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Abstract—
The Internet is a complex network, comprised of thousands

of interconnected Autonomous Systems. Considerable research is
done in order to infer the undisclosed commercial relationships
between ASes. These relationships, which have been commonly
classified to four distinct Type of Relationships (ToRs), dictate the
routing policies between ASes. These policies are a crucial part in
understanding the Internet’s traffic and behavior patterns. This
work leverages Internet Point of Presence (PoP) level maps to
improve AS ToR inference. We propose a method which uses PoP
level maps to find complex AS relationships and detect anomalies
on the AS relationship level. We present experimental results
of using the method on ToR reported by CAIDA and report
several types of anomalies and errors. The results demonstrate
the benefits of using PoP level maps for ToR inference, requiring
considerable less resources than other methods theoretically
capable of detecting similar phenomena.

I. INTRODUCTION

Inferring the commercial relationships between service
providers is an important line of research. The knowledge
gained through the understanding of commercial relationships
is used in research on Internet routing, can improve network
performance as well as help increase its robustness. However,
commercial relations between service providers are interesting
first and foremost as they determine BGP routing policies
between ASes. Contractual commercial agreements between
Administrative Domains (which control Autonomous Systems)
are usually not publicly disclosed, as so inferring them from
measurement data has been a focus of many works. These re-
lationships can be classified into three Types of Relationships
(ToR) [1]: customer-to-provider (c2p), peer-to-peer (p2p), and
sibling-to-sibling (s2s). Gao [2] was the first to present a
method of inferring these relationships from publicly available
BGP route data, and introduced the valley free AS path rule.
An AS path is considered valley free if it consists of an
uphill segment (customer to provider links), followed by an
optional peer to peer link and a downhill segment (provider to
customer links). Subramanian et al. [3] formally defined the
“ToR Problem” as an optimization problem that seeks to find a
ToR labeling for an AS graph which maximizes the number of
valley-free paths. Di Battista et al. [4] and Erlebach et al. [5]
showed that the ToR problem is NP-complete, and developed
mathematically rigorous approximate solutions to the problem.
Dimitropoulos et al. [6] acknowledged that a solution that
maximizes the number of valley-free paths is not necessarily
correct, and improved AS relationship detection by taking
AS degrees into consideration. Shavitt et al. [7] suggested
a near-deterministic algorithm for solving the ToR problem

using an Internet Core, a subgraph of the Internet graph which
contains the top-level providers. Their algorithm inferred AS
relationships in AS paths by examining their relation to the
Internet core.

The relationship between two ASes is sometimes more
complex than a single ToR between all border routers. Gao
[2] mentioned complex AS relationships as a cause for ex-
cessive sibling-sibling ToR inference. Subramanian et al. [3]
introduced AS path anomalies as specific patterns which cause
paths not to be valley free. Dimitropoulos et al. [6] conducted
a survey with several large ISPs, and revealed backup links
and hybrid c2p/p2p relationships. A hybrid relationship is one
in which two ASes connect in multiple peering points and
have different types of relationships at these points.

There are several levels the Internet maps are presented
at, each level of abstraction is suitable for studying different
aspects of the network. The most detailed level is the IP level,
while the most coarse level is the Autonomous System (AS)
level. An interim level of aggregation between the router and
the AS level graphs is the PoP level. A PoP is a group of
routers which belong to a single AS and are physically located
at the same building or campus. PoP level maps have been
constructed from various data sources. Andersen et al. [8]
used BGP messages for clustering IPs and validated their
PoP extraction based on DNS. Rocketfuel [9] generated PoP
maps using tracers and DNS names. The iPlane project [10]
generated PoP level maps by first clustering IP interfaces into
routers by resolving aliases, and then clustering routers into
PoPs by probing each router from a large number of vantage
points and assuming that the reverse path length of routers
in the same PoP will be similar. The DIMES project, takes
a structural approach and looks for bi-partite subgraphs with
certain weight constraints in the IP interface graph of an
AS [11]. The bi-partites serve as cores of the PoPs and are
extended with other nearby interfaces.

