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Abstract--This paper addresses the problem of aggregating 
the topology of a sub-network in a compact way with minimum 
distortion. The problem arises from networks that have a hi- 
erarchical structure, where each sub-network must advertise 
the cost of routing between each pair of its border nodes. The 
straight-forward solution of advertising the exact cost for each 
pair has a quadratic cost which is not practical. We look at the 
realistic scenario of networks where all links are bidirectional, 
but their cost (or distance) in the opposite directions might differ 
significantly. The paper presents a solution with distortion that is 
bounded by the logarithm of the number of border nodes and the 
square-root of the asymmetry in the cost of a link. This is the first 
time that a theoretical bound is given to an undirected graph. We 
show how to apply our solution to PNNI, and suggest some other 
heuristics that are tested to perform better than the provenly 
bounded solution. 

Index Terms--Asynchronous transfer mode, communication 
system routing, directed graphs, graph theory, PNNI, topology, 
wide-area networks. 

I. INTRODUCTION 

A S NETWORKS grow in size, the collection and main- 
tenance of  control information from the entire network, 

e.g., to make routing decisions, becomes difficult if not impos- 
sible. For large networks, the current solution is to partition the 
network into subdomains, and continue partitioning the subdo- 
mains recursively until the lower level where the subdomain is 
comprised of subnetworks [7], [4]. At each level, control in- 
formation is aggregated before shared with peer subdomains. 
Specifically, for routing purposes, the internal network structure 
is hidden, and instead, the network presents to the outside world 
compressed information that enables routing entities to make 
intelligent decisions as to which subnetwork to use and to se- 
lect the appropriate entry points to each subnetwork. The math- 
ematical property of routing in such a scenario were studied by 
Gu6rin and Orda [5]. 

Methods for compact graph representation that can be used to 
aggregate topology information were studied in the past years. 
A spanner [9], [8], [1] of  a graph G is a subgraph G ~ that in- 
cludes all the node of  G but only a subset of the edges. Spanners 
with stretch t, t-spanners, have the property that the cost of the 
minimum cost path in G ~ between any two nodes is, at most, a 
factor t greater than the cost of the minimum cost path between 
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the same nodes in G. We term this factor the maximum distor- 
tion of the graph compression, or simply the distortion. The best 
known algorithm [1] for spanners with stretch 2t + 1 requires 
O(b 1+1/t) edges, where b is the number of  border nodes, i.e., if 
a logarithmic distortion is acceptable the spanner size is a con- 
stant factor of  the number of  nodes. Bartal [3] suggests a tree 
representation for graphs with an average distortion of O(log n), 
where n is the number of nodes in the graph. The tree is not built 
from the edges of  the original graph, and is using additional vir- 
tual nodes. 

The assumption in all the above mentioned aggregations is 
that the graph metric is additive, i.e., the cost of a path is the sum 
of the costs of the links comprising it. This is the case where the 
link cost represents the delay to traverse a link, or a price associ- 
ated with a link traversal. If  the graph metric is calculated with 
the minimum or maximum function, e.g., maximum available 
bandwidth, then a tree representation is sufficient for an accu- 
rate representation [6]. This work addresses only graphs with 
additive costs. 

All the above aggregation schemes work on undirected 
graphs. However, in todays application and standards [7], 
reservations for each direction of  the connection may take 
different values. As a result, the network graph becomes 
directional, with edges that have different weights for the two 
directions. For routing, the edge weight is usually a function 
of  the residual bandwidth or the average delay on the link, 
and these, in case of asymmetric traffic, might have orders of 
magnitude differences. 

For general digraphs, Peleg and Schaffer [8] show that for any 
t, a t-spanner might require f~(n 2) links. In other words, for cer- 
tain directed graphs, no compact representation with bounded 
distortion exists. However, in practice, the ratio between the 
weights of  a link is bounded by some asymmetry constant, p, 
that depends on the link weight function. For example, a link 
delay function may be bounded from above due to finite buffer 
space, and from below due to processing delay. Another reason 
for a bound on the asymmetry is the usages of  fixed size fields 
to represent link weights. 

In this paper, we show a compact representation for a di- 
rected graph that are known to have some bound on their asym- 
metry constant. Our compression distortion depends on the ac- 
tual asymmetry constant of  the graph and not on the bound for 
this constant. In general, we show that a subgraph of a network 
with b border nodes can be represented by O(b) weights with 
O ( v ~ l o g b  ) distortion. Note, that in practical cases, p is ex- 
pected to be larger than b by several orders of  magnitude. 

