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Abstract— In this paper we look at TCP data which
was passively collected from an edge ISP, and analyze it
to obtain some new results and deeper understanding of
TCP loss process. The focus of our study is to identify the
‘root cause’ links, i.e., the links that are responsible for the
majority of the losses or reorders found on the end-to-end
TCP connection. We suggest a new root cause criterion
and a cost-effective algorithm to identify the root cause
links. The algorithm incorporates a new out-of-sequence
packet classification technique. We test our algorithm on
the collected and simulated data and analytically justify its
correctness. The simulation results show that the algorithm
has a 95% detection rate with 10% false detection rate.

We also analyze TCP temporal loss process, and found
that the burst loss size is geometrically distributed. We an-
alyze the TCP time-out loss indication under the Bernoulli
loss model, which is the simplest model that can cause a
geometric distribution, and show that the behavior of the
TCP loss process is not different than when tail drop is
assumed.

I. I NTRODUCTION

TCP is the transport protocol which is carrying most
of the current Internet data. Thus understanding its
characteristics can help ISPs, equipment manufacturer,
and protocol designers. In this paper we look at TCP
data which was passively collected from an edge ISP,
and analyze it to obtain some new understanding of TCP.
The data is comprised of two samples that include about
49 Million TCP sessions1 and over 260 Million packet
headers. The collection from an edge ISP is one of the
few done from this vantage point. We concentrate on the
spatial identification of low performing links and on the
temporal spreading of the loss process. We also revisit
some measurements that where done at backbone ISPs.
We believe our data is typical to many stub ASes that
serve private and business clients connected by either
dial-up or ADSL modems.

Our main focus is to identify the Internet links that are
responsible for poor end-to-end TCP performance, i.e.,

1In this study we use the term TCP session to refer to a one-way
direction of a TCP connection

the network links with significant losses and reorders.
In contrast to previous studies [1], [2], [3], [4] that
attempt to infer the link loss characteristics using active
measurements techniques (e.g., by sending back-to-back
unicast packets to different destinations or by using
multicast packet probes) we make inferences based on
TCP traffic passively collected at a single point within
the network. Passive measurements enable us to leverage
large amounts of traffic (millions of TCP sessions)
without the overhead of active probes which may bias
the results.

While there were a few passive measurements at-
tempts in the past, they have different goals and require-
ments, and thus cannot be directly compared with our
study. For instance, [5] and [6] detect shared congestion
links using end-to-end passive measurements, where the
former requires the senders to cooperate by timestamping
the packets and the latter requires the measurement point
to observe a reasonable amount of the traffic processed
by the bottleneck links.

The closest study to ours is the one done by Padman-
abhanet al. [7] which attempts to estimate the loss rate
on network links. For this end, high complexity analysis
such as Bayesian inference and linear programming were
used. In our case we only want to identify theroot cause
links, which are the links that have the highest loss
or reorder rates compared to their neighborhood. This
enables us to deploy a much simpler algorithm which
we developed. This algorithm uses topology information
which is acquired by performing traceroute to the IP
addresses in the sampled data. We evaluate the perfor-
mance of the proposed algorithms using simulations and
real-world Internet traffic. We found that our algorithm
has a very high detection rate and a law false detection
rate.

One of the challenges in our work was to identify the
loss and reorder events. We developed an efficient packet
classification technique which is used to infer the loss
and reorder rates of individual TCP flows. Our algorithm
differs from the recent algorithm by Jaiswalet al. [8]
since it does not require the use of both directions of



a TCP connection. Using a one way TCP analysis is
useful in the current Internet that shows high percentage
of TCP asymmetricity, e.g., [8] indicates that 10% of
the flows in a backbone ISP are asymmetric while our
traces indicate that 5% of the flows in an edge ISP are
asymmetric. In addition, our algorithm is much simpler
since it does not attempt to infer the TCP state, instead,
we leverage the IP identifer field (similar to [9], which
uses this field to actively measure packet reordering).

Our temporal analysis looked, at the first time in a
passive TCP study, at the distribution of the loss burst
size. For loss bursts studied based on active measure-
ments see [10], [11]. We have found that it roughly
matches the geometric distribution; this incites us to
use the Bernoulli loss model which is the simplest
model to explain such a distribution. To measure the
impact of the loss model on TCP throughput analysis, we
analytically derive a formula for the probability that the
loss indication is due to a time-out event. Interestingly,
we have found that Bernoulli and tail drop loss models
have the same structure, which implies that the well-
known TCP throughput formulaes in [12], [13], [14],
[15] originally developed under the tail-drop assumption
characterize TCP’s behavior under both loss models.

The remainder of the paper is constructed as follows.
We begin in Section II by describing the experimental
setup used to gather the TCP traffic. In Section III
we discuss the methodology, the challenges, and the
algorithms used to identify the low performance links. In
Section III-A we present the root cause identification al-
gorithm and in Section III-B we evaluate its performance
via simulations. In Section III-C we present the rules
used to infer and classify the out-of-sequence behavior
in the observed sessions. We apply our methods to real-
world Internet samples and present the results in Section
III-D. The second part of the study that deals with
the process of consecutive packet losses is described in
Section IV. In Section IV-A we analyze the effect of the
Bernoulli loss model assumption on the modelling and
analysis of TCP throughput. Section V concludes this
paper.

