
The Traveling Miser Problem
David Breitgand, Danny Raz, Yuval Shavitt

Abstract— Various monitoring and performance evaluation
tools generate considerable amount of low priority traffic. This
information is not always needed in real time and often can be
delayed by the network without hurting functionality. This pa-
per proposes a new framework to handle this low priority, butre-
source consuming traffic in such a way that it incurs a minimal
interference with the higher priority traffic. Consequentl y, this
improves the network goodput. The key idea is allowing the net-
work nodes to delay data by locally storing it. This can be done,
for example, in theActive Networkparadigm.

In this paper we show that such a model can improve the net-
work’s goodput dramatically even if a very simple scheduling al-
gorithm for intermediate parking is used. The parking imposes
additional load on the intermediate nodes. To obtain minimal cost
schedules we define an optimization problem called thetraveling
miser problem.

We concentrate on theon-line version of the problem for a
predefined route, and develop a number of enhanced scheduling
strategies. We study their characteristics under different assump-
tions on the environment through a rigorous simulation study.

We prove that if only one link can be congested, then our
scheduling algorithm isO(log2 B) competitive, whereB is conges-
tion time, and is3-competitive, if additional signaling is allowed.

Index Terms—active networks, on-line algorithms, competitive
analysis, network management.

I. I NTRODUCTION AND MOTIVATION

Off-line management applications, such as various logging
facilities that subsequently transfer the accumulated data over
the network, software distribution facilities, distributed back-
ups, accounting and billing, long term history monitoring of
the large-scale systems generate considerable amount of traffic.
This traffic utilizes the same network resources as regular user
traffic, and therefore, may affect the network goodput. While
in on-line management applications, transmission of manage-
ment data may have stringent timing requirements, in the off-
line applications, there exists a considerable freedom regarding
the exact transmission time. In this paper, we focus on handling
the traffic produced by the off-line management applications.

Since in most cases the end-users are not directly interested
in the services described above, the impact of the administra-
tive traffic on the user-visible network services should be min-
imized. For instance, it would be beneficial to preempt some
management traffic at times of network congestion and sched-
ule it for later transmission when the congestion abate.

David Breitgand is with IBM Haifa Research Lab, Israel. Email:
davidbr@ibm.il.com

Danny Raz is with the Computer Science Department, Technion, Haifa, Is-
rael. Email: danny@cs.technion.ac.il. His work was supported, in part, by the
fund for the promotion of the research at the technion.

Yuval Shavitt is with the School of Electrical Engineering,Tel-Aviv Univer-
sity, Tel-Aviv, Israel. Email: shavitt@eng.tau.ac.il

This work was done in part when the authors were at Bell Labs, Lucent Tech-
nologies, Holmdel, NJ, USA.

Thus, it is useful to differentiate between the higher priority
user-visible traffic and the lower-priority management traffic.
It is important to stress, however, that in this work, the terms
high priority andlow priority refer to the same best effort traf-
fic being differentiated solely by the timing constraints. This
is different from the service levels that are defined in Differen-
tiated Services Architecture [1].

The user traffic,e.g., HTTP packets, has to arrive at its desti-
nation within a short period of time (2-3 seconds for the HTTP
example) while the low priority management traffic can be de-
layed much longer. It is important to note that both the high
priority and the low priority traffic compete for the same lim-
ited amount of network resources.

Given this model, it is our objective to improve the goodput
of the network by preferring the high priority (user) trafficover
the low priority (management) traffic at times of high load, if
timing constraints of the management traffic are flexible enough
to admit extra delays.

In other words, if there are plenty of resources in the network
there is no difference between the low and high priority traffic.
However, when the resources become scarce, the user traffic is
given a priority over the management traffic wherever possible.
In this work, the resource that interests us is bandwidth.

One may notice that this approach is applicable also beyond
the network management domain. For example, exactly for the
same reasons as above, it may be beneficial to detain large e-
mail messages in the network at times of congestion, to improve
the overall goodput. Similarly, in peer-to-peer overlay networks
it may be worthy to use intermediate peers in order to improve
the overall efficiency of the data transfer. However, in order to
focus the discussion, we will refer to the network management
traffic as our primary motivation throughout the paper, and dis-
cuss other usages of the proposed framework in the concluding
remarks. It is important to stress that our solution pertains to
the application level.

We characterize every management message1 originating at
a management agent, thesource, by a single parameter:dead-
line. This parameter defines the latest time by which the mes-
sage should arrive at the manager station, thedestination. In
this work we are not concerned with a specific way the man-
agement data is obtained. In other words, we deal neither with
the specific measurement techniques, nor with the data seman-
tics. We simply view management applications as producers of
the traffic that is a subject to the deadline constraint.

Based on this constraint, we attempt to create an individ-

1We use the termmessageto refer to the application-level messages. An
application-level message is an individual piece of management information
that should be delivered in its completeness to a specific destination to be use-
ful. Each application-level message may be fragmented intomore than one
smallerpacketsby the underlying packet-switched network. This fragmenta-
tion is transparent to our algorithms.

ual itinerary for every low-priority application-level message,
along the existing routing path between the source and the des-
tination in such a way that the message would meet its deadline,
and at the same time would incur minimal additional load on
the routing elements and links along the path. There is no pre-
mium for arriving at the destination earlier than specified by the
deadline. This goal can be achieved by preempting messages
at internal nodes during transient congestion conditions.

One framework in which this is possible is theactive net-
worksparadigm. This paradigm allows to equip each message
with an “autonomous intelligence” enabling the messages tore-
act to the network conditions much like the rational car drivers
do when they react to the road traffic conditions. In particular,
an active message is capable of detaining itself in the network
in case of unfavorable conditions, scheduling its transition for a
later time. Storing a message in the network using the switch-
ing elements themselves is, obviously, infeasible. Fortunately,
this need not to be the case since active messages may be di-
verted to a special purpose machine that is decoupled from the
switching element,e.g., theactive enginein [2].

Figure 1 shows a very simple algorithm that can be used by
messages in active network to achieve the above objectives.

while next link is congested
wait for time interval t and check again

proceed to next hop.

Fig. 1. Simple Algorithm using the Intermediate Parking Ability

A

B

C

D

E

F

TS

Fig. 2. A simple cross traffic scenario

A link is considered congested when its utilization crosses
some threshold value. However, it is important to notice that
different threshold values may be configured for low-priority
and high priority traffic. Thus, these administratively defined
threshold values can serve as a network management mecha-
nism that forces the low priority traffic to “give way” to the
high priority traffic when the competition over the resources be-
comes acute. When this mechanism for prioritizing the traffic
is used, an additional advantage of the active network paradigm
would be a higher reliability for the low-priority traffic.

Consider the scenario described in Figure 2. The sourceS
is trying to send some management information to the targetT .
There is cross-traffic betweenA andB, andE andF respec-
tively, which alternates,i.e., whenever the cross traffic fromA
to B stops, the traffic fromE to F starts. If the cross-traffic
is intensive enough to raise the utilization level of the respec-
tive links above the low priority threshold, all attempts ofS to

send the information toT using regular means will fail2 as the
packets will experience loss, and no retransmissions will help.

In contrast, in our simple algorithm, the message will just
park at the intermediate nodes waiting for the cross traffic from
E to F or A to B to abate, and then it will continue towards
T . If delays introduced by waiting are not too large, the low-
priority information will arrive in time to be useful for theman-
agement application, and the user traffic (that is responsible for
transient congestion) is unaffected. This simple example shows
that, indeed, the extra functionality introduced by intermediate
parking, adds an additional value to the network.

It is reasonable to assume that the timing constraints of the
management traffic will permit practical usage of the above
scheme because while the round trip time is typically less than
a second, the typical management traffic deadlines for non-
real time management applications is, at least, in the rangeof
minutes. This provides the required maneuvering space for the
low priority messages.

However, since parking in the network consumes valuable
resources of the hosting nodes,e.g., memory, our scheme may
introduce considerable overhead on the infrastructure. Inorder
to prevent an excessive load on the hosting nodes, we associate
some time-dependentcostwith parking at a given node, seeking
to optimize packet parking schedules in terms of these costs.

We formulate the problem of creating the low-cost parking
schedules for the low-priority traffic in abstract terms as agraph
theoretic problem and study its different variants. We callthis
problem thetraveling miser problembecause the behavior of
packets resembles a strategy of a savvy traveler that is allowed
to make stops in hotels offering different time-dependent prices
along some route, trying to keep the total cost of the trip as low
as possible while still being timely.

We distinguish between theon-line variant, in which deci-
sions should be made based on the partial information available
locally at a given time, and theoff-line variant in which all in-
formation about the network’s behavior is known in advance.

