
Approximating the number of Network Motifs

Mira Gonen� and Yuval Shavitt��

Tel-Aviv University, Ramat Aviv, Israel

Abstract. World Wide Web, the Internet, coupled biological and chem-
ical systems, neural networks, and social interacting species, are only a
few examples of systems composed by a large number of highly intercon-
nected dynamical units. These networks contain characteristic patterns,
termed network motifs, which occur far more often than in randomized
networks with the same degree sequence. Several algorithms have been
suggested for counting or detecting the number of induced or non-induced
occurrences of network motifs in the form of trees and bounded treewidth
subgraphs of size O(log n), and of size at most 7 for some motifs.
In addition, counting the number of motifs a node is part of was recently
suggested as a method to classify nodes in the network. The promise is
that the distribution of motifs a node participate in is an indication of
its function in the network. Therefore, counting the number of network
motifs a node is part of provides a major challenge. However, no such
practical algorithm exists.
We present several algorithms with time complexity O

(
e2kk · n · |E| · log 1

δ
/ε2

)
that, for the first time, approximate for every vertex the number of
non-induced occurrences of the motif the vertex is part of, for k-length
cycles, k-length cycles with a chord, and (k − 1)-length paths, where
k = O(log n), and for all motifs of size of at most four. In addition,
we show algorithms that approximate the total number of non-induced
occurrences of these network motifs, when no efficient algorithm exists.
Some of our algorithms use the color coding technique.

1 Introduction

1.1 Background and Motivation

World Wide Web, the Internet, coupled biological and chemical systems, neu-
ral networks, and social interacting species, are only a few examples of systems
composed by a large number of highly interconnected dynamical units. The first
approach to capture the global properties of such systems is to model them as
graphs whose nodes represent the dynamical units, and whose links stand for
the interactions between them. Such networks have been extensively studied by
exploring their global topological features such as power-law degree distribution,
the existence of dense-core and small diameter. (For references see the full ver-
sion of the paper [7]). However, two networks which have similar global features
� Email: gonenmir@post.tau.ac.il.

�� Email: shavitt@eng.tau.ac.il.

can have significant differences in structure, which can be captured by examining
local structures they include: e.g., one of them may include a specific subgraph
many more times than the other. Therefore these small subgraphs, termed net-
work motifs, were suggested to be elementary building blocks that carry out key
functions in the network. Milo et al. [12] found motifs in networks from biochem-
istry, neurobiology, ecology, and engineering. Specifically, they found motifs in
the World Wide Web. Moreover, Hales and Arteconi [9] presented results from
a motif analysis of networks produced by peer-to-peer protocols. They showed
that the motif profiles of such networks closely match protein structure networks.
Thus efficiently detecting and counting the number of network motifs provide a
major challenge.

As a result novel computational tools have been developed for counting sub-
graphs in a network and discovering network motifs. Most of existing work deal
with induced motifs, while there is also work that focuses on non-induced mo-
tifs.1 The motivation for considering non-induced subgraphs is that the process
of obtaining large networks (such as the AS graph) are far from complete and
error free; they lack existing edges. Thus, an occurrence of a specific network
motif in one network may include additional edges in its occurrence in another
network and vice versa.

Several existing algorithms for counting and detection non-induced motifs [6,
4, 2, 1, 16] used the color coding technique of Alon et al. [3]. Color coding is
an innovative combinatorial approach that was introduced by Alon et al. [3] to
detect simple paths, trees and bounded treewidth subgraphs in unlabeled graphs.
Color coding is based on assigning random colors to the vertices of an input
graph. It considers only those subgraphs where each vertex has a unique color.
Such colorful subgraphs can then be detected through efficient use of dynamic
programming, in time polynomial with n, the size of the input graph. If the above
procedure is repeated sufficiently many times (polynomial with n, provided that
the subgraph we are looking for is of size O(log n), it is guaranteed that a specific
occurrence of the query subgraph will be detected with high probability. The
color coding technique is a building block in some of the algorithms presented
in this paper.

