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Network level surveillance, censorship, and various man-in-the-middle attacks target only specific types
of network traffic (e.g., HTTP, HTTPS, VoIP, or Email). Therefore packets of these types will likely receive
”special” treatment by a transit network or a man-in-the-middle attacker. A transit ISP or an attacker
may pass the targeted traffic through special software or equipment to gather data or perform an attack.
This creates a measurable difference between the performance of the targeted traffic versus the general
case. In networking terms, it violates the principle of ”network neutrality”, which states that all traffic
should be treated equally. Many techniques were designed to detect network neutrality violations, and some
have naturally suggested using them to detect surveillance and censorship. In this paper, we show that the
existing network neutrality measurement techniques can be easily detected and therefore circumvented. We
then shortly propose a new approach to overcome the drawbacks of current measurement techniques.
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1. INTRODUCTION
A major security hazard is the possibility to target specific sensitive traffic and treat it
differently. For example, a foreign government may divert all VoIP traffic traversing a
router and pass it through data gathering equipment to collect sensitive information
[Zhang et al. 2009b]; A non-democratic government may divert all traffic destined to
specific web sites in order to block anti-government activities [Sfakianakis et al. 2011;
Gill et al. 2015]; or a criminal group may hijack traffic destined to financial institution
in order to penetrate user accounts [Zhang et al. 2010; Cunha et al. 2014]. This type
of discriminatory activities creates a measurable difference between the performance
of the targeted traffic versus the general case. In networking terms it violates the
principle of network neutrality, which states that all traffic should be treated equally.

The term “Network Neutrality” was coined by Tim Wu outside of the security domain
in a paper discussing the regulation of competition between products on the privately
owned infrastructure of the Internet [Wu 2003]. Network neutrality, is the notion that
networks should behave as neutral carriers of information, and should not discrimi-
nate between data of different applications, of different content, users, destinations,
etc. Non-neutral network behavior can appear for purposes outside the security do-
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main: carriers may slow down traffic of services that competes with their owns, or non
type of applications that consumes large traffic volumes, such as peer to peer traffic.

There is a need for a tool that can detect network neutrality violation in order to
warn users that they are under surveillance. Indeed, the networking community has
developed several such tools with the aim of detecting network neutrality violations
[Dischinger et al. 2008; Dischinger et al. 2010; Zhang et al. 2009a; Kanuparthy and
Dovrolis 2010; Tariq et al. 2009; Lu et al. 2007; Lu et al. 2010; Electronic Frontier
Foundation (EFF) ]. However, these tools were developed with disregard to the fact
that a spying nation or a group of criminals will invest efforts to conceal their activi-
ties. Thus, when building a network neutrality measurement tool one must conceal its
measurement activities.

Generally speaking, measurements and measurement tools have two important at-
tributes associated with them: accuracy and precision. Precision, as defined by the
International Organization for Standardization (ISO), is “the closeness of agreement
between independent test/measurement results obtained under stipulated conditions”,
i.e., the degree with which repeated measurements of the same phenomena produce
the same results [International Organization for Standardization 2006]. Accuracy, on
the other hand, is defined as “closeness of agreement between a test result or mea-
surement result and the true value” [International Organization for Standardization
2006]. Naturally, measurements can exhibit both features, one of them, or none at all.

This work focuses on an underlying assumption, which is common to all existing net-
work neutrality measurement techniques, that the network being measured is naive,
and it does not attempt to affect the results of the neutrality measurement. We show
that due to this assumption, the measurements performed by existing tools are suscep-
tive to manipulations. Namely, the measurements may be precise but their accuracy
is questionable as they overlook a significant source of possible systematic errors that
can completely skew the results.

We show here, using real Internet traces, that neutrality measurements as sug-
gested by all previous work can be easily detected and thus are susceptive to manip-
ulation by the entity that desires to conceal its non-neutral behavior (Sec. 4). We also
show using a testbed emulation that such manipulation will not significantly affect
other traffic in the network (Sec. 5). Finally, we suggest a novel design for a stealth
neutrality measurement tool (Sec. 6).

2. RELATED WORK
Previous network neutrality tools treated the ISPs, or the network, as the entity that
attempts to perform non neutral treatment thus from now on we will use here these
terms. Specifically, we will assume that the traffic discriminations is performed by the
ISP.

Generally speaking, one can divide network neutrality measurement techniques into
four categories by distinguishing between active and passive techniques, and by dis-
tinguishing between unilateral and bilateral techniques. The vast majority of network
neutrality measurement tools use active measurements. Namely, they send special
measurement traffic and use it to evaluate the characteristics of the network in ques-
tion. Passive measurement techniques, on the other hand, are those techniques that
make their measurements passively without sending any special traffic. Unilateral
measurement techniques are those that a single host can perform without the need for
a second party, whether it be a host or a special measurement server. Bilateral tools,
in contrast, are those that require the participation of two hosts or a host and a server.
This work shows that current tools can be easily detected by the ISPs and thus be
manipulated. We will describe below the most common tools used today (or recently
suggested), and examine in the papers their vulnerabilities.
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Glasnost [Dischinger et al. 2008; Dischinger et al. 2010], which is an active bilateral
tool, enables end users to check the neutrality of their ISP, by measuring network per-
formance in relation to different transport layer port numbers and application layer
signatures. It gives users immediate feedback regarding their connection, but also ag-
gregate results to reach conclusions about the policies of an entire ISP. A Java applet
downloaded by the user perform the measurement to one of a few Glasnost servers.

NetPolice [Zhang et al. 2009a], which is an active unilateral tool, is designed to de-
tect differentiation in core networks. It targets a specific Autonomous System (AS) and
analyzes it. NetPolice attempts to measure not only application based differentiation,
but also differentiation based on the AS from which the traffic comes (previous-AS)
and the AS where the traffic is sent to (next-AS). NetPolice employs a probing tech-
nique, similar to traceroute: periodically sending packets with increased TTL (Time to
Live) values. However, unlike traceroute, the packets are large, have transport layer
headers with port number of known applications, and their payload imitates the appli-
cation content. Since dropped probe packets will not trigger ICMP reply, NetPolice can
estimate the loss rate of various applications to any node along a path. The system,
deployed on PlantLab, selects paths to cover as many ingress-egress pairs of an AS. In
each path, the loss rate inside the target AS is calculated as the difference in loss rate
between the egress and ingress nodes of that AS. By comparing loss rate distribution of
different applications along the same path to the loss rate distribution of HTTP, which
is taken as a baseline, NetPolice identifies which applications receive poor treatment
and therefore more packet loss.