II. EXPERIMENTAL SETUP

The network that hosted our experiment belongs to a
large Internet Service Providers in Israel, thus we could
monitor large amounts of traffic with diverse characteris-
tics: both private and business customers connected via
dial-up and ADSL modems. We were connected to a
mirror port of a Cisco switch that combines multiple
trunks of client switches to an outgoing router connected

July Sample Dec Sample
Duration 2.5 days 17 hours
# TCP packets 61,316,032 224,982,834
# TCP sessions 5,877,269 37,531,953

TABLE I

SUMMARY OF THE TRACES

to the internet. The results we report here are from
two samples taken at the same ISP but from different
locations. For this study, we sampled only the IP and
TCP headers of each packet due to privacy concerns, and
to save space. The first sample was taken on July 2002,
from business ADSL clients, over 2.5 days. Most of the
traffic, around 97%, was TCP, spread over 61 million
sessions and 6 million data packets. The second sample
was taken on December 2002 (see Table I). It contains
17 hours of sampling and it includes both business and
private clients. This sample has 225 million data packets.
Due to policy routing and load balancing at the ISP we
were not always able to capture both directions a TCP
session. For about 5% of the TCP sessions, we only saw
one direction of the connection.

III. SPATIAL LOSSANALYSIS

In this section we discuss the methodology and al-
gorithms used to identify the root cause links from
passively gathered TCP traces. We employ a comprehen-
sive approach that includes both an algorithmic solution
which correlates topological information with the loss
and reorder rates of TCP flows and a packet classification
algorithm that infers the required flow characteristics.

Our first step is to derive the network topology formed
by the routing paths of the end-to-end TCP sessions. To
determine this topology we collected all the IP addresses
of the end-hosts found in the TCP traces and performed
traceroute from the sampling point to a subset of
the top10, 000 end-hosts generated the largest number
of packets. This gave us the network region where most
of our traffic flows, and ensures statistical robustness.
The set of routing paths from the sampling node to the
end-hosts forms a directed acyclic graph (DAG) which
was fairly close to a tree.

To determine the loss and reorder rates of the paths
comprising the DAG we develop a packet classification
technique. The classification technique, detailed in Sec-
tion III-C, is based on analyzing TCP sequence number
and IP identifier patterns and identifies the various causes
of TCP sequencing problems: packet retransmissions by
TCP senders, and network-generated packet reordering



or duplication. The reorder rate of a path is calculated by
measuring the ratio of the number of reordered packets
to the total amount of packets on this path. However,
estimating loss rates is more challenging since there
is not necessarily a one-to-one correspondence between
packet retransmissions and packet losses. The discrep-
ancy between these measures is attributed primarily to
spurious time-outs [16], [17] which occur when the
round-trip time (RTT) suddenly increases and may cause
unnecessary retransmissions.

Since we can accurately measure the size of a loss
burst that occurs before the measurement point using
sequence number gaps (see Section IV), we only need
to consider spurious time-out inaccuracies for retrans-
missions arising from losses that occur after the measure-
ment point. To reduce potential inaccuracies we follow
the assumption of Benko and Veres [18] that a large
set of consecutively retransmitted packets is most likely
caused by a spurious time-out event, and exclude from
the loss ratio computation the retransmission bursts due
to losses after the measurement point that their size
exceeds some threshold, e.g., three. The low occurrence
of large loss bursts (e.g., in Figure 9 such bursts account
for 1.5% of all bursts), implies that this process would
most likely eliminate the majority of spurious time-out
inaccuracies.

We assume that the routing paths and their loss and
reorder rates remain stable during the analysis. These
assumptions are influenced by the findings of previous
passive and active measurement studies [19], [7]. For
example, the findings of Padmanabhanet al. [7] which
are based on passive measurements of traffic flows
between a wide-range of clients and a popular Internet
server indicate that loss rates are likely to remain stable
for periods of minutes.

While estimating a path’s loss rate is a straightforward
task, deriving the loss rate of an internal network link is
more challenging due to the lack of a unique mapping
from path loss rates to the loss rate of an individual
link [20]. Therefore, we seek to find a solution to
a simplified problem: detecting network links that are
likely to have high loss or reorder rates compared to
their neighborhood. We term such links asroot cause
links. In the following section we define this notion
formally and present a cost-effective heuristic for solving
this problem. We then evaluate its performance via sim-
ulations. For simplicity of presentation we describe this
algorithm in the context of the loss performance measure.
Nonetheless, the proposed heuristic is applicable to other
multiplicative performance measures, such as packet

reordering2 or packet duplication.
Using our algorithm we were able to analyze the

Internet traffic traces and derive root cause links for
losses and reorders. The obtained results are described
in Section III-D. We avoided packet duplication analysis
due to the rareness of such events which may bias the
results significantly. For example, in our traces only
1.3% of all TCP’s sequencing problems are due to in-
network packet duplication, and similar proportion was
also obtained in [8] using samples taken from a backbone
link of a backbone ISP.

