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Abstract: Parametric optics and second harmonic generation in pure
plasmonic particle chains are studied. By a proper design of the plasmonic
particle geometry, the modes supported by the chain can achieve phase-
matching conditions. Then the magnetic-field dependence of the plasmon
electric susceptibility can provide the nonlinearity and the coupling mecha-
nism leading to parametric processes, sum frequency and second harmonic
generation. Hence, chains of plasmonic particles can support parametric
optics and higher harmonic generation by using its own modes only. Since
the second order nonlinearity involves both electric and magnetic fields,
the SHG reported here is supported also by centrosymmetric particle chains.
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1. Introduction

Linear chains of identical and equally-closely-spaced plasmonic particles have been studied in
a number of publications [1–4]. It has been shown that they allow the propagation of optical
modes with relatively low attenuation and with no radiation to the free space. This property
is obtained if the inter-particle distance is smaller then the free space wavelength λ , and then
the total width of the modes can be much smaller than λ . Hence the name ”Sub-Diffraction
Chains” (SDC). SDCs are potential candidates for dense integration of optical systems, and
were proposed as guiding structures, junctions, and couplers [1–5], as chiral waveguides [6],
and also as one-way waveguides [7].

In this work we study parametric optics and second harmonic generation (SHG) in plasmonic
particle SDC’s. Plasmonic structures can support highly localized electromagnetic modes, and
therefore have the potential to enhance nonlinear processes. Essentially two different physical
schemes can be invoked. In the first, the plasmonic structure is used mainly for field con-
centration and enhancement while the non-linearity is provided by another dielectric material
(such as LiNbO3) [8, 9]. In the second scheme, the inherent non-linear response of metallic
nano-particles and structures is exploited. SHG processes associated with a single particle, par-
ticle arrays or dispersed particles were studied theoretically and experimentally in a number
of publications [10–16]. (The non-trivial issue of distinguishing between the two processes in
combined plasmonic-dielectric structures is discussed, e.g. in [17].) In these works special at-
tention is given to the particle symmetry; non-centrosymmetry is essential for locally excited
dipole-induced SHG if the nonlinear dipole response depends solely on the electric field. This
well known restriction is due to the fact that under space inversion (r �→ −r) one has p �→ −p
and E �→ −E, so we must have χ (2)

ee = 0. It was shown that centrosymmetric particles can
support SHG either by locally excited quadrupoles, or by nonlocal excitations of dipoles (see
e.g. [13,14] and references therein). However, the centrosymmetry exclusion can be alleviated;
non-centrosymmetry is essential for locally excited dipole-induced SHG only if the nonlinear
dipole response depends solely on the electric field. Under space inversion H �→ H, so SHG
can be supported by centrosymmetric particles if the nonlinear dipole response depends on E
and H (e.g. it involves terms as H×E due to Lorentz force). As we shall see, the underlying
physics associated with SHG in our chains is in line with these general observations.

To efficiently utilize the potential of parametric gain and SHG, one needs a constructive
interference of the generated radiation, commonly manifested by phase-matching conditions.
Hence, our study is based on two essential steps. First, the dispersion relations of the SDC
modes are examined. By a proper design of the chains particles, phase matching between the
supported modes can be achieved. The key is to use ellipsoidal particles rather then the conven-
tional spherical ones-see Fig. 1(a). The second step is of fundamental importance; we use the
non-linearity resulting from the plasmonic susceptibility dependence on magnetic fields [18],

#149146 - $15.00 USD Received 13 Jun 2011; revised 15 Sep 2011; accepted 19 Sep 2011; published 5 Dec 2011
(C) 2011 OSA 19 December 2011 / Vol. 19,  No. 27 / OPTICS EXPRESS  25844



to establish coupling between the magnetic fields of one of the modes, and the electric polar-
ization of another mode. The physical process underlying the non-linearity is schematized in
Fig. 1(b). Two important points should be emphasized. First, it is essentially a Lorentz force
term, so SHG is supported even with centrosymmetric particles such as the ellipsoids shown in
the figure. Second, the nonlinearity at any given particle in the chain, is excited due to magnetic
fields created by its neighbors that can be viewed as retarded-field non-local contributions (in
analogy with bulk-theories, it comes from other particles in the bulk). Again consistently with
previous publications non-local dipole contributions can support SHG in centrosymmetric par-
ticles. Hence, our ellipsoids-based SDC can amplify or generate optical signals constructively
using its own modes only.

