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Abstract

In this work we suggest algorithms that increase the reservation success probability for bursty traffic in high speed networks by adding
flexibility to the construction of the routes. These algorithms are simple enough to be implemented by cheap hardware. They cause no
additional delay to packets that use the original route, and a very small delay to the packets that are rerouted. In addition, the presented
algorithms have a minimal communication overhead, due to the local nature of their work. Two high-speed network models are considered:
source routing and ATM.q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

High speed networks are intended to support applications
with widely varying traffic characteristics: from short data-
base queries to long video streams. In order to use the
network resources efficiently, bandwidth reservations are
made to ensure high probability of data arrival to their desti-
nations. For applications such as constant bit rate video or
voice conversations this is the right approach. However, for
bursty traffic, i.e. traffic whose intensity varies in time,
reservation itself introduces non-negligible overhead. More-
over, the widely varying nature of bursty traffic indicates
that a simplistic burst reservation mechanism would not
suffice. The scheme must consider the burst size and the
timing constraints in its operation, as we briefly explain
below.

Short bursts are those whose transmission time is not
more than a few round trip delays. For such bursts waiting
for a reservation, which itself takes a few round trip delays,
is clearly not acceptable. The best method for this type of
bursts is to make an initial zero-bandwidth reservation and
subsequently to send the data without reservation and use

time-outs (possibly at a higher layer) to detect failures.
Turner [1] suggested an on-the-fly reservation scheme. In
this scheme a burst that arrives to an ATM switch and finds
sufficient bandwidth for its cells, reserves the required band-
width (to prevent new bursts from disturbing this one) and
proceeds to the next switch towards its destination. This
scheme does not guarantee that a burst that succeeds in
reserving enough bandwidth in one switch will also succeed
in the next one along the route. Hence the choice of the route
is crucial in the success of the on-the-fly reservation.

The same solution does not fit longer bursts. Here the
overhead of reservation is not as bothersome, so traditional
reservation algorithms can be used. Note, however, that this
approach is valid only if there is enough storage at the
source to hold the burst data until positive acknowledgment
is received for the reservation signaling [2,3]. Thus, such an
approach would be useful for bursty data applications such
as FTP in which the data can be easily kept in the source.
This approach would not be useful for bursty real-time
application, e.g. variable bit rate video, which (for storage
reasons) cannot tolerate long waiting times for a reservation
process to complete.

In this work we suggest algorithms that increase the prob-
ability to successfully transfer bursty traffic by adding flex-
ibility to the burst routing. We assume that bursty
applications reserve no bandwidth during their set-up
process. Instead, bandwidth is requested for each burst sepa-
rately (with either on-the-fly or traditional fast reservation
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algorithms) and is freed immediately after the burst trans-
mission. The suggested bypass algorithms are simple
enough to be implemented by cheap hardware. Before
proceeding we describe two routing approaches for high
speed networks with which our algorithms can be used:
source routing and ATM.

Source routing, or automatic network routing(ANR) [4],
is a routing method where each packet carries in it the entire
route it should traverse. In our discussion, we will assume
that the route is placed in the header as a list of port-IDs (or
link-IDs), and each node along the packet route strips the ID
it uses from the head of the list (in practice, there are other
methods for handling the source route that only differ in
technicalities and can be integrated with our algorithm
[4]). In networks that employ source routing, the route for
the session is computed at the source node using data that is
distributed by atopology updatealgorithm. It is therefore
plausible that routes thus computed are not optimal (and
may not even be feasible). Changing the route on-the-fly
amounts to modifying the source route in the packet’s
header.

In ATM networks, cells travel along virtual circuits (VCs)
that are constructed by a concatenation of virtual paths
(VPs). The VC and VP identifiers are written in the cell
header and possibly swapped in every switch. Tables in
the switches are used to determine the route based on
local identifiers [5]. For our purpose it is important to note
that the routing information is distributed in the switches
along the path the cells traverse. Modifying a cell’s route on
the fly requires changing the routing information in several
switches—an operation that is neither simple nor fast [6]. In
particular, buffering requirements for the cells while a new
route is created makes on-the-fly rerouting look impractical.