The fact that link costs can vary over orders of magnitude 
might look surprising. However, both queuing theory and op- 
portunity cost functions suggest such a wide range. If  link cost 
is to be determined by the expected queuing delay of  a packet 
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through this link, which is the major factor in the total delay, the 
delay function is given by f - [/z(c - f ) ] - l ,  where c is the link 
capacity, f is the current flow through the link, and ,a is the ser- 
vice rate. As f approaches c, the link cost increases to infinity. 
Opportunity cost functions suggest to maximize utilization by 
charging link usage according to a function that increases expo- 
nentially as the residual bandwidth decreases. 

The rest of the paper is organized as follows. In the next sec- 
tion, we describe the network model, and give our notations. In 
Section III we describe the aggregation algorithm and analyze 
its performance, and in Section IV we simulate its performance. 
Finally we conclude by showing the applicability of our results 
to the PNNI standard, and suggesting some alternative heuris- 
tics that are tested to perform well. 

II. MODEL AND NOTATION 

We use the PNNI [7] notation. A subnetwork comprised of 
V, a group of connected nodes, that is called a peer group. 
B C V is a set of border nodes, i.e., nodes that have a di- 
rect link to a node outside of the peer group. Each directed 
edge (v, u) E E is associated with a weight, w(v, u) E R +, 
s.t., p-1 < w(v, u)/w(u, v) <_ p. W.l.o.g. let w(v, u) > 
w(u, v), then pu, v =- Pv, ~ ~= w(v, u)/w(u, v) <_ p and p = 
max(~,,v): u, vEV P~,v. P is the network asymmetry constant, 
Pu, ~ is the asymmetry factor for a node pair. 

Since the internal structure of the graph is irrelevant to route 
through it, as only the cost matrix is of relevance, the orig- 
inal graph, G(V, E), is transformed to a directed cl ique, / f (B),  
where B is the group of border nodes. Each (v, u), a directed 
link in /~(B) ,  is associated with a weight, w(v, u) E R +, that 
is equal to the weight of the shortest path between v and u 
in G(V, E). By w(v, u) definition for a path, the inequality 
p-a <_ w(v, u)/w(u, v) <_ p holds for paths, as well. A full 
representation of the weight distances (or costs) between the 
border nodes requires b(b - 1) E O(b 2) space, where b is the 
number of border nodes. 

S i n c e / ( ( B )  is constructed by assigning each link the cost 
of the minimum cost path in the original graph, we get the fol- 
lowing property. For every u, v, x E B: 

v) < x) + v). 

This directed triangle inequality suggests that although link 
weights can be arbitrary different in the original graph, in the 
resulting clique, link weights are bounded by the weights of 
their adjacent links. 

We transform the directed clique, /~(B),  to an undirected 
clique, K(B), and later delete links from K(B) to receive 
the graph K-(B) .  WK(U, v) denotes the cost of link (v, u) 
in K(B).. WK- (u, v) is the cost of the shortest path between 
nodes u and v in K - ( B ) .  

III. ALGORITHM DESCRIPTION AND ANALYSIS 

Our suggestion for treating asymmetry is simple, yet, pow- 
erful. In the first step, the original digraph, G(V, E), is trans- 
formed to a directed clique, K(B). A directed link between 
node bi and node bj in the clique has the weight of the shortest 

Fig. 1. Example where the transformation from a directed to an undirected 
clique results in a triangle that does not obey the triangle inequality. 

path between these two border nodes in G. Note that this trans- 
formation preserves all the routing information, and if the b(b - 
1) distances between all the node pairs of the clique are broad- 
cast full accurate routing information is available. 

We transform the directed clique, / ( (B) ,  to an undirected 
clique, K(B), as follows. Every pair of directed links (v, u) 
and (u, v) with weights w(v, u) and w(u, v), respectively, 
is replaced with an undirected link (v, u) with weight 
WK(V, u) = V/W(V, u). w(u, v). At this stage we can use 
spanners with logarithmic distortion [1 ] and the result requires 
only O(b) edges. Specifically, a (2 log 2 b + 1)-spanner with less 
than 2b edges can be found for K(B) by a simple polynomial 
algorithm 1 . We note that the distortion for the border-node pair 
u and v depends only on the number of border nodes in the 
graph and the graph asymmetry constant, p. The overall weight 
distortion for an edge (u, v) can be in the range [czw(u, v)/x/~, 
c~w(u, v) • pvCp~,~ • log b], where ct and cu are some constants. 
The distortion calculation will be explained later after the 
discussion of the distortion of the tree construction. Remember, 
that in practical cases, p is expected to be larger than b by 
several orders of magnitude. 