A. Root Cause Identification Heuristic

Given a set of paths and an associated set of loss rates,
ri, our goal is to detect the lossy links, also termed root
cause links. For the loss process we assume a Bernoulli
model where each link drops a packet independently of
others with some fixed probability. Ideally, we would
like to find the links that their loss probability exceed
a desired threshold. However, to reduce the complexity
of the problem we propose an alternative root cause
criterion. A link (u, v) is considered to be a root cause
if the difference between its loss probability and the
maximum loss probability of the links entering or leaving
eitherv or u is larger than a pre-defined thresholdδ.

For the identification process we use the notion of
average loss rates. The average loss rate of linkl, denoted
by p̂l, is defined as a weighted loss rate mean taken
over the paths that includel such thatp̂l =

∑
j:l∈tj

wjrj

where tj is the set of links on pathj and wj
3 is

the weight (number of packets) of pathj. Let us now
analyze the properties of the calculated link loss rates.
The underlying assumption is that the input loss rates
capture the loss probabilities of their paths, and thus
we haveri = 1 − ∏

l∈ti
(1 − pl), wherepl is the loss

probability of link l. Expanding the weighted mean of
p̂l we getp̂l = 1−∑

j:l∈tj
wj

∏
k∈tj

(1− pk). The latter
equation can be alternatively expressed as

p̂l = pl + (1− pl)el (1)

where el = 1 − ∑
j:l∈tj

wj
∏

k∈tj ,k 6=l(1 − pk) is the
contribution of the links on the paths that sharel,
excludingl itself, to the average loss rate.

This implies that the average loss rate of a link can be
viewed as a biased estimator of its loss probability. To

2Packet reordering can be viewed as a multiplicative measure since
there is a high probability that a packet is reordered only once on
the sender to receiver path.

3For clarity we omit the normalization factor
∑

j:l∈tj
wj from the

equation.



determine the mean value and the variance of the bias
we assume that the loss probabilities of the contributing
links {k : k, l ∈ tj , k 6= l} are i.i.d random variables
with meanµp and varianceσ2

p. For the simplicity of the
analysis we also assume that all the paths have the same
number of edgesh. Under these assumptions it can be
shown that

E(p̂l − pl) = (1− pl)(1− (1− µp)h−1)

V (p̂l − pl) = (1− pl)2
∑

w2
j · (2)

((σ2
p + (1− µp)2)h−1 − (1− µp)2(h−1))

Using the above equations we can deduce the follow-
ing observations:
• The mean value and the variance of the bias tend to

constant values whenpl is upper bounded by a small
value, as is often the case in modern IP networks.

• The size of the variance is largely determined by
the term σ2

p + (1 − µp)2, which is the second
moment of the success probability random variable.
Specifically, if σ2

p + (1 − µp)2 < 1 the variance of
the bias decreases exponentially ash increases.

• The accuracy of the estimator is proportional to the
weights of the paths that share a link. Therefore,
for a particular setting, e.g., a link that is shared by
many flows of significant weights, the bias may be
small enough to produce an estimator that tends to
the real loss probability value.

For the detection process we use a simple rule that
implements the root cause criterion using the average
loss rates of the links. That is, if a link has either
incoming links or outgoing links with an average loss
rate that is lower by at leastδ than its own average
loss rate, this link is classified as a root cause link. As
noted earlier,δ is the detection threshold. It is important
to note, that the difference between the loss probability
estimators for two adjacent links has a bias which is far
lower than the estimator bias for a single link. This is
since the terms in the single link bias that are due to
flows that run through both links cancel each other. This
improves our root cause accuracy and justify the use of
our algorithm.

The formal description of the proposed algorithm is
given in Figure 1. The input is a directed acyclic graph
G = (V,E) and a rate functionr that specifies the
average loss rate of each link inE, where V and E
are the node set and link set, respectively. The output is
the root cause link set denoted byS.

For the Internet data analysis and the simulationsδ
was set by default to zero and the weights were assigned

Algorithm Root-Cause-Identify(G, r)

1. S ← ∅
2. for each(u, v) ∈ E do
3. if ∀z : (z, u) ∈ E r(u, v)− r(z, u) > δ
4. or ∀w : (v, w) ∈ E r(u, v)− r(v, w) > δ
5. S ← S

⋃
(u, v)

6. returnS

Fig. 1. Heuristic for identifying the root cause links

in proportion to the amount of traffic on the paths such
that the average loss rate of a link represents the ratio
of losses and total packets on this link.

B. Performance Evaluation

In this section we evaluate the average performance of
the root cause identification heuristic using simulations.
Our main objective is to investigate the effectiveness of
the detection process including its false alarm and miss
detection characteristics.

