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Centralized and Distributed Algorithms for Routing
and Weighted Max-Min Fair Bandwidth Allocation
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Abstract

Given a set of demands between pairs of nodes, we
examine the traffic engineering problem of flow routing
and fair bandwidth allocation where flows can be split to
multiple paths (e.g., MPLS tunnels). This paper presents
an algorithm for finding an optimal and global per-
commodity max-min fair rate vector in a polynomial
number of steps. In addition, we present a fast and
novel distributed algorithm where each source router
can find the routing and the fair rate allocation for
its commodities while keeping the locally optimal max-
min fair allocation criteria. The distributed algorithm
is a fully polynomial epsilon-approximation (FPTAS)
algorithm and is based on a primal-dual alternation
technique. We implemented these algorithms to demon-
strate its correctness, efficiency, and accuracy.

I. INTRODUCTION

Traffic engineering is a paradigm where network op-
erators control the traffic and allocate resources in order
to achieve goals, such as, maximum flow or minimum
delay. One challenge is to allow different flows to share
the network, so that the total flow will be maximized
while preserving fairness.

We consider as input a network topology and di-
rectional link capacities, a list of ingress-egress pairs,
and per-pair traffic demand. This list of demands may
represent aggregates of (e.g., TCP) connections, such as
client traffic (university campus, business client) and will
typically be expressed by average or maximum required
rates. Thus, traffic between an ingress-egress pair may
be split arbitrarily among different paths without caus-
ing packet reorder in the connections comprising each
demand. Our goal is to fulfill clients’ demands while
sharing the network bandwidth fairly. This is facilitated
by laying the set of paths to be used between each pair
in the network, and by allocating them bandwidth using
the weighted max-min fairness criterion.
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e-mail: miriama@eng.tau.ac.il, shavitt@eng.tau.ac.il.Corresponding
author: Miriam Allalouf.

One way to maximize the network flow is to formulate
the problem as a Maximum Multi-Commodity Flow
(MMCF) problem which can be solved using linear
programming (LP). While the solution will maximize
the flow, it will not always do it in a fair manner. Flows
that traverse several congested links will be allocated
very little bandwidth or none at all, while flows that
traverse short hop distances will receive a large allocation
of bandwidth. In an attempt to introduce fairness into
the maximum flow problem, the Maximum Concurrent
Multi-Commodity Flow (MC MCF) problem was sug-
gested [1]. In thisMC MCF LP formulation, we are
given a set ofK demandsdemi, one per each commodity
pair (si, ti) and are required to satisfy the maximum
equal fractionλ of all demands and to seek a routing that
maximizes network flow. However, the achieved solution
under-utilizes the network, sometimes saturating only a
small fraction of its links.

The max-min fair allocation strikes a balance between
fairness and the need to fully utilize the network. An
allocation of bandwidth or rates to a set of connections
is said to be max-min fair if it is not possible to increase
the allotted rate of any connection while decreasing only
the rates of those connections which have larger rates. An
extended version of the max-min fair allocation problem
is the variable-routing scenario, where the flow between
two terminals (a commodity) may be split among several
paths and the set of the paths that achieve such maximum
fair allocation is not part of the input. The variable-
routing version, studied in this paper, is more difficult
than the classical max-min fair allocation problem since
it couples the bandwidth allocation and the flow routing
problem. There can be more than one weighted max-
min fair rate vector in a variable-routing scenario, but
only one is the global maximum max-min rate vector.
The globally weighted max-min fair rate vector is the
lexicographically largest feasible vector. This is different
from the case when the input paths are fixed and only a
single path exists between the source and the destination.
In this case there is a unique max-min fair rate vector and
this vector is lexicographically the largest rate vector.

The Max-min fairness bandwidth allocation criterion
was mostly defined in the context of one fixed path per
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session, where a session is defined by a pair of terminals.
A simple algorithm that finds the max-min fair allocation
where the routes are given appears in Bertsekas [2].

Many distributed algorithms were suggested for the
dynamic adjustments of flow rates to maintain max-
min fairness when single routes are given [3], [4], [5],
[6]. The above algorithms differ by the assumptions
on the allowed signaling, and available data. Bartalet
al. [6] found the total maximum flow allocation in a
network for given routes using distributed computations
as the input to the globalMMCF LP problem. Kellyet
al. [7] proposed the proportional fairness concepts and
a convergence algorithm. Mo and Warland [8] general-
ized proportional fairness and suggested end-to-end flow
control for TCP streams by changing the transmission
window size, but again they deal with flow allocation
without routing.

The max-min variable-routing scenario was rarely
discussed. Chen and Nahrstedt [9] provided max-min
fair allocation routing. They present an un-weighted
heuristic algorithm that selects the best single path so
the fairness-throughput is maximized upon an addition
of a new flow. Their algorithm searched this route out
of the possible paths for each new flow. Kleinberget
al. [10] provided an interesting introduction regarding
the relationship between the way in which one selects
paths for routing and the amount of throughput one
obtains from the resulting max-min fair allocation on
these paths. Megido [11] addressed this problem for a
single commodity maximum flow. He showed that the
fairest flow is the maximum flow, namely throughput
is not sacrificed by imposing fairness. Kleinberget
al. [10] found approximated routing to provide a max-
min bandwidth allocation for single source unsplitable
flow routing. Goel et al. [12] developed an on-line
algorithm that finds the max-min fair vector in an
O(log2 n log1+ε U/ε)-competitive ratio, where routes are
given; Buchbinder and Naor [13] improved the bounds in
[12]. In the wireless context, Hou et al. [14] present an
algorithm that finds the optimal weighted max-min fair
rate vector in a variable routing formulation using an LP
solver like we do, though with a different saturation test.

Our work focuses on the variable-routing weighted
max-min fair allocation problem and finds an off-line
algorithm for calculating the global weighted max-min
fair rate vector in a polynomial number of steps. In
addition, we present a fast distributed algorithm for the
locally optimal weighted max-min fair rate vector that
extend and embed the variable-size increments tech-
niques. These techniques were never used before for
routing and bandwidth allocation using the weighted
max-min criteria, nor they were used in a distributed

manner. In extensive simulations, our algorithm, which
avoids using an LP solver, is shown to reach a solutions
up to anε from the optimal.