Przulj et al. [14] described how to count all induced subgraphs with up to
5 vertices in a PPI (Protein-Protein Interaction) network. Faster techniques
that count induced subgraphs of size up to 6 were developed by Hormozdiari et
al. [10], and for size up to 7 were shown by Grochow and Kellis [8]. The running
time of these techniques all increase exponentially with the size of the motif.
Kashtan et al. [11] showed an algorithm for detecting induced network motifs
that sample the network. This algorithm detect induced occurrences of small
motifs (motifs with k ≤ 7 vertices). Wernicke et al. [17] claims that Kashtan
et al.’s algorithm suffers from a sampling bias and scales poorly with increasing
subgraph size. Thus, Wernicke [17] presented an improved algorithm for network

1 G0 is an induced subgraph of a graph G if and only if for each pair of vertices v0 and
w0 in G0 and their corresponding vertices v and w in G there is an edge between v0

and w0 in G0 if and only if there is an edge between v and w in G.

motif detection which overcomes these drawbacks. Scott et al. [15] focused on the
subgraph detection problem. Dost et al. [6] showed how to solve the subgraph
detection problem for subgraphs of size O(log n), provided that the query sub-
graph is either a simple path, a tree, or a bounded treewidth subgraph. Arvind
and Raman [4] counted the number of subgraphs in a given graph G which are
isomorphic to a bounded treewidth graph H . They gave a randomized approxi-
mate counting algorithm with a running time of kO(k) · nb+O(1), where n and k
are the number of vertices in G and H , respectively, and b is the treewidth of H .
Alon and Gutner [2] combined the color coding technique with a construction of
Balanced Families of Perfect Hash Functions to obtain a deterministic algorithm
to count the number of simple paths or cycles of size k in an input graph G. Alon
et al. [1] improved the algorithm of Alon and Gutner. They presented a polyno-
mial time algorithm for approximating the number of non-induced occurrences
of trees and bounded treewidth subgraphs with k = O(log n) vertices with a
running time of 2O(k log log k) · nO(1).

A new systematic measure of a network’s local topology was recently sug-
gested by Przulj [13]. They term this measure ”graphlet distribution” of a ver-
tex. Namely, they count for each vertex the number of all motifs of size at most
five that adjacent to the vertex. The promise is that the distribution of motifs a
node participate in is an indication of its function in the network, thus nodes can
be divided into functional classes. In addition, Becchetti et al [5] have recently
shown that the distribution of the local number of triangles and the related
clustering coefficient can be used to detect the presence of spamming activity
in large scale Web graphs, as well as to provide useful features for the analysis
of biochemical networks or the assessment of content quality in social networks.
Therefore, counting the number of network motifs a node is part of also provides
a major challenge. However, no practical algorithm for counting the number of
network motifs a node is part of exists.

1.2 Our Contributions

We present several algorithms with time complexity O
(
e2kk · n · |E| · log 1

δ /ε2
)

that, for the first time, approximate for every vertex the number of non-induced
occurrences of the motif the vertex is part of, for k-length cycles, k-length cycles
with a chord, and (k − 1)-length paths, where k = O(log n). We also provide
algorithms with time complexity O

(
n · |E| · log 1

δ /ε2 + |E|2 + |E| · n log n
)

that,
for the first time, approximate for every vertex the number of non-induced oc-
currences of the motif the vertex is part of for all motifs of size of at most four. In
addition, we show an O

(
ekk · n · |E| · log 1

δ /ε2
)

algorithm that, for the first time,
approximates the total number of non-induced occurrences of O(log n)-length cy-
cles with a chord. Moreover, we improve the time complexity of approximating
the total number of non-induced occurrences of “tailed” triangles and 4-cliques
upon existing algorithms. Some of our algorithms use the color coding technique
of Alon et al. [3].

Organization: In Section 2 we give notations and definitions. In Section 3
we introduce motifs counting approximation algorithms for O(log n)-size motifs.

In Section 4 we present motifs counting algorithms for all four-size motifs. We
summarize our conclusions in Section 5.