This paper proposes a method that accepts as an input a
collection of traceroutes and IP to PoP mapping, converts
the traceroutes to PoP level traceroutes, and analyzes the
ToR at the PoP level. The analysis at this level reveals
oddities that help us make several contributions, which can
be roughly classified into two classes. First, by looking at
Valley-freedom violation we can easily detect imperfections
in our data-set inputs: errors in the initial ToR assignment,
missing sibling relationships, missing IXP address prefixes,
and erroneous IP to AS mapping. Second, using the same
method we can identify complex ToRs, a holy grail in the
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field. An interesting subgroup of complex ToRs we identified
are "academic oddities": cases where academic networks do
not follow the strict commercial rules of relationships. While
some of our findings can be achieved at the IP level, we point
out that the analysis at the PoP level dramatically reduces the
processing amount.

II. ANALYSIS PROCESS

As said above, this paper proposes a method for inferring
ToRs at the PoP level, and for discovering anomalies that
lead to improvements of its input data (ToRs, IP to AS
mapping) as well as revealing complex AS relationships. We
start by converting a traceroute dataset to a PoP level traceroute
(preprocessing); then we deduce missing ToRs, based on the
ones we have; and finally we flag out anomalous ToRs, some
of which are clear suspects of complex ToRs. Some of the
anomalies we find in the last stage are errors in our input
datasets, which are then corrected for future use. Thus, as
we keep using the analysis method periodically, we end up
flagging only true anomalies and new changes in the Internet
ToRs (like a new merger between two ASes). A detailed
description of the method stages is as follows:

A. Preprocessing

The algorithm receives as inputs:
1) A dataset of IP-level traceroute measurements.
2) A mapping of IP addresses to PoPs and ASes.
3) A dataset providing initial classification of AS-level

links ToR: c2p / p2c / p2p / s2s.
The first step of the preprocessing is identifying for each IP

address in the traceroutes dataset its corresponding PoP and
AS. IP addresses whose AS can not be identified (i.e., internal
IP addresses) are discarded. IP addresses whose AS is known
but their PoP is not are retained. The next step is identifying
the path’s AS borders, by finding pairs of consecutive hops
which belong to different ASes. All IP-level hops which are
not located on AS-AS border links are discarded, as we
are only interested in links between different ASes. Finally,
the algorithm discards repeating paths and paths which are
fully contained within other paths. This last stage reduces
the amount of paths, leaving only paths that contribute new
information over others.

Traceroute paths may contain PoP loops or cycles, caused
by load balancing artifacts, misconfigured routers or measure-
ments taken during routing convergence periods [12]. For any
path that contains a loop, the algorithm trims the path’s prefix
and suffix in order to retrieve the longest possible segment
which does not contain a loop. We discard traceroute mea-
surements which, when repeatedly measured, show artifacts
of load-balancing routers.

The last step in the preprocessing stage is discarding IXP
hops from the traceroutes. As some IXPs appear on traceroute
paths as an additional AS hop, they may introduce errors in the
following phases. Thus, if hop N in the traceroute represents
an IXP, we drop this hop and stitch hops N − 1 and N + 1

together, forming as AS-to-AS level link. We further discuss
the reason and effect of this step in section IV.

B. ToR augmentation

The ToR augmentation method, which is based on ideas
from [7], assumes validity of the valley-free rule on existing
paths and infers new ToRs in a way which preserves this rule.
This assumption is used to assign a ToR to links that have no
ToR classification in the initial ToR database.