For the simulations we use a DAG topology generated
in several steps. First, a random tree is constructed where
the degree of each node is randomly and uniformly
chosen from the discrete interval[1, d], whered denotes
the maximum node degree. Then, each path without
branching is collapsed to a single link. Finally, a small
number of extra edges (set to 10% of the node count
in our simulations) is added to the graph by repeatedly
selecting at random a pair of nodes not connected by
a link. We assume that all flows originate from the root
node and terminate at the tree leaf nodes. Each leaf node
represents an end-host and thus is assigned the unique
root to leaf tree path. An additional path is assigned per
each extra link by randomly and uniformly selecting a
root to leaf DAG path that includes this extra link.

For each simulation configuration we randomly gen-
erate a DAG topology, a loss probability vector with
a size that matches the number of links in the DAG,
and flow sizes for the paths. We use two alternative
distributions to generate the loss probability vector: Zipf
distribution with α = 1, and uniform distribution. The
range of the loss probabilities is selected to be0−0.04 to
correspond to typical Internet loss settings [7]. The flow
sizes are randomly selected from the a Zipf distribution
with α = 1.

In each simulation configuration our experiment is
repeated5000 times, where the links are randomly and



uniformly assigned a permutation of the loss probability
vector. This permutation determines the path loss rates
as described in Section III-A. In each repetition the root
cause identification algorithm is used to gather statistics
per each true and estimated loss probability element,
such as whether the corresponding link is classified as a
root cause, whether it is classified as a root cause under
both true and estimated probabilities, and miss detection
(false positive) and false alarm (false negatives) rates.

Figures 2–4 depicts the simulation results for a setting
with 200 nodes, maximum degree of10, and Zipf loss
probabilities. The upper graph in Figure 2 shows the
portion of experiments where the links that correspond to
an estimated loss probability value are classified as root
causes by our algorithm, marked as total detections; and
the portion of experiments where such links are classified
as root causes under our algorithm and the root cause
criterion (i.e., those that obey the root cause criterion
for both the estimated and the true loss probabilities),
marked as true detections. For reference, the root cause
criterion curve (see Section III-A) is also presented. The
lower graph in Figure 2 presents the same data as a
function of the true loss probabilities.

From these graphs we see that the likelihood (i.e.,
the portion of experiments) of a root cause classification
increases as the loss value increases, which is a desired
property of the proposed criterion. For large loss proba-
bilities above0.02 the detection likelihood is more than
80%. For smaller values the likelihood curve decreases,
such that links that correspond to loss probabilities below
0.001 are classified as a root cause in no more than 25%
of the runs.

Figure 3 illustrates the ratios of detections, miss de-
tections, and false alarms, in respect to the root cause
criterion. For large estimated loss values, e.g., above
0.02 (which covers the upper third of the probability
range), the heuristic has a high detection ratio around
95% and a small ratio of miss detections and false alarm
below 10%. For smaller probabilities there is a drop in
the detection ratio and an increase in the false ratios,
such that the miss detection ratio reaches 100% for
very small loss values. This behavior (the increase in
the false ratios for small loss probabilities) is expected
since small probability values are more vulnerable to
estimation errors. However, since we are interested in
the upper range of loss probabilities we can safely ignore
these high error ratios.

Figure 4 shows the relationship between the true and
the average estimated loss probabilities values. The graph
reveals a constant bias which is consistent with Equation
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Fig. 2. Portion of root cause detections in a200 node topology,
d=10, and Zipf loss distribution
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2. Computing the bias analytically using Equation 2 we
get the value of0.0075 (in this configuration the average
path lengthh is around3 and the average probabilityµp

is 0.0038), which is sufficiently close to the bias shown
in the graph of0.0067.

To check the consistency of the results we consid-
ered several DAG configurations where the number of
nodes, denoted byn, ranged from100 to 5000 and the
maximum node degreed varied from5 to 10. For these
experiments we obtained similar results and therefore the
corresponding graphs are omitted. To test the sensitivity
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of the algorithm to the type of distribution used to derive
the loss rates, we repeated the previous settings using
a uniformly generated loss probabilities. The results
indicate that the root cause detection curves (total and
true) exhibit slower decrease compared to the Zipf case,
and that error ratio bounds are similar for the two distri-
butions. Figure 5 shows the root cause detection results
for a 1000 node topology, maximum degreed = 10, and
loss probabilities derived using a uniform distribution.
In this configuration the average loss probability is 0.02
generating a bias of0.05. Note that this setting may not
represent typical Internet scenarios due to the relatively
high loss rate considered.

The main conclusion that can be drawn from these
simulations is that the algorithm is very efficient in de-
tecting the lossy links that obey the root cause criterion.
As noted earlier, for root cause links in the third upper
range of loss probabilities it achieves a high detection
ratio, typically above 95%, while maintaining a low error
ratio, typically below 10%. The detection rate can meet
almost any arbitrary threshold requirement, due to the
monotone increase (decrease) of the detection (false)
ratio as a function of the loss probability size, by the
adequate selection of the loss range of the root cause
links.

