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The Cache Location Problem
P. Krishnan, Danny Raz, Member, IEEE, and Yuval Shavitt, Member, IEEE

Abstract—This paper studies the problem of where to place net-
work caches. Emphasis is given to caches that are transparent to
the clients since they are easier to manage and they require no co-
operation from the clients. Our goal is to minimize the overall flow
or the average delay by placing a given number of caches in the
network.

We formulate these location problems both for general caches
and for transparent en-route caches (TERCs), and identify that,
in general, they are intractable. We give optimal algorithms for
line and ring networks, and present closed form formulae for some
special cases. We also present a computationally efficient dynamic
programming algorithm for the single server case.

This last case is of particular practical interest. It models a net-
work that wishes to minimize the average access delay for a single
web server. We experimentally study the effects of our algorithm
using real web server data. We observe that a small number of
TERCs are sufficient to reduce the network traffic significantly.
Furthermore, there is a surprising consistency over time in the rel-
ative amount of web traffic from the server along a path, lending
a stability to our TERC location solution. Our techniques can be
used by network providers to reduce traffic load in their network.

Index Terms—Location problem, mirror placement, transparent
cache.

I. INTRODUCTION

CACHING improves network and system performance for
World Wide Web browsing by saving network bandwidth,

reducing delays to end clients, and alleviating server load [13],
[29]. Currently, the popular locations for caches are at the edge
of networks in the form of browser and proxy caches, the ends of
high latency links, or as part of cache hierarchies [8], [31]. Sig-
nificant research has gone into optimizing cache performance
[8], [33], [29], [10], co-operation among several caches [8],
[23], [26], [17], [15], and cache hierarchies [31], [8], [28]. Web
servers are also replicated to achieve load-balancing.

Placing caches inside the network is becoming more popular
[34], [35], [13], [20]. Danziget al. [13] had observed the ad-
vantage of placing caches inside the backbone rather than at its
edges. They showed that the overall reduction in network FTP
traffic is higher with caches inside the backbone (core nodes)
rather than with caches on the backbone edges (external nodes).
Their study was based on data from early 90’s NSF backbone
traffic. A multicast-based approach to adaptive caching in the
network was also proposed recently [34], [35]. Heddaya and
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Mirdad [20] have proposed the use of network caches for load
balancing. Clearly, how well caching inside the network will
work depends on where the caches are located, and how data is
disseminated to them.

This paper studies the cache location problem with an em-
phasis ontransparent en-route caches(TERCs). When using
TERCs, caches are only located along routes from clients to
servers, and are placed transparently to the servers and clients.
An en-route cache intercepts any request that passes through it,
and either satisfies the request or forwards the request toward the
server along theregular routing path. In the typical arrangement
caches are co-located with routers or with L4 switches, and are
maintained by network providers, who provide a better service
without increasing the capacities on their links. Such a model has
significant operational benefits since caches can be introduced
easily into the existing infrastructure [9]. Almost all existing
caching products include a transparent operation mode [6], [7].
TERCs are easier to manage than replicated web servers since
they are oblivious both to the end-user and the server. It is im-
portant to note that in en-route caching, the requests may not be
served by the closest cache, since we are not tampering with the
regular routing of packets. The effectiveness of TERCs depends
on the Internet routing stability during the connection lifetime of
an HTTP session. Our measurements (see Section V-B-4) and
results by others [30], [24] suggest that for the short duration of
an HTTP connection, routing is mostly stable.

Our goal is to optimize the gain for the system by mini-
mizing the overall traffic in the network, and reducing the av-
erage delay to the clients. With appropriate costs placed on the
network edges, we can capture the general model of links with
different bandwidths. Trying to find the best location by an ac-
curate simulation using detailed logs of web activity is compu-
tationally infeasible. Hence, we formulate our cache location
problem by looking at the network as a graph, and modeling
the flow of data from servers to clients as flows on this network
graph. These flows are affected by en-route caches, in that a
client request that can be satisfied by a TERC is not propagated
to the server. We associate a hit ratio with each flow to repre-
sent the performance of the caching algorithm with respect to
it. This is because flows may have significantly different cacha-
bility, e.g., some flows may be coming from regional caches and
thus maybe less cachable than those coming directly from end
users.

In general, optimizing the location ofcaches in the network
graph for criteria like minimum average delay is intractable.
The proof follows via reduction from the well-known-median
problem [18]. However, for some special cases an optimal so-
lution can be found in polynomial time. We present optimal so-
lutions for the line and ring topologies, and present closed form
formulae for some special cases.
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One particularly interesting case is a tree network with a
single source. This is the case of a web server that wishes to
minimize the average access delay for its clients. We present a
computationally efficient dynamic programming algorithm for
this case. The computational complexity is , where

is the number of nodes in the tree,is its height, and is the
number of caches to be placed in the tree.

In practice, an ISP that allocates a budget forcaches wants
to place them in the locations that will minimize the traffic in
its network. As pointed out by Breslauet al. [5], most of the
traffic generated in the Internet comes from a handful of very
popular web servers. Thus, using our algorithm for each of these
popular sites will reduce the traffic significantly. In Section VI,
we discuss this problem and propose a more general heuristic
solution.

We experimentally validate our algorithms for two Bell Labs
web servers,www.bell-labs.com and www.multi-
media.bell-labs.com . The tree structure was derived by
performing traceroute s from the respective web servers
to the accessing hosts, and the flows were obtained from the
access logs of these servers. We observe that a small number
of TERCs, when placed at optimal locations, are sufficient
to reduce the network traffic significantly. These optimal
locations arenot at the edge of the individual networks, where
providers currently tend to place them. We also compare our
optimal algorithm against a greedy algorithm and report on
their relative performance.