Diffprobe [Kanuparthy and Dovrolis 2010], which is an active bilateral tools, aims
at identifying discriminatory scheduling and active queue management algorithms
deployed in a provider’s network. Diffprobe assumes that neutral networks employ
First-Come First-Served (FCFS) scheduling with drop-tail queue management; non-
neutral networks will classify traffic and prioritize some flows at the expense of others.
This assumption means that the target network will treat flows differently only during
periods of high load. Diffprobe is running its test traffic between two computers in a
client-server configuration. The system simultaneously injects the network with two
time-stamped flows: an application flow, assumed to be classified as low priority, and a
neutral probing flow. The receiver records packet loss and delay.

NANO [Tariq et al. 2009] views the network as a ”black box” that gives users vari-
ous types of services. It then relies on passive unilateral performance measurements of
these services to estimate a network’s neutrality. This approach has the advantage of
being completely independent of any specific differentiation mechanism. NANO uses
passive performance measurements by the NANO agent deployed on volunteers’ com-
puters. The agent passively listens to all traffic going through the user’s machine and
collects various performance measurements such as throughput and delay of flows it
detects. It also collects information about the computer and its environment such as
its location, type of connection, operating systems and hardware specification. Infor-
mation from all NANO agents is sent to a central NANO server where it is stored and
analyzed.

POPI (Packet fOrwarding Priority Inference) [Lu et al. 2007; Lu et al. 2010] is a
bilateral active technique designed to infer packet forwarding priorities in routers by
saturating the bottleneck link along the path. A sender transmits nb packet bursts
(well spaced), each carrying nr packets of each of the k packet types being tested,
giving a total of nrk packets per burst. The receiver calculates for each packet type i

the average normalized rank (ANR) using ANRi =
1
nb

∑nb

m=1
rmi
k where rmi is the rank

of traffic type i in burst m. The ANR values are then clustered to classes of equal
performance.
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Switzerland, whose latest design document (version 0.3) dates back to 2008, is a pas-
sive bilateral technique [Electronic Frontier Foundation (EFF) ]. Switzerland looks for
lost, modified, and injected packets in a flow between a pair of hosts. It does so using a
central server to which both hosts report the cryptographic hashes of sent and received
packets along with the time when the packets were observed. The server then looks at
the packets in search of anomalies. It searches for packets that were received with a
hash different from the hash reported during transmission, which indicates modified
packets. It also looks for packets injected by the network, i.e., packets which the re-
ceiver reports but the sender does not. Lastly, it counts dropped packets by comparing
the number of packets observed by the receiver and comparing it to the number of
packets sent. The design of Switzerland is not complete and the project seems to have
been abandoned.

3. MODELING ISP BEHAVIOR
As shown in Sec. 2, there are quite a few different techniques for determining whether
a network is biased against certain kinds of traffic or users. These techniques mea-
sure metrics such as throughput, delay, and packet loss to statistically evaluate the
behavior of a network. However, all these techniques assume a naive network opera-
tor, which, as discussed in this section, may not be true in practice and may lead to
false negative results.

While it is desirable to have a single yardstick to grade how the different measure-
ment techniques perform against a sophisticated ISP, which attempts to obscure its
operation; their versatility makes this task challenging. Instead we define a model of a
sophisticated ISP behavior and show how different network neutrality measurement
can be manipulated to skew their results.

3.1. The Naive Network Operator
The existing measurement techniques, mentioned in the previous section, assume that
the network they are measuring is naive. This means that those techniques assume
the network does not actively interfere with the measurement and that all inaccuracies
are only due to noise. However, it is easy to imagine ISPs leveraging the knowledge of
and power over the traffic flowing through their networks to manipulate these well-
known techniques. Such manipulation can be realized as either complete blockage of
these measurement techniques or, more subtly, by prioritizing measurement traffic or
servers to guarantee a favorable outcome. This way, non-neutral ISPs can reduce the
chance of detection. This fact should be taken into account when evaluating traffic
differentiation measurement techniques.

3.2. The Defensive ISP Model
The discussion above leads to a new model for the networks being measured. In the
defensive ISP model, ISPs proactively defend their practices and employ reasonable
means aimed at obfuscating their policies. Specifically, two key assumptions are made
about the network operators: they are both omnipotent and omniscient.

The omniscient assumption states that the network operator is familiar with all
network neutrality measurement techniques. This notion has its roots in Kerckhoffs’s
principle which states that the ”adversary always knows the system”. Applied mostly
in the area of security, this principle makes sense in our context, as defensive ISPs can
follow the research in this area. However, if the measurement uses some randomness,
the defensive ISP can not know the random values in advance. Another sense in which
the network operator can be considered omniscient is that it has full access to the
traffic flowing through its network and it can read and analyze it.



On Network Neutrality Measurements 5

The ISP is omnipotent in the sense that it has full control over user traffic. It can
modify, drop, and delay traffic as well as inject any type of packet into a user flow.
The network operator is only limited by two factors: the perceived experience of its
users and the computational resources it needs to perform an action. It cannot perform
actions that affect the everyday experience of a significant portion of its users, nor
can it perform actions that are extremely resource intensive, such as deciphering the
contents of encrypted traffic without knowing the encryption key.

Thus, the defensive ISP will use all its power to identify measurement traffic in its
network, and then change this traffic treatment to skew the measurement result, or
alternatively, drop this traffic to block the measurement. This means that the question
of the susceptibility of different measurement techniques when faced with a defensive
ISP becomes first and foremost one of classification. Once a measurement technique
has been identified by this omnipotent entity, little can be done to ensure the technique
accuracy.

3.3. Traffic Authenticity
Besides the challenge of remaining undetected, the defensive ISP model brings a sec-
ond significant problem to network neutrality measurement. The traditional practice
in the field states that network performance metrics to be measured are based on
throughput, delay, and packet loss. However, a defensive ISP that, as stated earlier, is
both omniscient and omnipotent has the capability of limiting network usage without
directly affecting these metrics.

Consider for example an ISP interested in limiting Bit-Torrent file transfers. Such
an ISP could modify legitimate Bit-Torrent control messages to make peers see fewer
sources to download from. This packet modification could be used at the edges of a
network to reduce the number of uploads from an ISP’s customers to other networks,
saving it money on bandwidth costs. Such intervention will not be visible at all by
techniques measuring only packet loss or delay metrics. Techniques that measure
throughput might miss it as well, as the sessions that are established can achieve a
normal rate. Only by examining the aggregate throughput of many users or by check-
ing packets for authenticity can one detect this intervention. This creates a need for
a network neutrality measurement technique that is capable of dealing with such a
threat, adding packet authenticity as new metric that network neutrality tools should
measure.