The algorithms we suggest in this work increase the prob-
ability of a successful short burst transmission or the prob-
ability of a successful reservation for longer bursts by using
local route-deflections. Because the route is determined
based on somewhat inaccurate data, and because a proper
reservation process is not undertaken, it is possible that the
determined route may actually not be able to accommodate
the bandwidth of the burst. To overcome this possible lack
of bandwidth local route deflections are constructed. To use
these deflections our algorithms use load information from
the immediate neighboring nodes. This does not require
dissemination of large volumes of load-data across the
network, keeps the information fairly up to date, and
increases the probability of reservation success.

Deflection routing was suggested almost since the begin-
ning of the research on distributed computing. Baran [7]
suggested the Hot-Potato heuristic routing where at each
switch the routing table stores a list of outgoing links per
destination. The list is sorted in decreasing cost order where
the first link is the preferred for routing the second one is
used should the first is blocked, and thei-th link is used if the
first i 2 1 links are not available. Later works [8], suggested
to use arbitrary link should the preferred link fail and thus

simplify the maintenance of the routing table. However all
the works on WANs [7,9,10] relies on global knowledge
that should be distributed in the entire network that may
be combined with local knowledge of the node’s queue
length [9,10]. Our proposal takes these idea one step
ahead by allowing nodes to examine the two-hop locale.
Deflection routing was also suggested for local area
networks (LANs), multihop lightwave networks and for
interconnection networks and switching fabrics. In these
architectures, deflection decisions are easy to make since
the network topology has a simple regular structure [11–
14], or since a sense of direction exists [15]. Our scheme
works for general topologies and thus cannot rely on the
simple decision rules.

Most high speed networks are constructed as an intercon-
nection of specially constructed packet switches. Unlike
traditional switches these switches must support extremely
fast streams of small cells meaning that switching speed is
very high and implying that the use of a software operated
general-purpose processor is out of the question. A typical
switch is constructed as an interconnection [16] ofport
processors(PPs) each supporting a single link [4,17]. The
routing of packets that arrive at the input links is done
directly by these PPs. Only packets that require more
complex processing (e.g. control packets) are forwarded to
a more sophisticated control unit. Naturally, the suggested
algorithms are designed to be performed by the PPs.

The rest of the paper is organized as follows. In Section 2
we describe a fast bypass algorithm for networks that
employ source routing. Next we describe in Section 3 a
fast bypass algorithm for ATM networks. Then we demon-
strate the algorithm performance by analysis and simulation.
In Section 4, we analyze the algorithm performance in terms
of reservation success probability by assuming indepen-
dence in the success probability. The independence is justi-
fied by the fact that a burst is mainly competing against
other applications that have constant bit rate. To show the
interaction among bursts we report simulation results in
Section 5. Finally, we conclude with remarks about how
the algorithm can be applied to other network models.

2. A fast bypass algorithm for networks with source
routing

The PPs in a switch share the routing tables that are used
for the presented algorithm. Thus, it is convenient to treat
the switch PPs (the hardware) and the controlling algorithms
as a single abstract entity, thenode. The algorithm we
present in this section works by exchanging load informa-
tion in a close locality of every node. To that end, we make
use of the following definitions. The 2-neighborhoodof a
node is the set of nodes that are at most two hops away. A
local segmentis a single link or a concatenation of two links
leading from a node to another node in its 2-neighborhood.
A local segment is typically a part of a longer path between
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source and destination nodes. Note that every local segment
uniquely identifies a node, but several local segments may
identify the same node. Thelocal segment groupis the
collection of all the local segments that identify the same
node. We use (l1,l2) to signify a two-hop local segment
comprised of linksl1 and l2 (in that order), and (l1) for a
one-hop local segment. The bypass algorithm will, in
congested situations, replace one local segment with
another.

The bypass algorithm (BA), is based on frequent load
measurements (typically the load indicator is the sum of
the total reserved bandwidth and the average number of
buffers occupied by non-reserved traffic) of the outgoing
links at every node, and on sharing this information with
the immediate neighbors. This way every node has updated
knowledge of the load on all the local segments emanating
from it. This information is maintained in a localRouting-
Tablethat has an entry for each local segment. Each entry in
the RoutingTablecontains a field that indicates the avail-
ability of the local segment, and the preferred alternate local
segment should the original one be blocked (see below).
RoutingTablesize is quadratic in the output degree of the
nodes, and in most practical networks is not expected to
have more than a few tens of entries.