To find the ToR of unclassified links, we consider AS-level
link paths generated in the preprocessing stage. Only AS-level
link paths that have a single unclassified link and that are
otherwise valley-free are considered. For each undetermined
link in a given path, a vote is cast for each type of ToR which
will not violate the valley-free path property: A c2p vote is
cast for links which are in the middle of an “uphill” segment
or links between an uphill segment and a p2p link. A p2c
vote is cast for links which are in the middle of an “downhill”
segment or links between a p2p link and downhill segments.
For links which are before downhill segments in a path where
only a downhill segment is detected, or which are after uphill
segments in a path where only an uphill segment is detected,
two votes are casted - one for p2c and one for c2p. For links
which are located exactly between the uphill and downhill
segments, All three possible votes are casted: c2p, p2p and
p2c.

After traversing all eligible paths, a new ToR is inferred
for cross-AS PoP-links that had no ToR assigned. Such a link
is assigned a ToR if the percentage of votes which agreed
on a ToR is larger than a VOTING-THRESHOLD, and there
were more than MIN-VOTES votes for the ToR. In case that
multiple ToRs pass the above thresholds, we give precedence
to the p2p ToR. The process is then repeated, taking newly
discovered ToRs into consideration, and trying to infer ToR
for the remaining unassigned links, until no new ToRs are
discovered.

C. Complex ToRs and anomaly detection

A path which is not valley-free and can be corrected by
changing a single link’s ToR, is termed a single-error path.
Single-error paths always contain one or two links whose ToR
can be changed in order to make the path valley-free (a proof
is omitted due to space limitation). These links are denoted
candidate anomalous links. Each candidate anomalous link has
one or two alternative ToRs: the ToRs which if assumed will
make the path valley-free. For each PoP-PoP link A-B, the
algorithm finds:

1) P : the group of paths that link A-B is part of.
2) n: the overall number of unique PoP and AS nodes in

the graph created by combining all the paths that contain
link A-B. A larger number means A-B was measured
by many traceroutes, with many diverse sources and
destinations.

3) V P : the group of valley-free paths A-B is part of.
4) FPc2p: the group of paths which are not valley-free, in

which A-B is a candidate anomalous link, who can be
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made valley-free by assuming c2p ToR for A-B. FPp2p

and FPp2c are defined similarly.
The algorithm outputs anomalous PoP-PoP links which satisfy
the following conditions:

• The link has a minimal measurement tree size (n >
min-nodes)

• The percentage of valley-free paths containing the
link is smaller than an arbitrary min-valid-percentage
(|V P |/|P | < max-valid-percentage)

• There is a new ToR which, when assumed for the
link, turns a large percentage of paths to be valley free
(|FPToR|/|P | > min-fixed-percentage)

The three conditions capture cases when a PoP-PoP link has
a significant evidence for a problem (first two conditions) and
a fix in the link ToR, which seems to correct the problem. The
algorithm also outputs the set of PoP-level links which comply
with the first two rules, but for which a new ToR could not
be determined with a high level of confidence.

III. DATASETS

Three types of datasets are used in this study:
DIMES traceroutes All the traceroutes measurements are

taken from the DIMES project [13], from May 2012, weeks
19 and 20. The dataset includes 29.2 million traceroute mea-
surements and 506.3 million IP-level hops. The measurements
targeted 2.39 million destination IP addresses and were col-
lected by 1017 DIMES agents. RouteViews [14] and WHOIS
databases were used to infer every IP address to an AS.

DIMES PoPs The IP to PoP mapping dataset is taken from
the DIMES project, from weeks 19 and 20 of 2012. The
mapping was based on traceroutes taken by both DIMES and
iPlane [10] over the same period of time. The map contains
5215 PoPs and 98650 IP addresses in 2636 different ASes. It
is publicly available on the DIMES project website.

CAIDA ToRs The initial AS ToR mapping dataset is taken
from CAIDA’s AS Rank Website1 at August 2012. The dataset
relies on BGP paths obtained on June 2012. It contains
ToRs for 119, 924 AS couples. 76781 (64%) relationships
are customer/provider relationships, 40,900 (34%) are peering
relationships and 2243 (2%) are sibling relationships.