4. NETWORK NEUTRALITY MEASUREMENT DETECTION
4.1. How to Detect a Neutrality Measurement
In a response to the Canadian Radio-television and Telecommunications Commission
as part of the ”review of the Internet traffic management practices of Internet service
providers”, Sandvine, the company whose equipment was used by Comcast to send the
TCP RST packets in 2007, said it used two primary types of techniques for packet clas-
sification: a behavioral flow-based method and a signature-based method [san 2008].
Assuming that this is the industry standard for packet classification, what has to be
analyzed for detectability is both the general behavior exhibited by network neutrality
measurement techniques as well as the specific signatures, such as certain strings or
patterns appearing its packets. Sections 4.1.1 and 4.1.2 deal with behavioral classifica-
tion of popular measurement approaches; while Sec. 4.1.4 deals with signature based
approaches. In the discussion of behavioral classification we assume that measure-
ment techniques that exhibit a distinct behavior are easier to detect than those whose
behavior resembles regular traffic, since for the latter a high rates of false positives is
expected.
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4.1.1. Behavioral Detection of NetPolice. Identifying NetPolice probing packets, from an
ISP’s point of view, is fairly easy since all modern operating systems use well-known
constant TTL values when sending IP traffic [ttl ]. Modern versions of Windows use
a value of 128; Linux and Linux-based operating systems use a value of 64. A value
of 255 is used by the Solaris operating system and in ICMP packets on some Linux
kernels. This fact guarantees that routers, especially access routers, see very specific
TLL values when dealing with regular traffic. Based on that, ISPs can assume that
all packets with abnormal TTL values (that are not slightly lower than 64, 128 or
255) belong to some type of measurement technique and therefore should be treated
differently than other packets.

To verify this point, we analyzed a four day traffic trace (1-5 of August 2005) from
the WAND group (part of the ”Waikato I” trace [Group ]). This trace was recorded on
an access link of the University of Waikato in New Zealand to its Internet provider.
It contains over 165 GB of traffic and almost 500 Million packets. The distribution of
TTL values in IP packets in this trace is plotted in Figure 1.
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Fig. 1. Waikato TTL distribution.

Even these basic results show several distinct peaks in the TTL values on this ac-
cess link, corresponding to the values close to, but slightly lower than, the known TTL
constants. If separated by source MAC addresses into ”Side A” and ”Side B”, and there-
fore by the packet direction on the link, the results become even clearer, as shown in
Figure 1.

The distribution of TTL values on side A has two distinctive spikes on TTL values
of 62 and 126. In fact, over 96% of the 241 million packets in this direction are con-
centrated in these two spikes. Side B’s distribution is not as concentrated, but still has
two large spikes around 50 and 117 as well as a third, less significant spike around
247. This distribution is considerably less concentrated compared to the other direc-
tion: but still it covers a small range of TTL values, which are slightly shifted to lower
values of the typical 64, 128, or 255. On this side, 95.5% of the 251 million packets
are located in one of these typical ranges: 41-61, 105-124, or 231-235. It is therefore
clear that side A is the uplink direction from the university and that the point where
the TTL measurement took place is located two hops from the majority of university
computers. Side B, on the other hand, is the downlink from the Internet to the uni-
versity. It still has spikes caused by the typical TTL values, but the spikes are shifted
to lower values and are not as sharp. This is due to the different distances at which
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the external end points are located, about 5 to 20 hops away from the university. Note
that these traces are anonymized and the IP addresses of these packets are encrypted.
Therefore it is impossible to use the IP addresses to establish the flow direction.

To examine the TTL distribution in core links, we used two datasets. Figure 2 depicts
the distribution of TTL values of an 11 minute trace taken from the Equinix datacenter
in San Jose, CA, captured by CAIDA [CAIDA ]. This trace contains 675 million packets
from 13:00 to 13:11 UTC, April 13th, 2011, from both directions, on a 10Gbps link.
Figure 3 depicts the distribution of TTL values of a 4 hour trace taken on April 15,
2010 from a 150Mbps trans-pacific link by the MAWI working group [MAWI working
group ].
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Fig. 2. San Jose TTL distribution.
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Fig. 3. Mawi TTL distribution.

The TTL distributions in core links, plotted in Figure 2 and Figure 3 show a similar
distribution to that of the Waikato access link. The vast majority of packets lie in
very specific ranges, indicating it is quite easy to identify packets belonging to TTL-
based measurement techniques, even if the detection point is a core link. The single
anomaly is the spike around the value 91 on side B of the San Jose trace in Figure 2.
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Investigating the packets with this TTL value showed that the overwhelming majority
of this traffic comes from a few discrete IP addresses. Since the IP addresses in the
trace are anonymized, it is impossible to determine the networks these IPs belong to.
However, the anonymization in all traces is prefix preserving. Thus, it is possible to
tell that the IPs which send considerable quantities of packets with this uncommon
TTL value originate from two distinct /24 subnets. These subnets are probably either
very far away in terms of hop count, are poorly configured, or perhaps use a custom
TTL value for some reason.

4.1.2. Behavioral Detection of the Flow Pair Approach. A more popular neutrality measure-
ment technique is to compare the performance of traffic flows belonging to different
applications by creating several concurrent or back to back flows between two hosts.
This approach is used by Glasnost [Dischinger et al. 2010], POPI [Lu et al. 2010], and
Diffprobe [Kanuparthy and Dovrolis 2010].

To check for detectability, we examined, using the traffic traces which were analyzed
above, how common is it for a pair of hosts to open several connections concurrently.
Figures 4 and 5 show the distribution of the number of ’concurrent’ session between
pairs of hosts. The figures differ in the definition of concurrent: in Figure 5 we require
two concurrent sessions to have at least three packets with sampling times t1 < t2 <
t3 such that the packet associated with t2 belongs to one session and the other two
packets belong to the other session (termed true concurrent); in Figure 4 we require the
two sessions to be in the same 15 minute time window (termed interval concurrent).
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Fig. 4. The distribution of the number of sessions for an IP pair (interval concurrent).

A session was defined as either a four-tuple consisting of a pair of IP addresses and
UDP/TCP ports in the case of UDP and TCP flows, or just a pair of IPs and a type of pro-
tocol for other protocols sent over IP such as ICMP. Note that TCP flows that contain
only unacknowledged SYN packets were not counted as they do not represent actual
sessions but rather unsuccessful handshake attempts often created by port scanning.
TCP packets with the RST flag on were also ignored for the same reason.

The three datasets are taken from different trunk speeds, and thus a 15 minute
interval may represent an uneven number of IP pairs for the statistics. Thus, we ran-
domly chose a 15 minute interval from the San Jose dataset; it contained almost 934
million packets forming session connecting about 15.25 million unique IP pairs. We
then took multiple 15 minute intervals of the other datasets until we roughly got the
same number of IP packets (For Mawi we took 35 intervals with 930 million packets
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Fig. 5. The distribution of the number of sessions for an IP pair (true concurrent).

and 22.9 million unique pairs, and for Waikato 768 intervals with 975 million packets
and 13.6 million pairs∗).