Fig. 1(A) shows an example of a five node network. The
routing table of node S has 10 entries for the following local
segments: (4) and (3,5) to node B; (4,5), (3), and (1,2) to
node D; (1), (3,2), and (6,7) to node I; and (6) and (1,7) to
node C. Suppose a reservation packet for a burst arrives at
node S with the route (1,2) written in its header and it cannot
reserve sufficient bandwidth on link 1. Three types of
bypasses are possible for this reservation packet (see Fig.
1(B)):

(a) the direct link to D (a shortcut) that avoids both links 1
and 2,
(b) a two-link bypass via node B (identical length) that
again avoids links 1 and 2, or
(c) a two-link bypass of link 1 to node I (a long bypass)
that is followed by link 2.

These types are the only ones considered in this algo-
rithm. To gain more flexibility and deflection opportunities,
RoutingTableis checked to ensure the ability to reserve
bandwidth along the two hops of the local segment, even
when the first hop has sufficient bandwidth. If the local
segment is blockedRoutingTableis first searched for a
bypass that does not increase the route length (types a and
b) and then, if the first link in the local segment is blocked,
for one that bypasses only the first link (bypass type c). If the
search succeeds the new local segment replaces the original
one in the reservation packet header and the packet is
forwarded along the deflected route; otherwise, a negative
acknowledge is sent to the source.

To maintainRoutingTable, we keep for every entry the
load of the preferred route. An entry inRoutingTableis
updated when one of the following occurs:

• The load on the preferred route is changed.
• A bypass route with more residual bandwidth (lower

load) than the preferred route is found.

Link failures are treated as a maximal decrease in the
available bandwidth as will be explained in Section 2.1.

To expedite the processing of reservation packets,
RoutingTableis sorted according to the local segments.
This, however, poses an update problem as there may be
several local segments that identify the same node and it is
natural to maintain their bypass information simultaneously.
To allow simultaneous updates of all the entries inRouting-
Tablethat refer to the same node, a second table,HostTable,
is used.HostTableis sorted by node-IDs2 with a single entry
for every node in the 2-neighborhood. Each entry contains
the node-ID and a list of all the local segments that identify
this node, i.e. its local segment group.HostTablecan be
initialized either when the network is started or can be
built by a topology update algorithm [18].
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2.1. A detailed description

In this section, we describe in details how the algorithm
data tables are maintained. Then we discuss how the algo-
rithm works for long bursts that use fast reservation, i.e.
when prior to the burst transmission a reservation packet
is sent to reserve bandwidth for the burst. The applicability
for short bursts is discussed in the end of the section.

Two tables are maintained and used by the algorithm:
RoutingTablehas an entry for each local segment that
comprises four fields:

• The id of the node at the end of the local segment.
• The load of the local segment.
• The preferred alternative local segment.
• The load of the preferred alternative local segment.

The maintenance of this table is described below.
HostTablehas an entry for each node in the 2-neighborhood
that lists all the local segments in thelocal segment groupof
the node.

Every node periodically measures the loads on the links
that emanates from it. The way these measurements are
made is out of the scope of this paper. For our purpose, it
is enough to assume that the resulting load indicator is based
on both reserved and non-reserved traffic. The load indica-
tors are sent to the immediate neighbors and are locally used
to updateRoutingTableas follows. For every emanating
link, the load entry of the one-hop local segment is updated.
If the direct link is the preferred route then the preferred load
field in the entries of its local segment group are updated. If
its load is lighter than the one of the preferred route of its
local segment group then the local segment is written in the
preferred route field and its load is written in the preferred
route load field in the entries of all the members of the local
segment group. The members of the group are easily located
with HostTable.

The measurements are sent to the neighbors as a list of
number pairs, a link id and its load. For every link in the list,
the load of the corresponding local segment is updated. If
this local segment is the preferred local segment the load
field of the preferred route in the entries of all the members
in the local segment group is updated. If the local segment
load is lighter than the one of the preferred local segment
then the first becomes the preferred local segment and the
entries of the local segment group are changed to reflect this,
i.e. the local segment is written in the preferred local
segment field and its load is written in the preferred local
segment load field.

A failure in a link that is not directly connected to a node
is treated as if the available bandwidth of this link dropped
to zero, and can be reported by sending a measurement list.
A failure in a link adjacent to a node requires a pass through
the entireRoutingTable(typically, few tens of entries) to
search for all the entries that have this link as part of their
preferred local segment, and then to update their load to the
maximum, so that every new measurement of a different

local segment will update it. This process is not efficient,
but is used only in the rare event of link failure and only in
the two nodes at the ends of the failed link.

