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Abstract

In todays IP networks most of the network control and management tasks are performed at the end points. As a

result, many important network functions cannot be optimized due to lack of sufficient support from the network. The

growing need for quality guaranteed services brought on suggestions to add more computational power to the network

elements.

This paper studies the algorithmic power of networks whose routers are capable of performing complex tasks. It

presents a new model that captures the hop-by-hop datagram forwarding mechanism deployed in todays IP networks,

as well as the ability to perform complex computations in network elements as proposed in the active networks para-

digm. Using our framework, we present and analyze distributed algorithms for basic problems that arise in the control

and management of IP networks. These problems include: route discovery, message dissemination, multicast, topology

discovery, and bottleneck detection.

Our results prove that, although adding computation power to the routers increases the message delay, it shortens

the completion time for many tasks. The suggested model can be used to evaluate the contribution of added features to

a router, and allows the formal comparison of different proposed architectures. � 2002 Published by Elsevier Science

B.V.
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1. Introduction

The design of todays IP networks is based on
the end-to-end argument, that calls for the internal
network elements to concentrate on the simple
forwarding function, leaving the network control
and management to the end points. As a result,

many important network functions cannot be op-
timized due to lack of sufficient support from the
network. To alleviate this problem, in many pro-
posed architectures the network elements are en-
hanced with more processing abilities. Active
networks [14,18] are an extreme example of the
break away from the end-to-end argument [1]. In
these networks even the forwarding and routing
functions may be done in software. This paper
studies the algorithmic power of networks whose
elements, namely routers, are capable of per-
forming complex tasks. We use the term active
networks in this paper to relate to any such net-
work.
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The main contributions of this paper are as
follows. First, it presents a new model that cap-
tures the hop-by-hop datagram forwarding mech-
anism deployed in todays IP networks, as well as
the ability to perform complex computations in
network elements as proposed in the active net-
works paradigm. Then, we use this framework
to present and analyze distributed algorithms for
basic problems that arise in the control and man-
agement of IP networks. Some of these algorithms
were implemented in an active network test bed
[15]. These problems include: route discovery,
message dissemination, multicast, topology dis-
covery, and bottleneck detection. In particular we
show that for many needed tasks, adding compu-
tation power to the routers reduces the overall
resource utilization. The suggested model can also
be used to evaluate the contribution of added
features to a router, and allows the formal com-
parison of different proposed architectures.
To the best of our knowledge, there is no algo-

rithmic framework to evaluate and compare algo-
rithmic solutions for active networks. The existing
models for asynchronous distributed computing do
not capture the way information and computation
interact in the active networks paradigm. In par-
ticular, the ability to perform complex computa-
tions in the network as part of the packet handling,
is not captured by traditional models. We seek to
define a model that can capture the new function-
ality enabled by active networks and the penalty of
the additionally introduced end-to-end delay. The
existing models assume that a distributed algo-
rithm is executed in phases (not necessarily syn-
chronous) of computation and transmission along
a point-to-point link. In the asynchronous model,
usually used for network protocol analysis, the
delays are finite but unbounded, i.e., the correctness
of an algorithm cannot rely on a specific bound on
the delay. However, for the purpose of time com-
plexity, each of the delays is bounded by some con-
stant. Even in cases where separate bounds are used
[9, Part IIB], the bounds on the algorithm time
complexity are always a function of the sum of these
bounds. This is due to the fact that the model as-
sumes that each transmission of a message triggers
a computation in the receiving node, and commu-
nication is only allowed with immediate neighbors.

The problem with the above model is that it
fails to capture the way distributed algorithms are
implemented in many modern network designs,
e.g., high-speed networks [3] and active networks
[15]. Cidon et al. [4] were the first to address this
problem in the context of high-speed networks.
They separated the delay associated with trans-
mission and the delay associated with computa-
tion, and allowed messages to cut through a node
with no computation delay penalty. However,
their model is not suitable for IP-like networks
since it assumes a source routing mechanism rather
than hop-by-hop routing. In addition, the bound
on the computation performed at a node (NCU in
Ref. [4]) is constant and does not depend on the
complexity of the computation performed. This is
suitable when all the computations performed in
the network are simple in nature, but may not be
appropriate when arbitrary complex computations
may be used.
We suggest here an algorithmic model in which

active networks algorithmic solutions can be
evaluated and compared against each other and
against traditional solutions that only use com-
putations at the network edge devices. The model
captures the delay inflicted by the computations
performed in the network. The main strength of
the model is its ability to capture the way the delay
of a packet passing through a router changes de-
pending whether the packet is handled by some
software intensive process or whether it cuts
through the router using only traditional IP for-
warding functions. Our model can serve not only
to evaluate algorithms but also to compare the
strength and expressiveness of different software
execution environments in the routers. Using this
algorithmic model, we can derive lower bounds on
the capabilities of different execution environments
to perform tasks. It can also be used to evaluate
the contribution of new features to an existing
architecture.
Our model captures an active IP network, i.e.,

