
Coherency Sensitive Hashing

Simon Korman and Shai Avidan
Dept. of Electrical Engineering

Tel Aviv University
simonkor@mail.tau.ac.il avidan@eng.tau.ac.il

Abstract

Coherency Sensitive Hashing (CSH) extends Locality
Sensitivity Hashing (LSH) and PatchMatch to quickly find
matching patches between two images. LSH relies on hash-
ing, which maps similar patches to the same bin, in order
to find matching patches. PatchMatch, on the other hand,
relies on the observation that images are coherent, to prop-
agate good matches to their neighbors, in the image plane.
It uses random patch assignment to seed the initial match-
ing. CSH relies on hashing to seed the initial patch match-
ing and on image coherence to propagate good matches.
In addition, hashing lets it propagate information between
patches with similar appearance (i.e., map to the same bin).
This way, information is propagated much faster because it
can use similarity in appearance space or neighborhood in
the image plane. As a result, CSH is at least three to four
times faster than PatchMatch and more accurate, especially
in textured regions, where reconstruction artifacts are most
noticeable to the human eye. We verified CSH on a new,
large scale, data set of 133 image pairs.

1. Introduction
Computing Approximate Nearest Neighbor Fields

(ANNF) is an important building block in many computer
vision and graphics applications such as texture synthesis
[10], image editing [18] and image denoising [7]. This is a
challenging task because the number of patches in an image
is in the millions and one needs to find Approximate Nearest
Neighbors (ANN) for each patch in real or near real time.

In the past, it was customary to compute ANNF with
traditional approximate nearest neighbor tools such as Lo-
cality Sensitive Hashing (LSH) [13] or KD-trees [1, 16].
These tools perform well in terms of accuracy but are not as
fast as one would hope. Recently, a novel method, termed
PatchMatch [4], proved to outperform those methods by up
to two orders of magnitude, making applications that rely
on ANNF run at interactive rate. The key to this speedup
is that PatchMatch relies on the fact that images are gener-

ally coherent. That is, if we find a pair of similar patches,
in two images, then their neighbors in the image plane are
also likely to be similar. PatchMatch uses a random search
to seed the patch matches and iterates for a small number
of times to propagate good matches. Unfortunately, Patch-
Match is not as accurate as LSH or KD-trees and increasing
its accuracy requires more iterations that cost much more
time. In addition, the main assumption it relies on (i.e. co-
herency of the image) becomes invalid in some cases (e.g.
in strongly textured regions), with noticeable influence on
mapping quality. It is therefore beneficial to develop an al-
gorithm that is as fast, or faster, than PatchMatch, and more
accurate.

Coherency Sensitive Hashing (CSH) replaces the ran-
dom search step of PatchMatch with a hashing scheme, sim-
ilar to the one used in LSH. As a result, the process of seed-
ing good matches is much more targeted and information
is propagated much more efficiently. Specifically, informa-
tion is propagated to nearby patches in the image plane, as is
done in PatchMatch, and to similar patches that were hashed
to the same value. In other words, we propagate information
to patches that are close in the image plane or are similar in
appearance. The end result is that our algorithm runs faster
and gives more accurate results, in terms of RMS of the re-
trieved patches, compared to PatchMatch. This increased
speed and accuracy comes at a modest increase in memory
footprint since we need to store the hashing tables.

An interesting property of our algorithm is that its recon-
struction errors are significantly lower than those obtained
by PatchMatch. To measure this, we define incoherency to
measure the number of neighboring patches in one image
that are mapped to neighboring patches in the other image.
We find that mapping produced by CSH is much less co-
herent than the one produced by PatchMatch. This is be-
cause CSH does not rely on the image coherency assump-
tion as much as PatchMatch does. Experiments suggest a
strong correlation between the coherency of the mapping
and RMS error. The less coherent the mapping, the lower
the error. We also characterized the errors by image con-
tent and found that CSH works better than PatchMatch in



textured regions. We demonstrate the advantages of CSH
over PatchMatch on a new data set of 133 image pairs with
2 mega pixel resolution1.