IV. EXPERIMENTAL RESULTS

A. Preprocessing Results and ToR augmentation

The preprocessing stage of the algorithm takes the 29
million IP level traceroute measurements and turns them into
1.63 million unique PoP level paths, thus reducing the dataset
size by an order of magnitude. 1.48 million PoP-level Paths
(91%) are valley free.

Out of the 70714 AS-AS link found in the dataset, only
45202 links (64%) were covered by the CAIDA dataset. It
is thus necessary to augment the ToR dataset. We complete
the missing ToR for 6699 links and fail to complete 18813
AS-AS links, out of them 495 appear only on paths which
are not valley free. Links of unknown ToR which appear only

1http : //www.caida.org/data/active/asrelationships/

on paths which are not valley-free can not be assigned a ToR
with a high level of confidence. The augmentation increases
the number of customer-provider PoP links but only slightly
increase the number of peer-peer links. For the ToR voting,
we use a VOTING-THRESHOLD of 80%, which gives a high
level of confidence that the inference is correct. We select this
value based on experimentation with a range of values and find
that the effect on the results is marginal. Further information
is omitted due to space limitations.

The ToR augmentation method requires a minimal number
of paths in which the inferred AS-AS link is included and that
are valley-free, the MIN_VOTES threshold. This parameter is
required as inferring ToRs according to a few paths might
introduce errors due to wrong traceroute replies or wrong
AS prefix resolution, similarly to the phenomena described
by Zhang et al. [15]. We tested a range of MIN-VOTES values,
in order to select the best threshold and to verify sensitivity.
Setting MIN-VOTES= 5 infers 6699 new ToRs, while MIN-
VOTES= 3 helps inferring 8594 new ToRs. However, for a
large number of AS-AS links there is only a single applicable
path (regardless of the valley free rule), which makes the
augmentation difficult. Under such conditions we do not
attempt to infer the ToR. For lack of space we omit further
discussion of MIN-VOTES sensitivity. We eventually set MIN-
VOTES= 5 which is a high confidence threshold, and allows
to infer 26% of the missing ToRs.

B. Sensitivity analysis

Two parameters affect the anomaly detection method. The
first, min-valid-percentage, determines the minimal percentage
of valley-free paths required to consider the PoP-PoP ToR
correct (as detailed in Section II-C). The second parameter,
min-fixed-percentage, determines the minimal percentage of
valley-free paths after the ToR was replaced required to
consider the new PoP-PoP ToR correct. We evaluate the effect
these two parameters have on our anomaly detection method’s
results.

min-valid-percentage and min-fixed-percentage capture the
amount of confidence we wish to achieve in determining
whether a specific PoP-PoP link is anomalous. A larger min-
valid-percentage may cause non-anomalous links to appear as
anomalous, but can also lead to the discovery of anomalous
links that by chance did not consistently cause path invalidity.
A low min-fixed-percentage threshold marks PoP-PoP links
that even after changing their ToR appear as candidates to
be anomalous due to non valley-free paths. This may happen
when some of the paths contain other errors, such as traceroute
measurement errors resulting from wrong AS resolution or
ToR errors on other AS-AS links.

To study the sensitivity to thresholds, we omit anomalies
that turn out to be errors in the original AS ToR database
or that are caused by IXPs. This is done as these are one-
time corrections and do not affect the algorithm in later runs.
Figure 1 shows the effect of changing the two parameters on
the number of discovered anomalous PoPs, with min-nodes
set to 10 nodes. For the purpose of sensitivity study, we
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Figure 1. Anomaly Detection vs. Thresholds Values.

consider as anomalous PoPs only PoPs that fall under the
categories of complex AS relationships and odd academic
ToRs (see below). Clearly for a large range, between 0%
and 35% for the min-valid-percentage threshold and between
70% and 100% of the min-fixed-percentage threshold, there is
little change in the number of discovered anomalies. Thus, We
select the thresholds from the non-sensitive region: min-valid-
percentage= 20% and min-fixed-percentage= 75%.