Our off-line algorithm, calledOPT WMMF (Opti-
mal Weighted Max-Min Fair multi-Commodity)1, finds
the optimal per-commodity max-min fair rate vector.
It solves iteratively a re-formulatedMC MCF LP un-
til network saturation is achieved. Each iteration may
change the routing selected in the previous iteration but
may not decrease the already allocated per-commodity
bandwidth. As a result, it is hard to distribute this
algorithm. In addition, LP solvers have relatively long
(though still polynomial) running time, which may make
them impractical for large networks.

Thus, we developed a centralized algorithm,
ǫ WMMF, that converges to a maximal (but not
necessarily maximum) weighted max-min fair solution
and can be distributed (ǫ WMMFdist). This family
of algorithms relies on the idea of embedding the
MC MCF solution into the process of finding the rate
vector of the max-min fair flows and uses its plain
formulation, and provide a per-commodity weighted
max-min fair rate vector, though we can not guarantee it
will be the optimal vector.ǫ WMMF and ǫ WMMFdist
are centralized and distributed versions of an FPTAS
approximation to theLOC WMMF algorithm. They run
on the dual problem to theMC MCF and enable a more
efficient centralized algorithm and consequently, the
distributed algorithm2.

Maximum Concurrent Multi-Commodity Flow
Problem Related Works. Most of the studies that
combined the LP formulation for the traffic engineering
design chose a multi-commodity flow formulation that
considers the demands but they do not discuss the max-
min fairness in conjunction with maximum throughput as
our LOC WMMF algorithm does3. A few directions for
building approximation algorithms for theMMCF prob-
lem were suggested in the past. Young [17] described
a random algorithm that computes the flow by solving a
shortest path problem (on the dual LP) and pushing one
unit of flow over it, at each step. Garg and Könemann
[18] using detailed analysis extended Young’s algorithm
and improved its time complexity by pushing enough
flow so as to saturate the bottleneck link of the path.

1For abbreviations see Table I.
2An approximation scheme is an algorithm that computes a solu-

tion within a factor of1 − ǫ of the optimal for any constantǫ > 0.
The approximation scheme is a fully polynomial time approximation
(FPTAS) if its running time is polynomial in both1/ǫ and the
problem input size.

3Relevant mathematical and algorithmic background onMC MCF
problem and its complexity can be found in [1], [15], [16]
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MMCF Maximum Multi Commodity Flow problem

MC MCF Maximum Concurrent Multi Commodity Flow problem

OPT WMMF Optimal Weighted Max-Min Fair multi-Comm. Alg.

LOC WMMF LOCally-optimal Weighted Max-Min Fair multi-Commodity Alg.

ǫ WMMF Approx. Weighted Max-Min Fair Alg.

ǫ WMMFdist Aapprox. Optimal Weighted Max-Min Fair Dist. Alg.

TABLE I

PROBLEM AND ALGORITHM NAME ABBREVIATION L IST

Fleischer [19] and Karakostas [20] improved theMMCF
approximation algorithm by partitioning their technique
into phases and by re-calculating a set of shortest paths
for all the commodities with the same source node,
instead of per commodity as done before, and reduced
the dependence of the running time on the number of
the commodities,K, to a logarithmic factor.

Our ǫ WMMFalgorithm uses and extends the variable-
size increments techniques (presented by Garg and
Könemann [18] and Fleischer [19]) to achieve a new
solution to the max-min fair. These algorithms do not
deal with explicit net flows per path, thus, to achieve
network saturation using the dual problem, we extend
their technique using deeper understanding of the trade-
off between the network saturation and link length
assignments. The distributed algorithm,ǫ WMMFdist,
provides a mechanism where each source node can
maximally and efficiently allocate bandwidth to its own
clients, supply them a routing and still guarantee global
fairness.

The following section explains the max-min fairness
criteria in our context; states definitions; and explains the
theoretical tools we use in the paper, namely, the primal
MC MCF problem and its dual problem. Section III
presents the iterative algorithm that finds the globally
optimal max-min fair rate-vector. Section IV describes
our LOC WMMF family of algorithms, including the
distributed algorithm. Finally we conclude the paper.

II. D EFINITIONS, MODEL, AND TOOLS

A. Max-Min fairness

To clarify the differences between fairness criteria and
algorithms, consider the example in Fig. 1, which depicts
a line network with four nodes which are connected by
one unit capacity links. Four flows demands are depicted
in the figure each with a unit demand. Note that in this
example, there is only a single path between each pair of
nodes, thus only single bandwidth allocation is consid-
ered. TheMMCF problem results in an allocation vector
(0,1,1/2,1/2) starving flow 1 since it passes through two
congested links. The total flow this allocation achieves
is the maximum possible, 2 units. The max-min fair [2]

vector in this case is (1/3,2/3,1/3,1/3) which achieves a
flow of 5/3. The weighted max-min fair vector, treat-
ing each flow in the example as a commodity (since
the source-destination pairs are different), when all the
weights are equal, is the same rate vector. In case pair
1 is given a double weight than the rest of the nodes, it
will be allocated double the bandwidth in its bottleneck
link (link(2,3)) and the weighted max-min fair vector is
(1/2,1/2,1/4,1/4).

1
4

21 131

Pair 1

Pair 2

Pair 3

Pair 4

Fig. 1. Example of flows assignment

The max-min fair definition is traditionally stated for
the case where each flow takes a pre-assigned single path
[2]. A variable-routing scenario is a more complicated
problem that requires to find both the routing and the
bandwidth allocation such that fairness will be achieved,
given only the network topology and link capacities.
The optimal solution in the variable routing scenario
is the set of paths that achieves the fairest bandwidth
allocation, and the per commodity allocation. Our frame-
work considers a flow that may also be split among
several paths. More than that, this scheme is extended
to consider weights for the flows. We state it in the
following definitions.

Definition 1 The Commodity Rate Vector,ρ, is a vector
whose elements are the rates which were assigned to the
commodities (source-destination pairs).

From this definition we can write
∑

Pij∈Pi
f(Pij) = ρi

where Pi is the set of all the paths that are assigned
to commodityi, and f(Pij) is the flow of commodity
i along its j’s path. We denote byρ∗ the optimal
weighted max-min fair commodity rate vector, byρ∗i its
ith element, byfi the flow rate vector, and bydemi the
demand or the weight of commodityi.

Definition 2 The vectorρ is said to be(weighted) max-
min fair if it is feasible and if each of its elements
ρi cannot be increased without decreasing any other
elementρk for which (ρi/demi ≥ ρk/demk) ρi ≥ ρk

The two definitions above also hold when traffic may be
split to several paths.