2 Preliminaries

Let G = (V, E) be an undirected graph with n vertices. We assume that G
is represented by an adjacency lists. For a vertex v let N(v) denote the set of
neighbors of v and let deg(v) denote the degree of v. A motif H is said to be
isomorphic to a subgraph H ′ in G if there is a bijection between the vertices of
H and the vertices of H ′ such that for every edge between two vertices v and u of
H there is an edge between the vertices v′ and u′ in H ′ that correspond to v and
u respectively. Such a subgraph H ′ is considered to be a non-induced occurrence
of H in G. For a vertex v we say that v is adjacent to H if v is a vertex of H .
Denote by [k] the set {1, . . . , k}. Denote by col(v) the color of vertex v.

Let H be a motif with k vertices, and let G = (V, E) be a graph where
|V | = n. Assign a color to each vertex of V from the color set [k]. The colors are
assigned to each vertex independently and uniformly at random. A copy of H
in G is said to be colorful if each vertex on it is colored by a distinct color.

For a problem f , let #f denote the number of distinct solutions of f .

Definition 1. ((ε, δ)-approximation) An algorithm A for a counting problem
f is a (ε, δ)-approximation if it takes an input instance and two real values ε, δ
and produces an output y such that

Pr[(1 − ε) · #f ≤ y ≤ (1 + ε) · #f] ≥ 1 − 2δ.

3 Algorithms for Counting Motifs of size O(log n)

Given a graph G = (V, E) and a vertex v, we describe how to approximately
count for every vertex v the number of non-induced occurrences of (k−1)-length
paths, k-length cycles, and k-length cycles with a chord that are adjacent to v,
for k = O(log n). In addition, for each such motif H we present an algorithm for
approximating the number of non-induced subgraphs of G that are isomorphic
to H when no efficient algorithm exists. Most of our approximation algorithms
apply the color coding technique of Alon et al. [3]. Note that we allow overlaps
between the motifs we count, i.e. two occurrences of H , namely H ′ and H ′′ may
share vertices; in fact the vertex sets of H ′ and H ′′ may be identical. We consider
H ′ and H ′′ distinct occurrences of H provided that the edge sets of H ′ and H ′′

are not identical.

3.1 Counting Paths

In this section assume that H is a simple path of length k−1.
We present an algorithm to approximately count for every vertex v, the number

of subgraphs of G which are isomorphic to H and adjacent to v. (Note that Alon
et al [1] only count the total number of paths in the graph). � �

v
�

Let t = log(1/δ), and let s = 4kk

ε2k! . Assume that we have a k-coloring of G,
i.e., each vertex is randomly and independently colored with a color in [k]. For
each vertex v and each subset S of the color set [k], let Pi(v, S) be the number of
colorful paths adjacent to v using colors in S at the ith coloring, and let Ci(v, S)
be the number of colorful paths for which one of their endpoint is v using colors
in S at the ith coloring.

Consider the following algorithm. The algorithm takes as input: a graph
G = (V, E), a vertex v ∈ V , the requested path length k − 1, fault-tolerance ε,
and an error probability δ.

Algorithm 1 (A (ε, δ)-approximation algorithm for counting simple paths of
length k − 1 adjacent to a vertex v)

1. For j = 1 to t
(a) For i = 1 to s

i. Color each vertex of G independently and uniformly at random with
one of the k colors.

ii. For all u ∈ V Ci(u, φ) = 1.

iii. For all � ∈ [k] Ci(v, {�}) =
{

1 if col(v) = �;
0 otherwise.

iv. For all S ⊆ [k] s.t |S| > 1 Ci(v, S) =
∑

u∈N(v) Ci(u, S \ {col(v)}).
v. Pi(v, [k]) =

∑k
�=1

∑
u∈N(v)

∑
(S1,S2)∈A�,v

Ci(v, S1) · Ci(u, S2),
where A�,v = {(Si, Sj)|Si ⊆ [k], Sj ⊆ [k], Si ∩ Sj = φ, |Si| = �, |Sj| =
k − �}.

vi. Let Xv
i = Pi(v, [k]).