For long bursts a reservation packet is sent prior to the
burst transmission [2]. This packet carries a list of the port
IDs it should traverse. In addition, while the reservation
packet traverses the network, a backward route is built
and stored in the packet. When a reservation packet arrives
to the switch, the local segment entry inRoutingTableis
checked to see if sufficient bandwidth is available. The
following cases are possible:

• There is sufficient capacity for the burst along the origi-
nal local segment—Reservation is made in the link
emanating from the switch, and the reservation packet
is forwarded to the next hop.

• There is insufficient capacity for the burst along the origi-
nal local segment but a type a or type b bypass with
sufficient capacity exists—The preferred local segment
from RoutingTableis inserted to the reservation packet
header instead of the original local segment, reservation
is made in the first link in the preferred local segment,
and the reservation packet is forwarded to the next hop.

• There is insufficient capacity for the burst along the origi-
nal local segment and only a type c bypass with sufficient
capacity exists—if the first link in the local segment has
sufficient capacity the reservation is treated as if suffi-
cient capacity exists for the entire route, if the first does
not have sufficient capacity the preferred local segment
for this link is used as described for the type a and type b
bypasses.

• There is insufficient capacity for the burst along the origi-
nal local segment and no bypass with sufficient capacity
exists—a negative acknowledgment is sent to the source
using the backward route that is stored in the reservation
packet, the negative acknowledgment carries the route
the reservation packet traversed before it was blocked
to allow the release of the bandwidth from the part
where it was allocated.

When the reservation packet arrives at the destination
node, a positive acknowledgment is sent to the source
using the backward route that is stored in the reservation
packet. The positive acknowledgment carries the route the
reservation packet traversed which is put by the source in
the header of all the packets in the burst. This ensures that all
the burst packets travel along the route where reservation
was made.

2.1.1. Short bursts
As explained in the introduction, short bursts are sent

without reservation, or with on-the-fly reservation packet
that precede them. The direct use of on-the-fly reservation
scheme with our deflection mechanism is not possible for
source routing networks since the switches do not hold
tables about the connections where the reservation and the
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routing information can be stored. Thus we suggest two
alternatives: (1) to deflect each packet of a short burst in a
way that will try to route all the packets together, and (2) to
add tables to the source routing switches.

Next, we describe how to deflect each of the data packets
of short bursts according toRoutingTable. When a packet
arrives at a switch it is routed according to the preferred
route inRoutingTableregardless of the availability of buffer
space (the ‘‘bandwidth’’ of the non-reserved traffic) in the
original route. The mandatory use ofRoutingTableensures
that, in case of marginal buffer occupancy, i.e. when the
buffer pool is full and the input and output rates to the buffer
are almost equal, packets of a burst will not be spread
between the original route and the preferred route. The
changes of the preferred route entries are not frequent,
thus, the chances that a short burst will be sent over different
routes are small. The probability of packets arriving out of
order can be kept smaller by using hysteresis function to
change between routes inRoutingTable. Note, that even in
case where the packets arrive out of order, many transport
protocols, e.g. TCP, are capable of handling them correctly.
The routing along the preferred route inRoutingTableis
also useful in directing the non-reserved traffic to the less
condensed links of the network, leaving more free band-
width in the highly used links, and thus lowering the reject
probability and the delay along these links.

Although the probability of packets arriving out of order
is small, we suggest here another algorithm adaptation for
the case where it is not acceptable. For this end we need a
BypassTableto be maintained in the switches; the table
contains an entry for each bursty connection that uses
short bursts with on-the-fly reservation. When such a
connection is established an entry is opened inBypassTable,
this entry will hold the selected local segment for the burst.
When an on-the-fly reservation packet arrives at the switch,
reservation is attempted for the current preferred local
segment taken fromRoutingTable. In case of success, the
preferred local segment is written inBypassTable; this local
segment is written to the header of each data packet of this
burst. The burst is succeeded by a release packet that
releases the reserved bandwidth. If reservation cannot be
made, a negative acknowledgment is sent back to the
source, and theBypassTableis set to a null value that
cause the discarding of the burst packets.