Definition 3 Given network topology G and its link
capacities, a variable-routing max-min fair bandwidth
allocation problem achieves a max-min fair solution by
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choosing the set of paths between source-destination
pairs (i.e., the paths are not part of the input).

A variable-routing scenario can find multiple weighted
max-min fair rate vector, since it can consider various
paths in each selection such that the obtained rate allo-
cation is different. Only one rate vector is the optimal
or the global maximum max-min rate vector.

Commodity 1 (A-B)
path1 (A-d-B)
path2 (A-e-d-B)

Commodity 2 (A-C)
path1 (A-e-C)

Scenario 1
Comm 1 used path 2
comm 2 uses path1
Max-min vector:
(1,9)

Scenario 2
Comm 1 used path 1
comm 2 uses path1
Max-min vector:
(1,10)

A Bd

C

e

10

10

1 1

1

A Bd

C

e

10

10

1 1

1

Fairness is kept in both
scenarios
scenario 1: Comm1
steals bw from the
maximum excess.

Scenario 1

Scenario 2

Fig. 2. An example of two routing layouts, each assigns weighted
max-min fair rate vector(1, 9) and(1, 10) respectively. The globally
weighted max-min fair rate vector is provided by scenario 2 since
(1, 10) >lexi (1, 9)

Definition 4 Given network topology G, its link capac-
ities, and, CR, the set of the rate vectors that are
weighted max-min fair for the list of commodities; The
globally weighted max-min fair rate vector,ρ∗ is the
lexicographically largest feasible vector amongCR’s
vectors4.

Fig. 2 presents an example for definition 4.

Definition 5 The Commodity Rate Vector,ρ, is αC
coordinate-wise competitive if∀i the i′th, coordinate of
ρ is at least1/αC times the value of thei′th coordinate
of CR∗.

For example,(0.9918, 0.9918, 0.9918, 1.4853, 1.4902) is
0.01-approx. to(1, 1, 1, 1.5, 1, 5)

4For the lexicographical order between two vectorsv and u we
examine them ordered in increasing order,ζ andξ, respectively. We
say thatv > u if there is an indexi, such that,ζi > ξi and ζj =
ξj , 1 ≤ j ≤ i − 1. Namely we find the longest equal prefixes of
the two ordered vectors and define the order according to the first
element which is not equal.

The centralized weighted max-min fair algorithms
OPT WMMF that uses an LP solver finds the op-
timal max-min fair rate vector in a variable-routing
scenario. The centralizedǫ WMMF and the distributed
ǫ WMMFdistalgorithms find the maximal max-min fair
rate vector in a variable-routing scenario. Due to the on-
line nature of these algorithm, the found routing could
not be guaranteed to be the global max-min fair vector.

B. Maximum Concurrent Multi-Commodity Flow Prob-
lem

TheMaximum Concurrent Multi-Commodity Flow
problem is stated as follows. Let G=(V,A) be a directed
graph with nonnegative capacitiesc(a),∀a ∈ A. If a 6∈ A
c(a) = 0. There areK commoditiesC1, . . . , CK , each
is specified by the tripletCi = (si, ti, demi). The pair
(si, ti) are the source and the sink of commodityi,
respectively, anddemi is its rate demand. Each pair is
distinct, but vertices may participate in different pairs.
The objective is to maximizeλ, s.t., for i = 1, . . . ,K
λ · demi units of the respective commodities can be
simultaneously routed, subject to flow conservation and
link capacity constraints. The objectiveλ is the equal
maximal fraction of all demands. The following linear
programMC MCF primal is a path flow formulation that
assigns the maximum commodity flow toPi, the set
of all paths betweensi and ti that belong to the same
commodity i, such that the assignment is restricted by
the fairness criterion.PR’s solution is composed of the
assigned net flow,f(Pij) ∀Pij ∈ Pi, i = 1, . . . ,K, and
the maximal fair fraction,λ.

MC MCF primal LP: Path Flow Formulation
maximizeλ

subject to

∀a ∈ A, a ∈ P,
K

∑

i=1

∑

P∈Pi

f(P ) ≤ c(a) (1)

∀i,
∑

P∈Pi

f(P ) ≥ λ · demi (2)

∀P ∈ Pi=1...Kf(P ) ≥ 0, λ ≥ 0

This problem can be solved optimally in a polynomial
number of steps. The size of this linear problem grows
with the number of possible paths between any pair of
nodes and can be exponentially large when the network
is highly connected. It can be solved using the ellipsoid
algorithm or by using other LP solver that solves an
arc flow formulation of this problem. Note that the
route assignment for some per-commodity bandwidth
allocation is not unique.

The following is a description of the LP dual to
MC MCF problem. The l(a) variable holds the link
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length which is dual to each primal capacity constraint.
The z(i) variable holds the shortest path per each com-
modity and is dual to the demand portion constraint.
The minimization problem can be stated as finding the
minimum cost of shippingdemk units from sk to tk
where l(a) is the price of shipping one unit along link
a. Thus, the dual objective is to minimize the function
D(l) =

∑

a∈A c(a)l(a). Let α(l) =
∑

i demi · disti(l)
where disti(l) is the shortest path length between the
pair (si, ti). Minimizing D(l) is equivalent to computing
the lengthl(a) per each link which minimizesD(l)/α(l)
such that the dual targetβ is equal tomini D(l)/α(l).

DUAL minimization LP

minimize D(l) =
∑

a∈A

c(a)l(a)

subject to

∀i = 1 . . . K,∀P ∈ Pi,
∑

a∈P

l(a) ≥ z(i) (3)

K
∑

i=1

demiz(i) ≥ 1 (4)

∀a ∈ A, l(a) ≥ 0,∀i = 1, . . . ,K, z(i) ≥ 0

III. OPT WMMF - OPTIMAL WEIGHTED MAX -M IN

FAIR ALGORITHM

OPT WMMF is an off-line, centralized algorithm that
calculates the global max-min fair vector using an LP
solver. The commodity rate vector that is calculated in
OPT WMMF is optimal, i.e., 1-coordinate-wise compet-
itive.

The OPT WMMF algorithm (see Fig. 3) receives as
input the list of commodities,Γ; the vector of demands,
dem; and the graph,G. It initializes ΓUNSAT , the list of
unsaturated commodities (the commodities that can still
increase their bandwidth assignment), to all the com-
modities; andΓSAT , the list of saturated commodities
to null. It proceeds in iterations. In each iteration the
algorithm lays new routes per all the commodities overG
and increases the allocated bandwidth of the unsaturated
commodities by solving a number of LPs, each is a
reformulation of theMC MCF problem.