2. Related Work

Patch-based methods have been very successful in a wide
variety of computer vision and graphics applications. Efros
and Leung [10] introduced a simple non-parametric tex-
ture synthesis algorithm. It was quickly followed on and
improved by [9, 15, 21]. Non-parametric texture synthe-
sis was then used for various image editing applications by
Simakov et al. [18] and it also inspired the method of non-
local means for image denoising [7].

Common to all these techniques is the need to find, for
each patch in image A, a similar (i.e., ANN) patch in image
B, where in some cases images A and B can be the same
image. Wei and Levoy [20] proposed a Tree Structure Vec-
tor Quantization (TSVQ) method to quickly find the neces-
sary matches. Others relied on existing ANN search tech-
niques such as kd-trees [1], perhaps enhancing them with
PCA, to reduce dimensionality.

Ashikhmin [2] was the first to introduce the concept of
coherency and used it to accelerate non-parametric texture
synthesis. This was later extended to k-coherence by Tong
et al. [19] that pre-computed a set of k nearest neighbors
for each patch and used it to accelerate the search for ANN.
They have also demonstrated it for texture synthesis.

Two leading methods for ANN search are kd-trees [1]
and Locality Sensitive Hashing (LSH) [13]. Both partition
the space, either deterministically (KD-tree) or randomly
(LSH) in order to allow for quick query time. In this work
we focus on LSH and show how to extend it to deal with
coherent data, such as patches in an image.

The work most closely related to ours, and indeed the
one that inspired ours, is that of PatchMatch [4]. Patch-
Match takes image coherence to the extreme and uses it for
various image editing applications. It was recently general-
ized and applied to other applications as well, such as image
denoising [5] and an attempt to add appearance-guided in-
formation to its search was reported in [3].

PatchMatch works in rounds. Given a pair of images it
randomly assigns each patch in image A to a patch in im-
age B. Most assignments yield poor matches, but some are
quite good. PatchMatch then propagates the good matches
to nearby patches, in the image plane. To avoid being
trapped in a local minima, it also performs a number of
random patch assignments for each patch, keeping the best
match after each stage. The algorithm usually converges
after a small number of iterations.

1Code and data-set is available at www.eng.tau.ac.il/

˜simonk/CSH/index.html

3. LSH for Nearest Neighbor Search

The notion of locality sensitive hashing (LSH) was first
introduced by Indyk and Motwani [13]. Given a set of
points in a metric space, LSH function families have the
property that points that are close to each other have a
higher probability of colliding (under random members of
the family) compared to points that are far apart. The first
usage of LSH for nearest neighbor search in high dimen-
sions worked in high dimensional binary Hamming space
[11]. Our algorithm will follow the general lines of an LSH-
based approximate nearest neighbor search scheme later
proposed by Datar et al. [8]. In the rest of this section
we outline their algorithm.

At the base of the algorithm is a family H of LSH func-
tions and the ANN search algorithm consists of two stages:
indexing and search (query). In the indexing stage, prim-
itive hash functions from H are used to create an index
in which similar points map into the same hash bins with
high probability. M such primitive hash functions are con-
catenated to create a code which amplifies the gap between
the collision probability of far away points and the colli-
sion probability of nearby points. Such a code creates a
single hash table, by evaluating it on all data-set points. In
the search stage, a query point is hashed into a table bin,
from which the nearest of residing data-set points is cho-
sen. In order to decrease the probability of falling into an
empty bin (with no data-set points), multiple (L) random
codes are used to create L hash tables, which are searched
sequentially at search stage. Datar et al.[8] show that the
above scheme results in significantly improved efficiency
compared to previous methods in the case of L2 distances,
which are the ones of interest in our case.

4. Coherency Sensitive Hashing (CSH)

In this section we layout our algorithm for approximate
dense nearest patch search. The straight forward way to
use the LSH search scheme for image patches is by treating
each d-by-d patch as a d2 vector in Euclidian space and the
rest follows. However, it wouldn’t take advantage of the
wide extent of overlaps between nearby patches.