the active nodes are part of a network that em-
ploys IPv4 routing. As in most currently suggested
models [5,15], packets arriving at a node (router)
can be treated in two distinct ways: processed by
some software centric process that is slow by na-
ture, or forwarded via a ‘‘fast track’’ (called cut
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through in Ref. [5]) that adds a negligible delay to
the IP forwarding delay. The fast track, usually,
involves some type of filtering that may be done in
hardware or in software as part of the usual IP
filtering. The slow track may be done in a physi-
cally different machine [15], or in an isolated en-
vironment and thus its delay may contain a large
constant element associated with the activation of
the relevant software unit, and a linear (in the
message size) element associated with reading and
performing calculations on the data contained in
the message.
The model is then used to develop and analyze

algorithmic solutions for several basic problems
that arise in network control and management.
Some of these problems where discussed in Ref.
[15] where we described an active network imple-
mentation and its usage for network management.
We also suggested there some basic algorithmic
solutions, and discussed their asymptotic com-
plexity. Similar observations were later made by
Chae et al. [2]. However, without the theoretical
framework developed in this paper, the analysis of
the algorithms presented in Refs. [2,15] is very
preliminary, e.g., the delay in the slow track is not
considered. Using the model we developed here,
enables us to develop superior algorithms for
these basic problems. The performance measures
we use are time complexity and message com-
plexity. A good algorithmic solution may aim at
one of these measures or at some best tradeoff of
the measures.
We first consider computations along a path.

The most basic problem here is to identify the ids
of the nodes along a route between two end
points. 2 We analyze several algorithms for this
problem, discuss the tradeoff between the different
complexity measures, and finally present an algo-
rithm that is optimal (up to a log factor), both in
terms of time and message complexity. Another
closely related problem is to compute any function
along the route. Bottleneck detection is studied as
an illustrative example for this class of problems.

In this case we seek to find the most congested link
along a path. A second class of problems deals
with the optimal delivery of messages to a (possi-
bly large) group of nodes. We consider two cases:
first we assume that the group is an ad hoc col-
lection of destinations targeted by just a single
message, and second we assume the existence of a
long lived multicast group. In the latter case we
optimize the construction of the multicast tree.
Our results can be used to build optimal applica-
tion layer multicast trees. The algorithms we sug-
gest for the above problems are used as building
blocks for solving the basic networking problems
of topology and routing discovery. We also con-
sider a sub-class of globally insensitive functions
[4], that can be computed using only constant
memory, such as counting the network nodes,
searching for a color printer, or computing the
network average load.
The rest of the paper is organized as follows.

The next section describes the formal model. In
Section 3 we discuss the problems of calculating
functions along a path. Section 4 examines the
message dissemination problem in the case of an
ad hoc distribution list, while Section 5 examines a
simple case of multicast. Section 6 deals with to-
pology discovery, and Section 7 discusses compu-
tation of global functions. We discuss the results
and further work in Section 8.

2. Model

The network is represented by a connected
graph G ¼ ðV ;EÞ, where V is the set of nodes and
E is the set of bidirectional communication links.
Each node (see Fig. 1) consists of a fast forward-
ing unit (FF), e.g., a legacy IP router, which is
attached to the communication links, and an exe-
cution environment (EE). A packet suffers for-
warding delay at every hop, which consists of
transmission delay and queueing delay. In some
cases, the packet is handled by the EE, in which
case, it will suffer an additional processing delay.
The communication links preserve the order of
packets handed to them for transmission (FIFO
order), the EE serves the programs in a FIFO
order, as well.

2 This is a special case of functions that cannot be computed

with less than linear memory, such as the mode (most frequent

element) of a vector.
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A packet header is comprised of a source ad-
dress, a destination address, and an application
identifier. The FF matches each arriving packet
header against a set of filters. If a match is found
the packet is diverted to the EE, otherwise the
packet is forwarded only according to the desti-
nation addresses. More formally, at each node i,
there exists an oracle forwarding function
Fi : V ! Ni which for every destination v 2 V
returns the next hop on the route from the group
of i’s neighboring nodes, Ni. Motivated by dis-
tance vector protocols [10], such as RIP [6], the
forwarding function and the list of immediate
neighbors is the only information available at a
node. We do not assume any restrictions on the
routing function. In particular a route to a parent
may be different from a route to a child, i.e., the
route a ! b ! c ! d ! e may co-exist with the
route a ! x ! y ! z ! d. However, for the pur-
pose of complexity analysis, we assume that the
underlying routing algorithm is a shortest path
algorithm. All the presented algorithms work
correctly without this assumption. We denote the
network diameter as defined by the underlying
routing by D.