An important issue with the practical impact of our results
is the optimal solution “stability.” If the optimal cache loca-
tions vary significantly over time it may make any off-line solu-
tion insignificant. We make two important observations. First,
although the intersection between the sets of clients accessing
the web server at different times can be very small, the relative
traffic from the server along the different tree paths remains rel-
atively stable. Due to this, we observe that although the optimal
cache locations may change slightly over time, we can use cache
locations calculated from recent history data with little penalty
in performance. We expect that the results of this paper could
be used constructively in deploying network caches.

The rest of the paper is organized as follows. In Section II,
we present our model in detail, and describe the computational
complexity of the problem. Section III studies the line and ring
topologies. We present our algorithms for the web server case
in Section IV, and the experimental methodology and results in
Section V. We conclude with discussions in Section VI.

A. Related Work

TERCs were suggested for load balancing by Heddaya and
Mirdad [20]. They pointed to the use of run-time code gen-
eration techniques to dynamically download high-performance
packet filters to the kernel [14]. Zhanget al.[34] also advocated
the use of en-route caches, but did not address the placement
problem.

In a typical transparent cache implementation [7], [6], traffic
is filtered by a designated L4 switch and diverted to the cache.
Commercial products that are built for transparent operation
and aim at the ISP market include Cisco’s CacheEngine, Info-

Liberia’s DynaCache 200, CacheFlow products, ArrowPoint CS
series, and Lucent’s IPWorX.

Zhanget al.[34] proposed an adaptive web caching structure
using multicast for data dissemination to the caches. Methods
similar to the one we present could also be used to optimally
place their adaptive caches. Cunha [12] studied a similar loca-
tion problem in the context of push servers [3] and load bal-
ancing. He presented simple local heuristics for load balancing
that also reduce the overall traffic in the network; however, his
work did not address the optimal location problem.

Our dynamic programming solution is similar to the one
used by Tamir [32] for solving the-median problem. This
dynamic programming method can be used for solving the
nontransparent cache location problem where requests are
routed to the closest cache. However, it works only if the entire
network were a tree, the number of sources were one, and the
routing infrastructure were cache-aware.

II. M ODEL AND DEFINITIONS

In this section, we first present the model for general cache
location, and then present the TERC location problem. We con-
sider a general wide area network, where the internal nodes are
routers and the external nodes are either servers, clients, or gate-
ways to different subnets. A client can request a web page1 from
any of the servers, and the serversends this page to the client

on the shortest path from the server to the client. When caches
are present, a client can request the page from a cacherather
than from the server. If an up-to-date copy of the requested page
is in the cache’s local memory, the page is delivered to the client.
Otherwise, the cache contacts the web server, refreshes its local
copy, and sends the page to the client. Current protocols allow
caches to validate the freshness of locally stored data [2], [16].
The performance of a caching scheme is a function of the net-
work topology, the request pattern, the assignment of caches to
requests, the cache sizes, and the cache replacement algorithms
used.

Our goal here is to describe a model that will be clear and
easy to realize, while at the same time maintain the essential
parameters of the problem. We refer to the bytes sent to a client
as theflow to the client. Our main goal is to find good locations
for the caches. Caches are generally characterized by theirhit
ratio, which is the fraction of data that can be served from the
cache’s local memory. A higher hit ratio implies a lower load
on the network, and much work has been done to improve cache
hit ratios [33], [29], [1]. It has been shown [4], [5] that amongst
all pages on a server, only a small fraction are very popular,
and our measurements support this observation. In other words,
many clients request a small subset of pages from a server, and
with high probability, these popular pages will be stored in most
caches, accounting for most of the cache hits. Therefore, in our
model, we make a simplifying “full dependency” assumption,
i.e., if a page will be found in any cache, it will be found in the
first cache on the way to the server.

We associate eachclient flow with a single number that
is the cachability of this flow. In other words, is the fraction
of the flow that is comprised of the popular pages that are ex-

1We use the term web page to denote any requested entity.
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pected to reside in most caches. Therefore, when a flowwith
cachability passes through a cache, fraction of the flow
is satisfied from its local memory; hence, we refer toas the
flow hit ratio. When several flows pass through the same node,
their effective hit ratio is the weighted average of their individual
hit ratios. Note, that the full dependency assumption implies that
the upstream flow from a cache has an effective hit ratio of zero.
In the simple case where all the flows have the same hit ratio,
the hit ratio at any node in the network is also.

The reason caches are placed in the network is to improve
performance, primarily in terms of reducing the load on the net-
works links. From a user point of view, performance is mea-
sured by the response time [27], i.e., the time it takes for a page
to arrive. This time depends both on the link delays and on the
response time of the servers. In this paper, we consider only
the delay due to the logical distance between the client and the
server. This delay takes into account the propagation delay and
the delay in the routers. Our objective is to minimize the average
delay time for the user population weighted by their individual
flows. This is equivalent to minimizing the total network flow,
i.e., the sum of the web flows taken over all the links.

A. The Formal Model

The above discussion leads to the following formal model.
The network is represented by an undirected graph ,
where is the set of nodes, is the set of edges,

, the length of edge, reflects the delay caused by this edge,
and is the sum of the link distances along the route
between nodes and . We assume that shortest path routing
is used. The request pattern is modeled by the demand set,
where is the flow to or the amount of data (in bytes)
requested by client from server , and is the hit ratio of
that flow. We denote by the set of at most nodes where the
caches are to be placed. Thecost (in bytes distance) of
demand using a cache in location is

An optimal assignment of a cache to a request is to assign cache
(or no cache at all) to the request such that the costis

minimal among all possible in . As explained earlier,
we assume a full dependency of the caches. Hence, this model
does not capture hierarchical structures [28], but does capture
the push model [3]. Our overall objective here is to find a set

that minimizes the total cost, i.e., the sumof all the costs,
.