There are a few goals to each iteration. The first goal
is to maximize,λ, the equal share of all the unsaturated
commodities in a fair manner and under the restriction
of arc capacities. The second goal is to find a routing in
G for all the bandwidth allocated, both in the previous
iterations and the current one. At the end of the iteration,
some of the commodities become saturated and are thus
removed fromΓUNSAT and added toΓSAT . This final
decision, whether an unsaturated commodity becomes
saturated at the end of an iteration, is the most difficult.

Since, at least, one new commodity becomes saturated
at the end of each iteration the algorithm converges.

The following OPR LP is a reformulation of the
MC MCF problem (equations 1-2)

maximizeλ

subject to

∀a ∈ A, a ∈ P,
K

∑

i=1

∑

P∈Pi

f(P ) ≤ c(a) (5)

∀i ∈ Γunsat,
∑

P∈Pi

f(P ) ≥ λ · demi (6)

∀i ∈ Γsat,
∑

P∈Pi

f(P ) ≥ λsat
φi

· demi (7)

∀P ∈ Pi=1...Kf(P ) ≥ 0, λ ≥ 0

Eq. 6 restricts the unsaturated commodities byλ, the
equal share (weighted by the appropriate demand) that
all the commodities can use. The objective of theOPR
problem is to maximize thisλ that appears only in Eq.
6. The allocated bandwidth to the saturated commodi-
ties was already assigned in the previous iterations. A
saturated commodityi that became saturated in iteration
φi and was assigned a bandwidth ofλsat

φi
· demi, where

λsat
φi

is the value ofλ that was calculated in iterationφi.
Eq. 7 preserves the already assigned bandwidth for the
saturated commodities. Eq. 5 is the per-arc capacity con-
straint. By solving theOPR problem during iterationk,
we find the additional possible equal share of bandwidth
per each unsaturated commodity and find routing for all
the commodities, unsaturated and saturated.

The OPR LP performs two tasks: maximizing the
equal per-commodity allocation increase and routing re-
assignment, such that previously allocated commodities
will not steal bandwidth from the unsaturated com-
modities by occupying their more preferential paths.
We will illustrate later the latter point. TheOPR’s
solution is composed of the maximal fair fraction,λ,
for the unsaturated commodities, the set of paths,Pij ∈
Pi, i = 1, . . . ,K, and the assigned net flow per each
path,f(Pij).

Fig. 3 presents a pseudo-code of theOPT WMMF
algorithm. The algorithm iterates (line 5) each time with
a reduced number of commodities (line 23). In each
iteration it first solves theOPR LP (Eqs. 5-7). Lines 11-
25 perform a two-phase test in order to identify which
commodities become saturated in this iteration. In the
first phase a simple connectivity test is performed where
the residual graph can be calculated using the net flows,
which were allocated in line 75.

5It is easier to calculate the residual graph when the arc flow
formulation is used
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OPT WMMF(Γ, dem, G)
1. /* Initialization stage */
2. ΓUNSAT = Γ
3. ΓSAT = null
4. φ = 0 /* Iteration counter */

5. while (ΓUNSAT 6= null) do /*ITER*/
6. φ + +
7. Perform LP OPR
8. Using G, ΓSAT , ΓUNSAT , anddem
9. Returns: λφ, f(P ), ∀P∈Pi

10. /*Per Commodity Two-Phase Saturation Test */
11. for commodityk ∈ ΓUNSAT do
12. /* Phase I - connectivity test */
13. if G has no connectivity fork then
14. ΓtmpSAT = ΓtmpSAT

⋃

{k}
15. /* Phase II - saturation test */
16. for commodityj ∈ ΓtmpSAT do
17. Perform LP OPR
18. using ΓUNSAT = j,∀k 6= j : λsat

φk
= λφ

19. ΓSAT = Γ \ {j}.
20. Returns: λtemp, f(P ), ∀P∈Pi

21. if λtemp = λφ then
22. ΓSAT = ΓSAT

⋃

{j}
23. ΓUNSAT = ΓUNSAT \ {j}
24. φj = φ
25. λsat

φj
= λφ

26. /*end of while*/
27. Returns per commodity k: set of pathsPk and

f(P )∀P∈Pk

Fig. 3. OPT WMMF Optimal Weighted Max-Min Fair multi-
commodity Algorithm

The reason for the two-phase saturation test is to
cheaply identify candidates for saturation, using the
criteria of the lack of connectivity in the residual graph,
and then perform the costlier saturation test of phase two
for these candidate commodities. Before explaining the
phase two saturation tests, we direct the reader to Fig. 4
that illustrates a case where an unsaturated commodity
can be mistakenly considered saturated when using only
the cheaper connectivity test, which is the raison d’être
for the second phase.

The second phase of the saturation test appears in lines
17-20 of Fig. 3. TheOPR LP (line 17) is performed for
each commodity that was suspected to be saturated by
the connectivity test in order to find out whether it can
increase its assignment considering a different routing.
For this purpose we change the LP definition as follows.
In Eq. 6 Γunsat holds only commodityj, whereas the
other commodities are added toΓsat (Eq. 7), as if they
are saturated andλsat

φ is set to their last calculatedλ. If

Scenario 2 achieves the
global max-min rate
allocation vector.
First Iteration
     
Comm 1 uses path 2 (1)
Comm 2 uses path1  (1)
Comm 3 uses path 3 (1)
Comm 3 is saturated
Second Iteration
  = 1/2
Comm 1 uses path1 (½)
Comm 3 uses path1 (½)
Global Max-min vector:
(1½,1,1½)

s1

s3

e1

e2

t1

t3

t2s2

1

2 2

1

1 1

1

1 1

s1

s3

e1

e2

t1

t3

t2s2

1

2 2

1

1 1

1

1 1

Scenario 1 uses only
connectivity test and can
achieves non-global rate vector.
Optimal throughput (4). But
violates fairness
First Iteration
  = 1
Comm 1 uses path 1 (1)
Comm 2 uses path1  (1)
Comm 3 uses path 1 (1)
Connectivity test returns:
Comm 1 and 2 saturated
Second Iteration
  = 1
Comm 3 uses path 1 (1)
Max-min vector:
(1,1,2)