(b) Let Y v
j =

∑ s
i=1 Xv

i

s .
2. Let Zv be the median of Y v

1 , ..., Y v
t .

3. Return Zv · kk/k!.

Our main theorem is the following:

Theorem 1 Let G = (V, E) be an undirected graph, and let H be a simple path
of length k − 1. Then for all v ∈ V Algorithm 1 is a (ε, δ)-approximation for
the number of copies of H in G that are adjacent to v, with time complexity
O

(
ek|E| log(1/δ)/ε2

)
.

For proving Theorem 1 we first prove the following lemma:

Lemma 1 For all v ∈ V Pi(v, [k]) can be computed in O(2k|E|) time.

Proof: According to Alon et al [1] the time complexity for computing Ci(v, S)
for all v and S is

∑
v∈V

∑
u∈N(v) O(2k) +

∑
v∈V O(k) = O(

∑
v∈V deg(v) · 2k) =

O(2k(|E|)). A vertex v is adjacent to a colorful path of length k − 1 if and only
if it is an endpoint of a colorful path of length � − 1, one of its neighbors is an
endpoint of a colorful path of length k − 1− �, and the subsets of colors of both

paths are disjoint.
v u

� − 1 k − 1 − �
� �� � �� Thus, for each vertex v, the

number of colorful paths of length k − 1 that are adjacent to v is

P (v, [k]) =
k∑

�=1

∑
u∈N(v)

∑
(S1,S2)∈A�,v

C(v, S1) · C(u, S2),

where A�,v = {(Si, Sj)|Si ⊆ [k], Sj ⊆ [k], Si ∩Sj = φ, |Si| = �, |Sj| = k − �}. (We
define C(u, φ) = 1 for every vertex u). Therefore the running time for computing
P (v, [k]) for all v, assuming that C(u, S) is known for any vertex u and any color
set S, is: ∑

v∈V

k∑
�=1

(
k

�

)
deg(v) = 2k−1 · 2 · |E|.

Thus the total running time for computing P (v, [k]) for all v is O(2k|E|). ��
The proof of Theorem 1 is based on Lemma 1 and the approximation tech-

nique of Alon et al. [1]. The details of the proof of Theorem 1 appear in the full
version of the paper [7].

3.2 Counting Cycles

In this section assume that H is a simple cycle of length k.
We present an algorithm to approximately count for every vertex v the num-

ber of subgraphs of G which are isomorphic to H and adjacent to v.
� v

Let t = log(1/δ), and let s = 4kk

ε2k! . Assume that we have a k-coloring of G,
i.e., each vertex is randomly and independently colored with a color in [k]. For
each pair of vertices v, x and each color set S of the color set [k] let Ci(v, x, S)
be the number of colorful paths between v and x using colors in S at the ith
coloring, and let CYi(v, S) be the number of colorful cycles adjacent to v using
colors in S at the ith coloring.

Consider the following algorithm. The algorithm takes as input: a graph
G = (V, E), a vertex v ∈ V , the requested cycle length k, fault-tolerance ε, and
an error probability δ. The algorithm uses a procedure to compute the number
of colorful paths between v and any other vertex.

Algorithm 2 (A (ε, δ)-approximation algorithm for counting simple cycles of
length k adjacent to a vertex v)

1. For j = 1 to t
(a) For i = 1 to s

i. Color each vertex of G independently and uniformly at random with
one of the k colors.

ii. For all x ∈ V Ci(v, x, [k]) = count-path(v, x, k).
iii. Let CYi(v, [k]) = 1

2

∑
u∈N(v) Ci(v, u, [k]).

iv. Let Xv
i = CYi(v, [k]).

(b) Let Y v
j =

∑ s
i=1 Xv

i

s .

2. Let Zv be the median of Y v
1 , ..., Y v

t .
3. Return Zv · kk/k!.

Algorithm 3 count-path(v,x,k)(counting simple paths of length k − 1 be-
tween v and x)

1. For all S ⊆ [k] s.t S = {�}

Ci(v, x, S) =
{

1 if coli(v) = coli(x) = �;
0 otherwise.