2.2. Avoiding loops

Deflection routing in general andBA in particular may
cause a packet to cycle in loops. We next demonstrate how
BA can cause a packet to travel in a two link loop. Consider
the network of Fig. 2 and suppose a packet reaches node A
and is trying to reach node C through link 3. At the time the
packet arrives at node A, the buffers of link 3 are all full,
there are free buffers in front of link 1, andRoutingTable
indicates that the preferred bypass for the local segment (3)
is the local segment (1,2). The packet is, thus, sent via the
bypass (1,2). Suppose the packet is somewhat delayed in the
queue and when it reaches node B link 2 has no free
buffers but according toRoutingTable the preferred
bypass to segment (2) is (1,3) since links 1 and 3 are not
totally full now. As a result the packet is deflected back to
node A.

On the one hand, going in circles or busy waiting, can be
considered as a good solution since instead of discarding the
packet we use the network as storage. On the other hand, if
the buffers of the switches are all almost full we might create
a livelock where messages travel around and never reach
their destinations, or do so after consuming too much
network resources. To disable routing loops, a bit in the
packet header can be set the first time the packet is deflected
and if a second deflection is needed the packet is discarded.
If more routing flexibility is needed few bits can be allo-
cated in the packet header to bound the number of deflec-
tions above one. Two or more allowed deflection may
theoretically cause a packet to go in cycles, but in practice,
the probability for this is small if the number of bypasses is
kept small. The analysis in Section 4 shows that allowing
only one deflection significantly decrease the rejection prob-
ability, while the residual contribution of additional deflec-
tions to the success probability of the packet decrease for
every additional allowed bypass.
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Fig. 2. An example of a bypass loop.

Fig. 3. A VP with bypass routes and its tree representation: (A) a VP with
bypass routes; (B) a tree representation of A.



3. A fast bypass algorithm for ATM networks

In this section we first adapt the bypass algorithm
presented in the previous section to long bursts in ATM
networks, the adaptation to short bursts is discussed in the
end of this section. In networks that employ source routing,
once we identify a blocked link and know about a local
segment that bypasses it, we can deflect the message by
changing the routing information in its header. In ATM
networks the routing information is not carried in the cells
but is scattered in the switches along the path it traverses.
Changing the routing information in several switches to
create a deflection route is therefore neither simple nor
fast [6]. In particular, buffering requirements for storing
the cells while the new route is created make on-the-fly
deflection look impractical.

We suggest, instead, to prepare for congestion when a VP
is constructed. Upon a VP construction, loaded areas are
identified and bypass routes are created to be used when
the primary route is blocked. Each VPi is assigned two
VPIs: VPIi for the primary route and VPI0 i for the bypass
route. In Fig. 3(A) the primary VP is drawn with solid lines
and the bypass routes with dotted lines. As already stated,
bursty VCs are brought up with no bandwidth reservation,
and use a fast reservation algorithm whenever there is a
burst to transmit [2]. In ATM networks, fast reservation
algorithm use monocell messages that traverse the VC
route, reserve bandwidth in one direction, and acknowl-
edge/reject a reservation request in the reverse direction.
Since ATM VCs are unidirectional, the reverse direction
does not necessarily use the same physical links.

We now show how reservation cells are deflected to
create bypass VCs, and how the switches identify and
route cells that belong to bypass VCs. We term the switches
where a bypass starts (switches 2 and 4 in Fig. 3(A))junc-
tion switches. A reservation cell starts its way on the VP
with the primary VPI. Non-junction switches do not parti-
cipate in the deflection process. When a reservation cell
arrives at a junction switch that is unable to fulfill the
burst request for bandwidth in the primary route it tries to
reserve bandwidth in the first link of the bypass. Upon a
success, the reservation cell is forwarded to the bypass
link and its VPI is set to the secondary VPI. In addition,
the junction switch registers the VC in a separate table,
BypassTable. The values registered inBypassTableare the
secondary VPI (cells of this burst will use it as their VPI),
the VCI, and the rest of ATM switching data, i.e. the local
VPI in the next hop and the output port-ID. A bandwidth
release cell that follows the end of the burst cause the dele-
tion of the corresponding entry fromBypassTable.