Using Bartal's tree construction [3] might be more appealing 
due to the fact that the resulted aggregated structure has a known 
structure (a tree), while the distortion remains logarithmic in 
b. However, Bartal's algorithm cannot be applied directly to 
the undirected clique since it requires the graph to represent 
a metric space while the resulted clique may contain triangles 
that do not obey the triangle inequality as can be shown by the 
simple three-node example-network in Fig. 1. In this example, 
a three-node directed clique with p = 10 (Fig. 1, top) is trans- 
formed to an undirected clique (Fig. 1, bottom). The resulted 
triangle does not obey the triangle inequality as v/W + 10 = 
13.16 < lOv/2-- 14.14. 

However, a clique, K(B), can be transformed to represent a 
metric space in the following way. List all the triangles that do 
not obey the triangle inequality and delete the longest edge in all 
of them. The resulted graph, K -  (B), represents a metric space 
on which we apply Bartal's algorithm. 

In the following, we investigate the influence the edge dele- 
tion has on the distortion. We show first that the graph remains 
connected, and then we give a bound on the additional distortion 
due to edge deletion. 

1The algorithm examines the links in increasing length order, and adds a link 
only if it shortens the distance between its endpoint by a factor of t, or more. Its 
running time is thus IE I times running a shortest path algorithm between two 
nodes [1]. 
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Fig. 2. A general triangle. 

Theorem 1: The link deletion from the undirected clique re- 
suits in a connected graph. 

Proof" Assume that the graph K - ( B )  is not connected. 
Thus, two border nodes, u and v, exist in K -  (B) such that no 
path connects them in K - ( B ) .  Consider a link (w, x) on the 
shortest path between u and v in K(B) .  To be deleted, (w, x) 
should be longer than the sum of the other two links in a triangle, 
which contradicts the fact that (w, x) belongs to the shortest 
path. [] 

Lemma 1: For a link with asymmetry ratio p~, the maximum 
distortion due to link deletion from the undirected clique is 

Proof." Consider the general triangle in Fig. 2. Let 

X '  = X / a  (1) 

Y'  = Y/b (2) 

z' = z/c (3) 

where a, b >_ 1. By the directed triangle inequality 

Z _< X + Y (4) 

z '  < x '  + y ' .  (5) 

To maximize the distortion let Z = X + Y which forces c _> 1. 
W.l.o.g. assume X _> Y. We can write 

X = p Z  (6) 

y = (1 - p)Z (7) 

where 0.5 < p < 1. 
The additional distortion due to the deletion of link (B, C) 

from K ( B )  is given by 

dis t  = Z ~  _ ~ / ~ / c  (8) 
, / 2 W  + 4 V V  ~ - p ( v ~  - ~ )  

where the second equation in (8) is due to substituting (1)-(7) 
and performing some simple algebraic manipulations. 

If a > b the maximum is achieved when p approaches 1, and 
the maximum distortion is then 

d i s t * = y ~  = I m a x !  a ' b }  (9) 

If  a < b the maximum is achieved when p = 0.5 and its value 
is x/(min{a, b})/c < dist*. 

v/a-/c is the maximum distortion for one triangle. When sev- 
eral triangles are cascaded, let the asymmetry ratio of the longest 
link be a0, let the asymmetry ratio of the link sharing a triangle 
with the longest link be al ,  and define ai, i = 2, 3, . . . ,  m 

Fig. 3. 

ratio a~~~~a~'~j~'~;~ ~o 
o ;0  -o-fo 

length 

Maximal cascading effect. 

in the same manner (see Fig. 3). The total distortion due to the 
deletion of the m links that violates the triangle inequality is 

• "" am--i -- N/~" 

[] 

Corollary 1: If multiple links, that are part of some path, P ,  
are removed the distortion of the path is bounded by x/~/x/fi~, 
where Pm is the smallest of the asymmetry constants of these 
links. 