Fig. 1. A subdiffraction chain of ellipsoidal particles (d � λ ). Resonances, phase-matching
conditions, and gain can be achieved by designing d and the ellipsoids semi-axis ax,ay,az.
(a) Chain Geometry for prolate ellipsoid particles. (b) Source of non-linearity. The chain
supports a modal dipole response of the form pm = x̂p0eimβ . We examine the specific case
of β ≈ π/2; for any n, there is a phase difference of π between the dipole responses of the
two nearest neighbors of the n-th particle. As a result their (ŷ-directed) magnetic fields add
constructively at the n-th site, creating a modulation of the n-th particle (in blue) electric
susceptibility component relevant for a ẑ-directed dipole. Hence a parametric coupling be-
tween the x̂ and the ẑ polarized dipole excitations is created, both can be supported by the
chain dispersion. Generally, at the n-th site, the magnetic fields of the n± � neighbors add
constructively (destructively) for odd (even) �. The strongest contributions are from �= 1.
This general picture holds also if β deviates from π/2. In fact, the maximal value of H is
obtained for β ≈ 0.4π .

In our analysis we use the Discrete Dipole Approximation (DDA) and polarizability theory,
in conjunction with the Nearest Neighbor Approximation (NNA). The former two are standard
tools used in many works on SDCs [3–6]. They hold when the particle diameter D is much
smaller than the wavelength so it can be considered as an infinitesimal dipole, and the inter-
particle distance d is large compare to D. Studies show excellent agreement with exact solutions
even when d and D are of the same order [19]. To simplify the analysis and to obtain transparent
analytical results, we employ the nearest neighbor approximation (NNA). Here, one assumes
that the field exciting the n-th particle is mainly due to its two nearest neighbors, namely due
to particles n± 1. Since the electric near field of an infinitesimal dipole behaves essentially as
(kr)−3, this approximation holds very well for SDCs with inter-particle distance d � λ . Indeed
it was shown that chain dispersions resulting from the NNA are in excellent agreement with
those of the full theory if d/λ ≤ 0.1 [4], but good agreement is obtained even with larger ratios
such as d/λ ≈ 0.25 [3]. As shown in these two early studies, there is only one exception: the
dispersion of the transverse modes near the light line is not predicted well by the NNA. We
keep away from this domain and concentrate in regions where it holds well. Since dispersions
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play here the pivotal role for the phase-matching, the NNA discussed in [3, 4] provides the
phase-matching conditions in a sufficient accuracy.

2. Formulation

If a small particle with electric polarizability tensor or matrix α is subject to an exciting electric
field whose local value in the absence of the particle is EL, its response is described by the
electric dipole p = αEL. The matrix (or tensor) polarizability of a general ellipsoid made of
an anisotropic dielectric material with electric matrix-susceptibility χ can be found in [20] for
the static case. In the dynamic case it needs to be augmented to incorporate radiation loss, but
consistently with the NNA [3,4] this correction is neglected here. If the ellipsoid principal axes
are aligned with the x,y,z axes, its polarizability α is

α = ε0V
(

I3 + χL
)−1

χ (1)

Here I3 is the 3 by 3 identity matrix, V = 4πaxayaz/3 is the ellipsoid volume and ax,ay,az

are its semiaxes. L = diag(Nx,Ny,Nz) is the depolarization matrix whose entries are obtained
by elliptic integrals and satisfy ∑u Nu = 1 [20]. We give some canonical examples. A sphere
has Nu = 1/3∀u. A prolate ellipsoid (ax > ay = az = a), has Ny = Nz = (1−Nx)/2, Nx =

(1− e2){ln[(1+ e)/(1− e)]−2e}/(2e3), where e = (1− a2/a2
x)

1/2. Hence a “football” with
ax = 2a has Nx ≈ 0.1736,Nz ≈ 0.4132. An oblate ellipsoid (ax = ay = a > az) has Nx = Ny =

(1−Nz)/2, Nz = (1+ e2)(e− arctane)/e3, where e = (a2/a2
z − 1)1/2. Hence a “m&m” with

az = a/3 has Nz ≈ 0.6354, Nx ≈ 0.1823.
χ of magnetized plasmons is obtained by applying Lorentz force. Up to first order in the

magnetization field H, it is given by (see appendix)