Fig. 4. A mistaken saturation example. Given three commodities:
Commodity 1 (s1,t1) with the paths path1 (s1-e1-t1) and path2
(s1-e2-t1); Commodity 2 (s2,t2) with the paths path1 (s2-s1-e1-t1-
t2) path2 (s2-s1-e2-t1-t2); and commodity3 (s3,t3) with the paths
path1 (s3-s1-e1-t1-t3), path2 (s3-s1-e2-t1-t3), and path3 (s3-t3). The
different routing in iteration 1 of the two scenarios achieve the same
throughput. However, in scenario1 (upper part of the figure) the
routing of commodity3 during the1st iteration leaves no room for
adding flow to commodity1 in the second iteration which makes
it look ‘saturated’, and, indeed, the allocation vector of scenario
2 is fairer. Phase 2 of the saturation test forces helps to identify
commodity2 as unsaturated, and the new LP finds an optimal routing
assignment as in scenario 2.

the newly calculatedλ for j is the same as before, then
j is considered a saturated commodity (lines 22-25).

The OPT WMMF algorithm provides us with a com-
modity rate vectorρ, a set of flow rate vectorsfk, and the
rates of the pathsP j

k ∈ Pk, k = 1, . . . ,K per commodity
k, composing eachρi.

The following Lemmas and Theorem show that the
two phase saturation test is true under any routing
combination and that the obtained rate vector is the
globally weighted max-min fair rate vector. The proofs of
the Lemmas can be found in the technical report version
of this paper.

Lemma 1 Commodityk that was identified assaturated
at the end of iterationφ can not increase its bandwidth
allocation under any routing combination of the other
commodities.

Proof: Iteration φ starts with Γφ−1
sat , the list of

the commodities that were identified assaturated in
any iteration φ′ such thatφ′ < φ, and Γφ−1

unsat, the
commodities that can still grow. The LPOPR (line 7)
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computesλφ for any commodity inΓφ−1
unsat.

The first phase checks connectivity per each com-
modity. The commodities which can still be assigned
bandwidth between its source and destination can still
grow and remains inΓφ

unsat.
Assuming, by contradiction, a commodityl that was

assignedλtemp that is equal toλφ by the solution of
OPR in line 17, and still can increase its bandwidth.
The first operation of LPOPR (line 7) guarantees at
least λφ per each commodity inΓφ−1

unsat. By fixating
this bandwidth allocation, the second operation ofOPR,
maximizesλtemp under any routing combination of the
other commodities. Any possible increase of commodity
l is in contradiction to the optimality of the secondOPR
in line 17 operation.

Lemma 2 The commodity rate vectorρ provided by the
OPT WMMF is weighted max-min fair.

Proof: We prove by induction on the iteration
numbern. The induction base holds for the first iteration
sinceρ1, the allocated rate vector in the first iteration,
equals to the solution ofPR. PR found λ1 to be
the maximum portion can be assigned considering the
demands and the capacities. It holds per all commodities
i andj thatρ1

i /ρ
1
j = demi/demj . Assume now, that the

induction hypothesis holds for iterationn. Thus, the rate
vector solution is feasible and for each commodityi, ρn

i

cannot be increased without decreasing any otherρn
j for

some commodityj for which ρn
i /ρn

j ≥ demi/demk.
We prove now the induction hypothesis holds for

iterationn + 1. According to lemma 1, the commodities
that are inΓUNSAT can still grow and the others that are
in ΓSAT can not increase their bandwidth. The operation
of OPR preserves the allocated bandwidth for all the
commodities inΓSAT , such that the gained increase
for any commodityl ∈ Γn+1

unsat is calculated byOPR
while keeping fairness and throughput, and not on the
account of any commodity inΓn+1

sat . The saturation test
guarantees the saturation ofΓn+2

sat .

Theorem 1 The commodity rate vectorρ provided by
the OPTWMMF is optimal weighted max-min fair.

Proof: Lemma 1 proves the correctness of the
saturation test, which implies its maximum value under
any routing scenario at its saturation iteration. This is
true per each commodity

IV. L OCALLY OPTIMAL WEIGHTED MAX -MIN FAIR

ALGORITHMS

The OPT WMMF algorithm presented in the previous
section finds the globally max-min fair rate vector by

looking for a new routing in each iteration. This re-
assignment prevents us from using this algorithm in an
on-line or distributed manner. However, due to practical
reasons, a distributed version that finds a max-min fair
rate allocation vector is important. Thus, we relax the
requirement for a globally max-min fair vector and
accept any max-min fair vector which is locally optimal.

This section presents an off-line centralized algorithm,
LOC WMMF, that finds the maximal max-min fair rate
vector using an LP solver. Then, we presentǫ WMMF
(In subsection IV-A), an FPTAS approximation for
LOC WMMF, and a distributed version of this algorithm,
ǫ WMMFdist (In subsection IV-B). We show the practi-
cality and the efficiency ofǫ WMMF and ǫ WMMFdist
algorithms in subsection V.

LOC WMMF is an iterative algorithm, that increases
in each iteration the allocated net flow per commod-
ity while keeping the weighted fairness criterion. It
guarantees the max-min fairness since it is based on
the optimality and scalability of the Maximum Concur-
rent Multi-Commodity Flow problem. It performs the
MC MCF LP (using Eqs. 1-2 and not the reformulated
equations as inOPT WMMF) on the residual graph
of G, and preserve the routing that was calculated in
previous iterations. The algorithm iterates each time with
a reduced number of commodities until the total net
flow per a commodity is assigned. One must be careful
in such algorithms since the inability to reroute may
result in a solution which is away from the global as
illustrated in Fig. 2 where two routing layouts, which can
be found by theLOC WMMF algorithm are presented.
Only scenario two produces the global weighted max-
min fair rate vector. Thus,ǫ WMMF and ǫ WMMFdist,
the approximation algorithms forLOC WMMF, route a
small amount of flow (with respect to the link weight in
the dual problem) in each iteration. More details about
LOC WMMF appear in [21].

A. Weighted Max-Min Fair Centralized Approximation
Algorithm

The ǫ WMMF algorithm (see Fig. 5) is anε-
approximation of theLOC WMMF algorithm. It uses
the variable-size increment technique (which is close in
spirit to the primal-dual techniques) instead of the LP
solver used inLOC WMMF. The routing is controlled by
the tight relationship between the length of the selected
path and its load; a fact that spreads the routes and
increases network utilization (thus avoiding cases like
in Fig. 2 Scenario one).