Although solutions for both variants of the problem are rel-
evant to the management applications, the on-line variant is of
greater practical interest. For the off-line variant we explain its
connection with other work done on the minimal weight path
problem in time-dependent networks. For the on-line variant
we present a scheduling algorithm calledMiser. In addition
to minimizing the interference of the management traffic with
the user traffic (which is already achieved by the simple strat-
egy above), this algorithm also minimizes the overhead on the
nodes that contribute their local resources to enable interme-
diate parking. We prove that for the restricted case, in which
only one link per route is congested at a time, the cost that our
algorithm incurs on the active nodes is logarithmically com-
petitive. We further demonstrate our algorithm usefulnessby
studying its performance under other, more complex, network
conditions, and comparing it to to the simple strategy of Fig. 1.

We start with a simple model, that was introduced in [3]. In
this model neither transmission costs, nor parking costs depend
on the actual size of the low-priority message. Then, we study
a model in which the parking and transmission costs linearly

2E.g., due to an application/transport level time out, after too many retrans-
mission attempts.

depend on the message size. It turns out that in this model, it
is beneficial for a large management message to partition itself
into the bulky main part, and a small “scout” part. This heuris-
tics is called theScoutalgorithm. The Scout algorithm is, at
least, as good as the Miser algorithm, and under some condi-
tions (e.g., in case of an expensive network core) may result
in schedules that are cheaper than those produced by the Miser
algorithm by a factor of 2.

If we further enhance the basic model, and require the net-
work nodes to emit smalltrap messages to signal (over the re-
verse forwarding path) that a congestion condition at the corre-
sponding switching element is over, a3-competitive scheduling
strategy that we callTrapbecomes possible.

The main contributions of this work are as follows.
• We study a novel framework for handling the lower prior-

ity, “overhead” traffic. This is in contrast to the usual case
when the higher priority traffic is in the center of the prob-
lem. The proposed framework may be applicable in con-
texts different from the management,e.g., in e-mail proto-
cols, and peer-to-peer networks.

• We show that additional internal node capabilities (such
as in the Active Network paradigm) indeed increase the
network functionality.

• We formally define a relevant optimization problem. We
study the on-line version of the problem, and present sim-
ple, yet efficient on-line algorithms for solving it. For
the restricted, but practical case in which there is a sin-
gle link congestion per path, we prove that our algorithm
is O(log B) competitive, whereB is the congestion dura-
tion.

• We evaluate our algorithms under realistic scenarios,
and identify through an extensive simulation study the
most significant network parameters affecting their perfor-
mance.

The rest of the paper is organized as follows. In the next
section we formally define the basic model. In Section III we
formulate the problem, and then in Section IV we describe and
analyze the on-line and off-line algorithms. In Section V we
present the results of our simulation study for the basic model.
In Section VI we extend our model to accommodate parking
costs that linearly depend on the message size. Section VII dis-
cusses the on-line strategies in this extended model, and Sec-
tion VII-A presents the simulation study of the new strategies.
We survey the related work in Section VIII, and provide con-
cluding remarks in Section IX.

II. M ODEL

The motivation of the model presented in this section is to al-
low reasoning about the load of intermediate nodes and the cost
associated with it. This model enables the definition and analy-
sis of an optimization heuristics (see Section IV) that lowers
the overhead imposed on the network nodes that accommodate
the detained low-priority traffic. In Section VI we study an en-
hanced model in which the parking costs linearly depend on the
size of the low-priority message.

Following [4] we consider a bi-directionaltime-dependent
networkG = (V, E, W, P, L) with V = {1, 2, ..., n} being

a set of nodes,E ⊆ V × V being a set of links, andW , P , L
being a set oflink weights, node parking weight densities, and
link delaysrespectively.W = {wi,j(t) | (i, j) ∈ E} are sets of
time-dependent functions that represents the non-negative cost
of traversing link(i, j) at departure timet. For simplicity, we
assume that time is discrete.

P = {pi(t) | i ∈ V } are sets of time-dependent functions
representing the non-negative cost of spending one time unit at
nodei ∈ V at time instantt. If a message arrives at nodei at
time t1 and departs from the node at timet2 where0 ≤ t1 ≤

t2 < ∞, then theparking weightis Pi(t1, t2)
def
=

∑t2−1
t=t1

pi(t).
The time it takes to traverse link(i, j) is calledlink delayand

is denoted bydi,j . For simplicity we assume a constant delay
of 1 time unit for every link.

Let R be a simple path froms to d, R = 〈s ≡
v0, v1, ..., vn−1 ≡ d〉. The Traveling Miser Problem (TMP)
is defined (informally) as follows. A miser starts at nodes at
time 0. The miser is required to reach the destination noded
within the integer numberD of time units,0 ≤ D < ∞, called
deadline. At any given time instantt, the miser is at some node
v(t), and it can either park there for some time, or travel one of
the outgoing links to one of the neighboring nodes.

We assume existence of a network level routing protocol,
e.g., IP routing protocol, such that there is only one relevant
routing path froms to d. This path is not known to our appli-
cation level protocol. However, when active message executes,
the network routing is augmented by the application level rout-
ing decisions. Following the observations of [5] that over 85%
of the AS links are symmetric and that the asymmetry is due to
a small fraction of end-points, we assume, for the analysis sake,
that the routes are symmetric.

Specifically, at any given time instantt, the miser is at some
nodevj ∈ R, facing the following options for the next time
unit:

• stay at the nodevj and paypj(t) for parking;
• travel one link in the forward direction,i.e., towards the

destination, and paypj(t) + wj,j+1(t) for commuting;
• travel one link in the reverse direction,i.e., towards the

source, and paypj(t) + wj,j−1(t) for commuting.
The traveling miser problem is to devise a strategy that allows

reaching the destination withinD time units moving along a
given path in either direction, and paying the minimal totalcost
for both commuting and parking. For convenience, we assume
a fictitious self-link for every node in the path. The delay of
this link is 1 (similarly to all other links), and its weight is0.
Traversing such a self-link corresponds to parking at the node
for one time unit.

In order to state the problem more formally, we need the fol-
lowing definitions.

Definition 1: Itinerary :

For a given s, d ∈ R an itinerary I(s, d)
def
= 〈s ≡

v(0), v(1), v(2), ..., v(T) ≡ d〉 such that
• ∀i ∈ [0, T] v(i) ∈ R;
• ∀v(i − 1), v(i) ∈ I(s, d) (v(i − 1), v(i)) ∈ R, or v(i −

1) ≡ v(i).
Thus,I(s, d) is a, possibly non-simple, path from sources

to destinationd consisting of all the original path links plus the

fictitious self-links as described above. Sometimes we willuse
to I(s, d), as a shorthand notation forI(s, d).

The timeT when the destination is reached is called theter-
mination time, and the corresponding itinerary is referred to as
T-termination itinerary.

Definition 2: Parking Itinerary :
For some nodej ∈ R, an itinerary that consists only of0 ≤ t <
∞ fictitious links (j, j) is referred to asparking itinerary (or
simply parking)at j for timet, and is denoted̃I(j, j)t.

Definition 3: Itinerary Weight :
For itineraryI = 〈s, v(1), ..., v(T − 1), d〉, itinerary weightis

W (I)
def
=

∑T−1
t=0 wv(t),v(t+1)(t).

We are interested only infinite weightitineraries.
Definition 4: Feasible Itinerary:

An itineraryI(s, d), s, d ∈ R is feasiblefor a given deadline
0 ≤ D < ∞, being an integer number of time units, if and only
if:

• The itinerary weight is finite;
• The itinerary is timely: T ≤ D.
Definition 5: Reachable Node:

Let M be an integer number of time units. LetR be some path
in a time-dependent networkG, andt be some time instance. A
nodevi ∈ R is reachableat timet within M time units from
another nodevj ∈ R, j 6= i if and only if there exists at least
one feasible itineraryI(R′) for the deadlineM and a sub-path
R′ = 〈vj ,, vi〉, whereR′ ⊆ R.

Definition 6: Time Distance:
The total delay of a shortest finite itinerarŷI(i, j), is called
time distancebetween the nodesi andj, and denotedTD(i, j).
Note that although in our casedi = 1 for all i, TD(i, j) may
be different from|j − i| due to infinite weights that some links
may assume at certain time instances.

Property 1: Let R = 〈0, 1, 2, ..., n− 1〉 be a given path.

∀I(R) : W (I) ≥

n−1
∑

i=0

min
t
{wi,i+1(t)}.

This property simply states that in order to obtain the mini-
mal weight itinerary over the given path, each link in the path
should be traversed at time instance for which the weight of the
link is minimal. This lower bound may be unattainable.

III. PROBLEM FORMULATION

Now we can rigorously formulate the General Travelling
Miser Problem (TMP) as follows.

Definition 7: General TMP: For a given pathR(s, d) ⊆
G, whereG is a time-dependent network, and a finite dead-
line D ∈ I

+, find a feasible itineraryI(s, d) = 〈s ≡
v(0), v(1), ..., v(T) ≡ d〉 for whichW (I) is minimal.

As explained in Section VIII, the General TMP is an instance
of a PSPACE-Complete problem, known as Canadian Traveler
Problem. Fortunately, the general variant of TMP is of less
practical importance since it corresponds to the cases whenthe
network is highly unstable.