Proof" In Lemma 1 we proved that wK(e) /wK-(e)  _< 
x/fi/,~/~ for any link e. Thus: 

~Wg(~) 
eCP  

~WK-(~) 
e E P  

~ / ~ -  (e)~/x/Sz 
eCP  

- Z~K_(4 
eEP  

< eEP  

- ~ W K - ( ~ l  
eCP 

- , /V~  
(11) 

[] 

of applying the Theorem 2: The maximum distortion 
square-root transformation and the link deletion on a directed 
clique is x/ft" 

Proof" For (u, v), the larger of two opposite links, we re- 
duce the (u, v)-path cost by a factor of x / ~  when we mul- 
tiply and take the square-root, and by Lemma 1 we, at most, 
reduce the path cost by an additional factor of , v / ~ / ~  when 
we delete link (u, v) and additional other links. As a result the 
distortion for the long link is at most 

- - - ~ - - "  ~ = x/P' (12) 

For (v, u), the short link, the square-root transformation in- 
creases the path cost by a factor of x /~-~ .  The link deletion 
process can only decrease the path cost to become closer to (but 
always higher than) w(v, u). [] 

Balrtal's tree increases the distance between two nodes by 
log b on the average. This means that the advertised cost be- 
tween two border nodes can be at least a factor of x/fi below 
the actual distance, due to the averaging of the two opposite 
links and the distortion of the link deletion, or at most a factor 
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TABLE I 
RESULTS FOR A GRAPH WITH 100 NODES, 22 OF WHICH ARE BORDER NODES 

border nodes asymmetry ratio 
max!  min ave var 

I 
133.2 1.019 6.4 242 
54.0 1.006 6.2 83 

144.0 1.002 3.4 107 
1284.1 1.002 21.5 8144 

No. of links max. 
bad As deleted distortion 

303 107 3.15 
471 129 3.05 
175 88 3.74 
477 115 3.11 

TABLE II 
RESULTS FOR A GRAPH WITH 100 NODES, 33 OF WHICH ARE BORDER NODES 

border nodes asymmetry ratio No. of links max. 
max min ave var bad As deleted distortion 

276.9 1.004 11.2 611 1546 341 4.95 
413.1 1.002 5.2 418 823 305 4.88 
864.3 1.001 8.9 1929 1101 372 5.70 
100.2 1.011 4.0 45 767 338 2.72 

of x / ~  log b above the actual cost due to the averaging of  the 
two opposite links and the tree construction. 

The (log b)-spanner algorithm [1] adds a link to the spanner 
only if the distance between the two link end points improves 
by log b as a result of the addition. Obviously, only links that 
belong to some shortest path are used, and specifically, links that 
are deleted to apply Bartal 's  tree construction do not effect the 
final result. The maximum log b distortion is measured on the 
shortest path between two nodes in K -  (B) .  This was shown in 
Theorem 2 to be at most x/~' Thus, the distortion for the spanner 
is the same as the one for tree, i.e., O(x /~  • log b). 

IV. SIMULATION RESULTS FOR THE LINK DELETION 
PROCEDURE 

To check the effect of  the link deletion procedure, we pro- 
duce random graphs according to Waxman 's  method [10]. In 
the graph creation process, links are added until all nodes reach 
a minimum node degree of two. Links that increase node degree 
over 6 are rejected. This way the resulted graphs have both the 
clustering effect of close nodes and a relative high diameter. In a 
second phase, each undirected link is replaced by two directed 
link and the link weights are randomly assigned in the range 
( 1 . . .  10 -6)  uniformly on the log scale. 

In Tables I and II, we present results for graphs with 
100 nodes, of  which 22 and 33 are border nodes, respectively. 
Figs. 4 and 5 depict these graphs. Link weights were checked to 
cover the entire range and the average was around 11 000, with 
variance around 3.0E÷9.  Link asymmetry ratios were ranging 
from just  above 1 to over 500 000. 

The percentage of deleted links varied from 38% to 70%, 
up to 31% of  the triangles were bad, i.e., did not obey the tri- 
angle inequality. The additional distortion due to the link dele- 
tion process, i.e., due to the transformation of K(B) to K - ( B ) ,  
is almost always below 10g b < 5 (only 2 node pairs in the eight 
experiments were distorted by more than 5), a negligible number 
when compared to x/~ = 1000. 