For the true concurrent definition we found that 90-96% of the IP pairs had no con-
current sessions; for the interval concurrent the number is a bit lower, but still fairly
high 72-84% of the pairs. Namely, at least 3/4 of the IP pairs are not suspicious of mea-
surement activity. We also checked the sensitivity of this result to the interval length
and found stability of the percentage of single session IP pairs: for the SJ dataset the
number of IP pairs with only a single true concurrent session is 91.26%, 90.81% and
90.86% for intervals of 15, 8, and 4 minutes, respectively; for interval concurrency
these percentages are 80.86%, 81.14%, and 82.32%.

To summarize, the basic approach that many network neutrality measurement tech-
niques use creates traffic which in its behavior differs greatly from the behavior of reg-
ular Internet traffic. Since ISPs can use relatively simple hardware at wire speed to
keep track of the number of concurrent sessions of its clients, ISPs can easily flag users
with an abnormal amount of concurrent connections to the same destination. After
identifying suspicious clients, the little left flagged traffic is manageable, it can all be
given the same priority, causing measurements to come out as neutral. Alternatively,
flagged traffic can be sent for further analysis to more accurate, possibly signature-
based, equipment which now has to work at only a fraction of the original line rate.

4.1.3. Discussion of IP Spoofing. The conclusion from Subsection 4.1.2 calls for a seem-
ingly trivial workaround to avoid measurement traffic detection and classification, i.e.,
use source IP spoofing to have some flows sent from one node, using different IP ad-
dresses and still reach the same destination. By using this idea, one can augment the
design of the current approach to avoid detection. Instead of using two or more flows
between a pair of IP hosts (a single source and destination), which is uncommon and
detectable, one can use only one flow between the real IP addresses of both parties.
That flow will be used for parameter negotiation. The actual test traffic will be sent
from spoofed sources, and the results sent back using the real flow. This way, the ISP
will see only a single session between each pair of IP hosts, circumventing the prob-
lem presented in section 4.1.2. One should note though that using different IP source

∗We summed the unique IP pairs per interval, thus an IP pair that appears in more than one interval is
counted multiple times.
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addresses may cause two flows to be routed differently in load balancers, which might
result in large false positives for network neutrality tests.

However, spoofing is not easy and requires software installation with root permis-
sion; a Glasnost style applet cannot send spoofed addresses. Difficulties due to the
network are even more severe. First, there are existing tools such as reverse path for-
warding filters that network operators use to find and drop packets with spoofed IP
addresses. These tools are quite common [Beverly et al. 2009] and their use is en-
couraged due to security concerns. Moreover, last mile technologies such as DSL and
cable DOCSIS modems have a built-in ability of binding IP addresses to link layer
addresses, thus greatly limiting the availability of IP spoofing where it is needed the
most – homes and small business. The MIT Spoofer project reported that only an es-
timated 11.1%±4.1% of IPv4 addresses are able to send a packet with a fake private,
unallocated, or a valid (according to BGP tables) address [Beverly et al. 2009]. Among
the clients unable to do any of these types of spoofing, approximately 77% can still
spoof any address within their /24 subnet and 44% can spoof within their /20 subnet.

Although the ability to send traffic with a fake source IP address is not ubiquitous, a
significant portion of hosts can still send packets with source IP addresses in their own
/24 to /20 subnets. These users can open several sessions by using different source IP
addresses within their own subnets. From the ISP point of view, this will appear as a
number of different communicating IP pairs. This raises the question of how common
it is for hosts that belong to two subnets, to be engaged with more than one concurrent
session with each other. The more common this behavior is, the harder it will be for
a defensive ISP to detect measurement techniques using this method (i.e., subnets
spoofing).
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Fig. 6. The portion of subnet pairs that show only a single true concurrent session as a function of the
subnet size.

We repeated the analysis of Figure 5 with different masks to test how common are
true concurrent sessions between subnets of various sizes. For each subnet pair we only
counted the maximal number of concurrent session. Figure 6 depicts the results for
15, 8, and 4 minute intervals from the Mawi and San Jose (SJ), and Waikato datasets
(note that /32 is the case of no spoofing). For the SJ and Mawi traces, there is clearly
no significant difference in the number of pairs with a single concurrent session for
subnets in the range between /24 (the maximal ’widely’ possible spoofing subnet range)
and /32 (no spoofing), and only a slight drop for /20 which are somewhat possible for
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Fig. 7. The portion of subnet pairs that show only a single interval concurrent session as a function of the
subnet size.

spoofing. Similar results were obtained for interval concurrent sessions (Figure 7).
This suggests that spoofing can help in avoiding detectability only if one can spoof
an IP address outside its /20 subnet, which is possible, but not very common. For the
vast majority of Internet users, however, such IP spoofing cannot be used to hide the
concurrent sessions created by measurement techniques. The Waikato trace implies
better results for spoofing since it is taken from the border of a university network,
which is not representative of the commercial Internet.

The conclusion from these results is that even if spoofing up to /20 is assumed to
be fairly common, the analysis shows that several concurrent sessions between two
/20 subnets is not very likely in normal traffic. At a /20 mask, 8% to 40% of subnet
pairs had more than a single concurrent session. At a /24 mask, which according to the
Spoofer project is a fairly common spoofing limit, this number drops to 6% to 21% of
subnet pairs.

4.1.4. Signature-Based Detection. Signature-based detection relies on specific strings or
patterns that occur in certain types of traffic significantly more than in the general
traffic. These patterns include constant or easily predictable strings and numeric val-
ues in packets, as well as known sequences of packets. Analyzing measurement tech-
niques for particular signatures has to be done individually per technique, as they vary
considerably. We only discuss the two open source techniques.

The easiest way to classify Glasnost measurements [Dischinger et al. 2010] is by
looking for traffic to or from one of Glasnost measurement servers. The fixed servers
are hard coded into Glasnost source code, which is freely available. Even without the
source code, it would have been easy to find the server addresses by simply running
several measurements and observing the tool behavior.

POPI can be easily identified by one of several signatures. First, in its TCP-based
control channel, POPI passes some constant strings as well as the parameters of the
measurement in a fixed pattern. Second, all three types of traffic that POPI gener-
ates (TCP, UDP, and ICMP) have very distinct characteristics. Its ICMP traffic is mal-
formed as it uses a value of 52 in its ICMP type field, a reserved value. The TCP traffic
does not contain a TCP handshake or any means of closing a TCP session. All TCP
packets have a non-zero acknowledgment number while the ACK flag is not raised,
making the packets malformed. Moreover, many fields in the TCP header, including
the TCP sequence number, are constant across all packets. Lastly, the payload of both
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TCP and UDP packets contains many constant fields, easily predictable incremental
counters and a large amount of zero padding.

4.2. Passive Measurement Techniques
The only passive neutrality measurement techniques described in the literature are
NANO [Tariq et al. 2009] and the abandoned Electronic Frontier Foundation’s Switzer-
land project [Electronic Frontier Foundation (EFF) ]. The following discussion focuses
mostly on NANO, as its design is final and well documented, unlike Switzerland.