Another conclusion that can be deduced is that there is
a positive correlation between the links detected as root
causes and their true loss probability, i.e., the likelihood
of classifying a link as a root cause increases as its loss
value increases, where the exact form of the correlation
depends upon the link loss distribution and the routing
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Fig. 5. Portion of root cause detections for a1000 nodes topology,
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paths. In general, the estimated loss probabilities have
a constant but unknown bias compared to the real
probabilities. However for specific settings, e.g., when
we have only a small number of sporadic links with
high losses that are shared by many flows, the estimator
may tend to the real value and thus the heuristic can
successfully identify links that their absolute value is
above a desired threshold. This is a valuable property
since such scenarios are typical in the Internet.

C. Packet Classification Technique

In order to measure the loss and reorder rates of
selected connections we develop a packet classification
technique based on examining the out-of-sequence TCP
packets and their IP identifier pattern.

Following Jaiswalet al. [8] we define an out-of-
sequence (OOS) packet to be a packet that its TCP
sequence number is smaller than previously observed
sequence numbers in that connection. Such a packet
is generated by one of the following events:(1) Re-
transmission.The loss of a data packet triggers the
sender to retransmit a packet with a previously used
sequence number.(2) Reordering.The network changes
the original ordering and causes a packet to arrive be-
fore its proceeding packet(3) Duplication.The network
duplicates the original packet and generates at least two
packets with the same sequence number. Note that the
causes and the impact of these anomalies have been
extensively studied [21], [8], [9], [22], [11], [23].

We begin the process by extracting the observed
TCP connections. Given an identified connection we



analyze the data direction headers, i.e., the sender to
receiver data headers, and classify the out-of-sequence
packets. Observe that our technique is dependant on
the data header fields only (i.e., it doesn’t rely on the
acknowledgement packets in the reverse direction) and
thus can be applied to each direction of a TCP connection
separately.

Our classification technique leverages two header
fields: the sequence number field in the TCP header and
the identification (ID) field in the IP header. The TCP
sequence number field identifies the sequence number
of the first byte of data carried in the segment and is
used to guarantee TCP’s in-order reliable delivery. The
identification field uniquely identifies each transmitted
IP datagram. In practice, most Berkeley-derived TCP/IP
implementations guarantee the delivery of unique IDs
by having the IP layer increase a global variable each
time an IP datagram is sent [24], [9]. This implies that
the IDs of a packet flow emitted from a sender forms a
monotonic increasing sequence, i.e., given two packetsx
andy wherex is emitted beforey we have that the ID of
x is smaller than the ID ofy. Since the assumption about
the ID field is implementation dependent we verified
its consistency in several common operating systems
including Windows 2000/XP and several Linux variants.
Thus, we can expect this assumption to be valid for the
larger majority of the sampled traffic.

Given a data packetx we denote its IP identifier and
sequence number byid(x) andseq(x), respectively. To
classify the observed packets we use simple rules to
identify the scenarios resulting from the different types
of events.
• Retransmission - due to a loss after the mea-

surement point. Assume that we observe packetx
and an earlier instance ofx, denoted byx′, such
that both packets have different IDs and a common
sequence number. In this scenario, illustrated in
Figure 7, we assume that the original instancex′

was lost after passing the measurement point, and
thus classifyx as a retransmission.

• Retransmission - due to a loss before the mea-
surement point. Assume that current packetx
has not been previously observed (i.e.,seq(x) is
detected for the first time) and that its ID is in
order. Where the in-order property is determined
by comparingx’s ID with the ID of the earliest
packet with a sequence number larger thanseq(x),
denoted byx′′. That is, x′′ represents the packet
succeedingx’s original instance. In this scenario,
illustrated in Figure 8, we assume that the original
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Fig. 6. Classification process of out-of-sequence packets
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Fig. 7. Retransmission due to a loss after the measurement point

instance was lost before reaching the measurement
point, and thus classifyx as a retransmission.

• Reordering. Assume that the current packetx has
not been previously observed and its ID is out of
order, i.e., id(x) < id(x′′). In this scenario, we
assume that the order of packets was inverted, and
thus classifyx as a reorder.

• Duplication. Assume that we observe packetx and
a previous instance such that both packets have
equal sequence numbers and equal IDs. In this
scenario, we classifyx as a duplicate.

The complete classification process is illustrated in Fig-
ure 6.

Our simple classification technique is based on the IP
identifier field assumption and thus is prone to errors
due to non-standard implementations of TCP/IP stacks.
Although we may weaken the effect of this type of error
by observing the reverse direction of the connection (i.e.,
the acknowledgment path) and inferring TCP’s state (as
done, for example, in [8]), we decided not to do so. One
reason is that the alternative approach may prove to be
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less accurate than expected, due to timing related errors
involved with estimating the sender’s retransmission
time-out (RTO) or RTT parameters, or reverse direction
flow processing errors due to dropped acknowledgements
(ACKs). The one-way classification capability of our
approach is valuable due to the support for asymmetric
connections which is useful in the case of traffic load
balancing by an ISP.