An FPTAS approximation for theMC MCF problem
that uses a variable-size increment technique is devel-
oped and presented in [18], [19], [20]. They treated the
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ǫ WMMF(Γ, dem, G, ǫ)
1. /* Initialization stage */
2. ∀a ∈ A, l(a) = δ/c(a)
3. while (Γ 6= NULL) do /* STAGE*/
4. stageCnt + +, phaseCnt = 1
5. lastDL = 0; newDL = D(l)
6. while (newDL − lastDL < 1) do /* PHASE */
7. for (i = 1 to |S|) do /*ITER: S group of diff srcs*/
8. Let Γi group of commodities start from sourcei
9. Build shortest path tree,P ∗ = {P ∗

C |C ∈ Γi}
10. ∀C ∈ Γi, tmpdem(C) = demC

11. while newDL-lastDL< 1 and
12. ∃C ∈ Γi, tmpdem(C) > 0 do /*STEP*/
13. for Ck ∈ Γi

14. /* Connectivity and Saturation test */
15. If ∀a ∈ P ∗

Ck
, l(a) ≥ 1/c(a), l then

16. Γi = Γi \ {Ck}
17. Γ = Γ \ {Ck}
18. else/*Update Curr Path*/
19. c = mina∈P∗

Ck

c(a)

20. fCk
= min(tmpdem, c)

21. f(P ∗

Ck
) = f(P ∗

Ck
) + fCk

22. tmpdem(Ck) = tmpdem(Ck) − fCk

23. end for
24. ∀a ∈ P ∗

Ck
, l(a) = l(a)(1 + ǫ ·

∑

Ck:a∈P∗

Ck

fCk

c(a))

25. newDL = D(l)
26. end while /* end of step */
27. end for /* end of iteration */
28. phaseCnt + +;
29. end while /* end of phase */
30. lastDL = newDL
31. end while /* end of stage */
32. ∀k = 1 . . .K, ∀P ∈ Pk, f(P ) = f(P )

log1+ǫ
1+Kǫ

δ

33. ∀k = 1 . . .K, ∀P ∈ Pk, f(Pk) =
∑

f(P )
34. Returns per commodityk:
35. set of pathsPk and flowsf(Pk)

Fig. 5. ǫ WMMFApproximation Optimal Weighted Max-Min Fair
multi-commodity Algorithm

MC MCF- equations 1 and 2 - formulation as the primal
problem and equations 3and 4 as the dual problem. Our
algorithm extends their technique such that it iterates
on the dual variables until all the shortest paths are
saturated. While the referred works did not deal with
the saturation issue, we suggest a saturation test (which
also serves as a connectivity test) that enables us to stay
in the dual problem. Another advantage of sticking with
the dual problem is the reflection of the fairness among
the commodities, which is our primal objective, using the
dual objectives and variables. In addition to the fairness,
we show that these variables can be used to determine

the saturation of a path.
The algorithm receives as input the list of commodities

Γ, the vector of demandsdem, the graphG and ǫ,
the maximum allowed approximation error. It starts by
assigning the length of each linkl(a) to beδ/c(a), where
δ is a pre-computed value chosen to achieve the desired
approximation value. The algorithm alternates between
primal flow variables and dual length variables to fulfill
the capacity-length constraint (primal Eq. 1 and dual Eq.
3). It proceeds in stages (see line 3 in Fig. 5). In each
stage the algorithm solves theMC MCFproblem (using
an approximation algorithm taken from [18], [19], [20])
and finds the primal-dual (λ andD(l)) solution. Part of
the commodities become saturated during each stage and
should be omitted in the following stages. The saturation
test is an important contribution of our algorithm that
promises the reduction in the number of the participating
commodities at each stage and thus the convergence of
the algorithm.

The stage proceeds in phases (line 6). Each phase is
composed of|S| iterations, whereS is the group of all
the sources (some commodities can have the same source
si). Iteration i of phasej considers the commodities
Cq, q = 1 . . . r starting from the same sourceSi (see
line 7) and routesdem(Cq) units in a number of steps.

Each step (see line 11) calculates the shortest path tree
starting from the source, using the last calculated length
variablesl(a). It iterates over theq commodities and in
each step either saturates the current shortest path per
commodityCq or allocates the remaineddem(Cq). For
every c(a) units of flow sent over the linka, its link
length variablel(a) is updated by a factor of at most
1+Kǫ (line 24). The entire stage ends as soon asD(l) ≥
1 according to the dual constraint Eq. 4 and produces a
vector of lengths,l. The corresponding per commodity
net flow vectorf(Pk), k = 1 . . . K is infeasible for the
primal LP, and needs to be scaled down. For this purpose,
we note that as long asD(l) < 1, the length of each link
can not exceed1/c(a), which implies that the number
of times the flow is increased over this link (during a
stage period) islog1+ǫ(

1+Kǫ
δ

) times its real flow. By
scaling down this flow by a factor oflog1+ǫ

1+Kǫ
δ

, a
feasible flow will be achieved. The scaling is done after
the termination of all the phases (line 31). Since the
scaling factor is known in advance, the scaling can be
done at any point within the step and thus the feasible
value of the flow can be followed.

Iterating over|S| is more efficient than iterating over
the commodities since the entire shortest path tree is
calculated at once instead of one shortest path calculation
at a time. We will use this improvement [20] in the dis-
tributed implementation. The connectivity test per each
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commodity is also done at this point by checking the
unsaturated shortest path per the participating commodi-
ties. Only the commodities that pass the connectivity test
participate in this stage. Note that this check is done
while building the shortest path tree and thus no extra
running time is needed for this test.

The primal-dual solutions are found when the function
D(l) is larger than1. Since, each stage is an activation of
the primal-dual alternation, during stagei we achieve a
primal-dual solutionβi andzi which are found when the
function D(l) is larger than 1. In order to saturate the
network, we continue to increase the length variables,
l(a), but the termination condition (D(l) > 1) should
consider only the additional length for the last stage.
Thus, thel(a) variables hold the accumulative length
values and are used for the shortest path calculations.
However, for the stage termination condition we consider
only the incremental values, namely,newDL− lastDL
(lines 6 and 11), wherelastDL is the D(l) value at
the beginning of the stage andnewDL is the current
value of D(l) (line 25). At each stage, at least one
commodity is saturated and removed from the listΓ
since, at least, one link value is increased by a factor
of (1+ ǫ)/c(a). This ensures the algorithm convergence.
Algorithm correctness and complexity Past analysis
[18], [19], [20] showed the correctness of theMC MCF
approximation algorithm and proved the dual-primal
solution ratio,β/λ, to be less than1 + ξ for any ξ > 0.
For the MC MCF problem they proved the following
theorem.