Therefore, in this work, we concentrate our efforts on a re-
stricted variant of TMP, calledK-block Recoverable TMP. This

variation of TMP corresponds to scenarios in which the net-
work is stable most of the time, but some links may become
congested for certain time periods after which they recover. In
K-block Recoverable TMP all parking weight densities are as-
sumed to be constant in time∀t ≤ D.

A. K-block Recoverable TMP

First, we define the notion of afinite block.
Definition 8: Finite Block:

Let (i, j) be a link in a given time-dependent pathR(s, d). We
say that a finite block of durationt2 − t1 occurs at link(i, j) at
timet1 (block start time), and terminates at timet2 ≥ t1 (block
termination time) if ∀t: t1 ≤ t ≤ t2 wi,j(t) ≡ ∞.
Note that fictitious self-links that correspond to parking at
nodes are never blocked.

Given a finite deadlineD and a time-dependent pathR(s, d),
and a set ofk finite blocks, the k-block recoverable traveling
miser problem is to find a feasible itineraryI∗(s, d) such that
∀I 6= I∗: W (I∗) ≤ W (I).

Thek-block recoverable TMP is an instance of General TMP
(see Definition 7), where at any given time instance weight of
a link (except self-links) is either a constant, or infinity.The
latter means that the link is blocked. The blocks are lifted after
a finite time period.

The relation of this problem to the actual network scenarios
is straightforward. The infinite weight of a link corresponds to
the link congestion. The level of link utilization that should be
interpreted as a congestion is controllable through the adminis-
trative means.

B. On-Line and Off-Line Problems

TMP can be formulated either as anoff-line problem, or as
anon-lineone. In the off-line problem we assume that the input
includes the values of link weight functions along the path for
any given instant of time.

The off-line variant is of interest for advanced planning of
the optimal transmission schedules based on the long observed,
relatively static load patterns. This is useful,e.g., for the traffic
that is generated in regular hours of the day, and when the usual
network behavior is known in advance.

In the strictly on-line variant of the problem the values of
time-dependent link weight functions are not known in ad-
vance, the miser has only a local knowledge about the path,
and the current value of a link weight observed by the miser for
a certain link does not tell anything about its future value.

In [6], it was shown that finding an algorithm with bounded
competitive ratio for the strictly on-line minimal delay path
problem in time-dependent networks is P-SPACE-complete. If
we treat the parking and commuting costs as time-dependent
delays, and assume a very large deadline parameter for the mes-
sage, then the on-line TMP becomes an instance of the on-line
minimal delay time-dependent path problem.

IV. A LGORITHMS

This section presents the algorithms for solvingk-block re-
coverable TMP.

A. Off-Line Problem

The algorithm for finding minimal weight path in a general
time-dependent network presented in [4] solves the generaloff-
line traveling miser problem (as a special case) time for any
constant deadline0 ≤ T < ∞. Even though [4] solves the
problem for the case of continuous (or piece-wise continuous)
time-dependent weight and delay functions, the same algorithm
may be used for our discrete case.

Since the off-linek-block recoverable TMP is a special case
of the general off-line TMP, the algorithm of [4] also solvesthe
off-line k-block recoverable TMP for any finite deadline.

It is useful to highlight some key ideas from the solution pre-
sented in [4]. The algorithm is based on the followingconcate-
nation propertyof the optimal (with respect to weight) time-
dependent paths.

Lemma IV.1:Every sub-itinerary of an optimal (minimal
weight) itinerary is also optimal: Time-Dependent Path
Concatenation Property

Let R(s, d) be a time-dependent path. LetT ∈ I
+:

0 ≤ T < ∞ be some time instant. LetI∗(s, d) =
〈s ≡ v(t0), v(t1), ..., v(tk−1), ..., v(tN−1) ≡ d〉 be a
minimal weight finite T -termination itinerary of length
at most N among all T -termination itineraries of length
at most N . Then ∀k, 0 ≤ k ≤ L(I∗), itinerary

Ik
def
= 〈s ≡ v(t0), v(t1), ..., v(tk−1)〉 is a minimal weight finite

T -termination itinerary of length at mostk for destination
v(tk−1) ∈ R.

Proof: See [4].
In practice, we are interested in feasible optimal itinerary

only with respect to some finite deadlineT being an integer
number of time units. Thus we can find optimalT -termination,
(T − 1)-termination,(T − 2)-terminationetc., itineraries with
length at mostl using the concatenation property stated by
Lemma IV.1, and choose a minimal-weight feasible simple
itinerary among them.

Indeed, the optimal time-dependent path concatenation prop-
erty allows recursive constructing of the optimalt-termination
itineraries for everyt ∈ I

+ : 0 ≤ t ≤ T and for every lengthl.
Suppose, for a given pathR(s, k), k ∈ R(s, d), I(s, k) is an

optimal t-termination itinerary of length at mostl where0 ≤
t ≤ T . Let us denote its weight byWk(t). Then we have the
following recurrent relations:

Wk(t) = min
i∈{k−1,k,k+1∈R}

(Wi(t− di,k) + wi,k(t− di,k)) (1)

Ws(0) = 0 (2)

∀t : 0 < t ≤ T, ∀i ∈ R : Wi(t) = ∞. (3)

From these recurrent relations we can compute the weights
for optimal t-termination itineraries for every node inR and
also the minimal feasible itinerary for reaching the destination
before deadlineT as shown in [4].

Note that if we are given an explicit representation of the
parking weight functions in advance for timeD, the algorithm
is polynomial. However, if the weight functions are specified in
a more concise form (i.e., analytically), the algorithm is pseudo-
polynomial, as its running time also depends onD (deadline).

variables:
j ∈ [1, blog2 Bc]: number of phase;
dir ∈ {FWD, BCKWD}: state;
vb:currently blocked node

in the forward direction;
vi: current node;
s, d: source and destination;
v∗

j
:intermediate destination

of phase j;
Tj: parking time of phase j;
W: set of known weights.

initially: j ← 1; dir ← FWD; vi ← s;
vb ← nil; v∗

j
← nil; Tj ← 0; W ← ∅

while vi 6= d
if dir = FWD ∧ wvi,vi+1

<∞
W ←W

⋃

{wvi,vi
, wvi,vi+1

};
proceed to node vi+1;

else if dir = FWD ∧ wv,v+1 =∞
if vi = vb

j ← j + 1;
else

vb ← vi; j ← 1;
COMPUTE ITINERARY(j, vb, W);

else if dir = BCKWD ∧ wvi,vi−1
<∞ ∧ vi 6= v∗

j

proceed to node vi−1;
else if dir = BCKWD ∧ wvi,vi−1

<∞ ∧ vi = v∗
j

park at node v∗
j
for time Tj

else if dir = BCKWD ∧ wvi,vi−1
=∞

dir ← FWD;
j ← 1;

upon termination time of phase j:
dir ← FWD;

endwhile

compute itinerary (j, vb, W)
using W, find node v∗

j
that is reachable from vb

within t ≤ 2j−1 time units, and such that v∗
j
yields

the minimum weight round-trip itinerary with the
parking time: Tj = max{1, 2j−1 − 2 · TD(v∗

j
, vb)}.

Fig. 3. Miser Algorithm

B. On-Line Problem (Miser Algorithm)

In this section, we present an algorithm that addresses the
on-linek-recoverable TMP. We show that for the special case
of k = 1 the presented algorithm is5 + 4 log2 B competitive
whereB is the block duration. Fork > 1 the algorithm serves
as a heuristic, We study its in Section V via simulations.

The idea of the on-line algorithm is as follows. The miser
advances towards the destination using the non-fictitious links
only, as long as he does not reach a block. At the blocked node,
the miser has two options: either to stay at the node where the
block has occurred (this stay is simulated by traversing thecor-
responding self-link), or move backwards on the reverse for-
warding path that has been discovered so far. Assuming that the
miser knows an upper boundU for the block duration, a com-
petitive strategy for the miser is to pick up the cheapest node (in
terms of the total cost of getting there and back plus spending a
certain amount of time at the node as explained below) situated
within roughlyU/2 distance from the current location on the
way back to the source, to spend the block time there. In other
words, the miser has to pick up an itinerary with the minimal
weight for the block duration. The intuition behind the algo-
rithm is that if the miser has to spend some time en route on the
way to the destination due to a block, he better do this using the

cheapest itinerary. This minimizes the overall cost of the trip.
However, the miser does not know the exact duration of any

block, only an upper bound, that is not necessarily tight. Thus,
it is beneficial to have a strategy for finding a tighter bound.
This is done by doubling the existing estimation of the block
duration at each stage of the algorithm. In order to explain the
algorithm in detail we need the following definition.