Usually, the arrival of a reservation cell to the switch at
the end of the VP triggers the transmission of anAck to the
VC-switch at the beginning of the VP. Similarly, the
successful arrival of a reservation cell with the secondary
VPI to the end of the VP triggers the transmission of a
similar message,Ack0, signaling the local source that the

cells of this burst should be switched through the secondary
VPI (or, if the source is the origin of the cells, it should
initiate the cells with the secondary VPI). When a data
cell arrives with the secondary VPI at a junction switch,
BypassTableis searched and if a match is found the cell is
routed according to the data in the table. Otherwise, if no
match is found inBypassTablethe cell is routed according
to the ATM switching table.

The suggested bypass algorithm offers 2m potential routes
(wherem is the number of junction switches) for the price of
only two VP identifiers and less than four switching table
entries in every switch. The switching information to the
next switch in the primary route is saved in two entries: one
for the primary VPI and one for the secondary VPI. The two
entries have identical switching information. If a VC
reserves bandwidth for a burst in a bypass route, an entry
in BypassTablekeeps the switching information of the
deflected route. This entry is created only in the junction
switches where the VC is deflected, and is deleted when the
bandwidth is freed. In the switches of the bypass routes one
entry for the secondary VPI is kept in the regular switching
tables. There is no need for an entry for the primary VPI.

In practice, a network manager might wish to bound the
number of bypasses to keep the stretch factor, i.e. the ratio
between the original VP length (in hops) and the length of
the VC with the bypasses, low. A small counter in the
reservation cell can be used to implement any practical
bound, and in particular one bit can be used to allow only
one bypass.

Examining the VP with the bypasses of Fig. 3(A) one can
easily identify a tree rooted at the destination as depicted in
Fig. 3(B). This suggests an alternative way to look at the
bypass scheme: instead of building a shoelace VP, we build
a VP with a tree structure, such that every leaf except the VP
entry point must also be an internal node of another branch
of the tree. An interesting extension to this algorithm will
enable the bypassing of a bypassed route, e.g. in Fig. 3 if the
link between switches 9 and 5 is loaded one may wish to use
a direct link between switches 9 and 6. Other uses of tree
shaped VPs can be found in [19].

3.1. Short bursts

In ATM networks, unlike with networks that employ
source routing, we can use on-the-fly reservation for short
bursts to ensure that all the cells of a short burst use the same
route. To this aim, we prepare for each VC in the set-up
procedure an entry inBypassTablethat points to the primary
VP link. When a short burst is sent it is preceded by a
reservation cell and followed by a release cell. On the
arrival of the reservation cell the PP setBypassTable
according to the available bandwidth in the primary and
secondary routes. The data cells that are sent always with
the secondary VPI are routed according to the information
in BypassTable.
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4. Analysis

In this section we compute the improvement in the reser-
vation success probability when our algorithm is used in
several networks with regular structure. Throughout the
analysis we assume that the probability to succeed in reser-
ving bandwidth on a link isp for all the links, and this
probability is independent for every link. This independence
assumption is a standard assumption used in the literature
(see Widjaja [20] and the references therein). The indepen-
dence is justified by the fact that a burst is mainly competing
against other applications that have constant bit rate, and not
against other bursts. Even in the case when bursts are
competing against each others, we showed by analysis and
simulations [21] that after smoothening at the network
entrance, the success probability for bursts is almost
constant. We assume that the original routes (VPs in the
case of ATM) are all shortest path routes.

The way the algorithm is implemented impacts its perfor-
mance. For source routing, we suggested in Section 2 that
the availability of the local segment will be checked at every
switch. If no local segment with sufficient bandwidth is
found the burst (or reservation cell) can be discarded. For
the case where only the second hop is blocked and espe-
cially in the case of fast reservation algorithm when a reser-
vation cell is sent, we suggest to forward the reservation
request in the hope that a bypass will be found. The
suggested implementation increase the reservation success
probability at the price of increased switch complexity and
cost. Another variant is to checkRoutingTableonly if the
burst cannot be forwarded, which implies no extra handling
for the bursts if the route is not loaded. The performance of
this implementation is the worst since it does not allow a
bypass from a bypass route. We choose this variant for the
analysis of this section.

For ATM, we suggested in Section 3 to check in every
junction switch the local segment, and to deflect the burst if
the local segment is blocked. In the analysis of this section
we assume, as for the source routing model, the less efficient
implementation where only if the first hop in the local
segment is blocked a bypass is searched.