Instead, we follow the general lines of the LSH scheme,
but replace several of its main ingredients with new ones,
which are designed to exploit the image patches setup. At
the Indexing stage, we replace the family of LSH functions
with a new set of functions, which make use of the Walsh-
Hadamard kernels (details in section 4.1). At the search
stage, we dramatically extend the set of candidate patches
that are considered, compared to the limited set of patches
that point to the same index (details in section 4.2). We term
the resulting scheme Coherency Sensitive Hashing (CSH).
The CSH Algorithm is given in algorithm 1, while the de-
tails are given in the next subsections.

www.eng.tau.ac.il/~simonk/CSH/index.html
www.eng.tau.ac.il/~simonk/CSH/index.html


4.1. Indexing

The LSH scheme of Datar et al. [8], uses the particu-
lar family of LSH functions of the form ha,b(v) = a·v+b

r ,
where r is a predefined integer, b is a value drawn uniformly
at random from [0, r] and a is a d-dimensional vector with
entries chosen independently at random from a Gaussian
distribution. The action of such a random function of this
distribution (family) on a vector v (or patch) could be de-
scribed by the 3 following stages: (1) Take a random line,
defined by the vector a, divide it into bins of constant width
r and shift this division by a random offset of b ∈ [0, r) (2)
Project the vector v on to the line (3) Assign it a hash value,
being the index of the bin it falls into. The role of the ran-
dom offset b is to neutralize the quantization limits of fixed
binning. Specifically, it ensures that similar patches (which
project to nearby locations on the line) will collide (fall into
the same bin) with high probability.

In our case, the vector is a patch and we don’t project it
onto a random line, but rather on one of the first (most sig-
nificant) 2D Walsh Hadamard (WH) kernels. The reasons
for doing this are twofold. First, it is an extremely efficient
(only 2 additions per patch per kernel) method of computing
these projections [6]. More importantly, when projecting all
the patches onto a line, we would like the dispersion to be
as large as possible, since this would make this line very
discriminative with respect to patch similarity (namely, the
distance between the projection of dissimilar patches will be
large, while in the case of similar patches - small). There-
fore, the optimal strategy would have been to take the lead-
ing eigenvectors of the covariance matrix of the entire set
of image patches. In the case of natural images (not letting
the choice of lines be image dependent), these turn out to
be a sinusoidal basis, ordered in increasing frequency [17].
The 2D WH kernels, when ordered by increasing frequency
form such an optimal sequence of projection lines. These
have been shown by Hel-Or et al. [12, 6] to be extremely
descriptive and efficient for pattern matching in images.

4.2. Search

In the Indexing stage we built a set of L hash tables,
with the desired property of local sensitivity in the appear-
ance plane. Namely, that similar patches (disregarding their
image location) are likely to be hashed to the same entry.

The straight forward LSH search scheme would have
simply implied, for each patch in image A, considering the
set of patches of image B, which are hashed to the same
entry as itself in any of the L tables. This set of potential
candidates is rather small, doesn’t exploit the known spatial
arrangement of the patches and doesn’t allow propagation
of information between patches. Rather, CSH creates a rich
set of candidates by combining cues of both appearance and
coherence (of location) in a novel manner.

Algorithm 1 Coherency Sensitive Hashing (CSH)

Input: color images A and B
Output: A dense nearest patch map ANNF

Indexing (of all patches of images A and B)

1. Compute the projection of each of the patches in A and
B on M Walsh-Hadamard kernels : {WHj}Mj=1, using
the Gray Code Kernels technique of [6].

2. Create L hash tables {Ti}Li=1 . Table Ti is constructed
as follows:

(a) Define a code gi(p) = h1(p) ◦ ... ◦ hM (p) which
is a concatenation of M functions {hj}Mj=1 of the
form:

hj(p) =
WHj · p + bj

r

where r is a predefined value and bj is drawn uni-
formly at random from the interval [0, r)

(b) Then, each patch p (of both A and B) is stored in
the entry Ti[gi(p)]

Search
1. Arbitrarily initialize the best candidate map ANNF

2. Repeat for i = 1, ..., L (for each hash table):

(a) For each patch a in A

i. Create a set of candidate nearest patches PB

using the table Ti and the current mapping
ANNF (as described in section 4.2.1)

ii. Let b be the patch from PB which is most
similar to a

iii. If dist(a, b) < dist(a, ANNF(a)) then up-
date: ANNF(a) = b (distances are only
approximated, see section 4.2.2)