Passive measurement techniques have a great advantage in the area of network
neutrality measurement since they avoid the ”arms race” between measurement tech-
niques and network policy enforcement, by generating non-detectable traffic. The only
exception to this in NANO is the traffic that a NANO agent generates when reporting
its observations to the central NANO server. This is not measurement traffic, but ISPs
might treat users who were observed contacting known NANO servers differently. This
issue was never addressed by NANO, possibly due to two reasons: First, such lists of
users, who have accessed a certain server, are not easy to manage. Second, this prob-
lem is not hard to solve as long as the size of the reports is small. Instead of collecting
the reports directly at the server, they can be collected through various ”middlemen”,
such as file hosting services, proxies, and even webmail. For example, one could re-
port to the main server by logging into Gmail or a similar service using HTTPS and
e-mailing the results. Since the entire connection is encrypted and authenticated, the
ISP has no way of knowing the mail destination or content. Above all it is clear that
treating all hosts who access a webmail service using HTTPS as potential NANO mea-
surement points is far from practical as it will generate an unacceptable number of
false positives.

However, passive measurements are rather limited in their abilities. For example,
the only delay metric measured by NANO is the RTT between SYN and SYN/ACK, or
between SYN/ACK and ACK packets in the TCP handshake, since these are the only
packets in the TCP protocol that are practically guaranteed not to be delayed, e.g., by
the application at the other end of the connection. The RTT during the rest of the TCP
flow as well as RTTs of any non-TCP flow are not measured, as they would not be re-
liable. Loss rates can be calculated only for TCP sessions, and only based on sequence
numbers or retransmissions. Throughput measurements of observed flows might also
give inaccurate readings as they heavily depend on the application that generates the
traffic and its configuration. Checking traffic for authenticity is also tricky as it re-
quires the exchange of information between participating hosts. Switzerland solves
the authenticity problem by using a central server that collects cryptographic signa-
tures of all sent and received packets, however it is hard to see how this approach
scales as hosts send information regarding each and every packet, thus sending large
amounts of data in total, which is hard to hide. All of this adds a lot of uncertainty to
the results passive techniques produce.

5. A PROOF OF CONCEPT
5.1. Overview and Design
To illustrate how easy it is for an ISP to skew the results of a network neutrality mea-
surement tool using the previously discussed technique, we conducted a proof of con-
cept experiment that demonstrates the practicality of such an intervention. We created
a dedicated testbed to emulate a network neutrality measurement between two hosts
connected through a non-neutral network. The non-neutral network employs various
QoS mechanisms that treat some types of traffic differently than others. Such discrim-
ination is significant only if the network doesn’t have enough resources to handle all of
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the traffic. Otherwise, the effects of the discrimination would be negligible. Therefore
the discrimination has to be performed on a bottleneck link.

The path between two hosts on the Internet may have any number of bottleneck
links; however, to make implementation easier, in this study, like in other studies deal-
ing with network path emulation, only one bottleneck link was created [Sanaga et al.
2009]. Before traversing the link, packets are classified, queued in the egress queue
appropriate to their class, dequeued by the egress scheduler, and transmitted on the
link at the line rate. In the experiment design, all of these elements were recreated
along with authentic cross traffic to add realistic noise to the measurement results.

The testbed was created using the Linux tc utility [Almesberger 1999] with Netem
[Hemminger 2005] (see Figure 8). Note that in this design, a measurement packet sent
by one of the hosts traverses the network elements in a manner identical to that of a
real packet between two hosts on the Internet: measurement application → uplink
token bucket → differentiating bottleneck node → downlink token bucket. Network
elements that were not mentioned in this description operate in a FIFO fashion, with
very little delay due to unconstrained bandwidth, and are therefore transparent.

Fig. 8. The testbed.

The noise generator was created using a patched version of Tcpreplay [Turner ],
which replays traffic from a pre-recorded traffic trace. To make the noise, seen in the
differentiating node’s queues, realistic, a real network traffic trace was used, specif-
ically a five minute trace between 01:15 and 01:20 on April 15, 2010 from the Mawi
archive. Using a pre-recorded traffic trace to generate noise is not realistic, since noise
does not react to the measurement traffic. However, when used in conjunction with a
measurement technique that is not bandwidth intensive, the lack of reactivity does not
affect the results. It simulates a realistic case of a network neutrality measurement
between two hosts when the differentiation occurs on a high capacity backbone link,
where the effect of the measurement traffic on the noise traffic is negligible.

5.2. Experiment Setup
The host ingress was configured with a downlink token bucket shaper with a rate of
15Mbps, bucket size of 12Mbyte and a maximum rate of 25Mbps. The host egress was a
simple FIFO queue. The differentiating node was configured with an ingress (uplink)
token bucket with a rate of 1Mbps, burst size of 1Mbyte and a peak rate of 2Mbps.
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Table I. Results of POPI runs for direction 1 (top) and 2 (bottom). Based on the ANR, POPI groups the traffic classes into service
tiers. The grouping according to tier is shown in parenthesis next to the Average Normalized Rank (ANR) calculated by POPI.
For example, in short experiment 4 POPI classified all three classes to one service tier (top), but managed to differentiate them
into three service tiers in the other direction (bottom)

Traffic Type Short exp. 1 Long exp. 1 Short exp. 2 Long exp. 2 Short exp. 3 Long exp. 3 Short exp. 4
Port 22 0.870 (2) 0.802 (3) 0.760 (2) 0.817 (3) 0.771 (1) 0.829 (3) 0.786 (1)
Port 80 0.729 (2) 0.688 (2) 0.771 (2) 0.707 (2) 0.682 (1) 0.718 (2) 0.687 (1)
Port 8080 0.401 (1) 0.510 (1) 0.469 (1) 0.477 (1) 0.547 (1) 0.453 (1) 0.526 (1)
Port 22 0.865 (2) 0.913 (3) 0.859 (2) 0.919 (3) 0.875 (2) 0.912 (3) 0.943 (3)
Port 80 0.724 (2) 0.708 (2) 0.740 (2) 0.709 (2) 0.703 (2) 0.710 (2) 0.661 (2)
Port 8080 0.411 (1) 0.379 (1) 0.401 (1) 0.372 (1) 0.422 (1) 0.378 (1) 0.396 (1)

After the shaping, frames are delayed for 10ms to emulate the delay caused by trans-
mission and propagation. The egress is a simple strict priority scheduler with 3 classes,
each with its own FIFO queue. The third (lowest) class is the default and the first two
are “premium” classes. The parameters of the scheduler were set to provide three dis-
tinct levels of service to the packets replayed using Tcpreplay: ICMP and SSH packets
(port 22), that are approximately 8.1% of all packets, receive the best treatment. HTTP
packets (port 80), that are approximately 38% of all packets, receive the second best
treatment. The rest of the traffic, 53.9% of all packets, receives the default treatment.
The loss rates of the different classes are given in Table II. The parameters of the to-
ken buckets were chosen based on existing sizes and rates measured by ShaperProbe
[Kanuparthy and Dovrolis 2011]. POPI was chosen to perform the neutrality measure-
ments [Lu et al. 2010] since its source code is available on the project’s website [pop ].
POPI was configured with the same parameters as in the experiments run by POPI’s
authors: using 32 bursts (nb = 32) each of 40 packets (nr = 40). It was configured to
compare three classes of packets (k = 3), according to the three classes that were de-
fined above (TCP port 22 packets, TCP port 80 packets and TCP port 8080 packets
which are in the default class).