An interesting observation is that eight PoP couples are
"perfect anomalies": they appear in no valid PoP paths, but
when changing their ToR all the paths in which they appear
become valley-free.

C. Anomaly detection

After the first execution of the anomaly detection algorithm,
we detect a couple of dozens anomalies. We classify these
anomalies into seven categories and highlight specific cases
that exemplify the anomaly type:

1) AS Prefix Resolution Errors: Our anomaly detection
method detected three cases that were attributed to AS pre-
fix resolution errors. In these cases, the corresponding AS
for a specific IP address in a traceroute measurement was
incorrectly resolved by the RouteViews dataset. This caused a
large percentage of the paths which contained this address to
contain a valley, as the ToR between the wrongly assigned AS
and its neighbors was incorrect. AS prefix resolution errors
might occur when the BGP blocks that were announced to
RouteViews were incorrect or not updated. Closer inspection,
using other tools such as WHOIS, revealed the true owner of
the IP address. Assessing the accuracy of multiple IP to AS
resolution databases is outside the scope of this paper.

Figure 2 demonstrates this phenomenon. In this case, an
anomalous link is detected between AS2116 (Ventelo) and
AS3549 (Global Crossing), AS3549 is the provider according
to CAIDA. In all the paths that contained this link, it appeared
after a link between AS3356 (Level 3) and AS2116 (Ventelo),
which is a p2c link, creating a valley in these paths. However,
using WHOIS it was discovered that the IP prefix to AS
mapping was wrong, and that the PoP first associated with

Figure 2. AS Prefix Resolution Error
- Example

Figure 3. Complex AS Relationship
- Example

AS3549 actually belongs to Domenenshop (AS12996), which
is a customer of Ventelo.

2) IXP and sibling detection: Usually, when IXPs appear in
traceroute paths it is as an additional IP hop. In ToR analysis
they should be removed or else introduce errors since they
are not part of the AS hierarchy, which we did in our prepro-
cessing stage using lists of known IXPs. However, we have
found six IXPs that appeared as anomalies in our PoP level
traceroutes. Finding IXPs and consequently other anomalies
is an incremental process, as each detected IXP allows more
paths to become valley-free (due to their omission).

Similarly, we detected wrongly inferred siblings relation-
ships. These are often cases of one ISP taking over a second
ISP, which was previously its customer. This change of ToR is
not always updated in the ToR dataset. Thus, when checking
valley free routing, some of the paths between the pair of ASes
will remain valid as c2p, while others will only be valid as s2s.
Since in many routes a s2s ToR is interchangeable with c2p
ToR, the change of ToR between the two ASes may be hard to
detect. We manage to find 6 wrongly inferred s2s relationships,
e.g., between TelePacific (AS14265) which acquired Mpower
(AS18687).

3) ToR inference errors: On three cases, a PoP-PoP link
was deemed anomalous, but closer inspection revealed that the
ToR for the corresponding AS-AS link was wrongly inferred
by CAIDA. In general, the method tries to avoid flagging
such cases as anomalies. It does so by discarding anomalous
candidate links for which the confidence for corresponding
ASes’ ToR is not high enough. We deem two ASes’ ToR as
confident if there is a majority of paths containing the AS-AS
link which follow the valley-free rule.

Two of the three cases we’ve discovered were corrected in
CAIDA’s ToR dataset a few weeks following this analysis. In



5

the third case, CAIDA inferred a peering relationship between
two ASes (AS12389 and AS8359), while in our measurements
almost half of the paths which contained this AS-AS link were
not valley free.

One exemplary case of a wrongly inferred ToR, CAIDA
inferred the AS3561-AS4134 (SAVVIS-Chinanet) as a peering
relationship. Our algorithm detected specific PoPs belonging
to these organizations as anomalous, and suggested a p2c
relationship instead. The PoPs were deemed anomalous as
there was a small majority of paths containing PoP couples
from AS3561 and AS4134 (80 out of 145 paths) which were
valley free. A few weeks following this analysis, CAIDA
updated this ToR in their dataset and changed the relationship
between the two ASes to p2c, same as suggested by our
algorithm.