2. For q = 2 to k, for all S ⊆ [k] s.t |S| = q

Ci(v, x, S) =
∑

u∈N(v)

Ci(u, x, S \ {coli(v)}).

Our main theorem is the following:

Theorem 2 Let G = (V, E) be an undirected graph, and let H be a simple cycle
of length k. Then for every vertex v Algorithm 2 is a (ε, δ)-approximation for
the number of copies of H in G that are adjacent to v, with time complexity
O

(
ek · k · n · |E| log(1/δ)/ε2

)
.

For proving Theorem 2 we first prove the following lemma:

Lemma 2 For all v ∈ V CYi(v, [k]) can be computed in O(2k · k · n · |E|) time.

Proof: A vertex v is adjacent to a colorful cycle of length k if and only if it
is an endpoint of a colorful path of length k − 1, which has one of v’s neighbor

as an endpoint. � v�
u Therefore, we first compute for every two vertices u, v the

number of colorful paths of length k−1 between u and v. If u is a neighbor of v,
then we get a cycle of length k. The running time for computing CY (v, [k]) for all
v is then 2k

(∑
v∈V 1 +

∑
v,x∈V 1 + (k − 2)

∑
v,x∈V deg(v)

)
= O(2k · k · n · |E|).

��
Proof of Theorem 2. The correctness of the approximation returned by
Algorithm 2 is proved in the same manner as in the proof of Theorem 1. Lemma 2
implies the correctness of the computation of CYi(v, [k]). The time complexity
of Algorithm 2 is O

(
ek · k · n · |E| log(1/δ)/ε2

)
by Lemma 2, and by showing

that the number of colorings used by the algorithm is O
(
ek log(1/δ)/ε2

)
. (This

is proved in the same manner as in the proof of Theorem 1). This completes the
proof. ��

3.3 Counting k-length Cycles with a chord

In this section assume that H is a simple cycle of length k with a chord, such
that the distance between the endpoint of the chord on the cycle is min{�, k−�},

for some given 2 ≤ � ≤ k − 2.

k − �

� We present an algorithm to approximately

compute the number of subgraphs of G which are isomorphic to H , and, for
every vertex v, the number of subgraphs of G which are isomorphic to H and
adjacent to v.

The approximation of the number of colorful subgraphs of G which are iso-
morphic to H appears in the full version of the paper [7].

We now approximate for every v ∈ V the number of colorful subgraphs
of G which are isomorphic to H and are adjacent to v. Let t = log(1/δ), let
s = 4·kk

ε2k! . Assume that we have a k-coloring of G, i.e., each vertex is randomly
and independently colored with a color in [k]. Let Pi(v, u, w, S) be the number
of colorful paths from u to w that are adjacent to v in the ith coloring, using the
colors in S. Recall that Ci(v, u, S) is the number of colorful paths from v to u in
the ith coloring, using the colors in S. Let Az,b

V ′ (S) = {(S1, S2)|S1, S2 ⊆ [k], |S1| =
z+1, |S2| = b−z+1, S1∪S2 = S, S1\{col(u)|u ∈ V ′}∩S2\{col(u)|u ∈ V ′} = φ}.
Consider the following algorithm. The algorithm takes as input: a graph G =
(V, E), a vertex v, fault-tolerance ε, and an error probability δ.

Algorithm 4 (A (ε, δ)-approximation algorithm for counting simple cycles of
length k with a chord that are adjacent to v)

1. For j = 1 to t

(a) For i = 1 to s

i. Color each vertex of G independently and uniformly at random with
one of the k colors.

ii. Xv
i = 0.

iii. For every edge (u, w) ∈ E :
iv. For all S ⊆ [k] s.t |S| = � + 1

Pi(v, u, w, S) =
∑�−1

z=1

∑
(S1,S2)∈Az,�

v (S) Ci(v, w, S1) · Ci(v, u, S2).

v. Let Xv
i = Xv

i +
∑

(S3,S4)∈A�,k
uw([k]) Pi(v, u, w, S3) · Ci(u, w, S4) +∑

(S3,S4)∈Ak−�,k
uw ([k]) Pi(v, u, w, S3) · Ci(u, w, S4) +∑

(S3,S4)∈A�,k
uv ([k]) Ci(v, u, S3) · Ci(v, u, S4).