In Table III we present results for graphs with 100 nodes, 
seven of  which are border nodes. Between 2 and 10 of the 21 
clique links where deleted, and up to 22 out of  the 35 trian- 
gles where bad. Although the variance in several cases was very 
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Fig. 4. Random graph with 100 nodes, 22 of which are border nodes. 
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Fig. 5. Random graph with 100 nodes, 33 of which are border nodes. 

TABLE III 
RESULTS FOR A GRAPH WITH 100 NODES, 7 OF WHICH ARE BORDER NODES 

border nodes asymmetry ratio 
max min ave vat 
2.98 1.1003 1.90 0.3 

89.31 1.0370 9.49 i 336 
1511.74 1.0386 173.85 I 131223 
190.59 1.0214 24.75! 2022 

No. of links i max. 
bad As deleted ] distortion 

3 2]  1.04 
10 9 I 1.99 
22 10 3.83 
12 8 1.47 

large, the additional distortion due to the link deletion process 
is below 4 as in Table I. 

W. APPLICABILITY TO PNNI 

In the PNNI standard [7 Sec. 3.3.8], a network ("complex 
node") is assumed to be comprised of undirected links and is 
aggregated by a star. A virtual node ("nucleus") is the interior 
reference point. For each state parameter (e.g., delay), a single 
default value is given to represent the value of this parameter for 
the connection between a border node and the nucleus ("spoke") 
in both directions. 
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To cope with asymmetry in the network structure, the stan- 
dard allows "exceptions" of two types: a different value for a 
spoke of  a certain border node, or a value for a "bypass" be- 
tween two border nodes to represent a better cost of  traversing 
the network between these two points. In guidelines that are sup- 
plied with the standard [7 Appen. C] it is recommended that the 
number of  exceptions used to configure a complex node will be 
kept smaller than 3b, where b is the number of  border nodes. 
There is no suggestion how to select exceptions. 

This paper gives a framework for aggregating a directed 
"complex node" topology when the cost function is additive. 
Namely, given a directed network we suggest how to compress 
its representation, and in particular in a way that conforms with 
the PNNI standard. The aggregations described in the sequel 
give a bound on the worst-case distortion in the advertised 
parameters which is log b • x/P' The worst-case distortion in 
the best star aggregation, using only the default spoke value, 
uses v/-D • d/2 default spoke value and thus has a worst-case 
distortion of  V / - ~ / 2 ,  where D and d are the longest and 
shortest parameter values between pairs of border nodes, 
respectively. This means that for the case where the graph is 
undirected, our scheme distortion is only O(log b) while the 
star distortion remains O(x/-ff]-d ) that might be very large. 
Note that, adding 3b exceptions in a naive way can not promise 
to fix the star distortion. 

Our suggested aggregation is based on random Bartal trees. 
However, a tree that is built by applying Bartal's algorithm di- 
rectly (see description below and the Appendix) is comprised 
of  not only the original network nodes (the border nodes in our 
case) but also of  up to b - 1 additional virtual nodes. The PNNI 
standard assumes one virtual node which is the star nucleus, and 
does not provide means to describe additional virtual nodes. To 
express the Bartal's tree aggregation in the PNNI nucleus-spoke 
plus exceptions framework, one must embed the tree in the links 
of  K - ( B )  without loosing the logarithmic distortion. To de- 
scribe our embedding, we must first provide a description of 
Bartal's algorithm. 

Bartal's algorithm is comprised of two phases. In the first 
phase, the graph is recursively partitioned as follows. A node is 
arbitrarily selected, and all the nodes that are within a random ra- 
dius from this node comprise the partition. The maximum value 
of  the radius is a factor of  k smaller than the diameter of  the par- 
tition one level higher. This process continues for each partition, 
until all the nodes of  the partition are in some sub-partition. For 
each sub-partition the process recurses. 

In the second phase, a virtual node is assigned to each of  the 
partitions in each level. Each virtual node, becomes the father 
of  the virtual nodes that are assigned to the sub-partitions of its 
partition. The length of  the links from a node to its children is 
half the partition diameter. 