5.3. Experimental Results
POPI was executed through the differentiating node, without any noise in order to get
a baseline measurement. It found no indication of differentiation in this case, since
there was no packet loss in any traffic class. Afterwards, noise was introduced into the
system using Tcpreplay and fourteen more experiments (seven in each direction), were
executed. Eight of the fourteen experiments were executed with POPI’s suggested set-
tings, namely nb = 32, nr = 40. The other were longer, using 150 bursts of 40 packets
(nb = 150, nr = 40). The experiments were executed alternately with a short experi-
ment followed by a long one, while the noise trace was replayed in a loop. The results
of the experiments are shown in Table I.

Out of the eight short experiments (four in each direction), only one experiment
detected all three classes correctly. Five more experiments concluded incorrectly that
port 22 and 80 traffic belonged to the same class (2), while port 8080 was assigned to
a lower class (1). Lastly, two short POPI experiments concluded that all three traffic
types belong to the same class. Note that for the most part, POPI correctly gave higher
Average Normalized Rank (ANR)† scores to the high priority traffic, however in many
cases the difference in ANR was too small for POPI to correctly deduce the traffic
classes. All six long experiments (three in each direction) were accurate, and correctly
identified the three traffic types.

†ANR is a score POPI uses to order the traffic types according to the level of service it experiences [Lu et al.
2010].
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Next we tried to skew POPI’s results by using the observation from Section 4.1.2:
the fact that a few pairs of IP addresses engage in more than a single session at a
time. Since POPI’s traffic appears as several concurrent sessions between a pair of
IP addresses, it stands out and an ISP can choose to give it ”special” treatment. To
simulate what would happen in such a scenario, we run a monitoring program on
the differentiating node that detected pairs of IPs that engaged in more than a single
session at a time. It then added new classification rules to tc so all traffic between the
detected pairs of IPs was placed in the lowest priority class.

The monitoring program processes packets on the fly and it does not know whether
the current packet is the last of its flow. Therefore, if it doesn’t see any packets of a flow
for a threshold time, it assumes the flow is no longer active. We used two threshold
values: an aggressive 10-second threshold, and a more relaxed 60-second value.

We failed to repeat the same POPI experiments since the differentiating node was
not strong enough to match each outbound packet against the large amount of classi-
fication rules added due to the monitoring program. To overcome this, the process was
modified using the following observation: from the rules that were added by the mon-
itoring program, only one rule is added due to POPI’s measurement; the rest of them
redirect IP pairs that exist only in the noise trace. Since the noise trace is constant, it
is possible to pre-process it off-line and mark the packets that would have been redi-
rected by the monitoring program. Note that this was just a cure to our low grade
experimental setup, whereas in real networks, a faster network element is required to
process all traffic. Once these packets are marked, one only has to add a single high
priority rule to redirect all marked packets to the low priority class, to achieve the
same effect as if tc could handle enough filters in real time. The monitoring program
continues to work as before, but is monitoring only the pair of IPs that are actually
running POPI.

Executing the same fourteen POPI experiments again, this time with the monitoring
and the pre-processed noise trace, gave a strong indicative result: not even one POPI
experiment managed to detect any difference between the three traffic types. All four-
teen experiments, concluded that all of the traffic was treated equally in the network
although, in fact, only the measurement traffic was treated equally.

The obvious side-effect of the manipulation was an increase in the amount of traffic
handled by the lowest class due to false positives. With the 10 second threshold, 7.5% of
packets changed classes due to the manipulation, all false positives. With the 60 second
threshold, the number of false positives rose to 13.9%. This is not an insignificant rate
of false positives, but it seems to be an acceptable rate considering the simplicity of
the manipulation technique. This rate of false positives can be lowered using further
classification with more targeted, possibly signature-based approaches that can scan
the suspected 7.5-13.9% of the packets.

The experiment results show that these false positives did not significantly alter the
loss rates of the different classes. Apparently, this is because fewer high priority pack-
ets meant that the scheduler could service the low priority class longer. The loss rates
of the different classes are shown in Table II. Note that both the rate of false-positives
and the packet loss depend heavily on the noise trace and the configuration of the dif-
ferentiating node. Other noise traces and other configurations could produce different
results. However, as this experiment shows, at least in some configurations, this trivial
manipulation can invalidate the results of a network neutrality measurement.

6. COVERT MEASUREMENT DESIGN
Previous sections discussed and demonstrated the reasons, which make current net-
work neutrality measurement techniques detectable. Here, we present CONNEcT, The
Covert Network Neutrality Measurement Technique, which is designed to deal with
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Table II. Packet loss rates in the differentiat-
ing node: without manipulation and with ma-
nipulation using two different thresholds val-
ues.

Traffic No threshold
Type manip. 10sec 60sec
Port 22 0.3% 0.28% 0.27%
Port 80 4.8% 3.78% 3.55%
Port 8080 8.17% 8.89% 8.96%

the defensive ISP model, as described in Sec. 3.2. The objectives of CONNEcT are: (1)
It must be difficult for an ISP to skew the measurements; (2) CONNEcT must be able
to detect forged and modified packets; and (3) CONNEcT must be able to accurately
measure a variety of performance metrics. As discussed in Sec. 4.1, active measure-
ment techniques are fairly easy to detect, since the measurement traffic is different
from other types of network traffic. On the other hand, passive techniques are limited
in what they can measure and how accurate those measurements are. This seems to
create a tradeoff between detectability and accuracy, which CONNEcT is designed to
exploit.

6.1. Overview
Hosts running CONNEcT that wish to initiate a measurement slightly modify packets
which are sent as part of the normal host operation, and look for a response. Namely,
the hosts starts a covert communication using a covert handshake, which we are the
first to describe (see subsection 6.3.1). Once hosts identify each other, they use the ex-
isting flow of packets between them to secretly pass information regarding the traffic
being sent. The majority of information sent over the covert channel consists of sam-
ples; each sample corresponds to a previously sent packet.

Samples are 4 byte long and contain a control field (2 bits), a timestamp (12 bits), a
sequence number (16 bits), and an authentication signature of a packet (only 2 bits).
They are used by the receiving host to check packets for authenticity as well as mea-
sure several network metrics, as described in section 6.4. A small portion of the covert
information contains control words that are used for parameter negotiation and ses-
sion management.