3. return ANNF

4.2.1 Candidate Creation

Let gi denote the hash code (function) used to create the
hash table Ti. To simplify the discussion, we’ll drop the
subscript and refer to a hash function g and the resulting
hash table T . Furthermore, the hash function g will be de-
noted gA when applied on patches of image A and gB when
applied on patches of image B. Let g−1

A (g−1
B ) be the inverse

of gA (gB) and Left(p)/Right(p)/Top(p)/Bottom(p) be
the patch obtained as a result of shifting a patch p one single
pixel to the left/right/top/bottom. In addition, let Cand(a)
for any patch a in A be its nearest currently known patch in
B.

Here are four observations that we use to create a large
pool of candidates per patch of image A. Considering



(a) Type 1 (b) Types 2 (c) Type 3

Figure 1. Candidate types for a patch. In each of the sub-figures, Image A is on the left, image B is on the right and the hash table in
use is in the center. Arrows relating to a pixel actually relate to the patch who’s top left corner is at the pixel. Red arrows represent the
hashing (notice their direction), while green arrows point to the patch’s current best known representative. The highlighted pixels (patches)
in image B on the right are the candidates of the highlighted pixel (patch) in image A on the left. If the width of the hash table is defined
to be k (i.e. it stores k representative patches from each of the two images) then the total number of candidates is between 4k and 4k + 2
(types 1 and 3 each contribute k candidates, while type 2 appears both in left/right and top/bottom configurations and contributes k or k+1
in each configuration). In our implementation (and this illustration) we use k = 2.

patches a, a1 and a2 of image A and patches b, b1 and b2 of
image B:

observ. 1 (appearance-based)
If gA(a) = gB(b), then b is a (good) candidate for a

observ. 2 (appearance-based)
If b is a candidate for a1 and gA(a1) = gA(a2), then b
is a candidate for a2

observ. 3 (appearance-based)
If b1 is a candidate for a and gB(b1) = gB(b2), then b2

is a candidate for a

observ. 4 (coherence-based)
If b is a candidate for Left(a), then Right(b) is a can-
didate for a 2

Observations 1 - 3 follow from the local sensitivity prop-
erty of the function g (which follows from the local sensi-
tivity of its parts h). This happens in appearance space. On
the other hand, Observation 4 follows from the coherency
of patches in the image.

Here are 3 types of candidate patches we generate for a
patch a of image A, via compositions of observations 1-4:

type definition using observ.
1 g−1

B (gA(a)) 1 and 3
2 g−1

B (gB(Right(Cand(Left(a)))) 3 and 4
3 Cand(g−1

A (gA(a))) 2

These candidate types are further illustrated in figure 1.
In our implementation, we set the width of the table k (the
number of patches of each of A and B that can be stored in
a hash table entry) to be 2. We end up with 4k + 2 candi-
dates (10 in our case) and a rough estimate on the individual
type contributions to the final match is 20%,50%,30%, re-
spectively.

We can now compare the candidate patches used by CSH
to those used by the different algorithms and notice how

2This holds also for Right/Left Top/Bottom and Bottom/Top pairs

CSH generalizes them. LSH uses exactly the candidates
of type 1. These candidates on their own are especially
limited, mainly since they don’t exploit image coherency
(which is generally very high), but also since they don’t take
advantage of appearance similarity (hash collisions) be-
tween patches in image A. On the other hand, PatchMatch
exploits only image coherency. It uses exactly 2 out of the
4-6 candidates of type 2 (Namely, Right(Cand(Left(a))
and Bottom(Cand(Top(a))), in addition to random loca-
tion candidates, using no cues of appearance whatsoever.

One clear limitation of PatchMatch, which our algo-
rithm overcomes, is its assumption that mappings that are
mostly (spatially) smooth may achieve pleasing approxima-
tions. The PatchMatch algorithm looks around the patch’s
neighbor’s nearest patch (propagation) as well as at random
patches around the current known nearest patch, with prob-
ability dropping exponentially with increase in distance.
This approach works well on large contiguous areas that
appear in both images, since a proper random guess will
propagate to the whole area. However, it has difficulties in
textured areas, which aren’t replicated in both images. In
our approach, we intensively relate patches which collide
under some hash function. Such collisions occur based en-
tirely on the appearance of the pair of patches without any
relation to their spatial arrangement. The spatial layout of
our mapping is much less continuous compared to that of
PatchMatch. This is evident in the second row of figure 7,
where the x-coordinates of both algorithm’s mappings are
presented.