2.1. Motivation

The model captures the structure of a router
with IP-like forwarding that is performed by some
fast forwarding hardware, and general EE that is
capable of performing complex computations. It

can be easily used to analyze algorithms in IP
networks, active networks with IP as an optional
execution environment [5], or IP networks en-
hanced with programmable management capabi-
lities [15]. An IP packet has many fields some of
which were defined to aid in specific tasks not di-
rectly related to the IP function. Our aim is to
capture the basic behavior of the protocol, the one
that is likely to be included in any datagram net-
works forwarding protocol.
The EE is an execution environment in which

programs that are stored in the packet or refer-
enced by it can be executed. Although we use the
same term as in Ref. [5], the EE here is an ab-
straction of the entire active environment defined
in Ref. [5] that may include some of the func-
tionalities of the NodeOS, and one or more EEs.
In the most general case, the programs can per-
form any computation both on the packet’s data,
and on local data (e.g., soft state left by other
packets, or local topology information). Therefore
the delay of a packet through the EE may be a
function of the data size. This function reflects the
complexity of the algorithms in the program.

2.2. Performance measures

We follow the standard model for asynchro-
nous communication networks [9]. For the cor-
rectness of the algorithms all delays associated
with a packet are assumed to be finite but un-
bounded. However, for the purpose of time com-
plexity analysis, delay is upper bounded. In our
case, we assume that the delay imposed by the FF
is upper bounded by a constant C (we preserve the
notation of Cidon et al. [4]). The process of di-
verting a packet to the EE imposes a constant
delay, as a result of the traversing the communi-
cation protocol stack. The execution of the pro-
gram at the EE introduces an additional delay
which is a function of the algorithm in use and the
size of data it is working on, k. The overall EE
delay is, thus, bounded by P (k), a function of the
executed program complexity and the constant
cost. Thus, a packet that passes only through the
fast track suffers a delay of C time units, while a
packet that passes through the EE is delayed by
C þ P ðkÞ time units.

Fig. 1. A node structure.
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The function P (k) depends on the computation
that is performed at the EE. However, since in
order to send a message to the EE a node has to
copy it, the function P (k) is at least linear. For the
rest of this paper we assume PðkÞ ¼ Pc þ kPl, where
k is the packet length, and in many cases, Pc is
negligible. Thus, for simplicity we use PðkÞ ¼ kP ,
where P is a constant. Recently, Moore et al.
[12] proposed a language for active networks that
guarantees linear execution time. Investigating
other processing delay functions is an interesting
future research topic. In most cases, since the FF is
implemented by specialized hardware while the EE
is a general purpose processor, C < P ð1Þ. For a
discussion about some measured values of Pc and
Pl see Section 3.1.
We neglect the cost of transmitting the pro-

grams themselves. We believe, that most active
programs will be used extensively for a long time
period and thus be cached in the nodes. The cost of
getting the program to the node cache can be
amortized over all its many activations. In other
cases, where small scripts are tailored for specific
applications [7,16] the cost of sending them is ei-
ther negligible or can be introduced through the
function P (k).
We want to compare the algorithm perfor-

mance both from the application point of view
(time delay) and from the network point of view
(efficient use of network resources). The follow-
ing performance measures are, thus, of interest
[4]: time complexity––measures the time that
may elapse from a task starting point to its ter-
mination; and communication complexity––the
number of hops traversed by packets to perform a
given task. Other complexity measures such as bit
complexity or memory usage are not discussed
here.

3. Route exploration

In our model, unlike the model of Cidon et al.
[4], global routing information is unavailable at a
node. Retrieving this information, such as the
route between two nodes, is important both to user
and network management applications. In IP
networks, the route detection problem is addressed

by the traceroute program, which is a hack
that uses the TTL field in the IP header.
The problem can be stated as follows. A node v

seeks to learn the ids of the nodes along the route
from itself to another node u. Recall that in
our model, v only knows the id of the next hop
node along this route. In a naive implementation
(naive), node v queries this node for the id of the
second hop node. Then it iteratively queries the
nodes along the route until it reaches the one
leading to the destination. This method resembles
the way the traceroute program works, but it
does not use the TTL field which is not part of the
model. The delay of the naive algorithm is com-
prised of n activations of an EE level program plus
the network delay of 2i for i ¼ 1; 2; . . . ; n� 1 hops.
The message complexity is given by

Pn�1
i¼1 2i ¼

Oðn2Þ (see Table1 and Fig. 2).
Next we describe two simple algorithms, collect-

en-route and report-en-route (presented in Ref.
[15]) that improve the above solution to the route
exploration problem, and analyze their perfor-
mance using our model. Following this discussion
we turn to more sophisticated solutions that
achieve near optimal performances.
In algorithm collect-en-route (see Fig. 2(C)) the

source initiates a single packet that traverses the
route and collects the host ids from each node.
When the packet arrives at the destination node,
it sends the data directly (using only the FF)
back to the source. Clearly, the message com-
plexity of this algorithm for a node at distance n is
exactly 2n.
The communication delay for this algorithm is

2nC since exactly one message traverses the route
in each direction. The execution delay at a node at
distance i is iP since the message length is in-
creased by one unit each hop. The total delay is