The accuracy of the classification is also dependant
upon the comprehensiveness of the viewed data [8]. For
example, the classification process cannot detect the loss
of an entire congestion window of packets that happens
before the measurement point as well as the loss of the
first packet in a TCP connection.

D. Internet Measurement Results

In this section, we apply the root cause identification
heuristic to the Internet traffic sample from Dec. 2002
(see Section II for further details) and evaluate its ef-
fectiveness. In addition, we apply the OOS classification
technique to all the TCP traffic in the Internet samples
and report the obtained results.

For the link identification process our aim was to
capture the most lossy links and thus we considered a
reduced topology that includes only the150 links and
100 nodes with the worst average loss rates, where the
average loss rate of a node or a link is computed by
matching all the traffic flowing through it and calculating
the average losses it experiences. We are aware that using
this particular setting we might miss most of the last mile
losses [7], although, we did capture two last mile links
that connect portal servers.

Given the resulting forest, i.e., the collection of con-
nected components, we applied the root cause heuristic
and identified the lossy links. The same identification

Link type
Internal link in a US service provider
Israeli ISP – Korean ISP
Israeli ISP – UK Software company
Israeli ISP – Israeli portal
Israeli ISP – Israeli portal
Internal link in an Israeli portal
Link between 2 Israeli ISPs
Israeli ISP – US telecom
Israeli ISP and a US ISP
2 US ISPs

TABLE II

WORST LOSSY LINKS, HIGHEST TO LOWEST

Link type
Link between 2 Major US ISPs
Israeli cable ISP – small Israeli ISP
Internal link in an Israeli ISP
US ISPs, Denver - NJ
Israeli ISP – Israeli Portal

TABLE III

WORST REORDERED LINKS, HIGHEST TO LOWEST

process was repeated for the packet reordering measure
as well. Given that we don’t have previous knowledge on
the real error rates of the Internet links we verified our
results by visualization of the graph of the most problem-
atic nodes and their connected links. This graph is too
dense to be presented in the paper format (for a viewable
version we used an A2 size paper). Interestingly, out of
the 150 worst performing links, only 15% were identified
as root cause links.

To our surprise the most lossy link was an internal
link in a US service provider. The second most congest
link was between an Israeli ISP and a Korean ISP,
which we suspect to be a satellite connection. The top
loss root cause links are given in Table II, sorted by
the loss rate: highest to lowest. The topological link
locations were derived manually using databases such as
the whois database. Similarly, we give the top reorder
root cause links in Table III. Observe that there is no
direct correlation between the highest lossy links and
the highest reordered links. The results also indicate that
most of the top-rated links, i.e., those with significant
losses or reorders, are inter-ISP links rather than intra-
ISP links. These results are consistent with the findings
of [7] which indicate that links with significant losses
tend to be located across AS boundaries.

We now proceed to describe packet classification



July Sample Dec. Sample
TCP sessions 5877269 37531953
Out-of-sequence 916961 (15%) 2016325 (5.3%)

Retransmissions 512877 (10%) 1008464 (2.8%)
Reorders 460539 (7.8%) 1067425 (2.8%)
Duplicates 14970 (1.6%) 12122 (0.06%)

TABLE IV

SUMMARY OF OUT-OF-SEQUENCE SESSIONS

July Sample Dec. Sample
TCP Packets 61316032 224982834
Out-of-sequence 2337501 (3.8%) 3503015 (1.5%)

Retransmissions 1646638 (70.44%) 2010863 (57.4%)
Reorders 648596 (27.64%) 1453315 (41.48%)
Duplicates 42267 (1.8%) 38837 (1.1%)

TABLE V

SUMMARY OF OUT-OF-SEQUENCE PACKETS

results. Out of the 40 million TCP sessions 6.7% had
experienced an out-of-sequence event (i.e., an OOS
packet), 3.8% experienced a retransmission event, and
3.5% experienced a reorder event. A small percentage of
these flows, less than 0.5%, experienced a combination
of different types of events. The classification results for
the collected sessions are given in Table IV. For each
event the table indicates the number of TCP sessions
with this event both in absolute numbers and in rela-
tive percentage (in respect to the total session count).
Overall, 2% of the 286 million packets we observed
were classified as out-of-sequence packets. As expected,
the majority of these packets, around 62%, is caused by
retransmissions, reordering comes second with 36%, and
packet duplication appears to be a rare event that account
for only 1.3% of the OOS packets. The classification
of the sampled TCP packets is given in Table V. This
table is structured as Table IV and it shows the absolute
number and relative proportion of the packets (in respect
to the OOS packets) in each category.

We didn’t compare our results with the result of other
active measurement studies such as [11], [22] due to
major methodological differences between passive and
active inferences [25]. Instead, we compare our findings
based on traffic samples from an Israeli ISP with the
results of a passive measurement study in a Tier-1 IP
backbone [8]. Although the results exhibit large variance,
it is interesting to see that both studies provide similar
insights, namely that packet reordering and duplication
effect only a small portion of the problematic packets

in the Internet, using different classification methods.
Unlike our study, Jaiswalet al. [8] infers the causes of
sequencing problems by observing both directions of a
connection and replicating the sender’s TCP state.