A simple round-trip itinerary between the two nodesj, k ∈ R
is an itinerary that is aconcatenationof a shortest, possibly
empty, itinerary that goes from nodej to nodek, possibly
empty finite itinerary that uses only the(k, k) fictitious links,
and the shortest, possibly empty, itinerary that goes from node
k to nodej. More formally:

Definition 9: Simple Round Trip Itinerary:

Itinerary Irt(j, k)t def
= Î(j, k)&Ĩ(k, k)t&Î(k, j) where

Î(j, k), andÎ(k, j) being the shortest itineraries betweenj and
k, and vice versa, and̃I(k, k)t being a parking itinerary at node
k for time t, and& being concatenation operation, is termed
simple round trip itinerary with parking timet between two
nodesj, k ∈ R.

Figure 3 shows the Miser algorithm. Suppose a block occurs
at some nodevb ∈ R on the link leading towards the destina-
tion. The algorithm works in stages. At stagej ∈ [1, blog2 Uc]
the miser chooses nodev∗j ∈ R reachable fromvb within T ≤

2j−1 time units, such thatW (Irtj
(vb, v

∗
j))2

j−1−2·TD(v∗

j ,vb) is
minimal. Then, the miser follows this minimal weight simple
round trip itinerary for stagej.

In order to gain a logarithmic factor, the miser spends ex-
ponentially increasing periods of time away from the blocked
node. After each such period the miser goes back to the blocked
link and checks whether the block is lifted. If the block is lifted
then the miser goes through, otherwise he proceeds to phase
j + 1. If the miser encounters a block while moving in the
backward direction, he forgets the past iterations, switches the
direction, and starts moving towards the destination.

C. Analysis

Obviously, if only one block may occur on the path before
the miser’s deadline expires, he will not go back and forth more
thanblog2 Bc times and cannot spend more than2∗B time units
at v∗j in any phasej, whereB being the actual duration of the
block. Thus, the algorithm terminates after at most1 + log2B
simple round trips, and the overall itinerary that he builds, is
finite. Constructing the round trip itinerary for every phase
clearly takesO(n) time wheren being the length of the path.
This makes the running time of the strategyO(n · log2 B). As
we show in Theorem 1, ifk = 1 the Miser algorithm is loga-
rithmically competitive.

In case of multiple blocks,i.e., whenk > 1, the Miser strat-
egy serves as a heuristics. When the Miser algorithm computes
the round-trip itinerary for stagej, it assumes that all the links
that have been discovered in all previous phases will not be
blocked during stagej. Naturally, this may not be true for a
certain phase. It is easy to see, that whenk > 1, the strategy
is not competitive. If two blocks occur simultaneously on the
two real links leading from the node (one in the forward di-
rection for timeB1, and one in the opposite direction for time

S d

...
V* V V Vb

...
j
*

j
~

Fig. 4. Simple Round Trip w/o Parking

B2), the weight of the resulting itinerary will increase by adding
B · wvb,vb

whereB = min{B1, B2}. In contrast, the optimal
off-line algorithm would build its itinerary in such a way that it
will spend all the blocking time in the node with the minimal
parking weight. Therefore, an adversary can always force the
ratio between the on-line and the off-line algorithms to be the
ratio between the minimal and the maximal link weights of the
path. Fortunately, since blocks do not always follow the above
worst case scenario in practice, the presented on-line strategy
can be used as a heuristic. Its performance is studied using sim-
ulations in Section V under various assumptions on the blocks
distribution.

Theorem 1:Let R(s, d) be a time-dependent path as defined
in Section II. LetD be a finite deadline, and letU be the upper
bound on the blocking time. If there exists only one block of
durationB then the competitive ratio of the Miser algorithm is
5 + 4 · log2 B.

Proof: There are two cases that should be inspected.
Case 1: The block happens at nodevb ∈ R at time
tstart > TD(s, d).

It is easy to see that in this case, parking in the intermediate
nodes renders no gain in minimizing the total cost of the
itinerary, since all parking costs are positive. The optimal
algorithm just advances directly to the destination. Sincethe
Miser algorithm behaves identically, the competitive ratio is1.

Case 2: The block happens at nodevb ∈ R for time
B = tend − tstart, 0 ≤ tstart ≤ tend ≤ D, andtstart such that
TD(s, vb+1) > tstart. In other words, the miser cannot reach
the destination without encountering the block en route.

According to the lower bound given by Property 1, the cost
of the itinerary built by the optimal algorithm isat least the
weight of the path (when all link weights are finite):

W (Î(s, d)) ≤ W (Iopt). (4)

Also note that every algorithm, including the optimal one,
must wait in this case at leastB + tstart − TD(s, vb). The
optimal algorithm will do this (i.e., wait) at some node called
v∗ (see Figure 4), and therefore its parking cost is at least(B +
tstart − TD(s, vb) · wv∗,v∗ . Thus, we have:

W (Î(s, d)) + (B + tstart − TD(s, vb)) · wv∗,v∗ ≤ W (Iopt).
(5)

Note that sincetstart is non-negative the following inequality
holds:

W (Î(s, d)) + (B − TD(s, vb)) · wv∗,v∗ ≤ W (Iopt). (6)

For the on-line Miser algorithm we have:

W (Imiser)
def
=

blog2 Bc +1
∑

j=1

[(2j −2 ·TD(v∗j , vb)) ·wv∗

j
,v∗

j
+ (7)

2 · W (Î(vb, v
∗
j))] + W (Î(s, d))

Let us find the upper bound for the cost of each phasej,
∀j ∈ [1, blog2 Bc] of the Miser algorithm. There are two cases.

Case 1:1 ≤ j ≤ blog2 TD(s, vb)c.
Let ṽj ∈ [v∗, vb] be the farthest node that is reachable from
vb in phasej by a round-trip itinerary without parking (see
Figure 4). Since the Miser algorithm always chooses minimal
weight round-trip itineraries for each phase, the cost of Miser
itinerary in this phase is no greater than the cost of the round trip
itinerary without parking tõvj . Therefore, for asinglephasej:

W (Ij
miser) ≤ W (Irt(vb, ṽj)) ≤ 2 · W (Î(s, d)).

From Inequality 4 we obtain that for a single phasej
W (Ij

miser) ≤ 2 · W (Iopt).
Case 2:blog2 TD(s, vb)c < j ≤ blog2 Bc.

Observe that Miseralwaysparks atv∗j that belongs to the
subpathR(v∗, vb) (including both ends). Let us consider
a simple round trip itinerary from nodevb to nodev∗ with
parking time2j − 2 · TD(vb, v

∗) for each phasej. Since Miser
chooses minimal weight itineraries for every phase, the cost of
this round trip itinerary bounds the cost of phase in the Miser
algorithm from above:
W (Ij

miser) ≤ 2 ·W (Î(vb, v
∗))+(2j −2 ·TD(v∗, vb)) ·wv∗ ,v∗

SinceW (Î(vb, v
∗)) ≤ W (Î(s, d)), we have:

W (Ij
miser) ≤ 2 ·W (Î(s, d)) + (2j − 2 · TD(v∗, vb)) ·wv∗,v∗ .

The maximal phase duration is2 · B. Therefore, for any
single phasej we have:W (Ij

miser) ≤ 2 · W (Î(s, d)) + (2 ·
B − 2 · TD(s, vb) · wv∗,v∗ + 2 · TD(s, v∗) · wv∗,v∗ .

Observing thatTD(s, v∗) · wv∗,v∗ ≤ W (Î(s, d)) ≤
W (Iopt), and using Inequality 6, we obtain that for a single
phasej: W (Ij

miser) ≤ 4 · W (Iopt). Then from Equality 7 we
obtain (using 4 again)

W (Imiser) ≤ (5 + 4 · log2 B) · W (Iopt). (8)

D. Trap over RFP Model

Can we improve the Miser’s worst case performance? The
logarithmic competitive ratio of Miser comes from the fact that
it requires the whole message to traverse the entire path between
the blocked node, and the node yielding the lowest cost round-
trip itinerary of phasej of the algorithm.

If our model can be slightly extended to accommodate small
signal messages, that are propagated over the reverse forward-
ing path each time a transient congestion condition on the previ-
ously blocked link is over, the Miser strategy can be modifiedas

while next link is not congested
proceed to next hop.

if next link is congested:
for each phase j ∈ [1, blog2 Bc] find a node
v∗

j
that is reachable from vb within

t ≤ 2j−1 · T time units, where T is
the time since the message
departed from the source node, so that
v∗

j
yeilds the minimum weight

round-trip itinerary with the parking
time 2j−1 · T − t. Proceed to v∗

j
.

if by the end of phase j no trap
message signaling end of blockage at
vb is received, proceed to phase j + 1.

else //a trap message arrived
proceed towards the destination.

Fig. 5. Trap Algorithm using the signaling ability of intermediate active nodes.

shown in Figure 5, to obtain the competitive ratio of3. We call
this modified algorithmTrap, to distinguish it from the original
version of the Miser strategy. In our model, the primary con-
tributor to an itinerary cost is due to parking. Trap messages
do not park at the intermediate nodes. Therefore, for simplicity,
we assume their cost to be0.