The above discussion can be formalized as a graph optimiza-
tion problem in the following way.

Problem II.1: The general -cache location problem.

• Instance: An undirected graph , a set of de-
mands , a set of flow hit ratio

, and the number of caches.
• Solution: A subset of size .
• Objective: Minimizing the sum of costs:

As pointed out in Section I, the assignment of caches to clients
in the Internet creates many nontrivial management problems.
This motivates the TERC model where the caches considered
for a client request are only those located along the path from
the client to the server. The formal description of the TERC lo-
cation problem is almost exactly like the general cache location
problem presented above, with one small difference in the ob-
jective function. For the TERC location problem, the minimiza-
tion in the objection function is taken only over the nodes along
the path from the client to the server.

Problem II.2: The -TERC location problem. The formal
definition of the TERC -cache location problem is exactly as
the general -cache location problem (described in Problem
II.1), except that the minimization in the objective function is
over the set

Observe that the noncachable part of the flows is not affected
by the caches, and therefore cannot affect the optimal cache lo-
cation. We can thus replace each flow with hit ratio
with a flow of and a hit ratio of , as formally
proved below.

Theorem II.1: The solution of Problem II.2 with the demands
and flow hit ratios is equivalent to

solving the problem for with hit ratio of one.
Proof: Note that

where . The last tran-
sition relies on the fact that TERCs are on the path from the
client to the server. Since the first term does not depend on the
set , the minimum is achieved for the placementthat max-
imizes . The solution for the problem with

and a hit ratio of one is given by (by simple
substitution)

Again, the first term does not depend on the set, and the
minimum is achieved for the placement,that maximizes

.
Based on Theorem II.1, we assume without loss of gener-

ality for the analytical part of the paper (Sections III and IV)
that all flows have the same hit ratio which we denote by. An
interesting observation is that the-TERC location problem is
a special case of the general-cache location problem. This is
true since if we assume that the shortest path is unique, and the
distance of any other path is at leastlonger, then choosing
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TABLE I
HARDNESS OF THEk-CACHE AND k-TERC LOCATION PROBLEMS (POLY

STANDS FORPOLYNOMIAL TIME, AND NP FOR NP HARD)

for all flows forces the caches to
be on the path from the client to the server. When the metric
is minimum hop (i.e., ) we can simply choose

.

B. Hardness Results

Given a set of cache locations, determining the optimal
(possibly non-TERC) cache for each request and computing the
total cost can be done in steps, by a straight-
forward computation. The real problem is to find the best set

. When is small this is still tractable by checking all the
possible sets. In general, however, the problem is NP-hard.
Table I shows a summary of the hardness results for the-cache
location problem.

Even the simple case where there is only one server in the
network, and with is NP-hard. In fact, it is not too difficult
to show that this case is equivalent to the well-known-median
problem [21], [18]. The negative result for the case ofservers
and a tree graph is for a similar model where the caches are
put on the edges of the graph, rather than at the nodes. This
corresponds to caches that are related to a specific link. The
proof is obtained via a reduction from the multicuts problem
[11] and holds even if the trees are binary.

Interestingly, the TERC location problem is computationally
as hard as the general cache location problem. The single server
general graph case (for-TERCs) is proved via a reduction from
the vertex cover problem and is true for the model in which the
caches are put on the edges.

III. REGULAR TOPOLOGIES

In this section, we analytically study some regular topologies.
We omit some of the details which appear in [22].

A. Homogeneous Line with a Single Source

The very simple case of a line network graph with a single
source and hit ratio , demonstrates some of the difficulties
of the cache location problem. We calculate the optimal cache
location for this case, and compare it to an intuitive greedy al-
gorithm that places caches on the line iteratively in a greedy
fashion, without replacing already assigned caches.

Consider a line with one server (source) at one of its ends and
equally active clients at every other node in the line. The
links have the same cost, normalized to 1.

The overall flow for the line is simply

(1)

Fig. 1. Line network with a single source and homogeneous client population.
We compare the greedy algorithm with the optimal placement.

When caches are placed on the line in nodes , the
flow is given by

(2)
where , and . Clearly is minimized when
the s are equally spaced, i.e.

(3)

and the minimal overall flow is

(4)

We compare the optimal solution with a greedy solution that
calculates the optimal location of theth cache without the
ability to change its decision about the location of the
previously placed caches. If a greedy approach is taken, the first
cache location is optimal. Theth cache is placed in the center
of the largest current gap. Interestingly, this algorithm gives
the optimal location for , but suboptimal
locations for all other cases.

The cost for the greedy solution is given by

(5)

where is the next point after where the optimal
and the greedy algorithms give the same result.

Fig. 1 depicts the differences between the cost of the optimal
and the greedy solutions. Theaxis shows the cost in relation
to the situation when no caches are used. As can be seen in this
case, most of the savings is achieved by the first few caches.
This phenomenon is also observed in real network structures,
as reported in Section V-B-2.

B. Homogeneous Line with Multiple Sources

A more general case is when we have multiple sources. In
this section we analyze a line with homogeneous traffic require-
ments, i.e., between every possible pair of nodes the traffic re-
quirement is identical. In such a case the flow on the links is
bidirectional. We can distinguish between two types of caches:
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a single interface cache that handles only one directional traffic,
and a multi-interface cache that handles all the traffic through a
router. We concentrate on the multiple interface cache, and refer
the reader to [22] for the single interface cache analysis.

Due to symmetry, when only a single cache is available, its
position is obviously in the line center. When we follow
[19] and analyze the continuous line rather than a discrete set-
ting. For , the cost of the flow in the line when two caches
are put at points and ( ) is given by

(6)

Deriving by and comparing to zero yields

(7)

substituting in and deriving by gives the optimum at
, and substituting in (7) yields .