Theorem 2 (Lemma3.2 and Theorem3.1 in [20]) There
is an algorithm that computes a(1−ǫ)−3-approximation
to the MCMCF in time O(ǫ−2m2 log m) wherem is
the number of edges.

The solution of ǫ WMMF algorithm is an approx-
imation to some weighted max-min rate vector, not
necessarily the global one. Next, we will prove the fea-
sibility, convergence, and the runtime of this algorithm.
Theorem 3 proves the approximation bound and the
runtime complexity ofǫ WMMF.

Theorem 3 The ǫ WMMF algorithm computes a(1 −
ǫ)−3-approximation to some weighted max-min fair flow
in time O(ǫ−2Km2 log m), wherem is the number of
edges.

Proof: The analysis and proof in [18], [19], [20]
hold for one stage of theǫ WMMF algorithm. The
analysis follows the ones in the above mentioned ref-
erences, but here we examine the number of phases in
all the stages. LetD(li) =

∑

l(a) · c(a) and α(li) =

∑

q dem(q) ·distq(li) wheredistq(li) is the shortest path
length between the pair(sq, tq) for the length assignment
li at phasei. TheD(l) function is increased at each phase
as follows:

D(li) ≤ D(li−1) + ǫα(li) (8)

Considering the dual resultβk = mini D(li)/α(li)
during stagek, β =

∑

k βk and substituting these values
in Eq. 8, the following holds

D(li) ≤
D(li−1)

1 − ǫ/β
(9)

SinceD(lts
) ≥ 1 holds for any stage, wherets is the

total number of phases per this stage, we can assume
that D(lt) ≥ K, wheret is the total number of phases
over all the stages andK is the number of commodities.

Using D(l0) = mδ, β ≥ 1 and D(lt) ≥ K, the
following holds

K ≤ D(lt) ≤
mδ

1 − ǫ
e

ǫ(t−1)

β(1−ǫ) (10)

and a simple Algebraic manipulation yields

β ≤
ǫ(t − 1)

(1 − ǫ) ln K·(1−ǫ)
mδ

(11)

Using the claim from [20] for each of the stages,
summing up, and substituting in Eq. 11 we get

β/z <
ǫ

(1 − ǫ) ln (1 + ǫ) · K
·

ln 1+Kǫ
δ

ln K(1−ǫ)
mδ

(12)

By settingδ to be

δ =
1

(1 + Kǫ)
(1−ǫ)

(K−(1−ǫ)

·

(

K(1 − ǫ)

m

)1+ 1−ǫ

K−(1−ǫ)

(13)

The β/λ ratio, which is the primal dual ratio cal-
culated by theǫ WMMFalgorithm, becomes less than
(1 − ǫ)−3 and anyǫ can be selected.

It now remains to show that the resulted rate vector
is indeed max-min fair. This can be done by notic-
ing the analogy between the operation ofLOC WMMF
and ǫ WMMF, and the proof of the correctness of
LOC WMMF in [21]. The proof can be found in the
full version of this paper [22].

B. Weighted Max-Min Fair Distributed Approximation
Algorithm

We assume that each source router is familiar with
the network topology, link capacities, the commodities
emanating from it, and the ids of all other sources. In
addition, the sources are required to synchronize at the
end of each phase as explained later. During a phase each
source independently performs its procedure, iterating
over the steps. The distributed implementation of our
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ǫ WMMFdist-source(Γi, dem, G, ǫ)
1. /* Initialization stage */
2. ∀a ∈ A, l(a) = δ/c(a)
3. while (Γi 6= NULL) do /* STAGE*/
4. stageCnt + +, phaseCnt = 1
5. lastDL = 0; newDL = D(l)
6. while (newDL − lastDL < 1) do /* PHASE */
7. Let Γi group of commodities start from sourcei
8. Build shortest path tree,P ∗ = {P ∗

C |C ∈ Γi}
9. ∀C ∈ Γi, tmpdem(C) = demC

10. while newDL-lastDL< 1 and
11. ∃C ∈ Γi, tmpdem(C) > 0 do /*STEP*/
12. parallel for Ck ∈ Γi

13. /* Connectivity and Saturation test */
14. If ∀a ∈ P ∗

Ck
, l(a) ≥ 1/c(a), l then

15. Γi = Γi \ {Ck}
16. Γ = Γ \ {Ck}
17. else/*Update Curr Path*/
18. SndSRCAlc(tmpdem(Ck), P ∗

Ck
)

19. WaitDestMsg(P∗Ck
, f(P ∗

Ck
), l)

20. tmpdem(Ck) = tmpdem(Ck) − f(P ∗

Ck
)

21. newDL(l) =
∑

a∈A c(a)l(a)
22. end parallel for
23. end while /* end of step */
24. SndAl2AlSRCMsg(i, l, phaseCnt, stageCnt)
25. GtAlSRCSY NMsg(l, phaseCnt, stageCnt)
26. newDL(l) =

∑

a∈A c(a)l(a)
27. phaseCnt + +;
28. end while /* end of phase */
29. lastDL = newDL;
30. end while /* end of stage */
31. ∀k = 1 . . .K, ∀P ∈ Pk, f(P ) = f(P )

log1+ǫ
1+Kǫ

δ

32. ∀k = 1 . . .K, ∀P ∈ Pk, f(Pk) =
∑

f(P )
33. Returns per commodityk:
34. set of pathsPk and flowsf(Pk)

Fig. 6. ǫ WMMFdistDistributed Approximation Optimal Weighted
Max-Min Fair multi-commodity Algorithm for source nodei

algorithm is shown in Fig. 6 for the source node; the
code for an intermediate node or a destination node is
omitted due to space limitations, but explained below.
In each step, the source sends an ”Allocation Request”
message (line 18) over the pre-calculated shortest path
tree (line 8). This message traverses all intermediate
nodes towards the destinations and collects the informa-
tion about the bottleneck link along each shortest path.
The destination node, upon source message arrival, sends
a ”Destination Acknowledge” message with the capacity
of bottleneck link. Each intermediate router receives the
”Destination Acknowledge” message, updates the length
and the flow over its outgoing arc variables (using the
same formulae as in lines 21 and 24 in Fig. 5), and

forwards it towards the source. The source receives the
message (line 19) and updates per-arc length information
and per-path bandwidth allocation amount. Each source
node, at the end of a phase, synchronizes with the other
sources by exchanging the length information (lines 24
and 25). By having all source nodes registered to a
multicast group, one can simplify the synchronization
process. This distributed algorithm proceeds until the
network is saturated and each commodity obtain its fair
share.