4.2.2 Candidate Ranking

Given the candidate set (of size 4k + 2), all that remains is
to find the nearest one. This step of the algorithm is actually
the main overall time consumer. We therefore resort to an
approximation of the process, which has a negligible impact
on the overall precision but greatly reduces run time.



This is where we make a second use of the Walsh
Hadamard (WH) projections, which we already computed
in the indexing stage. We use the WH kernels here in the
way Hel-Or et al. use them in their rejection scheme for
pattern matching [12]. The idea is that accumulating the
projections of the differences of patches on the WH kernels,
one at a time, produces an increasingly tighter lower bound
on the Euclidean distance between the patches. We use only
the leading kernels out of the full basis (in decreasing fre-
quency ordering), which capture a large enough portion of
the patch’s energy. This method incorporates an early ter-
mination mechanism, rejecting a candidate once the sum of
projected differences exceeds the current nearest approxi-
mation of patch distance.

4.3. Implementation Details

All our experiments were done in a fixed setting of the
following options. Our hash functions gi concatenate pro-
jections of M = 8 leading WH kernels (6 on Y and and
1 on each of the chroma channels). In terms of bin width
r (which is equivalent to the number of bins, in our finite
projection scheme), we found that the higher the frequency
of the WH kernel - the lower the dispersion of the projected
patches and therefore we reduce the number of bins from
32 (on first DC kernel) down to 2, at exponential rate. Also,
the number of patches that fall into equally spaced bins is
extremely image dependent and unbalanced in general. We
handle this to improve hashing by using variable bin widths,
achieving approximately a balanced distribution, based on
an on-the-fly estimation of the distribution using a sparse
sample of the image patches. We note that our extensive use
of the WH kernels, limits our patch dimensions to powers
of 2. In all our experiments, 8×8 patches were used. Aside
from the clear need to store the source, target, mapping and
error images in memory, CSH requires some extra memory
in order to store the hash tables as well as the pre-computed
projections of the image patches on the WH kernels. How-
ever, instead of constructing the complete index of L hash
tables and then searching through them sequentially (as de-
scribed in algorithm 1), our implementation performs L it-

Figure 2. Video Pairs data set (8 out of the 133 pairs)

erations (cycles) of the index and search steps, using only
one table at a time. For further improvement in memory
consumption, one could compute the WH projections on the
fly, while making a slight change in ordering in the ranking
stage. This is possible, since we use them in a sequential or-
der that complies with the Gray Code ordering [6] of these
kernels.

5. Experiments

We collected 133 pairs of images, taken from 1080p HD
(∼2 megapixel) official movie trailers. Each pair consists of
images of the same scene with usually some motion of both
camera and subjects in the scene (The images are between
1 and ∼30 frames apart in the video). We note that pairs of
images with only slight camera and subject motion aren’t
very challenging in the dense patch matching framework
and could be handled specifically via registration or optic
flow techniques. See figure 2 for some example image pairs
of this database. Our implementation of CSH is in Matlab,
using Mex functions in critical sections. PatchMatch imple-
mentation was taken from the PatchMatch website3. Both
algorithms were run in a single core configuration on a 2.66
GHz machine, with 8 GB of RAM.

5.1. Efficiency

The goal of this experiment is to compare the error-to-
time tradeoff of CSH to that of PatchMatch, whose tradeoff
was shown [5] to be superior relative to previous methods,
in the sense that it reaches reasonable error rates faster.

Our algorithm goes one step forward by being able, on
the one hand, to reach reasonable error rates much faster
than PatchMatch and on the other - reaching error rates that
are out of PatchMatch’s reach, as do the (much slower) LSH
and KD-Tree algorithms.