Periodically, CONNEcT reports its findings to a main server for aggregate statis-
tical analysis. Note that unlike Switzerland, in CONNEcT hosts share measurement
information directly with each other. This means that reports to the main server are
relatively small, aiding in their concealment.

6.2. Background on Covert Channels
Covert channels are a means of hiding messages between two parties in plain sight.
Simmons [Simmons ] modeled them with the following prisoner problem: two prison
inmates, Alice and Bob, are interested in exchanging information with each other, but
are forced to communicate via written messages that are passed through the prison
warden, who can read and even alter the messages to reveal hidden information. Alice
and Bob are forced to find means of hiding covert information inside the plain messages
being passed. These methods for passing hidden information in “normal” messages are
often referred to as covert channel. The network security literature covers a multitude
of covert channels [Zander et al. 2007].

There is a clear trade-off between the two main characteristics of a covert channel:
its covertness, namely how hard it is to detect it, and its capacity. CONNEcT can oper-
ate with any well hidden covert channel: while medium to high capacity channels that
can carry, on average, at least several bytes of covert information per packet are pre-
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ferred, lower capacity channels can also be used at the expense of accuracy by reducing
the number of samples passed between the hosts.

6.3. CONNEcT’s Covert Channel
CONNEcT’s covert channel assumes that there is a shared secret S between the partic-
ipating hosts. The means by which the hosts establish a shared secret will be discussed
in section 6.3.1. Assuming that the covert information to be sent is B, using this shared
secret S, the hosts encrypt the covert information to be transferred: C = ES(B), with
ES is an encryption function with the key S and C is the resulting cipher text. This is
done mainly for obfuscation purposes, so that the sent covert information will not have
a fixed recognizable format. Then, using the shared secret S, the sender chooses where
to embed the covert information in the sent packet. The embedding always takes place
in the application layer payload, since the headers contain well known values whose
alteration might cause suspicion. An offset from the payload part of the transport layer
is calculated, based on S and the value of the IP identification field, and the covert data
is placed at that offset in the packet. The offset, I, is thus calculated as follows:

I =

⌊
HS(IPID)[0 : 15]

216
· (Plen − Imin − Clen,max)

⌋
+ Imin

Where Plen is the length of the payload after the insertion of the covert information,
Clen,max is the maximum length of the covert information that can be embedded in a
given packet, and the term Imin is the minimal offset used to avoid embedding in the
application layer headers. The term HS(IPID)[0:15])

216 designates bits 0 through 15 of the
result of a cryptographic hash function H on the IP identification value of the packet
IPID with key S divided by 216. Assuming the values of the hash function bits are
uniformly distributed, this term outputs a uniformly distributed value in the interval
[0,1), so that both parties running CONNEcT can calculate. The value of Clen,max de-
pends on Plen as described in the following, so longer packets can hold more covert
information. The exact value is calculated as Clen,max = ⌊Plen · Embedding%⌋, and
Clen,max > Plen − Imin where Embedding% is the portion of covert information that is
allowed to carry covert data. Embedding% should be set to a fairly low value to main-
tain covertness. For example, setting Embedding% = 1% and using a packet with a
1000 byte payload (Plen) with no application layer headers (Imin = 0) can embed up
to 10 bytes of covert information, resulting in a 1010 byte packet. The index of the
embedding is determined by the hash function and is guaranteed to be between 0 and
999.

The content of the embedded information is divided into groups of various sizes. The
first two bits of each group serve as control bits: the first indicates whether the pay-
load of the group is a sample or a control word; the second bit indicates whether the
current group is the last group of the packet. Control words have a variable size and
are used for parameter negotiation and message passing between the parties that run
CONNEcT. The structure of the control messages will not be elaborated on. Samples,
which are the bulk of the covert information, are four byte long groups. Each sam-
ple carries information about a previously sent packet. They are used by the receiver
to check for the authenticity of the received packets, and perform measurements of
several network metrics as discussed in section 6.4.

Figure 9 shows how the samples are embedded in the message, and the sample
structure. The 16 bit sequence number field is large enough for the sender to be able
to distinguish up to 65535 previously sent packets. The timestamp, encoded in mil-
lisecond resolution, is enough to encode time differences of up to 4095ms. The two-bit
authentication signature is composed of the last two bits of the cryptographic hash
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Fig. 9. CONNEcT’s covert channel embedding (not to scale).

with key S on the payload of the packet. The way CONNEcT uses these fields is de-
tailed in section 6.4.

To save covert information, CONNEcT does not require a sample for every sent
packet. Instead, it can trade accuracy for covertness by reducing the number of sent
samples. For this, hosts running CONNEcT can use control words to negotiate a sam-
pling threshold SampThresh between 0 and 1. The hosts will then send samples only
of packets whose HS(IPID)[0:15]

216 < SampThresh.

6.3.1. Covert Handshake. The covert handshake is used by hosts running CONNEcT
to secretly identify each other and establish a shared secret, S, which is needed for
the creation of a common covert channel. The covert handshake is based on the idea
of ”proof of work”, introduced by Dwork and Naor [Dwork and Naor ] in the context
of fighting spam. This proof of work uses a pricing function that is hard to calculate
but easy to verify. In the covert handshake, both hosts perform a proof of work at the
begining of a session between them. This cost is minor and can be performed easily.
However, performing the calculations in bulk in order to identify the handshakes in
every session between any pair of hosts in a network is expensive.

CONNEcT’s proposed pricing function is as follows: given a predefined cryptographic
hash function H and a set of values D, which both hosts agree on during the start of
their session, e.g., IP addresses and port numbers, both clients find an integer value X
such that

argmin
X

H(D +X) ≤ HTresh

where HThresh is a predetermined threshold value. The only way to find the value X
is to try all possible values starting with 1. Once found, X becomes the common shared
secret S, as both hosts will find the same value. The difficulty of the pricing function is
determined by HThresh, which is tuned so that X could be calculated within several
milliseconds on modern computers.
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Consider the TCP handshake between a client and a server. When a server receives
a SYN, it knows the entire set of values D, based on the SYN packet and knowledge of
its own response. It can therefore calculate S. When the SYN-ACK is received by the
client, D is known to it as well. The server now secretly informs the client that it is
running CONNEcT. It does so by encrypting the IP identification field value from the
SYN packet using S, and placing this value in the IP Identification field of the first
data packet it sends to the client. In response, the client, knowing that the server is
running CONNEcT, sends the server a pre-determined preamble over the covert chan-
nel, established using S. This informs the server that the client is running CONNEcT
as well.

This use of the IP identification field imitates the default behavior of this field in
Linux. In Linux, packets in a TCP flow start off with a random IP identification value
in each direction. After the initial value is set, it is incremented by 1 with every sent
packet. The client’s initial, random, identification number appears in the SYN packet
sent to the server. The server’s initial IP identification appears in the first data packet,
after the three way handshake. The SYN-ACK sent by the server has an identification
value of zero. The behavior of this field in UDP sessions is slightly different; the first
packet in both directions contains a random identification value, and no packet has an
identification of zero. As a consequence, in UDP, the covert handshake is shorter by
one packet; the SYN-ACK is skipped.