C. The General Line

In this section, we give an optimal solution to the general
cache location problem with multiple interface caches on the
line, i.e., clients and servers can be located on any node and in
any number. We use the full dependency assumption explained
in Section II. Under this assumption the optimal location does
not depends on the hit ratio, thus, for convenience, we assume a
hit ratio of one.

Consider a line of nodes numbered from 0 to . The
input is the flow requirement from (up to) servers located at
the nodes to (up to) clients located at the nodes. A node can
accommodate both a client and a server. From the input it is easy
to calculate the flow requirement on segment , denoted
by .

We use bottom-up dynamic programming method, to build
an optimal solution to the segment , from the optimal so-
lution for shorter segments, i.e. . Let
be the overall flow in the segment , when caches are lo-
cated optimally in it, and the closest cache to the segment border
node from the left (assume node 0 is the rightmost node) is lo-
cated at node , and the closest cache to the right is located at
node (inside the segment). Fig. 2 shows an example of such a
segment. Note that , placing caches at
the endpoints (0 and ) will not help, and we do not need to
consider the case where .

The overall flow in the optimal -location problem is
, and what we seek is the

Fig. 2. Definition ofC(j; l ; l ; k ).

location of the caches in that case. Recall that is the
flow on the segment . In a similar way,
is the flow on the segment , where the closest caches
are at , and , with . This flow can
be easily computed from the input since we assume that the hit
ratio is one. Note that .

For the base case, , it is easy to see that for all
, , and

. For , we have
Claim III.1:

(8)

Proof: The optimal placement of caches in the segment
, can either put a cache at theth location and caches

in the segment , or put all caches in the segment
. Therefore, the optimal cost is the minimum cost of

these two cases.
The algorithm now is straightforward: first compute

and for . Next for
each compute , for all , and

. The complexity of this algorithms
is to compute the base case, and to compute

.

D. Ring Networks

The case of a ring with homogeneous load and caches that
cache the data of their two interfaces is straightforward. Due to
symmetry considerations, the caches should be placed at equal
distance on the ring, regardless of their numberor of the hit
probability .

Fig. 3 depicts the relative flow with three caches as a func-
tion of the relative location of the caches in a bidirectional ring.
Fixing one cache on the ring, the-axis is the distance the
two other caches are placed at relative to the first cache. The
optimum is achieved at 1/3, with an almost 75% reduction in
traffic. At , the two additional caches are co-located.
This depicts the traffic gain for two caches, which is a third of
the original traffic.

Symmetry considerations are not straightly applied to
unidirectional rings (or bidirectional rings with single interface
caches). However, regardless ofand , the caches should still
be spread at equal distances to achieve optimal performance.
For simplicity we prove the case where .

Putting the first cache in the ring breaks the symmetry.
Without loss of generality (w.l.o.g.), we can assume the cache
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Fig. 3. Relative flow in a ring network with three caches as a function of the
distance of two caches from the third (assuming the distances of the two caches
from the first are the same.)

is put at location 0. The flow in the ring, when a second cache
is put at location , is given by

(9)

The optimal location is obtained by deriving and
comparing to zero.

Next we prove that the optimal location of caches in a
unidirectional ring requires the caches to be placed homoge-
neously. For this end, examine three neighboring caches located
at locations 0 (w.l.o.g.), , and . It is sufficient to prove that

. The flow in the segment is given by

(10)

The optimal location, , is obtained comparing the
derivative of to zero.

In the more general setting, where the ring is not necessarily
homogeneous, we can use our dynamic programming algo-
rithms from Section III-C and from [22]. As we mentioned, the
first located cache breaks the ring into a line. Therefore, we can
run these algorithms, for any possible first cache location with
an additional factor of to their complexity.

IV. SINGLE WEB SERVER CASE

The case of optimizing performance for clients of one web
server is of particular interest both from the theoretical and prac-
tical points of view. Consider a popular server that gets many re-
quests and responds with large quantities of data (like big soft-
ware and news distribution servers). As the number of requests
to the server and the data it serves increase, the performance
of the server declines sharply. One way this problem is tackled

is to replicate the server. Explicit replication creates problems
with managing the different copies and redirecting the client to
different locations.

Automatic caching is an attractive proposition. An impor-
tant question with caching that may have a big impact on the
overall improvement in performance is: where should one put
the caches? If they are put very close to the server, the server load
may decrease but network congestion will remain a problem.
If they are put too close to the clients, there will be a lot of
caches, and each cache (i.e., copy of the document) will be
underutilized. Finding the optimal locations for the caches in-
volves looking at both these issues, and translates exactly to
solving the -cache location problem on the network graph in-
duced by the server and its clients.

Most of the web traffic is generated by a small number of
servers [5]. Therefore, an ISP that wishes to reduce the traffic in
its network can use our algorithm to reduce the traffic to these
handful of servers. The same algorithm can also be used by con-
tent providers. These are companies that provide hosting ser-
vices with the promise of fast content delivery to the end-user.
Using transparent caches in optimal locations for their clients
can minimize the average access delay.

As mentioned in Section II-B, even the case when we have a
single server is NP-hard for general networks. We can, however,
solve this case on a tree graph. Fortunately, if the shortest path
routing algorithm implied by the Internet is stable, the routes to
various clients as viewed by any single server should be a tree
graph. Thus we can apply an algorithm for the tree graph for the
one server case. As we will see in our experiments reported in
Section V, some heuristics are needed to apply our algorithm in
practice.