χ = χee [I3 + iBH ] , χee =− ω2
p

ω(ω + i/τ)
(2)

where the scalar χee is the non-magnetized plasma susceptibility [18]. Up to a constant factor,
the matrix operator BH is equivalent to a vector multiplication by the magnetic field H from
left,

BH =
eμ0

ωme

⎛
⎝

0 −Hz Hy

Hz 0 −Hx

−Hy Hx 0

⎞
⎠ ≡ eμ0

ωme
H× (3)

and × is the vector product. The time constant τ represents material loss. In practical situations
this loss is orders of magnitude larger than the particle radiation loss [3]. We note that the
equation above is valid as long as χee is valid for non-magnetized metals. No assumption is
made about the rate of change of B; Lorentz force holds for any time-scale. The expression
above can be obtained also as a first order approximation (in B) of the magnetized plasma
susceptibility given in [18].

Let pn be the n-th particle dipole moment. Under the DDA and the NNA, it is excited only by
its two nearest neighbors. Hence it is governed by the difference equation [3] (assume kd � 1
and use the expression for the near field of an infinitesimal dipole [18])

pn =
1

4πε0d3 α [3ẑ(ẑ ·Sn)−Sn] (4)

where Sn is the nearest-neighbors sum,

Sn ≡ pn+1 +pn−1. (5)

Equations (1)-(5) constitute a starting point for various parametric processes in particle chains
under the discrete dipole and nearest neighbor approximations.
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2.1. Dispersion and phase matching

We first examine phase-matching conditions when loss may be neglected (1/τ → 0), and when
the non-linearity due to BH can be neglected. By substituting the solution

pn = p0eiβn (6)

into Eq. (4) and using the linear part of Eq. (2), we obtain the three independent dispersion
relations, governing the transverse (x,y) and longitudinal (z) independent polarizations

(ω/ωp)
2 = Nu +σu cos(β ), u = x,y,z (7)

here (σx,σy,σz) = (σ ,σ ,−2σ), with σ =V/(2πd3), where σ < Nu∀u. We look for solutions
that satisfy the SHG condition or the sum frequency generation (SFG) condition,

SHG: (ω3,β3) = (2ω1,2β1) (8)

SFG: (ω3,β3) = (ω1 +ω2,β1 +β2). (9)

For spherical particles Nu = 1/3∀u,so Eq. (7) reduces to the known dispersions [3, 4], all cen-
tered around ωp/

√
3; they cannot support Eqs. (8)–(9). However, by using ellipsoidal particles

one can design the central frequencies ωp
√

Nu such that the dispersions in Eq. (7) can satisfy
the conditions in Eq. (8) or Eq. (9). We start with SHG. Of particular interest is a solution that
supports for wave#1 a x̂ polarized mode at its central frequency, and for wave#3 a ẑ polarized
mode [see Fig. 1(b)]. By imposing Eq. (8) on the corresponding dispersions in Eq. (7), we
obtain

Nz −4Nx = 2σ [cos(2β1)+2cos(β1)] (10)

It is all about chain-particle geometry. Using the expressions for the prolates and oblates Nu’s
[see discussion after Eq. (1)] and σ , the ellipsoid parameter ax/az and particles separation
parameter ax/d satisfying the above equation were computed for geometrically feasible con-
figurations (d > 2az). The results are shown in Fig. 2(a). For general ellipsoids, more solutions
may be available.
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Fig. 2. Geometrical parameters of prolate or oblate ellipsoid SDC, supporting (a) SHG of
Eq. (8) for various values of β1, and (b) SFG of Eq. (9) for various values of β2.

For the SFG in Eq. (9), we still look for x̂-polarized wave as mode#1, but now with ŷ, ẑ-
polarized modes#2,3, respectively. With the dispersions in Eq. (7) and with β1 = π/2, Eq. (9)
becomes

σ cos(β2)+2(NxNy +Nxσ cosβ2)
1/2 = 2Nz −1±2σ sinβ2. (11)
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where we used ∑Nu = 1. Solutions for oblates are shown in Fig. 2(b). Again, other solutions
are available for general ellipsoids and/or other polarizations and/or other values of β1.