IV. L OSSBURST ANALYSIS

In this section we study the process of consecutive
packet losses, i.e.,loss bursts. We develop a simple
methodology to infer the degree to which packet loss
occurs in bursts from passive measurements of TCP
traffic, and investigate how efficiently TCP deals with
such bursty losses. Finally, we note that the observed loss
patterns may better match the Bernoulli loss model, and
investigate the effect of this assumption on the modelling
and analysis of TCP throughput.

We begin with inferring loss bursts. As noted earlier in
Section III, the inference of losses from retransmissions
is challenging due to spurious time-outs. To handle
this challenge we consider the case were the loss burst
can be accurately determined, i.e., when the loss bursts
occur before the measurement point. The estimation
is unbiased if the considered bursts are representative
samples of the entire ‘population’ of bursts, e.g., when
the measured loss bursts are independent of one another
and uncorrelated with the location of the measurement
point. Also, to get meaningful results, the amount of
data in the reduced sample set should be large enough.
The first requirement is achieved by the location of our
measurement point very close to one of the connection
end-points, and the second requirement is satisfied by
our Internet traces which contain tens of thousands of
burst samples.

The basic idea behind the inference method is to
detect a sequence number gap (due to losses that occur
before the measurement point) and count the number of
retransmitted packets used to fill this gap. Using this
method we can detect loss bursts that contain variable
length packets, which are common in many application
level protocols that operate above TCP, e.g., HTTP.

Given a trace of TCP packets we classify the packets
using the technique described in Section III-C and filter
the results to consider only the retransmissions that
occur before the measurement point. After the filtering
we can identify a loss burst using the corresponding
retransmission burst. For this purpose we seek a retrans-
mitted packet, denoted byx, that its sequence number is
lower than the previously observed packet, denoted by
y. The size of the lost burst is computed by counting
the number of unique packets followingy (and not seen



before) that cover completely the sequence number gap
[seq(x), seq(y)].

Using passive measurements to infer loss bursts en-
ables us to consider a large amount of data at the
expense of introducing potential inaccuracies. One po-
tential source of errors is the lack of timing analysis in
our technique, e.g., we cannot determine whether all the
consecutive losses belong to a single congestion window,
and thus may incorrectly interpret multiple bursts as a
single merged burst. Inaccuracies may also result from
TCP/IP implementations that combine the data of several
lost packets into a single retransmission. We expect this
phenomena to have a minor impact on the results due
to the measured rareness of the event in the alternative
scenario of retransmission bursts due to losses after the
measurement point.

Figure 9 presents the normalized loss burst histograms
for our two Internet samples (see Section II). The largest
burst that we captured was of 31 packets. However, only
a small number of sporadic bursts had more than20
consecutive losses, and therefore we limit the graphs
accordingly. For the burst computation we considered
0.25% of all the observed retransmission bursts: the
July 2002 curve is based on 40458 loss bursts, and
the December 2002 curve is based on 108002 bursts.
As expected, single packet losses account for the large
majority of the bursts, around 83%, and double losses
occupy 12% of the bursts. It is interesting to see that
both histograms are very similar although derived from
traces with different traffic characteristics (there is a
nearly perfect matching for bursts of 7 packets or less,
and minor discrepancy for larger bursts due to the low
number of large size burst samples). We compared the
loss burst histograms for different times of the day,
morning, early afternoon, evening, and night, and found
them similar. The only significant difference among the
four curves is that the evening losses have more than
10% higher probability for a single loss than the others.
The consistency of the results strengthens the validity of
our methodology.

Another aspect of bursty losses we investigate is how
efficiently TCP deals with them. Packet loss can be
detected by TCP in one of two ways, either by the
reception of triple-duplicate (TD) ACKs at the sender,
or by time-outs. To measure the performance of TCP
loss recovery mechanisms we classify the first packet
in each retransmission burst according to its trigger,
TD ACK or time-out, using the technique of TCP state
replication [26]. That is, the retransmission is classi-
fied according to the inferred state, slow-start or fast
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recovery/retransmit. Figure 10 presents the proportion
of time-out indications as the function of the loss burst
size. The results indicate a low correlation between
the loss burst size and the amount of time-outs, which
contradicted our initial expectations that the amount of
time-outs in TCP connections is positively correlated
with the degree of loss burstiness that the connections
experience. This may suggest that TCP efficiently uses
the recent improvements such as SACK, fast recovery,
and improved RTT estimation to recover from large loss
bursts.

The plots of the measured loss burst histograms in Fig-
ure 9 roughly match the geometric distribution. This fits
recent studies [10], [11] that argue that Internet packet
losses can be modeled by loss episodes whose length can
be approximated using the geometric distribution. The
above results encourage us to revisit the common drop-
tail modeling assumption, used in many TCP throughput



studies [12], [13], [14], [15] that incorporate the effect
of the TD and TO loss indications.