We present two algorithms for this problem: a natural greedy
algorithm in Section IV-A and an optimal dynamic program-
ming algorithm in Section IV-C. The solution to the cache loca-
tion problem depends heavily on the request pattern. One might,
therefore, argue that if this pattern is constantly changing, there
is no real meaning to an “optimal” cache location. As we will
demonstrate in our experimental results in Section V-B, it turns
out that this is not true. Although the actual set of clients changes
a great deal, the request pattern is stable. In particular, the flows
do not change that much at places that really matter, lending sta-
bility to the solution.

A. Simple Greedy Algorithm

The intuitive greedy algorithm places caches on the tree iter-
atively in a greedy fashion, without replacing already-assigned
caches. That is, it checks each node of the tree to determine
where to place the first cache, and chooses the node that min-
imizes the cost. It assigns the first cache to this node, updates
the flows on the network due to this cache, and looks for an ap-
propriate location for the next cache. Recall that we model the
effect of a cache by the hit ratioalone. That is, of the
flow into a cache is propagated up the tree to the server. The
complexity of the greedy algorithm is .

B. Motivating the Optimal Algorithm

As we showed in Section III-A for a line graph, algorithm
Greedy is suboptimal, but the difference is not signifi-
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Fig. 4. A worst case example of Greedy versus Optimal.

cant. In theory, the approximation ratio of Greedy (i.e.,
) is unbounded, where

a bad example is a full homogeneous binary tree with
leaves and caches. Clearly, the optimal solution will put a
cache in each leaf resulting in 0 cost, while the greedy algorithm
will occupy the nodes from the root downward, ending with a
cost of . It is true, however, that Greedy always needs at
most twice as many caches to get the same cost as the optimal
algorithm (see Fig. 4).

C. The Optimal Dynamic—Programming Algorithm

Given a tree of nodes, a set of (at most) flows repre-
senting demands satisfied by a single server located at the root
of the tree, and the number of caches, we need to compute
the optimal locations for the caches and the total cost. We use a
bottom-up dynamic programming approach in the spirit of [32].

First, the general tree is converted into a binary tree by in-
troducing at most dummy nodes. We then sort all the nodes
in reverse breadth first order, i.e., all descendants of a node are
numbered before the node itself. For each nodehaving chil-
dren and , for each , , where is the maximum
number of caches to place, and for each, , where is
the height of the tree, we compute the quantity . This
quantity is the cost of the subtree rooted atwith
optimally located caches, where the next cache up the tree is at
distance from . With each such optimal cost we associate a
flow, , which is the sum of the demands in the subtree
rooted at that do not pass through a cache in the optimal solu-
tion of . It is not too difficult to verify that if no cache
is to be put at node, then the optimal solution for is
the one where

is achieved (see Fig. 5). If we do put a cache at node, the
optimal solution is the one where

is achieved. While running the dynamic program we should also
compute the appropriate , and keep track of the loca-

Fig. 5. Depiction of the dynamic programming optimization forC(i; k; l) in
a tree.

tion of the caches in these solutions. The amount of data we have
to keep is . At each node, for each , and

, we have to check all possible partitions ofto the
left and right subtrees. Therefore, the overall time complexity
is bounded by . However, using a clever analysis from
[32], we can reduce the bound to . This is based on the
observation that one cannot put in a subtree more caches than
the number of nodes in it. Thus, for small subtrees (that have
less than nodes) we have to work less. Combining this with
a counting argument that shows that the number of “big” (i.e.,
both children of the node have more than nodes in their sub-
trees) is , one can show that the actual complexity of the
algorithm is (see Lemmas 1 and 2 in [32]). This is much
better than the complexity of a different dynamic pro-
gramming algorithm for this problem proposed in [25].

This dynamic programming algorithm has been imple-
mented, and it can solve the cache location problem on a tree
consisting of several tens of thousands of nodes, with a depth of
sixteen, and caches in a few minutes on a Sun Ultra-1
machine. Our algorithm can also be used in more general cases,
as described in the next section.

The same basic dynamic programming technique can, in fact,
be used to handle the generalization of our model where we re-
place the cost of a hop from unity to any distance metric. This
change does not affect the computational and space complexi-
ties of the algorithm.

V. EXPERIMENTS AND RESULTS

In this section, we describe our data collection method and
the results from our experiments. Recall that reducing flow and
lowering the average delay are equivalent in our model and we
use these terms synonymously.

A. Data Collection and Methodology

We collected data from two web servers: a medium size
site,www.bell-labs.com , that receives about 200–300 K
cachable (i.e., non-cgi) requests a week, and a smaller site,
www.multimedia.bell-labs.com , that receives
up to 15 000 cachable requests a week. We denote the
www.bell-labs.com site by BL and thewww.multi-
media.bell-labs.com site by MMfor convenience. We
considered two weeks of server logs from serverBL (from late
1997 and early 1998) corresponding to “nonholiday” periods.
Over these two weeks, an average of 14 000 unique hosts per
week accessed the server and 1 Gbytes of cachable data per
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week were retrieved. We similarly chose seven weeks of server
logs from serverMM. Over these seven weeks, an average of 400
unique hosts per week accessed the server and 180 Mbytes per
week were retrieved. The log files provided us with the server
to client flows required by our model. Note that requests to the
web server were post proxy cache, and hence the traffic the
servers see has already passed, in part, through existing caches.