Our aim is to embed the virtual nodes in the network nodes 
in a way that does not increase the order of  the distortion. After 
the partition phase, we pick a center for each partition P ,  i.e., 
we pick a node v whose maximal distance to any other node in 
the partition is minimal: 

max  wk- (v, u) = min max wk- (z, u). 
u C P  z E P  u C P  

TABLE IV 
SUMMARY OF THE DISTORTION FOR THE GRAPH OF FIG. 4 (22 BORDER NODES) 

WHEN THE t-TREE STRUCTURE IS USED FOR AGGREGATION 

Histogram links 
max ave var ] 1 2 3 4 5 6 7 8 9 10 used 
2.68 1.31 0.10 31 192 8 0 O O 0 0 0 0 54 
2.90 1.32 0.13 33 180 18 0 0 0 0 0 0 0 52 
4.63 1.46 0.471 45 150 22 11 3 0 0 0 0 0 45 
6.00 1.64 0.44 21 161 38 i 9 I 1 1 0 0 0 0 52 

The partition center radius is at most the partition diameter, 
which theoretically introduces a factor of  two additional distor- 
tion. For the tree root we use the nucleus and the default spoke 
value for the embedding. In the worst case, when at every level 
a partition is divided to exactly two sub-partitions, b - 2 nodes 
are embedded (the root is not embedded), and 2b - 4 bypass 
exceptions are used to represent the tree links. However, the se- 
lection of the node from which to start building a sub-partition is 
arbitrary. We choose to select the partition center to be the first 
node in the sub-partitioning. The resulted virtual tree contains 
almost no cycles and thus can be represented with close to b - 1 
bypass exceptions. 

To further decrease the distortion, the weight of  the link be- 
tween two nodes in the tree is set to the weight of the shortest 
path between them, rather then the partition radius. Theoreti- 
cally, this change does not decrease the average distortion, but, 
in practice, the distortion for some of  the links decreases. Note 
that for the farthest nodes from the partition center, the factor 
two additional distortion may still apply due to the embedding 
of  the virtual nodes in real nodes. However, it is not expected 
to be large in the high levels of  the tree, where the distances are 
large, because at these levels, the number of  nodes in a partition 
is fairly large and the center radius is expected to be close to 
half the partition diameter. An example of  the construction of  
the Balrtal tree and of  our embedding is given in the Appendix. 

We suggest two structures based on the above trees. The first, 
a t-tree, is the union of t random Bartal's trees. For this purpose 
one might want to build more than t trees and pick the t combi- 
nation that gives the best performance. A potentially better con- 
struction called quality partition forest (QPF) is a union of  some 
highest level partitions. We note that all the random trees share 
the same nucleus, and the same high-level diameter, that is ad- 
vertised as the default diameter. This gives rise to the following 
QPF construction. Build several trees, and select one of them in 
random to the aggregated graph. Add additional first-level sub- 
partitions according to some quality measure until the threshold 
of  3b exceptions is reached. The measure for the quality of  a 
first-level sub-partition can be the maximal (or average) im- 
provement of the distances over all pairs of  node due to the ad- 
dition of  the sub-partition. 

We tested the t-tree construction on the graphs of  Figs. 4 
and 5. Bartal's trees were iteratively created until the number 
of  links in the union of the trees (exceptions) exceeded 2b. 
Tables IV and V summarize the link distortions for the same 
random weight assignments that were used in Tables I and II, 
respectively. The number of  Bartal's trees calculated for the 
t-tree were 10, 12, 30, and 8 respectively, for Table IV, and 7, 
5, 25, and 7, respectively for Table V. The average distortion is 
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TABLE V 
SUMMARY OF THE DISTORTION FOR THE GRAPH OF FIG. 5 (33 BORDER NODES) WHEN THE t-TREE STRUCTURE IS USED FOR AGGREGATION 

Histogram links 
max ave var 1 i 2 3 4 5 6 7 8 9 10 >10 used 
8.83 1.78 1.21 38 388 62 15 9 6 2 6 2 0 0 72 

11.18 2.01 1.25 27 282 173 25 4 10 3 1 1 0 2 67 
4.39 1.38 0.17 82 407 37 1 1 0 0 0 0 0 0 67 

23.72 2.75 4.64 33 243, 68 77 53 16 17 8 4 3 5 67 

Fig. 6. 
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Comparison between the histogram of the aggregation schemes for the 33 border node graph of Fig. 5. 

shown to be about 1.5 when the number of  border nodes is 22, 
and about 2 when 33 border nodes are aggregated. However, 
more important are the histograms showing for a column i the 
number of  node-pairs whose distance distortion is above i - 1 
but not above i. The histograms show that most of  the node-pair 
distances are distorted by less than log b, and a negligible 
fraction of  the node pairs are distorted by more than 2 log b. 