4) Complex AS relationships: An interesting
relationship was found between two PoPs of AS3561
(SAVVIS/CenturyLink) and AS6453 (TATA) in Canada. As
both ASes are Tier-1 providers, the assumed ToR between
them is a peering relationships (also indicated by CAIDA).
However, only three out of the sixteen unique PoP paths that
include a link between this pair of PoPs are valley-free. Out
of the remaining 13 paths, 11 traverse a PoP link between
AS174 (Cogent) and AS6453 (TATA), clearly another p2p
link between tier-1 ASes (see Figure 3). When assuming a
c2p relationship (the provider being AS6453’s PoP), all paths
are valley-free.

It seems that while CenturyLink and TATA have a peering
relationship in most locations, this specific PoP-PoP link is
configured differently: TATA’s specific PoP provides transit
services between other Autonomous Systems (namely, Cogent)
and SAVVIS.

We have revalidated this finding a couple of weeks after
the original experiment’s date, by running a dedicated DIMES
experiment that, issuing a large amount of traceroute measure-
ments towards the specific IP addresses of these PoPs from
many widely spread vantage points. The phenomenon was also
reproducible by issuing traceroutes from Cogent routers, using
their Looking Glass service.

5) Odd Academic ToRs: A couple of ToR anomalies are
discovered in research institutes’ affiliated PoP links. Research
institutes are less driven by commercial incentives and tend to
be more collaborative in nature, thus setting their ToR criteria
differently than most ASes.

Figure 4 shows one such case, involving multiple PoPs
belonging to research organizations. Traffic flowed from mul-
tiple PoPs belonging to SWITCH, the Swiss Education and
Research Network (AS559) through CERN (AS513) and then
through KPN (AS286), finally reaching the tier-1 provider
Level3 (AS3356). According to the ToRs inferred by CAIDA,
SWITCH is a provider of CERN, and KPN is a peer of
Level3, causing this path to be non valley-free. CAIDA’s
dataset missed information on the ToR of CERN and KPN,
but for any ToR this path violates the valley-free rules.

An additional anomaly, shown in Figure 5, is a single HP
(AS71) PoP that is connected to the Internet via Stanford

Figure 4. Academic ToR
Anomaly - First Example

Figure 5. Academic ToR
Anomaly - Second Example

University (AS32) and CSUNET (AS2153). CAIDA’s ToR
for the HP-Stanford link was p2p, and the Stanford-CSUNET
link was c2p (Stanford is the customer), resulting in a clear
anomalous link.

6) Traceroute errors: We have found three cases in which
we believe detected anomalies were probably caused by wrong
router replies. In these cases, a specific IP address which was
part of a reported traceroute path was not the actual IP address
traversed by traffic on this path. This is caused by ICMP
replies that are sent through a different interface than the one
the packets actually went through [16]. This error may result
in a wrong AS resolution, leading to wrongly assumed non-
valley free paths.

7) Unresolved Anomalies: Three of the anomalies we found
remain unresolved. While we have assumptions for the nature
of these anomalies, we did not manage to corroborate our
finding and thus prefer to declare them unclassified.

D. Discussion

1) ToR Datasets: AS ToR datasets fail to capture a large
amount of AS links, due to their reliance on specific data
sources. For example, CAIDA’s AS Relationships Dataset [17]
only uses BGP routes in order to infer AS ToRs. Shavitt
and Shir [13], and more recently Gregori et al. [18], showed
that BGP and traceroute measurement sources complement
each other. Therefore, our augmentation of an existing AS
ToR dataset according to an additional source of traceroute
measurements is important by itself.