We ran both algorithms on the Video Pairs data-set at
original resolution using 8 × 8 patches4. The error to time
performance of the algorithms was measured by averaging
(errors and run-times) over all image pairs. The results are
shown in figure 3. The mapping error (as in [4, 5]) is the av-
erage L2 distance between the matching patches. For com-
parison, we also computed the exact nearest neighbor match
to serve as a ground truth.

In terms of speed, it is clear that our algorithm is much
faster than PatchMatch. In order to compare speed, take a
certain error rate and compare how long it would take to
reach it by each of the algorithms. For instance, the error
rate that PatchMatch reaches after 5 iterations (as suggested
in [4]) is reached by our algorithm 3 or 4 times faster.

3www.cs.princeton.edu/gfx/pubs/Barnes_2010_TGP/
index.php

4Similar results were observed in different settings, when using lower
image resolutions as well as different patch sizes [14]

www.cs.princeton.edu/gfx/pubs/Barnes_2010_TGP/index.php
www.cs.princeton.edu/gfx/pubs/Barnes_2010_TGP/index.php


Figure 3. Error/Time tradeoffs of PatchMatch and CSH. Aver-
ages are over the 133 image pairs of the data set. Markers on the
lines indicate the time it took each algorithm to complete an itera-
tion, and errors are average L2 distances between patches. Lower
error rates (such as those reached by CSH on its third iteration) are
reached more than 4 times faster by CSH compared to PatchMatch.
Notice that CSH errors are significantly lower and approach the
ground truth average error (denoted by solid red line).

5.2. Other Properties

Aside from its good error to time tradeoff, CSH pos-
sesses other pleasing properties, which are of high impor-
tance (not less than the error rate itself), in the common us-
ages of such dense patch mappings. In this section we will
review these properties, in comparison to the PatchMatch
mapping and ground-truth (exact) mappings.

5.2.1 Image Energy and Mapping Quality

PatchMatch and CSH differ in the way the quality of a
match depends on the energy level of the patch (i.e. how
textured is the patch). Generally speaking, PatchMatch
copes slightly better with flat areas, while CSH does better
in the mid range and going towards textured, edgy patches.
This is, again, due to the locality of the PatchMatch search
and propagation, which will work well in large homoge-
neous areas, but will fail in high energy areas where usually
nearby patches might only be well matched to patches that
are very distant in the target image.

For our experiment we used the same 133 image pairs.
For each such pair, we ordered the source image’s patches
according to their spatial energy (mean of gradient magni-
tudes) in increasing order and divided them into ten equal
sized deciles. For each such decile of patches we calculated
the mean error of the patch matches, produced by each of
the algorithms. In figure 4, we plot the difference between
the PatchMatch error and the CSH error for each of the

Figure 4. Mapping errors ordered by patch energy. x-axis:
Patches of the source image are divided into 10 deciles, according
to their energy level (mean gradient magnitude). y-axis: the differ-
ence between PatchMatch and CSH mapping errors, averaged over
each of the deciles. On the lower end, the first decile represents
patches with low energy in the range [0, 14] on which PatchMatch
error (mean L2 patch distances) is slightly lower (2 graylevels),
while at the tenth decile (high energy in the range [155, 255]) -
CSH error is significantly lower (over 11 graylevels).

deciles. The general trend of the plot is clear and consis-
tent across the range of patch energies. We argue that the
distribution of errors produced by CSH is preferable to that
of PatchMatch, since it is known that errors along edges and
textured areas have a much stronger visual impact compared
to inaccuracies in textureless areas. This is the reason that
CSH is able to avoid many artifacts along edges (compared
to PatchMatch) when reconstructing a source image from
a target image patches using the dense mapping between
them (this is shown in section 5.3).

5.2.2 Incoherence of the Mapping

Given a dense patch mapping from image A to image B, we
define the incoherence of the mapping at each pixel a of A
to be the number of different pixels in B that a is mapped to
under all of the patches that contain it. For instance, inco-
herence of 1 (the minimum possible) at a pixel, means that
all the patches containing it map coherently (by a constant
translation). The maximal coherence is the patch size. This
definition is illustrated in figure 5.