Table 1

Summary of route exploration algorithms

Algorithm name Time complexity Message complexity

naive OðnP þ n2CÞ Oðn2Þ
collect-en-route Oðn2P þ nCÞ OðnÞ
report-en-route OðnP þ nCÞ Oðn2Þ
report-every-l Oððnþ l2ÞP þ nCÞ Oðn2=lÞ
collect-rec OðnP þ nCÞ Oðn log nÞ
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given by 2nC þ
Pn

i¼1 iP ¼ 2nC þ ðnðnþ 1Þ=2ÞP .
Note that this algorithm is somewhat more sen-
sitive to packet loss than the previous (and the
following) one since no partial information is
available at the source before the algorithm ter-
minates. Furthermore, the time-out required to
detect a message loss here is significantly larger
than with the other algorithms presented here.
In algorithm report-en-route (see Fig. 2(B)) the

source sends a request packet downstream along
the path. When a request packet arrives at a node,
it sends the required information back to the
source and forwards the request downstream to
the next hop. This design minimizes the time of
arrival of each part of the route information, while
it compromises communication cost. The message
complexity is clearly Oðn2Þ, while the processing
complexity is OðnÞ.
The communication delay for this algorithm is

2nC since exactly one message traverses the route
forwards till the destination, and this message is
then sent back to the source. The execution delay
in all the nodes is P since the message length is

exactly one unit. The total delay is given by
nð2C þ P Þ.
Algorithm collect-en-route features a linear

message complexity with a quadratic delay, while
algorithm report-en-route features a linear com-
pletion delay with a quadratic message complexity.
Combining these two algorithms we can achieve
tradeoffs between these two measures. In particu-
lar, if both measures are equally important we may
want to minimize their sum.
An algorithm that enables us to optimize the

two measures combined works as follows (see Fig.
2(D)). The first step is to obtain n, the length of the
route between the two end points. This may be
known from previous executions of the algorithm
or can be obtained by an algorithm which is linear
both in time and message complexity (see Section
3.3). Next we send a fixed size message to initiate
collect-en-route in n=l segments each of length l.
This can be done using a counter that is initialized
to l at the beginning of every segment, and de-
creased by one at every intermediate node. Thus,
the execution of collect-en-route in the segment i

Fig. 2. Example of route exploration executions on a four hop route: (A) naive; (B) report-en-route; (C) collect-en-route; and (D)

report-every-l.
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starts after at most ði� 1ÞðC þ PÞ time units, and
the overall time complexity is ðn� lÞðC þ P ÞþPl

i¼1 ðC þ iPÞ ¼ OðnC þ ðnþ l2ÞPÞ. The message
complexity is OðnÞ þ

Pn=l
i¼1 ðlþ ilÞ ¼ Oðn2=lÞ.

Choosing l ¼ ðnÞ1=2 results in a linear time com-
plexity while using OðnðnÞ1=2Þ messages. The re-
quirement to balance the two measures (up to a
constant factor of P), translates to l2 ¼ n2=l which
gives l ¼ n2=3. For this l value both time and
message complexity are Oðn4=3Þ.
A different approach, however, is needed to

reduce both the time and message complexity. The
following algorithm, collect-rec, achieves an al-
most linear time and linear message complexity.
The main idea is to partition the path between the
source and the destination into two segments, to
run the algorithm recursively on each segment,
and then to send the information about the second
segment route from the partition point to the
source via the FF track. In order to do so on the
segment ði; jÞ, in each recursive step one needs to
find the id of the partition point, k, and to notify
this node, k that it has to perform the algorithm on
the segment ðk; jÞ and report to i. In addition, i has
to know that it is collecting data only until this
partition point, k, and it should get the rest of the
information via the fast track. The partition can be
done, naively, in two passes. First we find the
segment length. Then sending the segment length
and a counter in the slow track allows k to identify
itself as the partition node. This will result, for a
segment of length n, in a 2nP þ 3nC time com-
plexity, and 3n message complexity. Sending the
data from the partition point using the FF track,
requires nðP þ CÞ time, and adds at most n to the
message complexity. We thus get for the time
complexity

TCðnÞ6TCðn=2Þ þ 4nðP þ CÞ
and for the message complexity

MCðnÞ6 2MCðn=2Þ þ 4n:

By solving these equations we can prove the fol-
lowing theorem.

Theorem 1. Algorithm collect-rec solves the route
detection problem with time complexity of OðnÞ, and
message complexity of Oðn log nÞ.

A pseudo-code implementation of this algo-
rithm is given in Appendix A.