In case a commodity is dropped from the demand list
we need not run the algorithm from scratch. A com-
modity can be dropped once the algorithm terminated or
even at any intermediate synchronization state. This in-
cremental change requires adding another message type
that will be sent from the source node to the destination
along the dropped commodity paths. Each intermediate
link can reduce its length and divide it by a factor of
1 + ǫ fk

c(a) for this specific flow. Since the algorithm is
performed over the dual variables, this will be enough
to adjust the state of network bandwidth allocation. After
this adjustment, the network becomes unsaturated for at
least some of the sources and the algorithm continues
until saturation is achieved. The incremental algorithm
for the case of adding a commodity is left for future
research.

V. A LGORITHM IMPLEMENTATION AND

PERFORMANCERESULTS

We implemented theOPT WMMF and ǫ WMMF al-
gorithms using MATLAB in order to study their ac-
curacy and performance. Specifically we show that the
ǫ WMMF algorithm solution is close to the one achieved
by theOPT WMMF optimal algorithm, while its running
time is significantly shorter.

A. Algorithm Implementation

In this section we present the simple example of Fig. 7
to illustrate the way the algorithm iterates. The capacity
of each link is 1. There are four commodities, each
with 1 unit of demand. All the links and paths are uni-
directional. Commodities 2 and 4 have one path and its
path ID is 1. Commodity 1 and 3 have 2 paths with IDs
1 and 2.

Table II presents the two stages of the algorithm
operation forǫ = 0.2. We can see that in the first stage
all the commodities receive an equal portion of their
demands. Link 2 is the bottleneck link of their paths and
its length after this stage becomes1.1451 > 1/c(2) = 1.
It means that this link is saturated. We can verify it by
observing its flow which is0.3258+ 0.3438+ 0.3258 =
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Fig. 7. Algorithm Iteration Example

comm. path infeasible feasible per comm. path
ID ID flow flow flow length

stage 1
1 1 2 0.0362 0.3438
1 2 17 0.3077 0.0019
2 1 18 0.3258 0.3258 0.6627
3 1 19 0.3438 0.3438 0.9562
3 2 0 0.0 0.9562
4 1 18 0.3258 0.3258 0.7963
l = {0.552 1.145 0.001 0.266 0.266}, λ = 0.326, lastDL = 1.151

stage 2
1 1 32 0.5791 1.4297 0.4602
1 2 47 0.8506 ∞
2 1 18 0.3258 0.3258 ∞
3 1 19 0.3438 0.3438 ∞
3 2 0 0.0 ∞
4 1 18 0.3258 0.3258 ∞
l = {1.145 1.145 0.001 0.552 0.552}, λ = 0.326, lastDL = 2.231

TABLE II

ǫ WMMF EXECUTION USINGFIG. 7 AND ǫ = 0.2

0.9954. The calculatedλ for this stage is0.3258 and
the stage terminates whenD(l) = 1.1510. Path 2 of
commodity 3 does not get any flow due to the saturation
of link 2. The other path of commodity 3 gets its fair
share. At the second stage the algorithm discovers that
commodities 2, 3, and 4 are saturated and delete them
from Γ. In the following stage, the algorithm iterates
for commodity 1 between its two shortest paths until
the saturation of both. The final max-min vector rate for
ǫ = 0.2 and commodities 1 (path 1 and 2), 2, 3 (path 1
and 2) and 4 is{1.6469, 0.3258, 0.3438, 0.3258}. The
final max-min rate vector forǫ = 0.1 for commodity
1 (path 1 and 2) commodities 2, 3 (path 1 and 2) and
4 is {1.6585, 0.3317, 0.3317, 0.3317}. Note that when
the ǫ decreases the values are approaching the optimal
weighted max-min vector (5/3,1/3,1/3,1/3).

B. Algorithm Result Comparisons

In order to demonstrate the practicality of the
ǫ WMMF algorithm, we performed extensive simula-
tions. Fig. 8 describes the topology of the Broadwing
network, an ISP with a nation-wide presence in the

Run 1
source-dest 2-5 13-12 5-12 1-4 11-1
OPT WMMF 0.5 0.5 1 2 2
ǫ WMMF 0.4959 0.4959 0.9918 1.9059 1.9059

Run 2
source-dest 1-2 3-2 1-10 2-8 6-13
OPT WMMF 1 1 1 1.5 1.5
ǫ WMMF 0.9918 0.9918 0.9918 1.4853 1.4902

Run 3
source-dest 6-5 9-5 11-7 2-9 11-1
OPT WMMF 0.5 0.5 1 2 2
ǫ WMMF 0.4959 0.4959 0.9918 1.8816 1.9837

TABLE III

COMPARISON EXAMPLES OFOPT WMMF AND ǫ WMMF RATE

ALLOCATIONS FOR THE TOPOLOGY INFIG. 8.

US, which publish its network structure. This topology
has many paths between most of it source-destination
pairs. Such a topology is prone to problematic routing
as we describe in Figures 4 and 2. We randomly selected
a number of source-destination commodities for this
topology, and for each random selection we compared
the optimal rate vector which was found byOPT WMMF
algorithm with the rate vector which was found by the
ǫ WMMF algorithm. In the tens of comparisons we have
made, each commodity in theǫ WMMF algorithm was
allocated a rate which was, at most,ε below the optimal
rate. Table III shows a few examples.
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Fig. 8. Topology map of Broadwing IP Routers connections

VI. CONCLUDING REMARKS

We presented, for the first time, an off-line centralized
algorithm that finds the global max-min fair rate vector
by using an LP formulation and solver. In addition
we found a distributed, efficient and fast approximation
for a traffic engineering algorithm for routing demands
in a network in a way that maximizes the flows and
maintains fairness. Our algorithm, which employs the
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weighted max-min fairness criterion strikes the right
balance between network utilization and fairness and
thus serves the current needs for quality of service.
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