(b) Let Y v
j =

∑ s
i=1 Xv

i

s .
2. Let Zv be the median of Y v

1 , ..., Y v
t .

3. Return Zv · kk/k!.

Our main theorem is the following:

Theorem 3 Let G = (V, E) be an undirected graph, and let H be a simple
cycle of length k with a chord. Then, for every v ∈ V , Algorithm 4 is a (ε, δ)-
approximation for the number of copies of H in G that are adjacent to v, with
time complexity O

(|E| · n · e2k · k log(1/δ)/ε2
)
.

For proving Theorem 3 we first prove the following lemma:

Lemma 3 Xv
i can be computed with time complexity O(|E| · n · 22k · k).

Proof: Let (u, w) be the chord, and let � be the distance on the cycle between u
and w. The number of copies of H that are adjacent to v depends on the position
of v. There are three cases: one for which v is adjacent to a path of length � be-

tween u and w � v
�
wu
, one for which v is adjacent to a path of length k−� between u

and w

k − �v�
wu
, and one for which v is an endpoint of the chord

�vu
. In the first case

we first count all the colorful paths of length z between v and w and multiply it by
the number of colorful paths of length �−z between v and u, where 1 ≤ z ≤ �−1.

(W.l.o.g assume that �
= k − �).

z
�
−

z
v�

wu

k − � Thus for all S ⊆ [k] s.t |S| = � + 1
Pi(v, u, w, S) =

∑�−1
z=1

∑
(S1,S2)∈Az,�

v (S) Ci(v, w, S1) · Ci(v, u, S2). Therefore the
total number of copies of H that are adjacent to v in the first case is the number of
�-length colorful paths between u and w that are adjacent to v, multiplied by the
number of k−�-length colorful paths between u and w, with disjoint set of colors
(except for the colors of u and w):

∑
(S3,S4)∈A�,k

uw([k]) Pi(v, u, w, S3) · Ci(u, w, S4).
The second case is computed in the same manner. The third case is computed
as follows. We count the number of �-length colorful paths between u and v
and multiply it by the number of k − �-length colorful paths between u and v,
using disjoint set of colors besides the colors of u and v. Computing the running
time: According to the proof of Lemma 2, the time complexity for computing
Ci(v, w, S) for every color-set S and every pair of vertices v, w is O(2k ·k ·n · |E|).
The running time of computing Pi(v, u, w, S) for all vertices v, u, w, and every
color-set S of size �+1 is O

(∑�−1
z=1

(
�
z

) · (k
�+1

) · |E| · n
)

= O(2� ·(k
�

)·|E|·n). There-

fore the time complexity of computing the first case is O(
∑

v∈V

∑
(u,w)∈E

(
k

�+1

)
+

2� ·(k
�

)·|E|·n)+O(2k ·k ·n·|E|) = O(
(

k
�

)·|E|·n+2� ·(k
�

)·|E|·n)+O(2k ·k ·n·|E|) =
O(2k · k · n · |E| · 2�). In the same manner the time complexity of case two is
O(2k ·k ·n · |E| ·2k−�). The time complexity of the third case (besides computing
Ci(v, w, S) is O

(∑
(u,v)∈E

(
k

�+1

))
= O(|E| ·(k

�

)
). Thus the total time complexity

is O(|E| · n · 22k · k). ��

Proof of Theorem 3. The correctness of the approximation returned by Al-
gorithm 4 is proved in the same manner as in the proof of Theorem 1. Lemma 3
implies the correctness of the computation of Xv

i . The time complexity of Algo-
rithm 4 is O

(|E| · n · k · e2k log(1/δ)/ε2
)

by Lemma 3 and by showing that the
number of colorings used by the algorithm is O

(
ek log(1/δ)/ε2

)
. (This is proved

in the same manner as in the proof of Theorem 1). This completes the proof. ��

4 Algorithms for Counting all four-size Motifs

Given a graph G = (V, E) and a vertex v, we describe how to approximately
count for every vertex v the number of non-induced occurrences of each possible
motif H that are adjacent to v. In addition, for each such motif H we present an
algorithm for approximating the number of non-induced subgraphs of G that are
isomorphic to H when no efficient algorithm exists. Note that we allow overlaps
between the motifs, as in the previous section.