To obtain the network graph (in this case, the tree along which
data is sent from the server to the client) we did the following:
For each of the unique hosts that accessed the servers, we ran
traceroute from the respective server to the hosts. In an
ideal world with an unchanging network and perfect shortest
path routing, we would get a tree rooted at the web server by
putting together the traceroute information. What we obtained,
however, was not a tree, due to several reasons. Some of the
routers have several parallel links and multiple interfaces that
make the network graph a directed acyclic graph (DAG) rather
than a tree. This was easily corrected by specifying for each
router the lists of its multiple interfaces. The more difficult prob-
lems occur due to destinations that were alternating between two
(or more) routes. This phenomena was observed mostly in the
traceroutes from serverBL, since it was bi-homed through two
ISPs (BBNPLANET2 and ALTERNET) during the time of the
experiments; the same phenomenon was observed, to a lesser
degree, in routes passing through the MCI backbone. When
multiple paths to a node are identified we left in the graph only
the path with the maximum aggregated flow, and pruned the rest.
The trees that we obtained had about 32 000 nodes for serverBL,
and about 12 500 nodes for serverMM. This technique of creating
the topology tree from a set of traceroutes has been used before,
e.g., in [12].

For each data set, we computed the 100, 300, and 500 most
popular pages at the server. Following our model, we assumed
that all caches host these popular pages. The cachability of each
flow is thus defined as the portion of the popular pages in the
flow.

In Section V-B, we present the results of our experiments
using this data. Intuitively, nodes contributing a small flow have
minimal chance of impacting the solution, but add to the running
time. We therefore studied simple heuristics for speeding up our
algorithm by pruning the tree and eliminating nodes with little
contributing flow. The exact method for pruning was to discard
nodes that contributed less than% of the total flow into the
server. We observed that for sufficiently small values of, like

, the solution computed by our dynamic programming
algorithm did not change, but the number of nodes to process
decreased. Pruning also helps in visualizing the important parts
of the tree.

B. Results

The results can be viewed under several categories. We first
demonstrate the amount of traffic reduction that can be obtained
by using TERCs. We then show that choosing the “right” lo-
cation is nontrivial, and our approach has advantage over the
common use of caches at the edges of the network. We compare
the optimal algorithm with the greedy cache location algorithm.

2BBNPLANET is now part of GTE.

Fig. 6. Greedy versus optimal. The relative amount of traffic remains when
using TERCs for serverBL, when the top 100, 300, and 500 pages are cached
(week of Dec. 1997).

We also show that the cache location solution is stable, i.e., an
offline calculation of the cache location based on past data is
meaningful.

1) Traffic Reduction:To demonstrate the amount of traffic
that can be saved using TERCs, we computed the total cost after
putting TERCs in the optimal location with respect to the cost
without caches. Recall that our cost is computed in terms of the
bytes of data times the number of hops it travels. This was done
for several cache sizes and is presented in Fig. 6 for a week
of December 1997. For this week, caching the top 100, 300,
and 500 pages requires caches of size 0.6, 3.5, and 7.9 Mbytes,
respectively. For a week of January 1998, the respective cache
sizes are 1.2, 14.4, and 22.5 Mbytes (see explanation later). It
can be seen, for example, that in caching the top 500 pages,
putting just three caches (in the appropriate locations) reduces
the overall traffic by more than 15% for the December 1997
week. Similar savings can be achieved by using six caches that
hold the top 300 pages. Better improvements were observed for
the January 1998 week. More significant reduction in traffic is
achieved when we consider only the traffic of a single ISP as
demonstrated in Fig. 9. One can also observe that the greedy
algorithm works well in both cases (Figs. 6 and 9) within 3% of
the optimal.

The reason for the large difference between the two weeks
arises from a sub-tree in the server that contains a collection of
large files; each file contains slides to accompany a chapter of
an operating system book. In the second week, the demand for
these slides rose tenfold and advanced 20–30 very big files, each
0.4–1 Mbytes, in the popularity chart from below the top 500
for the first week to places in the range of 123–360. This also
influences the cachability figures: for the week of December
1997 the percentage of the flow (byteshops) which is stored
by caches with the top 100, 300, and 500 pages is 21%, 31%,
and 38%, respectively, while for the January 1998 week these
numbers are 17%, 46%, and 55%, respectively. The cacheability
increases when the caches include over 300 pages, but so does
the required cache size.
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Fig. 7. The outgoing traffic from serverBL with the portion of the BBN
network emphasized.

2) Comparison with Common Practice:Having realized
the benefit of putting TERCs in the network, we would like to
demonstrate the importance of where the caches are located.
A commonly used solution is to put caches at the edges of the
network. Putting caches at all the boundary nodes of a network
is an example of this solution and would presumably reduce the
provider network traffic significantly. However, there are many
such connection points, requiring a large number of caches to
be placed.

An alternative approach is for the network provider to use the
algorithms presented in this paper and determine a small number
of nodes at which to put TERCs. We show that such an approach
can save almost the same amount of traffic using significantly
fewer caches. For this experiment, we considered only the traffic
inside the network of one of the ISPs (BBNPLANET) for server
BL. Fig. 7 shows the entire outgoing tree from serverBL up to
depth of 16, where the BBNPLANET network is emphasized.
Out of the more than 11 000 nodes in the figure, 415 nodes be-
long to BBNPLANET. Fig. 8 shows part of the outgoing traffic
tree as viewed by serverBL. In all tree figures in this paper (ex-
cluding Fig. 7), the number next to a node is its unique id, and the
number near an edge is the normalized traffic on this edge. The
radius of the node is proportional to the traffic through it. The
server is always located at node 0. For clarity, we only present
the part of the tree which is the most relevant.

There are about 360 relevant points at which the network is
connected to different parts of the Internet, so putting caches on
all these edges would enable us to reduce the cachable traffic
in the BBN network practically to 0. We compared four cache
placement strategies (see Fig. 9): Optimal, greedy, optimal on
the boundary only, and random. The optimal and the greedy
algorithms are the ones discussed in Sections IV-C and IV-A,
respectively, applied only to the BBN portion of the network.
For the special case of boundary placement, we observe that
the greedy strategy is optimal. This is true since here no two
caches can be placed on the same path from the server. The
random strategy simply selects locations uniformly at random.
We average five random selections for each point.