3.1. Numerical example

In this section we use measurements made in
active network prototypes to evaluate what the
real values of the delay bounds C and P ðkÞmay be.
One must take the numbers we quote here with
great caution: they are taken from research pro-
totype systems, and they reflect average delays
rather than delay bounds. The quotation of these
measurement serves two aims: first, the numbers
support our basic motivation for the need of a new
model with a distinction between the delays of the
FF and the EE. In addition, we use it as an ex-
ample of a real use of our general model to eval-
uate the performance of the algorithms described
and analyzed in Section 3 for a real active network.
In PLANet, a system built at The University of

Pennsylvania, Hicks et al. [8] measured the tra-
versal delay through a software router. The mea-
sured delay through the router running in kernel
mode was CðkÞ ¼ 36þ 0:13k lS. For PLAN pro-
grams the delay was P ðkÞ ¼ 259þ 0:16k lS. The
program they used for their measurement had a
running time independent of the packet length
which may explain the small increase in k’s coef-
ficient compared with the significant increase in the
constant element.
In Bowman, a NodeOS built at The Geor-

gia Institute of Technology, Merugu et al. [11]
measured packet processing delay through the
NodeOS and found that P ðkÞ ¼ 560þ 1:1k lS (see
Ref. [11, Section IV-A.1]). There is no direct delay
measurement through their software router, but
the throughput data shows that the gap is between
200% for small 200 byte packets to 5% for packets
over 1200 bytes. Here, too, the processing of the
packet was independent of the packet length.
In PAN, a capsule-based active node built at

MIT, Nygren et al. [13] measured the delay
through several configurations of an active node.
When only IP forwarding was used, the delay
measured for a 128 byte packet was Cð128Þ ¼
50 lS, and for 1500 byte packet Cð1500Þ ¼
v130 lS. These numbers are very close to the ones
measured in PLANet [8]. The active evaluation
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delay for 128 byte packets ranges from 70 lS for
kernel implementation using native code to close
to 500 lS for a Java implementation.
Figs. 3–5 depict the message and time com-

plexities of the five route exploration algorithms
described before as a function of the route length.
We selected two P=C ratios, 5 and 20, based on the
measurements reported above. Since the quadratic
curves hide the differences between the sub-qua-
dratic functions, the right graph of each of the
figures is scaled to show the behavior of the latter.
Fig. 6 depicts the tradeoff between the time and
message complexities. For each algorithm we plot
how the time–message complexity operation point
advance in the time–message complexity space. We
plotted the values between 1 and 46 stepping by 5
between samples. Note that the collect-rec curve is
much shorter than the rest, as it represents a close
to optimal tradeoff.

3.2. Lower bounds

The message complexity lower bound for the
route detection problem is X(n). The proof is
trivial since one has to query at least n� 1 of the
nodes on the route. To reach, say, a node in the
middle of the route from either end, will cost X(n)
messages. The processing complexity lower bound
is X(n) since one has to query at least n� 1 of the
nodes on the route.
A trivial time complexity lower bound for the

route detection problem is XðP þ 2nCÞ, since a
message should, at least, reach the destination (to
be exact, one hop before the destination, since the
destination id is known there) and then be sent
back to the source. The propagation delay along
an n hop route is 2nC, and the delay caused by the
application that turns the message around is P.
Next we state and prove a tight lower bound.

Fig. 3. The message complexity of the route exploration algorithms as a function of the route length.

Fig. 4. The time complexity of the route exploration algorithms as a function of the route length for C ¼ 1 and P ¼ 20k.
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Theorem 2. The time complexity lower bound for
the route detection problem is 1

2
ðn� 1ÞðP þ CÞ.

Proof. Consider a line graph of n nodes, numbered
0; 1; . . . ; n� 1. Since only local information is
maintained, all nodes except, may be one, must be
queried. We claim that a node of distance l < n=2
from the source cannot be queried before time
ðl� 1ÞðP þ CÞ. The proof follows by induction.
For the base case, l ¼ 2, the source can send a

process to node 1, where the process can query the
id of node 2. Without querying node 1, the source
cannot reveal the ids of node 1’s neighbors. This
query takes in the worst case P þ C time units.
Assume the hypothesis holds for l� 1, i.e.,

node l� 1 cannot be queried before time ðl�
2ÞðP þ CÞ. To query node l, node l� 1 has to be
queried, and then an additional C þ P time units

may pass, in the worst case, before the query of
node l terminates.
For nodes at distance l > n=2, the source can

ask the destination to start a similar process from
its end. This (possibly wasteful) process can reveal
the other half of the route. �

Note that this lower bound holds for an arbi-
trary message length, and an arbitrary processing
time at the EE.

3.3. Bottleneck detection

In many cases exploring the path between two
nodes is just an intermediate step towards com-
puting some function along this path. A typical
example is bottleneck detection: we want to de-
tect the most congested link along a path. For

Fig. 5. The time complexity of the route exploration algorithms as a function of the route length for C ¼ 1 and P ¼ 5k.

Fig. 6. The behavior of the route exploration algorithms in the message and time complexities domain as the route length changes

when C ¼ 1 and P ¼ 20k.
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example, in QoS routing, the maximum available
bandwidth in a path is an important criterion in
selecting a path. One way to implement it is by
using modified versions of any of the previous
route exploration algorithms. In these versions, the
algorithm collects, in addition to the nodes id, also
its current load. The bottleneck is computed at the
source based on the collected information. How-
ever, there is a better alternative. Consider the
following (compute-en-route) algorithm: a packet
containing the id of the most congested link so far
and its load value is sent along the path. Each
node updates it, if it is more congested, and for-
wards it towards the destination. The last node
sends the report directly (using FF) to the initiator.
Since the message has a fixed size along the path,
unlike in the report-en-route case where it was
linear, the time complexity here is only OðnðP þ
CÞÞ. The message complexity and the computation
complexity are the same as in report-en-route.
Bottleneck detection is a special case of a one-

path linear function (termed succinct functions).
These functions, e.g., average, min, max, and
modulo, can be computed with a single path on the
input, requiring only constant amount of memory.