In this scheme, if one of the hosts was not running CONNEcT, it would not have
noticed any abnormal behavior from the host running CONNEcT. Moreover, the host
running CONNEcT, would have known that the second party is not running CON-
NEcT.

6.4. Measuring Neutrality
6.4.1. Packet Authenticity. Unlike all existing network neutrality measurement tech-

niques, except Switzerland, CONNEcT checks for the authenticity of sent and received
traffic. For each sent packet, a short authentication signature is calculated by the
sender and placed in a sample. When the sample is received by the second party, it
compares the signature from the sample with the signature it calculates from the re-
ceived packet. Due to the signature’s short length, given a uniform distribution of bits
in the signature, a portion (a quarter in our 2 bit design) of all modified packets may
wrongly pass this test, but any systematic modification of packets will be eventually
detected.

6.4.2. Packet Loss and Injected Packets. CONNEcT uses the value of the IP identifica-
tion field to match packets to samples and to calculate packet loss. This is done by
placing the IP identification value into the ”sequence number” field of the sample de-
scribing that packet. A receiving host can then use these sequence numbers to detect
lost packets and spurious packets, injected by the network.

6.4.3. Delay. CONNEcT measures the network delay between two hosts running it
using the 12 bit timestamp field included in each sample. This field contains the low
12 bits of the time in milliseconds when the packet that corresponds to the sample was
sent. By comparing it to the receiver’s local time, delay can be measured as discussed
in this section.

CONNEcT supports two different approaches of delay measurement. Given that
hosts are aware of their own capabilities and are able to covertly exchange informa-
tion with each other, they can negotiate the best measurement strategy. Between hosts
with precise time synchronization, such as phones with GPS receivers, CONNEcT can
measure the one-way delay of packets in each direction. This is done by subtracting
the timestamp encoded in a sample from the time when the corresponding packet was
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observed, yielding accurate measurements of one way delays that are under 4096 ms
(using a 12 bit field).

Hosts that do not have a GPS receiver or a similar technology rely on NTP-like
measurements to make accurate assessments of the RTT. These assessments require
hosts to know how much time has passed between packet transmissions by the second
host. To keep track of these times, hosts use the 12 bit timestamps provided by the
other party. To be able to track transmission times for periods longer than 4096 ms,
hosts have to keep track of the 4096 ms periods of the other party. For this, hosts keep
a virtual clock that follows the other host’s clock. The virtual clock is initialized by the
first packet a host receives that has a corresponding timestamp.

Assume host A sends packets to host B. The first packet that has a timestamp is
denoted as packet 1. Using packet 1, host B initializes its virtual clock to match host
A’s clock. Due to the propagation delay of packet 1, B’s virtual clock is initialized ∆t

ms after A’s clock. Denoting the propagation time of the ith packet by di, then the
difference between the clocks is d1 = ∆t.

Denote by ti and ri the times packet i was sent and received, respectedly, each mea-
sured by the local clock. Therefore, ri = ti+di−∆t = ti+di−d1. Note that by definition
di ≥ 0 ∀i. The timestamp of the ith packet, Ti, can be written as Ti ≡ ti(mod 4096).
Therefore, there is a natural k for which ti ≡ Ti + 4096k holds. Host B is inferring ti
from the timestamp Ti and ri, by looking for a virtual time vt = Ti (mod 4096) that is
the closest to the observed ri. Formally, ti = argminvt |ri − vt| s.t., vt = Ti (mod 4096).
This gives the correct ti as long as |ri−ti| < 2048ms, namely when |di−d1| < 2048ms. In
other words, the estimation of the RTT will be accurate as long as all one-way delays
across the network are shorter than 2048ms, which is almost always the case in the
current Internet.

Finally, to calculate RTT, hosts use control words to periodically report to each other
the local time at which they received a specific packet. This provides the second hosts
with enough information to calculate the round trip time using standard techniques.
Note that in order to prevent clock drift during long sessions, this initialization is
performed periodically to synchronize the virtual clock to the actual clock.

6.4.4. Path Capacity. Unlike Glasnost and NANO, CONNEcT does not measure the
throughput of observed flows. Instead, it measures path capacity, defined as the IP
layer transmission rate of the narrowest link along the path. Path capacity is one of
the main factors that affects TCP throughput, and since traffic shapers change the
capacities of paths, measuring path capacities could directly detect shapers that limit
the throughput of certain applications or users.

CONNEcT relies on a passive capacity estimation technique called PPrate [En-
Najjary and Urvoy-Keller 2006], created to measure path capacities using packet
traces. It is based on the packet pair technique, or more precisely on an active ca-
pacity measurement technique called Pathrate [Dovrolis et al. 2004] which uses the
packet pair technique.

To perform a capacity measurement, PPrate searches the packet trace for packet
pairs that were sent back to back. From each packet pair, it calculates the estimated
capacity of the path; the distribution of these estimates is then analyzed. Generally,
this distribution is multimodal [Dovrolis et al. 2004] and one of the modes represents
the true capacity of the path. To choose the correct mode, PPrate groups packet pairs
into packet trains of N packets. From these trains it again estimates the path capacity
and creates a second distribution. PPrate increases N until this distribution is uni-
modal. This remaining mode is the Asymptotic Dispersion Rate (ADR). Finally, PPrate
estimates the path capacity as the strongest and narrowest mode among those larger
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than the ADR. In a comparison between several passive capacity estimation tools,
PPrate was found to be the most accurate in its estimations in both lab experiments
and when used on actual Internet paths; while requiring as few as 300 sampled pack-
ets to achieve results close to those of active capacity estimation tools [En-Najjary and
Urvoy-Keller 2008].

PPrate does have some drawbacks stemming from its passive approach. As PPrate
uses one-sided packet traces for capacity estimation, it is forced to guess which pack-
ets were sent back to back, and therefore can be used as samples; Mistakes in these
guesses could lead to large inaccuracies. CONNEcT avoids the guesswork by passing
packet timestamps between the two sides.

7. SUMMARY AND FUTURE WORK
We showed by analysis and experimentation that network neutrality measurements,
as suggested by all previous active measurement works, including POPI, Glasnost,
NetPolice, and DiffProbe, can be easily manipulated. We then suggested, CONNEcT,
a new network neutrality measurement that uses the idea of covert channels and the
newly proposed idea of the covert handshake to secretly perform network measure-
ments without being detected by the traffic manipulator.

A future research direction is to examine the means by which CONNEcT reports
its measurements to a main server. Since CONNEcT passes most measurement infor-
mation directly between hosts, very little data has to be reported, making the reports
fairly easy to hide, e.g., using techniques mentioned in subsection 4.2.
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