4.1. Hypercubes

In hypercubes every two-hop route has exactly one two-
hop bypass, everyh-hop route can be bypassed inh 2 1

points, and none of the bypass routes share links. It is clear
that the success probability of a reservation along anh hop
VP isph. If we allow only one bypass for a burst route, allow
every link to be bypassed, and build the VP-tree to contain
h 2 1 (h $ 1) bypass routes (in the ATM model) the success
probability of the reservation grows to

ph�1 1 �h 2 1��1 2 p�� �1�
in both network models. If we do not limit the number of
bypass the success probability along anh-hop route,S(h), is
given by the recurrence
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The solution of this recurrence (see [22]) gives the expres-
sion for S(h), h $ 2

S�h� � 1
2

1 1
1���������

5 2 4p
p

� �
p�1 1

���������
5 2 4p
p �
2

" #h

1
1
2

1 2
1���������

5 2 4p
p

� �
p�1 2

���������
5 2 4p
p �
2

" #h

: �5�

4.2. Triangulated graphs

A planar graph where every region is bounded by a circuit
of three edges is said to betriangulated[23]. Consider, first,
a lattice of triangles (Fig. 4). A shortest path route in a
triangular lattice has no 608 turns. The probability that a
two-hop segment is congested is 12 p2.

We look, first, as networks that employ source routing. If
there are no turns in a path, a congested link can be bypassed
by one of two possible two-link c bypasses with probability
1 2 (1 2 p2)2. If there is a 1208 turn in the path the bypass
probability is higher since an additional type b bypass can
be found. When only one bypass is allowed the success
probability of reservation along anh hop route is at least

ph�1 1 h�1 2 p��1 2 �1 2 p2�2�=p�: �6�
We assume that in an ATM network only one bypass

route is prepared per link. The success probability under
this assumption when only one bypass is allowed is at least

ph�1 1 h�1 2 p�p�: �7�
If K bypasses are allowed the success probability is given by
summing all the possible combinations to haveK or less
reservation failures along the path:

ph
XK
k�0

h

k

 !
�1 2 p�kpk

: �8�
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Fig. 4. A lattice of triangles.



For K � h we get

ph�1 1 p 2 p2�h: �9�
For general triangulated networks, leth be the number of

links in a path of lengthH that are part of a triangle. Note
that since we consider only shortest path VPs, no two links
in a VP belong to the same triangle. Based on our previous
results, we can write the following lower bounds for the
success probability when only one bypass is allowed (in
the worst case there is only one type c bypass for each of
the h links in both network models)

pH�1 1 h�1 2 p�p�: �10�
If K bypasses are allowed the success probability is, as
above:

pH
XK
k�0

h

k

 !
�1 2 p�kpk

 !
: �11�

For K � h we get

pH�1 1 p 2 p2�h: �12�

4.3. Grids and chordal rings

A chordal ring (see Fig. 5(A)) is a ring structured network
with an even number of nodes in which each node has an
additional link, called a chord, to some other node in the
network [24]. We shall term the links that connect a node to
its ring neighborsneighbor links. A point in a route where a
packet is switched from a neighbor link to a chord or vice
versa is called aturn. In a grid network (see Fig. 5(B)) a turn
in a route is a point where a packet is switched from a

horizontal link to a vertical link or vice versa. In the two
topologies, bypasses are possible only around the two links
that are connected to a turn. Let the number of turns bem
and let the number of links in a path beH.

When only one bypass is allowed, the success probability
is

pH�1 1 m�1 2 p�� �13�
for both network models. IfK bypasses are allowed the
success probability is

pH
XK
k�0

m

k

 !
�1 2 p�k �14�

if the turns are at least three hops apart. ForK � m we get

pH�2 2 p�m: �15�

5. Interaction among bursty connections

This section complements the previous section by exam-
ining via simulation the mutual interaction among bursty
connections. To isolate this effect, simulations test the
mutual interaction among two identical bursty connections
that use the fast reservation protocol: 0! 2! 4 and 1!
2 ! 3 (see Fig. 6). Two simulations were run: one with
almost zero delay on the lines and one were all the line
delays are set to one unit. The rest of the simulation para-
meters are:

• The burst size is exponentially distributed with mean 50.
• Line capacity is 5 bursts.