Theorem 3. Every succinct function on a path can
be computed with time complexity OðnðP þ CÞÞ and
a message complexity of O(n), and these bounds are
tight.

Proof. The compute-en-route algorithm can be
used to compute any succinct function along a
path. Since the message size is constant the time
complexity is linear. The message complexity is
linear since at most one message traverses each
link along the path in each direction. Notice that
the lower bound we proved in the previous section
holds for this case, thus the compute-en-route al-
gorithm meets both the time and message com-
plexities lower bounds to compute a succinct
function along a path. �

4. Message dissemination

In many applications there is a need to deliver a
message to a group of nodes. In such cases, the

group of nodes is defined ad hoc for the purpose of
a single message dissemination and it is not a long
lasting group as in multicast applications. Since
the group is defined by the recipient list of a single
message, it is not efficient to form a multicast
group or to invest in any other long term infra-
structure. A trivial solution to disseminate the
message to the group is to send a unicast message
to each node. The time complexity of this solution
to a recipient group of size m is bounded by
mP þ DC. The first term is due to the processing
delay at the sender, while the second is the prop-
agation delay using the FF infrastructure. The
message complexity, however, may be mD.
We assume that a message is comprised of a

header with a list of receivers, and a body which,
for a large group of receivers, is much smaller than
the header. Thus for the analysis purpose the
message size is approximated by the size of the
recipient list it carries.
Notice that the union of all the routes from the

originator to the receivers is a Dissemination Ad-
dress Group (DAG) rooted at the originator.
From this DAG we create a directed tree, termed
the dissemination tree, by splitting every node with
i incoming links into i nodes, recursively. The tree
height, hT, is bounded by the network diameter, D.
The number of nodes in the dissemination tree, nT,
is bounded by mhT since there are m recipients
each at distance not longer than hT6D. We denote
dT the maximum out-degree of a node in the dis-
semination tree.
Our solution is to partition the recipient list at

the source according to the first hop on the path to
each recipient. We continue this partitioning at
every intermediate node until the message arrives
at the tree leaves. This way, exactly one copy of the
message traverses each link in the dissemination
tree. For example, in a balanced binary tree with
m leaves, our message complexity is 2m, while the
unicast solution has a message complexity of
m logm.
At each node, the processing time is linear in the

recipient list length. Recall that this list contains
only the addresses of the leaves in the sub-tree
rooted at the node. The propagation delay is
bounded by hTC. The processing delay is bounded
by hTmP . Thus the time complexity is bounded by
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hTðC þ mP Þ. The actual delay depends on the tree
structure. For example, in a balanced binary tree
with m leaves, hT ¼ logm. In addition, for this
special case, the number of leaves for a node at
distance logðm� iÞ is 2i, and thus the processing
delay is OðmP Þ and the time complexity is
OðlogmC þ mPÞ. Note, that for this case we
achieve a logarithmic improvement in the utiliza-
tion by paying only a constant factor in delay.

5. Multicast

In this section we consider the case of multi-
casting messages to a group of users. Unlike the
previous section, here we assume the existence of a
(long lived) multicast group and discuss its optimal
construction of the multicast tree.
As for the algorithms discussed above we look

at two performance measures the time complexity,
which is the time from the transmission of a mes-
sage until it is received by the last receiver, and
message complexity, which is the total number of
hops a message traversed in the underlaid net-
work.
The problem of constructing a multicast tree

translates in our model to selecting a group of
relay nodes in the network in which packets will be
handled by the EE. In each such relay node the
packet will be multiplied and sent to some mem-
bers of the multicast group and to some other relay
nodes. The collection of the forwarding relations
among the nodes defines a multicast tree. Note
that in the special case of application layer multi-
cast, relay nodes are restricted to members of the
multicast group, but in our case, since all nodes are
active, we can use any network node.
To demonstrate the problem, consider the

simple topology of Fig. 7 where the root, S, wants
to transmit messages to a group of two nodes, A
and B, where l is the length of the path between
S and R, and k is the length of the paths be-
tween R and either A or B. Using unicast, the
message complexity of sending a separate message
to each user is 2ðlþ kÞ and the time required is
2P þ Cðlþ kÞ. If we use the message dissemination
algorithm from the previous section, we end up
with the optimal message complexity of lþ 2k but

the completion time increases to 2P þ ðP þ
CÞðlþ kÞ. Given the new ability to use relay nodes
we can send a single message to R which will be
relayed to both A and B. In this case the message
complexity is again optimal, i.e., lþ 2k, and the
completion time is P þ 2P þ Cðlþ kÞ. Note that if
we are forced to build an application layer multi-
cast, and assuming k < l, we can use A as the relay
to B and pay a message complexity of lþ 3k and
complete the task in time 2P þ Cðlþ 3kÞ.
For general topologies the problem is very hard,