In the next section we analytically derive the proba-
bility that the loss indication is a time-out considering
the Bernoulli loss model which may better capture the
current loss patterns in the Internet. The Bernoulli loss
model, which is the most fundamental model to produce
the geometric distribution, may represent the deployment
of Internet buffer management algorithms such as Ran-
dom Early Detection (RED) [27], which drop packets
uniformly at random during congestion periods.

A. Loss Indication Analysis

Our analysis is conducted within the well-known
framework of [12]. We preserve the notations and the
relevant assumptions of this model: we assume that
packets are send in rounds, and a packet is lost in a
round independently of any packet loss in other rounds.
However, we replace the original drop-tail loss assump-
tion with the Bernoulli loss assumption: each packet in
a round is dropped with probabilityp independently of
others.

Our goal is to analytically derive,Q, the probability
that a loss indication ending a TD period is a time-out
(TO), where the TD period is the period between two
loss indications. For this purpose we examine the round
at which a loss indication occurs, which is refereed to as
the ’penultimate’ round. Letw be the congestion window
size at this round.

As shown in [12] a TO would occur if the number of
packets in the penultimate round is less than or equal
to three, or that the number of packets successfully
delivered in the last round is less than three. Therefore,
Q̂(w), the probability that a loss is a TO as a function
of w is given by:

Q̂(w) =





1 if w≤ 3∑2

k=0
B(w,k)+

∑w

k=3
B(w,k)

∑2

m=0
B(k,m)

1−(1−p)w o.w.
(3)

WhereB(w, k) is the probability thatk packets are
ACKed in a round ofw packets, and the quantity in
the denumerator is due to the condition that there is at
least one loss in the round. In the Bernoulli loss model
B(w, k) =

(w
k

)
pw−k(1− p)k.

After algebraic manipulation we get the following
bound forw > 3

Q̂(w) ≤
∑2

k=0 B(w, k)(1 + (1− p)k(−1 + (2− p)w))
1− (1− p)w

(4)

To derive an approximation ofQ̂, we may use
L’Hopital’s rule whenp → 0, as done in [12], and get
that Q ≈ min{1, 3

E[W ]}.
Alternatively, we use a more accurate approximation

that considers TCP’s congestion window size,W , which
is assumed to be uniformly distributed on the discrete
interval [0, wmax]. The probability that a loss event is
TO is calculated using the taylor series expansion about
the pointp → 0

Q =
∑wmax

w=1 Q̂(w)P [W = w]
≈ min{1, 1

wmax
(6 + 96p− 32p2 + o(p3))} (5)

Given the sawtooth behavior of TCP the average
congestion window size can be approximated in steady
state to3

4 of the maximal value of the congestion window
[28], and thus we assignE[W ] = 3

4wmax. Using this
assumption and considering small values ofp, Q can be
approximated

Q ≈ min{1,
4.5

E[W ]
} (6)

Observe that both approximation methods yield a
similar result (different only by a multiplicative factor),
which closely matches the time-out probability in the
drop-tail model [12],Q ≈ min{1, 3

E[W ]}. This implies
that the behavior of the TCP loss process is similar under
both models, and that the TCP throughput formulas in
[12], [13], [14], [15] can also be used to characterize
TCP’s behavior for the Bernoulli loss model.

V. CONCLUSIONS

In this study we address the issue of identifying the
low performance network links from passively collected
TCP traffic. We propose a root cause criterion that
reduces the complexity of identifying low-performance
links and consequently develop a comprehensive solution
for the problem. Our solution includes both a cost-
effective identification algorithm and a simple packet
classification algorithm that infer the various causes of
TCP sequencing problems such as packet loss, reordering
and duplication.

We find that the identification algorithm is very ef-
ficient in detecting the lossy and reordered links that
obey the root cause criterion. For lossy links, it typically
achieves a high detection rate above 95% and a false
detection rate below 10%. Furthermore, we show that our
method is able to estimate the true loss and reorder rates
of the network internal links up to a constant bias, and
present scenarios for which the loss estimator tends to its
real value. Applying our algorithms to Internet samples



gathered at an edge ISP we find that the majority of the
lossy links are inter-ISP links.

To derive the loss and reorder rates of the observed
sessions we develop a simple methodology that infers
and classifies the observed out-of-sequence packets. A
novelty of our packet classification technique is that it
requires only one direction of the TCP connection, and
thus can be applied to asymmetric TCP flows. Using our
Internet samples we find that packet loss is significantly
more frequent than packet reordering and duplication.

Another aspect of our study includes TCP’s tem-
poral loss process. We found that the burst loss size
is geometrically distributed. We then analyze the TCP
time-out loss indication under the Bernoulli loss model,
which is the simplest model that can cause a geometric
distribution, and show that the behavior of the TCP
loss process is similar under both model. This implies
that the various TCP throughput formula are applicable
to both models, and thus can be used to characterize
TCP’s behavior in the presence of the two major queuing
disciplines used by modern routers, tail-drop and RED.
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