To analyze the competitive ratio of the Trap algorithm, we
first prove the following lemma.

Lemma IV.2:Let vb be the blocked node. If in phasej, mes-
sage in the Trap algorithm parks at nodev∗j , then in phasej+1,
the nodev∗j+1 ∈ [s, v∗j]

Proof:
By the algorithm definition, phasej + 1 starts when no trap

message is received fromvb at the end of phasej. Assume by
contradiction that the statement of the lemma is wrong.I.e.,
let v∗j+1, the intermediate parking destination for phasej + 1,
be located betweenv∗j and the blocked node (see Figure 4).
This means that the round trip itinerary yielded byv∗j+1 has
lower cost than the one that would be yielded byv∗j , and any
other node being located between the sources andv∗j (includ-
ing both these nodes). But since the parking costs are strictly
positive, and all nodes between the source and the blocked node
are reachable in every phase, then nodev∗j+1 would have been
chosen as the intermediate parking destination in phasej. Thus,
we have a contradiction that proves the lemma.

Theorem 2:In the single block case, the competitive ratio of
the Trap on-line strategy is3.

Proof: Note that according to Lemma IV.2, and by the
fact that Trap builds minimal weight itinerary in every phase,
the total cost of Trap for the entire block durationB is bounded
from above by the cost of a simple round trip itinerary from
nodevb to nodev∗ (that would have been chosen by the optimal
algorithm) with parking timeB − 2 · TD(vb, v

∗). Therefore
the total cost of Trap is bounded from above as follows:

W (Itrap) ≤ W (Î(vb, v
∗)) + (B − TD(s, vb)) · wv∗,v∗ +

W (Î(s, v∗)).
Noticing that Î(vb, v

∗)) ≤ Î(s, d)), and W (Î(s, v∗)) ≤
Î(s, d)), and using the lower bounds given by the inequalities 4,
and 6, we obtain that:W (Itrap) ≤ 3 · W (Iopt).

E. Connection Oriented Transmission

The heuristics being discussed so far proposed a connection-
less mode of operation. The active messages equipped with the
autonomous intelligence took care of their own delivery to the
specified destination. An arrival (or, alternatively, a loss) of an
active message was not acknowledged by its destination. Since
messages can get lost in the network, this approach applied as
is may compromise reliability. Adding reliability does notim-
ply having a connection oriented communication between the
source and the destination. To add a fair level of reliability at
the transport level, it is required to store copies of the active
messages in the source node for possible retransmission. The
destination is required to supply either a negative (or a posi-
tive) acknowledgement when a specific message is lost (or re-
ceived) in order to enable retransmission and garbage collection
at the source. A detailed discussion of the reliability mecha-
nisms for the proposed algorithms is out of the focus of this
work. It should be stressed, though, that reliability requires ad-
ditional storage and bandwidth resources which may not always
be available.

If, however, connection-oriented communication between
the source and the destination is needed, and can be facilitated
by the capabilities of the communicating parties, a simple active
algorithm that would retransmit a message after a predefined
time-out can be considered as an alternative to the proposed
Miser andTrap heuristics. This algorithm may improve relia-
bility (exept for the pathological cases like the one explained in
Section I), and facilitate the shorter control loops by having the
destination informing the source immediately after getting the
message.

We look at one specific algorithm of this kind that we call
Reset. In this algorithm, a message is dropped at the blocked
node, and is retransmitted by the source when twice the round-
trip time-out between the source and the destination elapses,
and no acknowledgement for the message is received.

Performance of this algorithm serves as a helpful yardstick
in our simulation studies allowing to identify the favorable and
unfavorable conditions for the proposed on-line heuristics.

Note that while this algorithm can be modified to gain a log-
arithmic factor, by introducing the exponentially increasing re-
transmission timeouts similarly toMiser, and Trap, it is not
competitive. The total cost of a schedule in theResetalgorithm
depends on the parking cost of the source.

If, however, the source node is the cheapest node of the path,
and there is only one block per path during the message life-
time, the exponentialResetalgorithm saves an additive factor
of log2 B compared toMiser, because inResetthe message is
simply dropped at the congestion point, and does not backtrack.
At the same time, the exponentialResetis by the additive fac-
tor of log2 B more expensive thanTrap because inTrap, the
message is “retransmitted” only once when the blocked link re-
covery is signaled.

V. SIMULATIONS

In this section, we present a simulation study of the on-line
miser algorithm proposed in IV-B, and its variation proposed
in IV-D. We refer to them simply asMiser, andTrap for brevity.

5 10 15 20
0

1

2

3

4
x 10

5

Path Length

Iti
ne

ra
ry

 W
ei

gh
t

Total Cost (pyramide)

simple
miser
trap
reset

5 10 15 20
0

1

2

3

4

5

6
x 10

4

Path Length

Iti
ne

ra
ry

 W
ei

gh
t

Total cost (uniform)

Fig. 6. Average Itinerary Weight (1 block, sample 100)

5 10 15 20
10

3

10
4

10
5

10
6

Path Length

Iti
ne

ra
ry

 W
ei

gh
t

Total Cost (pyramide)

simple
miser
trap
reset

5 10 15 20
10

3

10
4

10
5

Path Length

Iti
ne

ra
ry

 W
ei

gh
t

Total cost (uniform)

Fig. 7. Average Itinerary Weight (1 block; sample 100; semi-logarithmic Y)

Since competitive analysis provides indication only aboutthe
worst case, it is beneficial to study the actual performance of the
active algorithms through simulation comparing them to other
alternatives. We compareMiser, andTrap against each other,
and also against the simple active algorithm explained in Sec-
tion I (see Figure 1), referring to the latter asSimple, and the
simple connection-likeResetalgorithm of Section IV-E.

The overhead imposed on active nodes is quantified by the
itinerary weight,i.e., by the cost of the respective itineraries
built by the algorithms (see Definition 3). In addition, we are
interested in the propagation time of a packet through the net-
work.

Our simulations consists of two sets. Section V-A investi-
gates the behavior of the algorithms in a limited case when only
one block may occur along the path during the specified dead-
line (i.e., for 1-block recoverable TMP). Section V-B studies
the algorithms fork-block recoverable TMP.

A. 1-block Recoverable TMP

We start by comparing averaged itinerary weights forSim-
ple, Reset, Miser, and Trap algorithms when only one block
may occur along the path during a specified deadline (i.e., for
1-block recoverable TMP). Although each one of these algo-
rithms works under slightly different assumptions on the model
(see discussion in Sections IV-D, IV-E), showing them all inthe
same figure also helps understanding the relative benefits ofthe
models.

Figure 6 represents the simulation results as the averaged
itinerary weight (cost) being a function of the path length for
two different cost modelspyramid, anduniform respectively.
The meaning of the cost models is as follows.

• Pyramid: this cost model represents a deterministic distri-
bution of parking densities to the nodes in the path simu-
lating “cheap” edges and “expensive core”. The parking
weight density increases exponentially with the distance
of a node from the edge,e.g., (1, 2, 4, 8, 16, 8, 4, 2, 1). The
motivation for studying the pyramid cost model is that,
usually, the load on the core switching elements increases
sharply as we move deeper into the network cloud.

• Uniform: this cost model represents a random distribution
of the parking weight densities to the nodes. Each cost is
computed as2i, wherei being an integer value uniformly
distributed between0 and6.

For every cost model the graphs are obtained by averaging
100 runs of each algorithm for every path length ranging from5
hops to20 hops. In all the experiments the deadline was chosen
to beD = 10000 time units3

Every run for a given path length and a cost model is per-
formed as follows. At the beginning of the run, we re-generate
a path by allocating the parking weight densities to its nodes.
Then, we randomly choose a link that will be congested. After
that, we draw a random congestion durationb fromU(10,D/2)
distribution, and initiate a block at time0 that will be removed
afterb time units. When this scenario is formed, we execute all
algorithms on the same scenario recording their performance:
itinerary weight (cost), and total transit time.

Figure 6 shows thatMiser is always superior toSimple, and
Resetfor both cost models while being always inferior toTrap
which is consistent with our analysis. The difference is larger
for the pyramidcost model. The explanation is that the cost
difference between the core and and the edges is very sharp.
Therefore when inMiser the message is caught by a long block
in the middle of the path, after a few iterations it will migrate far
towards the source, dramatically decreasing its costs while the
simple algorithm remain parked in a more expensive location.
In case of theuniform model these differences in the parking
costs are alleviated.

To better appreciate the difference betweenTrap, Reset, Sim-
ple andMiser cost model, consider Figure 7 showing the same
graphs as Figure 6, but using the the logarithmic scale on the
Y axis. First, consider Pyramid cost model. As one can ob-

3The error boxes are not shown. Although variance across the tests was sub-
stantial, it is small relatively to the values of the itinerary weights. Therefore
showing the error boxes is not useful. Instead, as explainedlater in this sec-
tion, we study empirical CDFs of the itinerary weights and travel time, which
is much more informative.