thus, we concentrate here on the simple line to-
pology. Specifically, we will analyze the case where
the sender is at the end point of a segment of nodes
of length n, and all the nodes are part of the
multicast group. For this case, the unicast solution
has a time complexity of nðP þ CÞ (nP we pay at
the source to send n messages) and the message
complexity is Oðn2Þ. The message dissemina-
tion solution, which is here simply sending
the message in the slow track along the path, re-
quires a message complexity of OðnÞ and takes
nðC þ PÞ time steps. Next, we devise better trees
for this problem in the spirit of algorithm collect-
rec.
The main idea behind the solution is to build a

virtual tree such that we balance the time spend on
multiplying the messages at the relay nodes and
the number of copies that traverse the links in the
underlaid topology. For this end, we build a bal-
anced x-ary tree and calculate the message and
time complexity for this tree.

Fig. 7. A simple multicast tree.
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The first term is the cost of sending the message to
the x� 1 children in the tree, where child j is at
distance nj=x. The second term is due to the re-
cursive construction of the tree in each of the x
sub-trees. Solving for n we get
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The first term is the cost of sending x� 1 copies of
the message to the children (the source is acting as
one of the children), the second term is the prop-
agation delay to the farthest child, and the last
term is due to the recursive construction. Solving
for n we get
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Interestingly, both complexity measures as a
function of x have the same form, linear in x= log x,
which achieves a minimum at x ¼ 3 when re-
stricted to integers. Fig. 8 depicts the time and
message cost for the case where C ¼ 1, P ¼ 20, and

n ¼ 32. Note that for the optimal x, the time re-
quired is just over 220 units, while for message
dissemination algorithm we would pay 672 units,
on the other hand, we pay a factor of logx n in the
number of messages which is, in our example, 4.75.

6. Topology discovery

6.1. Node id discovery

A node in the network wishes to find the net-
work topology, i.e., the ids of all the nodes in the
network and the links that connect them. One
simple algorithm, report-direct, is to use Segall’s
PIF [17] algorithm, to request from all the nodes to
report the id of their neighbors directly to it. This
algorithm is the fastest possible (see below), but it
is sub-optimal in its use of bandwidth. A different
algorithm, report-on-tree, uses the tree built by PIF
to collect the topology information as follows. A
node starts the algorithm by sending a PROBE
message with its id to all its neighbors. Every node
that receives a PROBE message for the first time,
marks the neighbor it received the message from as
its parent, and sends a PROBE message with its
own id to all its neighbors but the parent. A node
that received a message from all its neighbors
sends a REPORT message to its parent. The RE-
PORT message contains all the messages received
by the node from its neighbors but the parent. This
algorithm is similar to the connectivity test algo-
rithms suggested by Segall [17].

Fig. 8. The cost in time and messages of using a multicast tree for a line of 32 nodes, where P=C ¼ 20.
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It was shown there [17, Theorem PI-1-c] that for
the traditional asynchronous model the forward
part of the PIF is the fastest algorithm to reach
every network node. The following lemma states
that this result also holds in our model.

Lemma 4. The PIF algorithm messages reach
every node before any other algorithm message ini-
tiated by the same node at the same time.

Proof. Since the message size in PIF is constant the
delay bound for passing through the EE is con-
stant as well. In addition, the lack of topology
information does not allow us to use the cut-
through option, and forces any topology discovery
algorithm to pass through the EE at every node it
passes. Thus, the delay incurred on a packet that is
sent on a link (u; v) is always the sum of the delay
on the link and the delay through the EE. We can
thus use the analysis for the general asynchronous
model of Segall [Theorem 17, PI-1-c]. �

Now we can state and prove the following
theorem.

Theorem 5. Algorithm report-direct is the fastest
possible for topology discovery.

Proof. By Lemma 4, the first report-direct message
arrives at a node no later than any other message
can be delivered to this node by any other algo-
rithm. This first message triggers a direct message
to the initiator using only the FF path. Thus, no
other algorithm can generate a reply which would
arrive at the initiator before the reply in report-
direct. Therefore, the initiator would terminate
report-direct before it can terminate any other al-
gorithm. �

The time complexity of algorithm report-direct
is bounded by ðjV j þ D� 1ÞC þ ðjV j � 1ÞP . The
forward phase of building the tree is bounded by
ðjV j � 1ÞðC þ P Þ, while the backwards report is
bounded by DC. Recall that D is the network di-
ameter as defined by the underlying routing. The
message complexity of the first stage is clearly 2jEj
since a PIF message traverses each link once in

each direction. The report messages travel up to D
links, and hence, the overall message complexity is
bounded by 2jEj þ jV jD.
An obvious bound on the time complexity of

report-on-tree is OðjV j2P þ jV jCÞ since no node
can receive more messages than its degree which is
bounded by jV j � 1.