The maximal distortions when a single tree is used for the 
random assignments used in Table IV are 198, 13, 57.4, and 
15.5. These distortions are 1-2 orders of magnitude higher than 
the maximum distortion of 6 obtained with the t-tree. In addi- 
tion, the tail of highly distorted node-pair distances in the 1-trees 
is fat, meaning that many pairs are highly distorted. The max- 
imal distortions for a 1-tree that correspond to the results in 
Table V are 81.2, 26.6, 34.4, and 68.8, up to 10 times more than 
the results obtained by the t-tree. Thus, we can conclude that by 
joining several random trees, we successfully avoid the highly 
distorted node-pairs that are part of  any single tree, and suggest 
a construction that is both implementable and with reasonable 
distortion. 

Note, that the actual number of exceptions used in our t-tree 
is closer to 2b than to 3b (the last column in Tables IV and V). 
Since the number of node-pairs whose distance cost is badly 
distorted is smaller than b, we can add a phase to the algorithm in 
which bypass exceptions between the badly distorted node-pairs 
are added, eliminating the thin tail in the histograms. 

A. Simple Aggregation Algorithms 

The t-tree construction, suggested above, is complex and 
hard to code. In this section, we test some simpler aggregation 
schemes that in theory may mal perform. However, in the 
experiments we conducted, one of  these schemes, MST + 
2 RST, exhibits exceptionally good performance. The good 
performance together with the ease of  implementation make 
MST ÷ 2 RST an attractive candidate as a heuristic method for 
practitioners. All  the heuristics receive K - ( B )  as their input. 

We tested the following methods: 

MST the minimum spanning tree, comprised of b - 
1 edges. 

3 RST the union of  three random spanning trees. 
This structure can have up to 3b - 3 edges. In 
practice, since the random trees overlap we 
used about 2.5/9 edges. 

MST ÷ 2 RST the union of a MST and two random spanning 
trees. The maximal number of edges here is 
3 b -  3, the actual number of  edges was similar 
to the 3RST case. 

t-tree as described in the previous section. In most 
cases, the number of  edges used was just  over 
2b. 

To compare between the aggregation schemes, we used the 
same graphs that were used above (Figs. 4 and 5). Figs.6 and 7 
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Fig. 10. Comparison between the variance of the distortion of the aggregation 
schemes for the 33 border node graph of Fig. 5. For data set 1 the variance of 
the distortion for 3RST is 122. 
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Fig. 9. Comparison between the average distortion of the aggregation schemes 
for the 33 border node graph of Fig. 5. 
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Comparison between the maximum distortion of the aggregation 
schemes for the 22 border node graph of Fig. 4. For data sets 1 and 4 the 
maximum distortion for 3RST is 58.5 and 24.2, correspondingly. 

depict the cumulative histograms for the different aggregation 
schemes for four sets of experiments for each graph. The graphs 
show that MST has similar quality to the t-tree while using 
less than half the number of exceptions. MST with 2 RST has 
much tighter aggregation representation (with slightly more ex- 
ceptions). In fact, in all but one experiment, this aggregation 
scheme had only a negligible number of node-pairs that were 
distorted by more than a factor of two. 3RST performs similar 
to the t-tree, in most cases, but since its aggregation distortion 

is higher (and sometime by a large margin) than MST + 2 RST 
and since the calculation of a MST is not harder than the calcu- 
lation of a RST, there is no reason to prefer this scheme. 

Figs. 8-13 compare the maximum distortion, average distor- 
tion, and the variance of the distortion among the aggregation 
schemes. The average distortion of all the aggregation schemes 
is in the same range, but MST + 2RST has the lowest average. 
The differences between MST ÷ 2RST and the rest of the ag- 
gregation schemes are between 20% and over 100%. However 
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Comparison between the variance of the distortion of the aggregation 
schemes for the 22 border node graph of Fig. 4. For data set 1 the variance of 
the distortion for 3RST is 16.2. 

the maximum distortion graphs show that 3RST has a 1-2 or- 
ders of magnitude higher maximum distortion than the rest of 
the schemes. In some of the cases, t-tree has a maximum dis- 
tortion that is several times higher than that of MST. This result 
in a higher variance in the distortion for 3RST and t-tree. The 
addition of two RST to an MST practically reduces the variance 
to negligible values. 