TABLE II
COMPARING THEGREEDY AND THE OPTIMAL. DATA FROM THE SERVERBL FOR

THE 1997 WEEK, CACHING THE TOP 500 PAGES.

TABLE III
COMPARING THEGREEDY AND THE OPTIMAL. DATA FROM THE SERVERBL FOR

THE 1997 WEEK, CACHING THE TOP 100 PAGES

Fig. 9 shows the relative cachable flow in the BBN network
after placing a number (between 0–25) of caches according to
one of the four strategies discussed above. For placing four
caches and more, the boundary strategy is trailing the optimal
and greedy strategies by over 10% of the cachable flow, which
translates to over 4% of the overall traffic. From a different
angle, to get the traffic reduction achieved with seven caches
placed in optimal locations, we need to place 15 caches on
the boundary. Note that, as expected, random placement is ex-
tremely inefficient since with high probability caches are placed
in low traffic regions.

3) Comparing the Algorithms’ Performance:We now com-
pare the greedy algorithm presented in Section IV-A and the
optimal cache placement algorithm presented in Section IV-C.
We present a few examples of the locations found by the optimal
and the greedy algorithms, and measure the actual benefits of
using them, taking into account the traffic stability. In Tables II
and III, we present the optimal cache locations and the cache
locations obtained by the greedy algorithm, along with the nor-
malized cost of the resulting configuration for serverBL using
the first week of data.

In Table II we can see that until the sixth cache (fourth in
Table III) both algorithms behave the same. If we look at the
resulting costs, however, it turns out that the difference is only
1%; not as dramatic as one might expect. Fig. 6 plots the cost of
both algorithms as a function of the number of TERCs; Fig. 9
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Fig. 8. Portion of the BBN network as seen by traffic from serverBL. Only edges that carry at least 0.1% of the flow at the root are shown.

Fig. 9. Comparison of several placement strategies for a single ISP network
(BBN in this case).

plots larger differences for the BBN portion of the network. In
Table II, the first time the two algorithms behave differently

is when the seventh cache is placed. There, the optimal algo-
rithm removes the cache from node 32, and puts two caches at
nodes 33 and 103, which are the children of node 32. This is
a common transformation that the optimal algorithm performs.
Table III exhibits another typical behavior (though observed in
fewer cases than the first) in the transformation from four to five
caches. A cache in node 126 is replaced by a cache in node 48
which is its great-grandparent and in node 157 which is its child
(see Fig. 8). Later the transformation from eight to nine caches
replaces a cache in node 157 with a cache in its parent node 126
and its child 204. The reason for these transformations is that
the route 32–48–124–125–126–157–204 has a large portion of
the traffic, with some heavy splits along it. Node 48 is a BBN
backbone router that receives a third of the traffic fromBL, node
204 is the BBN interface to MAE-east that receives about 5% of
the traffic. The transformation from six to seven caches involves
(as in Table II) the replacement of a cache in node 32 with two
caches at its children nodes, 33 and 103.

Overall the difference between the two algorithms is very
small and typically in the range of 0.75–3%. We checked over
30 cases by considering a combination of daily and weekly data
for both servers and detected the same phenomenon.
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Fig. 10. Routing tree for January 13, 1998, for serverBL.

As discussed in Section IV-B, in theory, the approximation
ratio of greedy is unbounded. However, in practice, based on
our experiments, the greedy algorithm behaves quite well. This
is probably due to the fact that the scenarios in which the greedy
algorithm performs badly are somewhat pathological and do not
appear in practice. Specifically, the example where Greedy per-
forms miserably is for a balanced tree, while, in practice, we
noticed that the flow trees tend to be highly imbalanced.

4) Stability: In this section, we show that over time, the flow
pattern from the source to the clients is stable, at least in the part
of the tree that has most of the flow and is therefore relevant to
caching.

As we said in the Introduction, although the client population
changes significantly from day to day and from week to week,
the flow in the outgoing tree from the server to the clients re-
mains pretty much stable in the branches that carry most of the
traffic. This means that the part of the tree relevant for caching
does not change by much as time progresses.

Figs. 10 and 11 show the trees obtained from the logs for
serverBL for two days in January 1998, the 13th and the 14th.
The two trees are visibly similar (actually, mirror images, since
the two gateway nodes, 2 and 14, are reversed in the two plots).

This similarity is surprising given the fact that the client pop-
ulation varies significantly from day to day. We observe that
there were only between 2.7–7.5% “repeat clients”, i.e., there
was a very small intersection between the client populations of
any two days for the two-week data from serverBL. In partic-
ular, for the two days shown in Figs. 10 and 11, there were only
7.48% repeat clients. A similar effect was seen for serverMM.
Table VI and VII in the Appendix show details of this phenom-
enon.

To measure stability of the cache placement solution, we
do the following. We calculate the optimal cache locations
using the entire two-week data for serverBL, assuming for
convenience a constant hit ratio for all flows. For each day,
we compute the cost for that day using these cache locations,
and compare it with the cost of the optimal location for that
day. Table IV shows this ratio for placement of six and twelve
caches. The difference is between 1%–55%. However, most
of the big differences occur in the weekend days when traffic
volumes are smaller and where traffic patterns are somewhat
different. Table V compares the performance of the cache
location calculated based on the seven week data from server
MMwith respect to the optimal location per week. For six
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Fig. 11. Routing tree for January 14th, 1998, for serverBL.

TABLE IV
RATIO BETWEEN THEPLACEMENT SOLUTION BASED ON THETWO-WEEK

DATA AND THE OPTIMAL DAILY SOLUTION FOR SERVERBL

caches, in five of the weeks the difference is less than 10%. For
twelve caches, the differences are between 13%–14%.