0 1 2 3 4

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Itinerary Weight

F
(x

)

Pyramide Cost Model

trap
reset
simple
miser

0 0.5 1 1.5 2 2.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Itinerary Weight

F
(x

)

Uniform Cost Model

trap
reset
simple
miser

Fig. 8. CDF of Itinerary Weight (1 block; path 5; sample 100)

serve, theResetalgorithm is only marginally better thanMiser
for shorter paths, and is about twice more expensive thanMiser
as paths become longer. The reason for this behavior is that
since the blocked hops are drawn from the uniform distribu-
tion, approximately half of the blocked hops are beyond the
most expensive node in the middle of the path (recall that the
nodes’ cost grow exponentially towards the middle, and then
decrease exponentially towards the edge). Even if a blocked
link is on the “other side” (i.e., more than half-way towards the
destination),Resetwould still drop the message, and then re-
transmit it later paying all the way to the blocked node once
again.Miser, in contrast, would not backtrack in this case, be-
cause all the nodes in the backward direction yield more expen-
sive round-trip schedules. Thus, in approximately half of the
blocks,Miser saves a factor ofB2·p whereB is the block du-
ration, andp is the path length. In another half of the blocks
Miserbacktracks to the source and pays exactly the same park-
ing price asReset. The commuting price is different though.
MiserpaysO(log2 B) for commuting whileResetpaysO(B

2·p).
SinceMiser may over-estimate the block duration in the last
phase,Resetmay have marginal advantage when the blocks and
the paths are short in approximately half of the cases.

As expected, theTrap heuristics results in the best perfor-
mance in both models being approximately twice cheaper on
the average thanMiser for any fixed path length. The exponen-
tial Resetwould yield a curve that would lie in between that of
Miser, and that ofTrap (it is not shown in the figure).

The simulation results for the uniform cost model show the
same relative performance on the average forMiser, Trap, and
Simplewhile Resetis often inferior on the average toSimple.
This is due to the fact that since the nodes are priced randomly,
the source is not necessarily cheap.

The variability of the itinerary weights obtained in differ-
ent runs is high, because in each run the weight depends on
the random block’s location and duration. Therefore, although
the average provides a useful indication, it is more informa-
tive to characterize the results by means ofempirical cumula-
tive distribution function (ECDF). Figures 8 and 9, show the
ECDFs for itinerary weights for both parking cost models for
path length of5 and15, respectively.

As one can clearly see, in thepyramidcost model,Simple

0 5 10 15

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Itinerary Weight

F
(x

)

Pyramide Cost Model

trap
reset
simple
miser

0 1 2 3

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Itinerary Weight

F
(x

)

Uniform Cost Model

trap
reset
simple
miser

Fig. 9. CDF of Itinerary Weight (1 block; path 15; sample 100)

exhibits high probability of very large itinerary weights.In
this cost model, the total weight of the path increases exponen-
tially with the path length. The reason that the graphs in Fig-
ures 8 and 9 pertaining to this cost model, appear to be shifted
left as path length grows (observe the differences in the X axis
scale across the graphs). This means thatSimplewould impose
much higher overhead on the active infrastructure if acciden-
tally caught by the block at an expensive (i.e., loaded) active
node.Miser, Trap, andReset, in contrast, would smooth these
outlying cases.

In case of theuniformcost model,Reset’s performance de-
teriorates due to the fact that the source node may have a very
high parking cost. As one can see, in this modelSimplehas
high probability for large outliers (heavy tail), which makes
its performance worse on the average. However,Resetbuilds
itineraries of larger weights more often. For instance, as Fig-
ure 9 shows, in over than80% of the runsSimplebuilds cheaper
itineraries thanReset.

In addition to the total cost of the itinerary we might be in-
terested in the total time required by it. Figures 10 and 11
represent ECDFs for the total transit time of the messages for
both cost models when the path length are5 and 15. As one
can see,Simple, Trap, andResetspend approximately the same
time for message transmission. In fact the differences in to-
tal time between these three algorithms are so small that their
curves appear as a single one in the ECDF graphs.

Miser, however, pays by time for the cost optimization it
achieves. This happens because in many casesMiser overesti-
mates block duration (consider the last phase of the algorithm).
In theTrap, andResetalgorithms, no overestimation happens.
This is the reason why they behave similarly toSimplewith re-
spect to the total transit time. One should remember, however,
that this is achieved through the slight relaxations of the model
as discussed in Sections IV-D, IV-E.

Finally, it is beneficial to measure the dependency of itinerary
weight on the block duration. Figure 12 depicts the cost as
function of deterministically chosen block durations andpyra-
mid cost model. As expected, the cost ofMiser increases loga-
rithmically, while the cost ofSimpleincreases linearly. As one
can clearly see, for the longer congestion periods,Miser is defi-
nitely superior. Another interesting behavior is the exponential

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Itinerary Time

F
(x

)

Pyramide Cost Model

trap
reset
simple
miser

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Itinerary Time

F
(x

)

Uniform Cost Model

trap
reset
simple
miser

Fig. 10. CDF of Itinerary Time (1 block; path 5; sample 100)

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Itinerary Time

F
(x

)

Pyramide Cost Model

trap
reset
simple
miser

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Itinerary Time

F
(x

)

Uniform Cost Model

trap
reset
simple
miser

Fig. 11. CDF of Itinerary Time (1 block; path 15; sample 100)

height and width of the steps in the performance ofMiser. This
is a clear depiction of the ‘nature’ of the algorithm operation,
that doubles its waiting time if the block is still present.

We want to attract the reader’s attention to the fact that the
encouraging results have been obtained even for relativelyshort
paths which correspond to real topologies. The deadline as-
sumed was also realistic given that the round trip time for such
topologies is order of hundreds of milliseconds while the low-
priority traffic deadlines is at minimum order of minutes. Fi-
nally, it is reasonable to assume that during a few minutes, in-
deed only one congestion would occur in the network, and the
load on active nodes would not change dramatically, so that
fixed parking weights are also reasonable. All this providesa
strong motivation for the actual implementation of the proposed
algorithm.

B. k-block Recoverable TMP

In this subsection we study the behavior of our algorithms
for k-block Recoverable TMP. Figures 7 and 13 show the av-
eraged total costs of the itineraries built by the algorithms as a
function of path length fork, the number of blocks, being1,
and14, respectively, for each of the two cost models. The costs
are shown on the semi-logarithmic scale. The presented graphs
have been obtained by averaging100 runs for every value ofk
above, and path length varying from5 to 20.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7

8
x 10

4

Block Size

C
os

t
Simple
Miser

Fig. 12. Itinerary Weight as a Function of block duration

5 10 15 20
10

2

10
3

10
4

10
5

Path Length

Iti
ne

ra
ry

 W
ei

gh
t

Total Cost (pyramide)

simple
miser
trap
reset

5 10 15 20
10

3

10
4

10
5

Path Length

Iti
ne

ra
ry

 W
ei

gh
t

Total Cost (uniform)

simple
miser
trap
reset

Fig. 13. Average Itinerary Weight (14 blocks; sample 100)

Each run is performed as follows. In the beginning of the
run,k links that will fail in this run are randomly chosen (rep-
etitions allowed). Then a total block time is randomly chosen
from U(10,D/2) as before. This total block time is split intok
shorter blocks that are assigned to the chosen links. Then fail
and recovery times are drawn from the exponential distribution
for every link chosen in the first step. To make sure that there
is at least one meaningful block, the earliest link failure time is
treated as0 time, and all failure and recovery times are shifted
left by subtracting the earliest link block time from them.

As one can observe from Figures 7 and 13, the relative be-
havior of Miser, Simple, andTrap algorithms remains similar
as number of blocks increases. However, the absolute weights
of itineraries built by the algorithms decrease with the number
of blocks. This is natural since the more blocks can occur per
fixed deadlineD, the higher is the probability that the blocks
will overlap. This effectively reduces the total blocking time by
the additive factor proportional to the number of blocks.

Resetexhibits somewhat more interesting behavior that re-
quires a more involved explanation. As one may see, in the
pyramid cost model,Resetbecomes clearly superior as the

2 4 6 8 10 12 14
10

2

10
3

10
4

Number of blocks per path of length 5

Iti
ne

ra
ry

 W
ei

gh
t

total itinerary weight (pyramide)

simple
miser
trap
reset

2 4 6 8 10 12 14
10

3

10
4

10
5

Number of blocks per path of length 5

Iti
ne

ra
ry

 W
ei

gh
t

total itinerary weight (uniform)

simple
miser
trap
reset

Fig. 14. Average Itinerary Weight (path length 5; sample 100)

2 4 6 8 10 12 14
10

3

10
4

10
5

Number of blocks per path of length 10

Iti
ne

ra
ry

 W
ei

gh
t

total itinerary weight (pyramide)

simple
miser
trap
reset

2 4 6 8 10 12 14
10

3

10
4

10
5

Number of blocks per path of length 10

Iti
ne

ra
ry

 W
ei

gh
t

total itinerary weight (uniform)

simple
miser
trap
reset

Fig. 15. Average Itinerary Weight (path length 10; sample 100)

number of blocks grows. In theuniformcost model, however,
Resetbecomes clearly inferior even to theSimplealgorithm as
more blocks occur. To understand this behavior, we must recall
that in our simulations, the total block time remains the same
throughout all the runs. Thus, on the average, the block time
per link decreases linearly as the number of blocks increases.
Figures 14, and 15 show the total itinerary weights of the algo-
rithms as a function of the number of blocks for path lengths5,
and10, respectively.