2) ToR inference at different layers of aggregation: To
better understand the contribution of PoP level maps to ToR
research, the disadvantages in using other levels of aggregation
should be discussed in comparison.

For many years, using the AS level graph to infer ToRs
seemed to be the right way, as this is seemed to be the level at
which ToRs are defined. In addition, the AS graph is relatively
small and easy to study. However, the AS level treatment does
not allow the inference of complex relationships, where two
ASes have different relationships in two different locations.
As demonstrated by Dimitropoulos et al. [6], ASes might
have a more complex relationship in various peering points.
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In addition, most existing algorithms use specialized methods
for sibling relationship detection, which rely on data sources
other than BGP and traceroute measurements [17].

Using router or IP level maps for complex relationship
detection is also not a good solution as it is hard to identify in
them scattered errors and anomalies. IP level paths introduce
noise to the measurements and cause anomalies to be dispersed
over multiple IP addresses, diminishing their significance and
preventing their accurate detection. In addition, router and
IP level datasets are very large and require considerable
processing resources.

PoP level maps provide an answer to the above issues and
propose a better level of aggregation than AS, Router or IP
level for anomaly detection. If two ASes have different rela-
tionships in two different locations, these will be represented
by two distinct PoP-PoP links, and one of them will clearly
violate the valley free rules, and thus can be easily flagged.
While the same information will also be detectable on the
IP/router level, it will be hard to correlate it to a specific
location and to discard local errors. Considering the same
problem the other way around, when detecting on the IP/router
level multiple non valley free routes it is hard to understand
the nature of each link’s anomaly or error. The aggregation
of multiple IP/router level links to a single PoP-PoP link
reduces the complexity of this issue considerably, and provides
a higher level of confidence to the inferred new ToR.

3) Dataset Size Dependence: ToR Errors and PoP-PoP
link anomalies are more likely to be found as we increase
the number of measurements and diversify the measurement
vantage points. When measured from a small number of
sources, an anomaly might not be identified, since a single path
might not violate valley-freedom even with the existing error
or anomaly. For example, if a ToR is inferred as p2p instead
of c2p, it might not be discovered if the link resides between
a c2p link and a p2c link. These paths would be valley-free in
both cases, and our method - which looks for improvement in
the percentage of valley-free paths when assuming a different
ToR - would not identify this anomaly.

It is important to note that anomalies detected in a given
dataset on the PoP level will remain valid even if the dataset
grows considerably, since the threshold to flag an anomalous
ToR is based on the number of violating PoP level paths and
not their percentage.

4) Validation: The validation of our method is a hard task.
Except for verifying results with ISPs, which are reluctant
to cooperate, there is no single ground truth dataset. As we
show, many of the datasets that we use as a reference have
errors. Some of our results are corroborated by corrections
done to the CAIDA dataset shortly after we ran our analysis.
Another mean of validation is from ISPs websites and public
information. This applies mainly for siblings ToR validation,
often caused by one ISP acquiring another.

Another method of validation is using targeted measure-
ments through many scattered vantage points to the point of
anomaly. This is intended to eliminate transient routing effects
and to confirm the anomaly through as many distinct paths

as possible. For some anomalies, such as mistakes in AS
resolution, reverse DNS and WHOIS, are useful tool in finding
the true IP to AS mapping.

We believe that the level of validation provided in this work
is sufficient under the given lack of ground truth conditions
and as the results show, it provides a good mean to validate
other datasets and sources for ToR information.

V. CONCLUSIONS

in this paper we presented a method to infer AS rela-
tionships using PoP data. The method is useful to detect
complex types of relationships as well as anomalies and
mistakes in existing ToR datasets. The method leverages PoP-
level maps, which reduces the size of the analyzed datasets
and highlights anomalies that are otherwise hard to detect
on the IP or the router level. In the future, we intend to
extend this study, further examining and validating complex
AS relationships and anomalies. Additional future work will
focus on geography related aspects of ToR, and how they affect
the robustness of the network.
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