2.2. Nonlinear chain dynamics

We turn now to explore the SDC dynamics under self-magnetization. It is the magnetic field of
the SDC modes that establishes the non-linearity via Eqs. (2)–(3), the actual mode coupling,
and eventually gain and SHG. However, it is inconvenient to express the non-linearity directly
with the magnetic field of the SDC mode. Instead, we express the chain magnetization in terms
of one of the SDC modes dipole moments, that will later play the role of the pump wave. Note
that H of the mode under the NNA has not been studied before. The NNA validity for H is not
as transparent as for E, since for electric dipole the near H-field goes up as r−2 while the near
E-field as r−3. Hence, below we first make an exact evaluation of the mode magnetic field (i.e.
considering contributions from all the chain particles), and then compare it to the magnetic field
obtained under the NNA (i.e. contributions from the two closest neighbors only). We show the
range of parameters for which the two results do not differ much (the specific examples shown
later, however, use the exact field).

The magnetic field at (0,0,nd) due to a single electric dipole pm at (0,0,md), is given by [18]

Hnm = ẑ×pm sgn(m−n)ck2g(dmn) [1+ i/(kdmn)] (12)

where dmn = d |m−n|, g(x)= eikx/(4πx), and sgn(u)= u/ |u|. The magnetic field at the location
of the n-th dipole is given by summing Hnm in Eq. (12) over m, m �= n, and using Eq. (6) for
pm. The self magnetic field of the n-th particle, Hnn, is excluded as it averages to zero over the
particle volume. The result is

Hn = ∑
m,m�=n

Hnm = ẑ×pn
ck3

4π
F(kd,β ) (13)

where

F(kd,β ) =
1
kd

[
Li1(e

+)−Li1(e
−)+

i
kd

Li2(e
+)− i

kd
Li2(e

−)
]
, e± ≡ eikd±iβ (14)

and where Lis is the s-th order Polylogarithm function [21] defined as

Lis(z) =
∞

∑
n=1

zn

ns ⇒ Li0(z) =
z

1− z
, Li1(z) =− ln(1− z). (15)

Lis(eiθ ) are expressable in terms of the Clausen’s integral and series, for which efficient summa-
tion formulas are available (see Sec. 27.8 in [22]). The exact Hn in absolute value and in units
of ẑ×pnck3/(4π) is shown in Fig. 3(a). For kd � 1 the magnetization strength is maximal for
β ≈ 0.4π . For larger values of kd another maximum emerges along the light line β = kd. Note
however that the chain supports propagating modes in the form of Eq. (6) only for β > kd [4],
hence the magnetization field shown in the figure is supported by the chain modes only above
this line.

To get a feeling of the field structure, consider the SDC mode near its central frequency
pm = p0eimβ , β ≈ π/2. The magnetic field is still given by the sum in Eq. (13), with Eq. (12).
Since β ≈ π/2 and due to the sgn term in Eq. (12), contributions from odd neighbor-pairs
m = n± (2�+ 1), � = 0,1, . . . add up constructively at n; most important, this includes the
nearest neighbor-pair n±1 whose contribution is the strongest possible. Likewise, contributions
from even neighbor-pairs m = n± 2�, � = 1,2, . . . add up destructively and cancel out. The
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Fig. 3. The n-th particle magnetization due to the chain’s own electric-dipole mode. (a) The
exact Hn of Eq. (15) shown in the kd,β/π plane. The field is in units of ẑ×pnck3/(4π) on
logarithmic scale. (b) The NNA error for values of β , near π/2.

physical picture is schematized in Fig. 1(b). Consistent with the NNA (valid for kd � 1), we
keep only the contributions from the pair m = n±1 and neglect the rest; the next non-zero term
is an order of magnitude weaker. We end up with an expression similar to that of Eq. (13),
where F(kd,β ) is approximated by

F(kd,β )≈− 2
(kd)2 sinβ . (16)

The exact F and its NNA are compared in Fig. 3(b). For β/π ≈ 0.4 : 0.5 the error of the NNA
is less then 10% for kd up to 0.4.