When more blocks occur per given path length, the proba-
bility of repeated failures occurring on the same link increases.
This increases the probability forMiser, andTrap to build more
expensive itineraries in both parking cost models since either
repeated backtracking occurs in these algorithms due to mul-
tiple link failures, orMiser, andTrap have no effect since the
packet gets locked between two blocks, and thus both behave
more likeSimple. In case of thepyramidcost model, source
node is always the cheapest for roughly half of the path. Thus,

in case of many short-term blocks it may be beneficial in this
model simply to wait at the source until the failures abate. Note
thatResetdoes exactly that. In case of the random cost model,
the source’s parking cost may be very high. Thus, spending
the blocking time in the cheap place inside the network may be
advantageous. This is the strategy pursued byMiser, andTrap.

Therefore, the trade-off between the strategies can be put as
follows. When the network is very unstable, and the resources
in the source node are sufficient (i.e, this node is cheap for park-
ing), Resetis likely to yield the cheapest schedules. In cases
when the network is unstable, but the source does not have suf-
ficient resources (i.e., it is expensive), the on-line strategies like
Miser, Trap, and evenSimpleare likely to be more economical.

VI. SIZE DEPENDENTPARKING COSTSMODEL

The basic model of Sections II, III does not take into account
the actual size of the messages. Thus, commuting and parking
costs do not differentiate between large and small messages.
In this section we refine our basic model by introducing costs
that depend linearly on the message size. More specifically,in
the definition ofk-block recoverable TMP of Section III,wi,j

changes as follows.

Given a finite deadlineD and a time-dependent pathR(s, d),
block sequence{b1, b2, ..., bk}, ∀(i, j) ∈ R let link weight
function

wi,j(t)
def
=

{

∞ if ∃l s.t. bl = 〈(i, j), tstart
l , tend

l 〉
ci,j · z + xi,j otherwise

whereci,j , andxi,j being finite positive constants, andz be-
ing a size of the message.

As one can easily verify, the analysis of Section IV-C still
holds for the Miser strategy in our new model. In particular,the
competitive ratio of the strategy in case of the single blockper
path throughout the deadline duration remainsO(log B).

However, if one partition the message into smaller pieces, the
Miser strategy can be improved in the new model. Indeed, in
the Miser strategy, the message goes back and forth between
the blocked node, and the node resulting in the cheapest round-
trip itinerary for phasej of the algorithm. The cost of these
recurring round-trip itineraries can be minimized if we slightly
change our basic on-line strategy. In the following sectionwe
describe a modified Miser algorithm that takes advantage of the
extended cost model. We call this versionScout.

As the size of the minimal message that can be sent over the
network decreases, so does the cost of probing the blocked link.
Thus, the Scout heuristics asymptotically converges to theTrap
strategy discussed in Section IV-D.

VII. SCOUT STRATEGY

Let smin be theminimal MTU allowed by the underlying
communication network. Then we may take an additional ad-
vantage of the active network paradigm, by allowing the miser
message to spawn a minimal size, zero cost,scoutmessage on
demand as explained below.

As long as no linken-routeto the destination is blocked, the
message moves forward, as it was the case with the Miser strat-
egy. If a blocked link is encountered at nodevb, the algorithm

proceeds in stages exactly as in the Miser algorithm with one
important difference. When the parking time of phasej termi-
nates, the message that parks at nodev∗j (of phasej) spawns a
scout message of sizesmin that follows the shortest round-trip
itineraryIrt(v

∗
j , vb) in order to check the status of the blocked

link, and inform the parked message about it.
If the previously blocked link recovered, the message moves

towards the destination. Otherwise, it behaves like the miser.
It computes the cheapest round-trip itinerary for the next phase
for all the nodes that are reachable from the current location
of the message, and follows this itinerary. Then the process
repeats itself at the end of the next phase.

To analyze this strategy, let us first notice that the running
time of the algorithm remains the same as for the Miser algo-
rithm up to a small constant factor. This is because each of
1 + log2 B phases of the algorithm may take slightly longer
because of the delay introduced by the scout message.

It is important to observe that if the link is reported by the
scout message as blocked at the end of phasej, in phasej + 1,
the message can either move backwards (i.e., towards its orig-
inal source), or stay in place. However, it wouldnever move
in the forward direction unless the scout reports that the previ-
ously blocked link became passable.

This means that the large message would not travel the path
more than three times, while the scout message would not go
back and forth more thanlog2 B times. Letk = d z

smin
e where

z is the original message size. Following the logic similar to
the one that was used in proving Theorem 1, we obtain:

W (Iscout) ≤ 3 · W (Iopt) + ·(4 · log2 B + 5) ·
W (Iopt)

k
.

Thus, the competitive ratio of the Scout algorithm is
(4·log2 B+5)

k
+ 3. In other words, we obtain a linear gain in the

total cost which is roughly the ratio between the minimal size
active message (the scout), and the average size of the manage-
ment message. Section VII-A shows a comparative simulation
study of theScoutstrategy in the size-dependent parking cost
model.

A. Size-Dependent Model Simulation Study

The simulation study of this section is similar to the one of
Section V. We use the same two cost models,pyramid, and
uniformas before. However, the parking weights generated at
the beginning of each run are treated as coefficientsci,i (park-
ing self-links weights) in the model above. Throughout all the
simulations we use message deadline of10, 000 time units, the
total blocking time is drawn fromU(10,D/2), the message size
is fixed at1024, and the scout size is fixed at128, i.e., the ratio
between the bulk of the message and the scout is8.

Figures 16 and 17 show the relative performance of all algo-
rithms in the size dependent linear cost functions model.

TheScoutheuristics becomes more advantageous when paths
become longer. This is natural since longer paths exhibit
sharper differences in parking costs.Scoutis superior also over
short paths when there exist large differences in the parking
costs.

Obviously, as the ratio between the whole message and the
scout increases, theScoutalgorithm saves more. We assumed

5 10 15 20
10

5

10
6

10
7

10
8

Path Length

Iti
ne

ra
ry

 W
ei

gh
t

Average Total Itinerary Weight (pyramide)

simple
miser
scout
trap
reset

5 10 15 20
10

6.1

10
6.3

10
6.5

10
6.7

Path Length

Iti
ne

ra
ry

 W
ei

gh
t

Average Total Ttinerary Weight (1 block; random cost model)

Fig. 16. Average Itinerary Weight as a Function of Path Length (1 block;
sample 100)

5 10 15 20
10

4

10
5

10
6

10
7

Path Length

Iti
ne

ra
ry

 W
ei

gh
t

Total Cost (pyramide)

simple
miser
scout
trap
reset

5 10 15 20
10

5

10
6

10
7

Path Length

Iti
ne

ra
ry

 W
ei

gh
t

Total Cost (uniform)

simple
miser
scout
trap
reset

Fig. 17. Average Itinerary Weight as a Function of Path Length (14 blocks;
sample size 100)

ratio of8 in our simulations, but the ratio may easily be at least
two orders of magnitude in practice, which would makeScout
a preferable on-line strategy.

VIII. R ELATED WORK

The problems studied in this paper have much in common
with the well known problem of finding a minimal weight path.
Finding a minimum weight path in a static network has long
been the subject for extensive research [7]. The same prob-
lem for networks with time-dependent edge lengths has been
most extensively studied studied by [8]. Pseudo-polynomial
time algorithms for computing the minimal delay path in such
networks when delay functions are known, have been demon-
strated.

As was pointed out by [4], if real (even if strictly positive)
time-dependent link weight functions are associated with tra-

versing the links and parking in the nodes, the problem of
finding a minimal weight path is, generally speaking, different
from that of finding a path with minimal delay. The resulting
paths are not necessarily simple and not necessarily minimal
delay paths since, in general, delays are independent from the
weights.

The well-known optimality principle [9], stating that a sub-
path of any optimal path is itself an optimal path, widely used
for finding a minimal weight path in a static network, is not
valid for time-dependent networks.

In [4], the most general model for time-dependent networks
has been studied, and similar, but more restricted optimality
principle has been established. We have discussed this principle
in Section IV-A.

In [4], the weight functions are assumed to be known in ad-
vance. Thus, this work, essentially solves ouroff-lineproblem.