It is instructive to view these results in the context of the
traffic improvement numbers from Fig. 6. By placing caches

TABLE V
RATIO BETWEEN THE PLACEMENT SOLUTION THAT IS BASED ON THE

ACCUMULATED 7 WEEK DATA AND THE OPTIMAL WEEKLY SOLUTION

FOR SERVER MM

based on historical data, one can reduce the network traffic by
15% using only six TERCs, assuming a 40% hit ratio for all
flows.

a) Routing Stability: The effectiveness of TERCs de-
pends on the stability of Internet routing. Since a TERC is
snooping on TCP packets, a route change may result in discon-
nections. Paxson’s measurements [30] suggest that most routes
remain stable over the small lifetime of an HTTP connection.
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Fig. 12. Popularity stability for serverBL.

Labovitz et al. [24] studied Border Gateway Protocol (BGP)
route changes and concluded, similarly, that in reality, Internet
routing is stable. They found that 80% of the routes change at a
frequency lower than once a day. To verify the Internet routing
stability in the context of caching we measured the short-term
stability of Internet routes. To do so, we performed three con-
secutivetraceroute s from Bell Labs to 13 533 destinations.
On the average, the time between the start of the first traceroute
and the last was about one minute. Initially, we found that over
90% of the routes did not change during that period. Using
equivalences (eliminating differences that are due to multiple
interfaces of the same router), we observed that almost 93% of
the routes are actually stable in our measurements. We expect
the real number to be higher, since our equivalence includes
only interface pairs we could positively identify as equivalent
and we expect that we missed many more.

Due to the packet re-orderings caused by route changes, many
ISPs implement route caching for TCP connections (e.g., using
NetFlow Switching in the Cisco 7200 and 7500 series routers),
i.e., even when routing entries change, existing “connections”
use the old routing path. The route caching did not effect our
measurements astraceroute uses UDP packets. Note that
fluttering (or rapidly oscillating routing) if not combined with
route caching can create problems for TERC effectiveness; how-
ever, fluttering creates many performance problems for TCP in
general [30].

b) Popularity Stability: Fig. 12 shows stability of
the most popular pages in siteBL. For every number ,

, it plots the portion of the pages that are on the
top popular page list in both weeks (November, 1997 and
January, 1998). For example, seven out of the top eight list
of one week are also on the top eight list of the other week,
and therefore, the persistence plotted is 7/8. Fig. 12 shows that
for the first 50 pages, the popularity list of both weeks always
share more than 90% of the pages, and in most cases more than
95%. In general, the popularity lists are, at least, 75% identical.
Note that the two weeks compared are not consecutive (they
are five weeks apart).

VI. DISCUSSION

Web caching is a very cost-effective method to deal with net-
work overload. Solutions like TERCs have the advantage that
they do not require changes (like a proxy assignment) by a user,
and are easy to install and manage locally within a provider net-
work. Therefore, they are attractive building blocks to any future
caching strategy. Once installed, the benefit from a device will
determine the further use of this solution. We identify that the
location at which the caches are placed play a prime role in the
resulting traffic and load reduction. Thus, addressing the loca-
tion problem of caches is an important part in the campaign for
web caching.

In this paper, we laid the groundwork for research in this
area by defining the model and devising a computationally effi-
cient algorithmic solution for the important practical case of one
server. We have experimentally demonstrated the advantage of
using TERC-like caching devices in today’s World Wide Web,
and the importance of the cache location problem.

Clearly, there are still many open questions. The most im-
portant problem is how to optimally locate TERCs in the case
when there are many servers. That is, where should the caches
be put inside a provider network that supports many clients and
servers. Our results suggest that the following iterative heuristic
-Greedy, which is an adaptation of the greedy technique,

should work well in practice. For , algorithm -Greedy
is the standard Greedy algorithm described in Section IV-A.
For general , algorithm -Greedygreedily replaces some
already assigned caches with caches. That is, caches
that are already assigned can be moved around in a limited
way to improve the objective cost function. The intuition for
this algorithm stems from our observation that, in practice, the
optimal solution for our single server experiments was always
obtained by2-Greedy. For example, the optimal solutions in
Tables II and III are obtained by1-Greedy. The main problem
in evaluating any multiserver placement algorithm is that it is
harder to obtain general network web traffic data.

Another important issue is our objective function: What do
we want to optimize in a wide-area network to get better per-
formance? Our algorithm would work for any average benefit
function that corresponds to a global criterion but will not work
for worst-case measures like improving the most loaded link, or
the most loaded server. Other interesting directions for further
research include the extension of the model to enable it to cap-
ture hierarchical caching structures and multicast traffic. Tech-
niques like the ones used in active networks and the continued
process of memory cost reduction may lead to a scenario in
which caches can be dynamically moved in the network. This
will require local distributed techniques to deal with the dy-
namic optimal cache location problem.

APPENDIX

STABILITY STATISTICS

Tables VI and VII show the fraction of the clients that access
the web server in two different days (weeks in the case of server
MM). For each two days, we calculated the number of unique
users who accessed the site in both days divided by the total
number of clients accessing the server in either of the two days.
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TABLE VI
PERCENT OFCLIENTS THAT APPEAR IN THELOGS OF ANYTWO DAYS FOR SERVER BL

TABLE VII
PERCENT OFCLIENTS THAT APPEAR IN THELOGS OF ANY TWO

WEEKS FORSERVER MM

One can see that only a small fraction of the user population
(2.5%–8%) repeat coming back to both sites. In addition, as
expected, this fraction decreases as the distance between the
days (weeks) increases.
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