VI. CONCLUDING REMARKS 

We presented an aggregation scheme with a distortion that is 
theoretically bounded and show how it can be implemented in 
the ATM PNNI standard. We also presented a heuristic, based 
on a combination of minimum and random spanning trees that is 
shown to perform much better in practice, and is much simpler 
to implement. 

Since once an aggregation is calculated, it is easy to check its 
quality, one can always use the low cost MST aggregation, aug- 
ment it with RST's if needed, and revert to t-tree in those cases 
where the aggregation distortion is not acceptable. Note that our 
results might be used also by practitioners when facing with the 
requirement to aggregate an undirected graph for standards such 
as PNNI. 

It is interesting to compare our results with the ones obtained 
by Awerbuch et  al. [2]. In their simulation study, they com- 
pared the overall performance of the PNNI routing algorithm 
when several aggregation schemes are employed. The aggrega- 
tion schemes studied in [2] included MST and RST, which were 
compared to the case where no aggregation is used. MST was 
found to perform very well with little to no difference from the 
full knowledge case. This corresponds to our results that show 
that MST has low distortion. 

Awerbuch e t  al. [2] found that the RST aggregation perfor- 
mance is sensitive to the topology, sometimes it is much worse 

V2 

( B ) V ~  V3 

V2 

(c)  V ~  v3 

Fig. 14. Partition phase of Bartal's algorithm. 

than MST and sometime almost identical. This might be ex- 
plained by the large variance in the distortion found in this study. 

MST + 2RST is shown here to be superior to MST. However, 
in [2] MST is shown to behave very well. It is interesting to in- 
vestigate whether there are scenarios when the two aggregation 
schemes differ in practice in their effect on routing performance, 
or whether MST reaches some practical threshold performance 
beyond it more perfection of the aggregation has little effect on 
routing performance. 

APPENDIX 

A N  EXAMPLE OF BARTAL'S ALGORITHM AND ITS 

IMPLEMENTATION 

Bartal's algorithm is comprised of two phases. In the first 
phase, the graph is recursively partitioned as depicted in Fig. 14. 
The network of Fig. 14(A) is partitioned by selecting an arbi- 
trary node and a random radius and covering all the nodes within 
this radius from the selected node. Partition V1 is created by se- 
lecting node 0 with radius 53, partition V2 is created by selecting 
node 4 with radius 72, and partition V3 is created by selecting 
node 5 with radius 22. 

Before further partitioning a partition P we calculate the par- 
tition center by selecting the node v whose maximal distance to 
any other node in the partition is minimal, i.e. 

max Wk- (V, U) = min max wk- (z, u). 
u E P  z E P  u E P  

If the node used to build the partition is one of the nodes that 
match this criteria it is selected. In the example of Fig. 14(B) 
nodes 1, 4, and 5 are selected as the centers for partitions V1, 
V2, and V3, respectively. 

Since to form a sub-partition we start with an arbitrary node, 
the partition center is always selected first. This reduces the 
number of virtual links used in the embedding step. Thus for 
partition V1 we start the subpartitioning with node 1, and as de- 
picted in Fig. 14(C) it forms a subpartition with node 3. All the 
rest of the subpartitions are singletons. 
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(A) 

(B) 

Fig. 15. Our embedding of Bartal's virtual tree in the network. 

In the second phase, a virtual node is assigned to each of 
the partitions in each level [see Fig. 15(A)]. Each virtual node, 
becomes the father of the virtual nodes that are assigned to the 
sub-partitions of its partition. The length of the links from a node 
to its children is half the partition diameter. For example, the 
diameter of partition V1 is 10, and thus, the distance between 
node V1 and its children in the tree in Fig. 15(A) is 5. 

Our aim is to embed the virtual nodes in the network nodes 
in a way that does not increase the order of the distortion. We 
replace each virtual node with the center of the partition it 
represents. If a parent and a child are replaced with the same 
node, e.g., node V1 and V4 in Fig. 15(A) are both replaced 
with node 1, they are merged to one and the link between them 
is deleted. The weights of the tree links is the shortest path 
between the two connected nodes [see Fig. 15(B)]. Only the 
tree root (node V0 in our example) is not embedded in the 
network and is used as the nucleus. Its distance from the rest 
of the nodes is given by half the diameter, and is advertised as 
a default spoke. 

Note that to advertise the resulted tree we need, in addition 
to the default spoke, only five bypass exceptions: links (0, 1), 
(1, 2), (1, 3), (4, 7), and (5, 6). 
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