Very few studies of the on-line variant of the problem ex-
ist. One special case is known as theCanadian Traveler Prob-
lem [10], [6]. In the original version of this problem, stud-
ied in [6], a topology of the network (the map) is known in a
advance. Each link is assigned a strictly positive finite delay.
However, the map is unreliable. When a traveler following a
minimal delay path, arrives to a certain hop, it may be impos-
sible to proceed to the next hop since the next link is blocked
(has infinite weight). Once a link is blocked it remains blocked
forever. The problem is to travel from a source to a destina-
tion minimizing total trip time. In [6], it was shown that if
the number of blocks is infinite then finding an on-line strategy
with a bounded competitive ratio is P-SPACE Complete. The
problem remains hard even if the blocks later recover as shown
in [10] for Recoverable CTP. In [10] an exponential algorithm
for a variant ofRecoverable CTPthat was calledk-block recov-
erable CTPwas presented. The difference of this problem from
the original variant is that the number of blocks is fixed,k, and
that links recover after a finite period of time.

Also, in [10], a polynomial time strategy minimizing the total
travel time from one vertex to another in such time-dependent
network was presented. The crucial assumption made for
achieving this solution was letting the link down time periods
besmallerthan the all internodal delays. This allowed an ele-
gant recursive solution. Indeed, it is obvious how to solve the
problem fork = 1. We just need to construct a minimal de-
lay path, between the source and the destination, and for every
vertex on this path, we need to construct a minimal delay path
from this vertex to the destination. As long as there is no block,
the traveler just advances along the minimal delay path. If a
blocked link occurs, the traveler switches to an alternative path
built from this vertex to the destination. Since only1 block in
the whole networkmay occur whenk = 1, this algorithm is
guaranteed to work. And it, obviously, has a polynomial run-
ning time. Now assume that we solved the problem fork = m,
and wish to solve it fork = m + 1. If the traveler gets stopped
by the block it may use an alternative (next minimal delay path),
and because of the assumption on the inter-nodal delay being
larger than any blocking time, when the traveler arrives to an-
other node there arek = m blocks in the networks. The case
that we already solved.

Unfortunately, the assumption on the blocks being shorter

than link delays renders the solution impractical for most net-
working environments where the situation is just the opposite:
an internodal delay of a non-faulty link is smaller than the typ-
ical down time period.

In our study we, in fact, revisit thek-block Recoverable
Canadian Traveler Problem for the special case of the topol-
ogy being a single path, and we do not make any assumptions
on the ratio between the internodal delay and the down time.
We limit ourselves to finding only the “interesting” itineraries
along this path. Namely, the itineraries that take less thanthe
finite predefined time for the traveler to arrive from the source
to the destination.

In [11] studies source-based routing approach to minimizing
delay in time-dependent networks by trying several alternative
paths in sequence. In this work the network topology is as-
sumed to be known in advance along with the probabilities of
the link failures. Under the assumption that during sufficiently
long time no new link failures occur, [11] shows that a sim-
ple greedy strategy is optimal in a tree-like network. For gen-
eral network they show that the problem of devising minimal
source-based routes can be solved in polynomial space and is
#P-Hard.

An active networks paradigm [12] allows seamless deploy-
ment of routing protocols at the level of individualactive mes-
sages. Active networks turn out especially useful for wide
range of network management applications [2]. In this work
we maintain that this paradigm may be successfully deployed
for transferring large volumes of management traffic while min-
imizing its impact on the user applications that consume the
same network resources.

IX. CONCLUSION AND FUTURE WORK

We presented a novel framework for handling low priority
administrative traffic with non-stringent timing constraints. We
demonstrated that the active networks paradigm may help in
significantly reducing the competition for network resources
between this low priority traffic and the application trafficat
times of congestion thanks to the intermediate parking capabil-
ity provided by active networks. Intermediate parking enables
to increase the network’s goodput, and, as a side effect, makes
the management traffic more robust in presence of network con-
gestion.

We proposed an efficient scheduling algorithm that mini-
mizes the overhead imposed on the active network infrastruc-
ture itself by the intermediate parking. We showed that the de-
sired effect may be achieved by constructing efficient parking
schedules along a fixed routing path. In restricted, but practical
case of a single congestion per-path, the proposed algorithm is
logarithmically competitive. In less restricted cases, itserves
as a useful heuristic, as demonstrated by simulations. Interest-
ingly enough, the encouraging results have been obtained for
relatively short paths which corresponds to the real networks’
dimensions.

Based on this study, we believe that the active network par-
adigm may be of practical usefulness in reducing the impact
of large amount of management traffic on the user applications
that consume the same network resources.

REFERENCES

[1] S. Blake et. al., “IETF RFC2475 An Architecture for Differentiated Ser-
vices,”http://www.ietf.org.

[2] Danny Raz and Yuval Shavitt, “Active networks for efficient distributed
network management,”IEEE Communications Magazine, vol. 38, no. 3,
Mar. 2000.

[3] David Breitgand, Danny Raz, and Yuval Shavitt, “The Traveling Miser
Problem,” inINFOCOM’02, New-York, NY, USA, September 2002.

[4] Ariel Orda and Rafael Rom, “Minimum weight paths in time-dependent
networks,”Networks, vol. 21, pp. 295 – 319, May 1991.

[5] He, Y. and Faloutsos, M. and Krishnamurthy, S.V., “Quantifying the
Routing Asymmetry in the Internet at the AS Level,” inThe Global In-
ternet Symposium, IEEE GLOBECOM’04, Dallas, TX, 2004.

[6] C.H. Papadimitriou and M. Yannakakis, “Shortest paths without a map,”
in 16th ICALP, July 1989.

[7] R. Bellman, “On a routing problem,”Quart. Appl. Math., vol. 16, pp. 87
– 90, 1958.

[8] Ariel Orda and Rafael Rom, “Shortest-path and minimum-delay algo-
rithms in networks with time-dependent edge-length,”Journal of the
ACM, vol. 37, pp. 607 – 625, July 1990.

[9] R. Bellman,Dynamic Programming, Princeton University Press, Prince-
ton, New Jersey, 1957.

[10] Amotz Bar-Noy and Baruch Schieber, “The canadian traveller prob-
lem,” in Second Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), San-Francisco, California, 1991, pp. 261 – 270.

[11] A. Itai and H. Shachnai, “Adaptive source routing in high-speed net-
works,” Journal of Algorithms, vol. 20, pp. 218–243, 1996.

[12] Konstantinos Psounis, “Active networks: Applications, security, safety,
and architectures,” IEEE Communications Surveys, vol. 2, no. 1,
First Quarter 1999,http://www.comsoc.org/pubs/surveys/
1q99issue/psounis.html.

PLACE
PHOTO
HERE

David Breitgand David Breitgand (S’97-M’03) re-
ceived his doctoral degree in CS from the Hebrew
University, Israel, in 2003. Starting October 2003,
David Breitgand has been a Member of Techni-
cal Staff at IBM Haifa Research Laboratory, Israel,
where he is working on advanced management tech-
nologies for networked systems and storage. David’s
research interests are in network and systems man-
agement, performance management, networking, dis-
tributed computing, and fault tolerance.

PLACE
PHOTO
HERE

Danny RazDanny Raz (M’98) received his doctoral
degree from the Weizmann Institute of Science, Is-
rael, in 1995. From 1995 to 1997 he was a post-
doctoral fellow at the International Computer Science
Institute, (ICSI) Berkeley, CA, and a visiting lecturer
at the University of California, Berkeley. Between
1997 and 2001 he was a Member of Technical Stuff
at the Networking Research Laboratory at Bell Labs,
Lucent Technologies. In October 2000, Danny Raz
joined the faculty of the computer science department
at the Technion, Israel. His primary research interest

is the theory and application of management related problems in IP networks.

PLACE
PHOTO
HERE

Yuval Shavitt Yuval Shavitt (S’88-M’97-SM’00) re-
ceived the B.Sc. in Computer Engineering (cum
laude), M.Sc. in Electrical Engineering and D.Sc.
from the Technion — Israel Institute of Technology,
Haifa in 1986, 1992, and 1996, respectively. From
1986 to 1991, he served in the Israel Defense Forces
first as a system engineer and the last two years as
a software engineering team leader. After gradua-
tion he spent a year as a Postdoctoral Fellow at the
Department of Computer Science at Johns Hopkins
University, Baltimore, MD. Between 1997 and 2001

He was a Member of Technical Stuff at the Networking ResearchLaboratory
at Bell Labs, Lucent Technologies, Holmdel, NJ. Starting October 2000, Dr.
Shavitt is a faculty member in the School of Electrical Engineering at Tel-Aviv
University. He served as TPC member for INFOCOM 2000 – 2003 and 2005,
IWQoS 2001 and 2002, ICNP 2001, IWAN 2002-2005 and other conferences,
and on the executive committee of INFOCOM 2000, 2002, and 2003. He was
an editor of Computer Networks, and served as a guest editor for JSAC and
JWWW. His recent research focuses on Internet measurement,mapping and
characterization; and QoS routing and Traffic Engineering.