4.1 Counting ”Tailed Triangles”

In this section assume that H is a triangle with a ”tail” of length one. We
present an algorithm that approximates the number of subgraphs of G which are
isomorphic to H , and, for every vertex v, approximates the number of subgraphs
of G which are isomorphic to H and adjacent to v.

We first approximate for every v ∈ V the number of subgraphs of G which are
isomorphic to H and are adjacent to v. Let TRG(v) be the approximation of the
total number of triangles in G that are adjacent to v, according to Algorithm 2.
Let Gv = (Vv, Ev), where Vv = V \ {v}, and Ev is the induced set of edges
received by removing all edges adjacent to v. Consider the following algorithm.
The algorithm takes as input: a graph G = (V, E), a vertex v, fault-tolerance ε,
and an error probability δ.

Algorithm 5 (A (ε, δ)-approximation algorithm for counting simple ”tailed tri-
angles” adjacent to v)

1. TLG(v) = 0
2. TRG(v) = result of Algorithm 2 (G,v, k = 3, ε, δ).
3. TLG(v) = TLG(v) + TRG(v) · (|N(v)| − 2).
4. Compute Gv by going over the whole adjacency list and removing v any time

is appears in the list.
5. For all u ∈ N(v) TRGv(u)= result of Algorithm 2 (Gv,u, k = 3, ε, δ).
6. TLG(v) = TLG(v) +

∑
u∈N(v) TRGv(u).

7. av = 0.
8. For all u ∈ N(v) go over v’s adjacency list, and for each vertex w in u’s

adjacency list check if w ∈ N(v) by going over v’s adjacency list. If w ∈ N(v)
then av = av + deg w − 2 + deg u − 2.

9. Return TLG(v) + av.

Theorem 4 Let G = (V, E) be an undirected graph, and let H be a triangle
with a ”tail” of length one. Then, for every vertex v, the number of copies of
G that are isomorphic to H and adjacent to v can be (ε, δ)-approximated, with
time complexity O

(|E|2 + n · |E| log(1/δ)/ε2
)

.

The proof of Theorem 4 and counting the number of subgraphs of G, which
are isomorphic to H , appear in the full version of the paper [7].

4.2 Counting 4-Cliques

In this section assume that H is a clique of size four. We present an algo-
rithm that exactly computes the number of subgraphs of G which are isomorphic
to H , and, for every vertex v, the number of subgraphs of G which are isomorphic
to H and adjacent to v.

We first compute, for every vertex v, the number of subgraphs of G which

are isomorphic to H and adjacent to v.
v�

. We run the following algorithm:
Let Cl(v) be the number of four-cliques in the graph that are adjacent to v. The
algorithm takes as input: a graph G = (V, E), a vertex v.

Algorithm 6 (Algorithm for counting 4-cliques that are adjacent to v)

1. Cl(v) = 0.
2. For every vertex u ∈ N(v):

(a) Compute N(v) ∩ N(u):
i. Go over all the vertices in the adjacency list of v and the adjacency

list of u, and add each vertex to a list. (Thus a vertex can appear
several times in the list).

ii. Sort the vertices in the list (which is a multiset) according the names
of the vertices.

iii. For each vertex in the list count the number of times it appears in
the list. If it appears twice then add the vertex to a list �(u, v).

iv. Sort the list �(u, v) according to the names of the vertices.
(b) For all w ∈ �(u, v) go over the adjacency list of w and for each vertex

t
= v, u in this adjacency list check if t ∈ �(u, v). If t ∈ �(u, v) then
Cl(v) := Cl(v) + 1.