The higher incoherence of the CSH mapping (compared
to the PatchMatch mapping) is due to the different way in
which the patches are found. In PatchMatch, the vast major-
ity of final matches are ones that were directly propagated
from neighboring patches or randomly found extremely
close to them. In CSH, different good quality matches that
are spatially spread in the target image have a fair chance



Figure 5. Incoherence of a pixel. In this example patches are 2-
by-2. There are 4 patches containing the pixel on the left. Each of
these patches is mapped to the patch of the corresponding color on
the right. The incoherence of the mapping at the pixel is 3.

to be found by the algorithm. This is especially true for
regions that do not appear as a whole in the target image.

Large incoherence of a dense mapping is a crucial prop-
erty, when it comes to some of the applications that make
use of dense patch mappings. This is true for applications,
where an image area is reconstructed, pixel by pixel, ac-
cording to ’votes’ that come from patches in the target im-
age of an ANN mapping. The reason being simply that
the incoherence measures the number of votes a pixel gets.
Therefore, for different mappings of the same error level,
regardless of how the votes are integrated into a single deci-
sion (e.g. by taking the median or some weighted average)
- the precision of the estimate increases with the incoher-
ence. This (negative) correlation between incoherence and
reconstruction will be shown experimentally in section 5.3.
The average incoherence over the entire data-set was found
to be 15% higher in CSH compared to PatchMatch.

5.3. Image Reconstruction

The combination of these CSH properties is useful in
various image editing and denoising applications. We
demonstrate this in the most direct manner, using the re-
construction of a source image A, given a target image B
and a dense patch map from A to B. This kind of recon-
struction is the main ingredient of the patch based versions
of the above mentioned applications. We use the code sup-
plied with PatchMatch to calculate the image reconstruction
and its quality. It simply replaces each pixel with the aver-
age of the corresponding pixels that it is mapped to by all
patches that contain it. This kind of averaging was shown
[18] to maximize the (Bi-)Directional Similarity from A to
B. For this experiment we used all images from the Video
Pairs data-set, resized to 0.4 MP.

We use as a baseline the ground-truth (exact) mapping,
which results in the best possible reconstruction under the
Bidirectional Similarity framework. The results are summa-
rized in table 1. The RMSE error is the square root of the
mean (over pixels in all images) of the squared L2 (in RGB)
norm between original and reconstructed pixels. It can be
seen from the table that the CSH average error is more than
20 percent lower than that of PatchMatch. Figure 6 clearly
shows the correlation which we discussed in section 5.2.2

PatchMatch CSH Ground Truth
reconst. RMSE 7.62 6.29 5.81

Table 1. Average reconstruction errors - PatchMatch vs. CSH,
relative to using ground truth mapping. Averages are over the 133
image pairs data-set, at 0.4 MP. CSH achieves reconstruction er-
ror rates that are only 8% higher than those produced using the
ground truth mapping, while PatchMatch’s errors are more than
30% percent higher than those produced using the ground truth
mapping.

between mapping incoherence and reconstruction error.

Figure 6. Incoherence and Reconstruction Error. Each point
denotes the reconstruction error and incoherency of one of the 133
image pairs. The x-axis is the difference between reconstruction
error when using the algorithm (CSH or PatchMatch) and recon-
struction error when using the ground truth mapping. Similarly,
the y-axis is the difference between ground truth mapping incoher-
ence and algorithm (CSH or PatchMatch) mapping incoherence.
Being close to the origin, means being close to the ground truth.
The two separate clusters emphasize the negative correlation, be-
tween incoherence and reconstruction error, which we discussed
in section 5.2.2.

A typical reconstruction example5 is shown in figure 7,
in which the reconstructions produced using PatchMatch
and CSH mappings are compared with the reconstruction
produced using the ground truth mapping.

6. Conclusions
We proposed an algorithm for computing ANN fields

termed Coherency Sensitivity Hashing, which follows the
concepts of LSH search scheme, but combines image co-
herency cues, as well as appearance cues in a novel man-
ner. It was shown to be faster than PatchMatch and more
accurate, especially in textured areas. In addition, its high
incoherence improved reconstruction results, which are at
the basis of many patch based methods.

5Please refer to CSH web page [14] for additional examples.