Fig. 7 compares the success probabilities for the two
simulations. Every point in the graphs represents the aver-
age of five simulations, most simulations count at least
100 000 bursts (the exceptions are the very lightly loaded
simulations where the success probability is very close to 1).
The 10% confidence interval for the points in the two top
graphs of Fig. 7 were below 1/2% for loads smaller than 5,
and between 1/2 and 3/4% for loads higher than 5. The
improvement in the success probabilities is 5–10% for
loads between 0.5 and 2; for lower loads the success prob-
ability is almost 1 even without the bypass algorithms, leav-
ing a small room for improvements; loads higher than 2 are
not often seen and do not last for long. For very high loads,
there is a decrease of up to 2% in the success probability
when the delay is not negligible. The reason for this
decrease is that as the network becomes congested the aver-
age reserved route becomes longer (see Fig. 9) and thus the
link holding time for a connection, which equals the sum of
the connection holding time and twice the end-to-end propa-
gation delay, becomes longer.

It is interesting to compare the measured improvement of
the bypass algorithm that is depicted in Fig. 7 to an analy-
tical queuing model. In the Fig. 8, we depict the increase in
the success probability between two queuing systems that
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Fig. 5. (A) A chordal ring with a three node chord and (B) a 3× 3 grid.

Fig. 6. The graph used in the simulations.



closely model the simulations described above. System A
models the simulation without the bypass algorithm. Since
there is no interaction between the two connections, and
each link can support five bursts simultaneously, system A
is an M/M/N/N queue with five servers, where the service
time is distributed as the burst length in the simulation (i.e.
exponentially with mean 50) and the arrival process is the
same as the burst arrival process for each connection in the
simulation (i.e. Poisson with rate in the range [0.01, 1]).
System B models the simulation when the bypass algorithm
is used. Here the links that are represented by the servers in
the analytical model are shared by the two connections.
Thus, system B is an M/M/N/N queue with 10 servers,
where the service time is distributed as the burst length in
the simulation, and the arrival process is the sum of the burst
arrival processes for the two connections in the simulation

(i.e. Poisson with rate in the range [0.02, 2]). Fig. 8 depicts
the increase in the success probability of customer to receive
service in system B compared to this probability in system
A, i.e.

1 2 Prej;A�l�
1 2 Prej;B�2l� ; �16�

where

Prej;A�l� � �l=m�5=5!P5
i�0
�l=m�i =i!

; �17�

Prej;B�l� � �l=m�
10
=10!P10

i�0
�l=m�i =i!

: �18�

6. Concluding remarks

The algorithms presented here can be used in both
models, ATM and source routing, for long bursts that use
fast reservation algorithms and for short bursts. For bursts
that use fast reservations, our algorithms adhere to the reser-
vation principle of the network whether it is ATM based or
source routing. For short bursts, we suggest to use on-the-fly
reservation in the ATM model and either on-the-fly or no
reservation in source routing networks.

Although only two network models are discussed in this
paper, the presented algorithm can be easily adapted for
other network model, e.g. the up*/down* routing [25] of
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Fig. 7. The effect of the bypass algorithm on the success probability of bursts.

Fig. 8. The effect of the bypass algorithm on the success probability of
bursts—analytical results.



Autonet [25], AN2 [26], and Myrinet [27]. In these
networks, the links form a rooted tree on which wormhole
routing is performed. The up*/down* routing constrains a
message from using a link in the ‘‘up’’ direction after it
traverse a link in the ‘‘down’’ direction and thus exhibits
deadlock freeness. Two approaches can be taken to adapt
the bypass algorithm to this routing discipline:

• Limit the bypass possibilities in the case of a (down,
down) local segment to allow only (down,down) or
(down) bypasses. This way, if a climbing worm (one
that traversed the last link in the ‘‘up’’ direction) arrives
allowed bypass possibilities (e.g. (up,down)) are not
considered.

• Maintain two preferred routes inRoutingTable, one for
climbing worms and (possibly different) one for descend-
ing worms. This option is not recommended since it
complicate the algorithm and hardware while it improves
success probability only for (down,down) local
segments, (up,up) and (up,down) type local segment
can be followed only by climbing worms.

One of the important merits of our algorithm is the ability
to implement it with simple hardware without adversely
effecting performance. In [28] we describe a possible imple-
mentation of our algorithm for a source routing based
network. This implementation does not add delay to packets
that are not deflected, and adds only a small delay (a few
byte transmission time) to the ones that are deflected. This
paper is only the first step in evaluating the practicality of
our algorithms. An intense simulation study is required as a
future work.
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