3. Return Cl(v)/6.

Theorem 5 Let G = (V, E) be an undirected graph, and let H be a clique of
size four. Then for all v ∈ V Algorithm 6 counts the number of copies of H in
G that are adjacent to v, with time complexity O(|E| · n logn + |E|2).
The proof of Theorem 5 and counting the number of subgraphs of G which are
isomorphic to H appear in the full version of the paper [7].

Counting Small Trees Let H be a tree of size four that is consisted of a

vertex and three of its neighbors. Computing the number of subgraphs of G
which are isomorphic to H , and, for every vertex v, the number of subgraphs of
G which are isomorphic to H and adjacent to v appear in the full version of the
paper [7].

5 Conclusions

We presented algorithms with time complexity O
(
e2kk · n · |E| · log 1

δ /ε2
)

that,
for the first time, approximate the number of non-induced occurrences of the
motif a vertex is part of, for k-length cycles, k-length cycles with a chord, and

(k − 1)-length paths, where k = O(log n), and for all motifs of size of at most
four. In addition, we showed algorithms that approximate the total number of
non-induced occurrences of these network motifs, when no efficient algorithm
exists. Approximating the number of non-induced occurrences of the motif a
vertex is part of, for other motifs of size O(log n) is left for future work.
Acknowledgment: We thank Dana Ron for many hours of fruitful discussions.

References

1. N. Alon, P. Dao, I. Hajirasouliha, F. Hormozdiari, and S. C. Sahinalp. Biomolecular
network motif counting and discovery by color coding. Bioinformatics, 1:1–9, 2008.

2. N. Alon and S. Gutner. Balanced families of perfect hash functions and their
applications. In ICALP, pages 435–446, 2007.

3. N. Alon, R. Yuster, and U. Zwick. Color-coding. Journal of the ACM, 42(4):844,
1995.

4. V. Arvind and V. Raman. Approximation algorithms for some parameterized
counting problems. In ISAAC, pages 453–464, 2002.

5. L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-streaming algo-
rithms for local triangle counting in massive graphs. In Proceeding of the 14th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 16–24, 2008.

6. B. Dost, T. Shlomi, N. Gupta, E. Ruppin, V. Bafna, and R. Sharan. QNet: A tool
for querying protein interaction networks. In RECOMB, pages 1–15, 2007.

7. M. Gonen and Y. Shavitt. Approximating the number of network motifs. Technical
report, School of Electrical Enjeneering, Tel Aviv University, 2008.

8. J. Grochow and M. Kellis. Network motif discovery using subgraph enumeration
and symmetry-breaking. In RECOMB, pages 92–106, 2007.

9. D. Hales and S. Arteconi. Motifs in evolving cooperative networks look like protein
structure networks. Special Issue of ECCS’07 in The Journal of Networks and
Heterogeneous Media, 3(2):239–249, 2008.

10. F. Hormozdiari, P. Berenbrink, N. Przulj, and S.C. Sahinalp. Not all scale-free
networks are born equal: The role of the seed graph in ppi network evolution.
PLoS: Computational Biology, 3(7):e118, 2007.

11. N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs. Bioinformatics,
20(11):1746–1758, 2004.

12. R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Net-
work motifs: Simple building blocks of complex networks. Science, 298:824–827,
2002.

13. N. Przulj. Biological network comparison using graphlet degree distribution. Bioin-
formatics, 23(2):e177–e183, 2007.

14. N. Przulj, D. G. Corneil, and I. Jurisica. Modeling interactome: Scale- free or
geometric? Bioinformatics, 150:216–231, 2005.

15. J. Scott, T. Ideker, R. Karp, and R. Sharan. Efficient algorithms for detecting
signaling pathways in protein interaction networks. In RECOMB, pages 1–13,
2005.

16. T. Shlomi, D. Segal, and E. Ruppin. QPath: a method for querying pathways in a
protein-protein interaction network. Bioinformatics, 7:199, 2006.

17. S. Wernicke. Efficient detection of network motifs. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 3(4):347–359, October 2006.