6.2. Routing discovery

Recall that in our model the only routing in-
formation at a node is the next hop to any desti-
nation. If a node wishes to know the global
routing structure from itself to a group of nodes,
or from a group of nodes to itself the topology
information may not be sufficient.
This information may be obtained by using any

of the algorithms described in Section 6.1, by re-
quiring each node to send its full forwarding table.
This may increase the time complexity by a factor
of jV j. In this section we discuss better alternatives
to address this problem.
First examine the case where a node wishes to

learn the incoming route to itself. If it wished to
learn the path from every node in the network
to itself, we can use any of the algorithms of Sec-
tion 6.1 and ask each node to send its id and the id
of its next hop neighbor on the route to the orig-
inator. This will only add a factor of 2 to the time
complexity, without increasing the message com-
plexity.
When the route from a sub-group of the nodes

is of interest, the algorithm works in two phases.
In the first phase a message is sent to the sub-
group using the message distribution algorithm of
Section 4. In the second phase, each of these nodes
starts a special version of the collect-en-route al-
gorithm. This version collects the route informa-
tion but also keeps a state at the node to indicate
that the algorithm traversed it. A node that re-
ceives an additional collection message, stops the
collecting process and sends the result directly to
the origin using only the FF infrastructure.
The message complexity of the second phase

is the sum of the path lengths from each member
of the sub-group to the originator, which is
bounded by Dm. The time complexity is OðDCþ
D2P Þ.
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7. Global functions

In many management and control applications
there is a need to compute a general function from
variables that reside in different network elements.
For example, the average load of a network, is
done by retrieving local load information from the
network elements and computing the average.
Finding the closest DNS server, may be done by
retrieving the distance of all DNS servers and
choosing the one with minimal distance.
These functions are a special case of a global

sensitive function [4] which we term succinct
functions. These functions can be computed with a
single path on the input in any order, requiring
only constant memory.
The computation of succinct functions can be

done using an algorithm similar to report-on-tree.
When the information is collected along the tree, it
is sufficient to send constant sized messages, that
indicate the value of the function on the appro-
priate sub-set of nodes. Thus, we can prove the
following theorem.

Theorem 6. Every global succinct function can be
computed on a sub-set of m elements with time
complexity OðmP þ DCÞ and a message complexity
of OðEÞ.

8. Discussion and further work

This paper presents a new model that captures
the hop-by-hop datagram forwarding mechanism
deployed in todays IP networks, as well as the
ability to perform complex computations in net-
work elements as proposed in the active networks
paradigm. The model is then used to present and
analyze distributed algorithms for basic problems
that arise in the control and management of IP
networks.
The main point raised against enhancing rou-

ters with programmable abilities, is the alleged
inefficiency and unreliability it must introduce to
the network. We show that although the local
delay increases due to a slower mechanism to

evaluate packets, the overall performance of many
important tasks significantly improves.
The suggested model can also be used to eval-

uate the contribution of added features to a router,
and allows the formal comparison of different
proposed architectures. For example, we plan to
use this framework to formally analyze the power
that can be gained by using the TTL mechanism,
and forward and copy capability (similar to the
selective copy feature of Ref. [4]). It can be easily
used to analyze algorithms in IP networks, IP
networks enhanced with programmable manage-
ment capabilities [15], or to compare different EEs
within the active networks paradigm.

Appendix A. Formal description

In this section, we assume that a single bit is
used by the filter in the FF to divert messages to
the EE. We denote messages that should be di-
verted to the EE although the current node is not
the message destination with an asterisk.

A.1. Collect-en-route

The algorithm uses a single message that con-
tains the source node id, the destination node id,
and a list of ids it traverses. The source starts the
algorithm by sending the message MSG
ðs; d; fsgÞ
towards the destination, and outputs the list it
receives from the destination (Fig. A.1).

A.2. Report-en-route

The algorithm uses two message types: a for-
ward going message, MSG
, that contains the
source node id, the destination node id, and a hop
counter; and a backward going Report. The source

Fig. A.1. Collect-en-route for an intermediate node i.
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starts the algorithm by sending the message
MSG
ðs; d; 0Þ, each node increases the hop counter
by one, forward the message towards the destina-
tion, and sends a Report towards the destination
with its id and the hop counter value. The source
uses the hop count to order the list of nodes it
outputs (Fig. A.2).

A.3. Naive

The source sends report request messages, RR,
that contain the source node id, and the destina-
tion node id. An intermediate node replies to the
RR messages with a Report message that contains
the next hop router. nexthopðdÞ is the function that
queries the forwarding oracle for the next hop
router to the destination d (Figs. A.3 and A.4).

A.4. Collect-rec

Figs. A.5–A.7 give a formal description of the
algorithm. The implementation of getlengthðs; dÞ,

which finds the hop length of the route between s
and d, is similar to collect-en-route. The only dif-
ference is that here the source sends a counter
initialized to zero as the third parameter instead of
an empty list, and intermediate nodes increase the
counter by one instead of concatenating the next
hop (see line 3 and 5 in Fig. A.1).
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