Figure 7. Reconstruction Example. We visually compare re-
construction results using PatchMatch, CSH and Ground truth
mappings on a typical pair of 0.5 MP images. Row 1: The
dense mappings are computed from A (left) to B (right). Row
2: x-coordinates of PatchMatch mapping (left) and CSH mapping
(right). Blue/red areas in A are mapped to the left/right side of
B. These images illustrate the lower coherency of the CSH map-
ping compared to that of PatchMatch. As discussed in the text
- this enables better reconstruction. Rows 3-5: Enlarged areas
from reconstructed image A, using ground-truth, CSH and Patch-
Match mappings (in this order). In this example, reconstruction
RMS errors are: 19.4 (ground-truth), 20.1 (CSH) and 22.0 (Patch-
Match). Visually, the PatchMatch reconstruction is less accurate
(especially around edges), introducing blur and color distortion.

Acknowledgments: This work was partially supported
by Israel Science Foundation grant 1556/10 and the Israeli
Ministry of Science and Technology. We thank Yonatan Hy-
att and Guy Shwartz for their assistance.

References
[1] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu.

An optimal algorithm for approximate nearest neighbor
searching. Journal of the ACM, 45(6):891–923, 1998.

[2] M. Ashikhmin. Synthesizing natural textures. In Proc. sym-
posium on Interactive 3D graphics, pages 217–226, 2001.

[3] C. Barnes. PatchMatch: A Fast Randomized Matching Al-
gorithm with Application to Image and Video. PhD thesis,
Princeton University, 2011.

[4] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-
man. PatchMatch: A randomized correspondence algorithm
for structural image editing. In SIGGRAPH, 28(3), 2009.

[5] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkel-
stein. The generalized PatchMatch correspondence algo-
rithm. In European Conference on Computer Vision, 2010.

[6] G. Ben-Artzi, H. Hel-Or, and Y. Hel-Or. The gray-code filter
kernels. In PAMI, pages 382–393, 2007.

[7] A. Buades, B. Coll, and J. Morel. A non-local algorithm for
image denoising. In CVPR, volume 2, pages 60–65, 2005.

[8] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions.
In Proc. of annual symposium on Computational geometry,
pages 253–262, 2004.

[9] A. A. Efros and W. T. Freeman. Image quilting for texture
synthesis and transfer. SIGGRAPH, pages 341–346, 2001.

[10] A. A. Efros and T. K. Leung. Texture synthesis by non-
parametric sampling. In ICCV, pages 1033–1038, 1999.

[11] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In International Conference
on Very Large Data Bases, pages 518–529, 1999.

[12] Y. Hel-Or and H. Hel-Or. Real-time pattern matching using
projection kernels. In PAMI, pages 1430–1445, 2005.

[13] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In Symposium
on Theory of Computing, pages 604–613, 1998.

[14] S. Korman. CSH webpage. www.eng.tau.ac.il/

˜simonk/CSH/index.html.
[15] V. Kwatra, A. Schdl, I. Essa, G. Turk, and A. Bobick. Graph-

cut textures: Image and video synthesis using graph cuts.
SIGGRAPH, 22(3):277–286, 2003.

[16] M. Muja and D. G. Lowe. Fast approximate nearest neigh-
bors with automatic algorithm configuration. In VISSAPP,
pages 331–340. INSTICC Press, 2009.

[17] D. Ruderman. Statistics of natural images. Network: Com-
putation in Neural Systems, 5(4):517–548, 1994.

[18] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Sum-
marizing visual data using bidirectional similarity. In CVPR,
pages 1–8. IEEE, 2008.

[19] X. Tong, J. Zhang, L. Liu, X. Wang, B. Guo, and H. Shum.
Synthesis of bidirectional texture functions on arbitrary sur-
faces. ACM Trans. on Graphics, 21(3):665–672, 2002.

[20] L.-Y. Wei and M. Levoy. Fast texture synthesis using tree-
structured vector quantization. In SIGGRAPH, 2000.

[21] Y. Wexler, E. Shechtman, and M. Irani. Space-time comple-
tion of video. PAMI, 29:463–476, 2007.

www.eng.tau.ac.il/~simonk/CSH/index.html
www.eng.tau.ac.il/~simonk/CSH/index.html

