, we argue that favorable conditions (many pirates
in a small number of subtrees) are highly unlikely.
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Fig. 9. The average number of pirate “leftovers” after revocation, as a function of λ.

� Secure EEPROM usage: In the Triangular construction the number of shares
stored in EEPROM, s, is an unconstrained parameter, which can be chosen
to balance the amount of EEPROM that is available, against the desired
lifetime of the system and the granularity of revocation. In tree schemes,
EEPROM usage is dictated by n and is not flexible: e.g., the O(log2 n) keys
needed by Naor et al. [2001] may exceed the capacity on weak SCs when
n = 108 (although, in fairness, the O(log3/2 n) of Halevy and Shamir [2002]
is probably small enough for realistic values of n).

� Scheme lifetime: While tree schemes are not limited in their lifetime before
recarding is needed, the Triangular construction can be used with realistic
parameter settings (t, s, and d ) that allow several years of use before recard-
ing becomes necessary, effectively obtaining the same behavior (the lifetime
of the system itself, including the SC, is also limited).

� Pirate cards revoked: While tree schemes can revoke an unlimited number of
pirates, the Triangular construction can have t = R ≈ 10000, which seems
to be a reasonably large number of different hacked SCs for a population of
n ≈ 108: t ≈ √

n. Furthermore, the bottlenecks for increasing t further are
no longer in the SC: they are the center’s ability to compute O(t2) values and
the STT’s need to compute and store O(t) values.
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� Late entry: In the Triangular construction, as in the stateless tree schemes,
a rejoining or new user is not required to process past revocation messages.

Finally, we have highlighted the parameters of an operational revocation
strategy, namely, revocation round trigger, system lifetime, pirate lifetime,
known pirate number, and sensitivity to bursts of pirates. Our simulations
identified a good operational strategy, under which the Triangular scheme can
perform effective pirate revocation for realistic broadcast encryption scenarios.
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