With the mode self-magnetization of Eqs. (13)–(16) we may establish the non-linear dynam-
ics. Using it in Eqs. (1)–(3), and substituting the result in Eq. (4), we obtain the non-linear
formulation (multiply on left by I3 + χL and rearrange),

[
(ω/ωp)

2 + iω/(ω2
pτ)

]
pn = Lpn − (σ/2) [3ẑ(ẑ ·Sn)−Sn]+Ψ (17)

where τ−1 is the loss term, σ is defined after Eq. (7), the vector Ψ represents the non-linear
dynamics [use vector identities e.g. (a×b)× c = b(a · c)−a(b · c) etc],

Ψ = iA [pn(ẑ ·Lpn)− ẑ(pn ·Lpn)]− iA(σ/2) [2pn(ẑ ·Sn)+ ẑ(Sn ·pn)−3ẑ(ẑ ·pn)(ẑ ·Sn)] (18)

and

A = A(kd,β ) =
k2eμ0

4πme
F(kd,β ). (19)

Under the DDA and NNA, Eqs. (17)–(18) constitute a self-consistent formulation for general
second order parametric optics in plasmonic SDC’s.

3. Second harmonic generation

We show the existence of SHG process that satisfies Eq. (8). The analysis is based on the
conventional approach: write the various waves in Eqs. (17)–(18) with their time dependence,
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add their complex conjugate, and look for terms at frequencies and polarizations of interest.
Let wave#1 be a x̂ polarized SDC mode with ω1,β1 satisfying the corresponding linear ideal
(lossless) dispersion relation Eq. (7). Likewise, let wave#3 be a ẑ polarized SDC mode, with
ω3,β3 satisfying the corresponding dispersion relation in Eq. (7) and the SHG phase matching
condition in Eq. (8). This is possible by virtue of the results shown in Fig. 2. We express these
modes in a slight generalization of Eq. (6),

p(1)
n = x̂ p̃(1)

n eiβ1n, p(3)
n = ẑ p̃(3)

n eiβ3n (20)

where p̃(i)
n , i = 1,3 depend on n to allow for possible loss, and for gain or depletion due to

mutual interactions. We turn to obtain the dynamic equation for the ω3 oscillations from the
formulation in Eqs. (17)–(18). For compactness, we also define

S̃(1,3)
n = p̃(1,3)

n+1eiβ1,3 + p̃(1,3)
n−1e−iβ1,3 (21)

To get both sides of Eq. (17) to oscillate at ω3 = 2ω1 the linear terms should incorporate only
wave#3, and Ψ should incorporate only wave#1. The former is ẑ-polarized. The surviving ẑ
directed terms in Ψ that contribute to ω3 oscillations are the second one (p(1)

n ·Lp(1)
n ) and (S(1)

n ·
p(1)

n ). Hence Eq. (17) gets the form
[
(ω3/ωp)

2 + iω3/(ω2
pτ)

]
p̃(3)

n = Nz p̃(3)
n −σ S̃(3)

n − i(A1/4) p̃(1)
n

[
σ S̃(1)

n +2Nx p̃(1)
n

]
. (22)

In the above, A1 =A(k1d,β1)where A(kd,β ) is defined in equations Eq. (16) (this is because the
magnetization field, presented by A, is due to wave#1). Likewise, to get both sides of Eq. (17)
to oscillate at ω1 the linear terms should incorporate only wave#1, and Ψ should incorporate
only multiplications between waves#1 and #3. The only surviving terms are [p(1)

n ]∗(ẑ ·Lp(3)
n ) and

[p(1)
n ]∗(ẑ ·S(3)

n ). Hence Eq. (17) becomes
[
(ω1/ωp)

2 + iω1/(ω2
pτ)

]
p̃(1)

n = Nx p̃(1)
n +(σ/2)S̃(1)

n − i(A1/2)
[
p̃(1)

n

]∗ [σ S̃(3)
n −Nz p̃(3)

n

]
. (23)

Equations (22)-(23) describe the interaction between the two waves (and consequently SHG)
in a self-consistent manner. To facilitate transparent analytical solution, we assume that wave#1
is of high intensity and is not depleted due to energy transfer to wave#3. Below, two cases of
the SHG under the non-depleted pump are considered.

3.1. Non depleted pump with β1 = π/2 in lossless chain

We examine the ideal (lossless) chain case, with non-depleted pump wave at its central fre-

quency (ω1,β1) = (N1/2
x ,π/2). We further assume that wave#3 is zero at the chain origin.

Hence, we look for a solution satisfying

p̃(1)
n = p̃(1)

0 ∀n, p̃(3)
0 = 0. (24)

With the above parameters, S̃(1)
n = 0, so Eq. (22) for the second harmonic wave p̃(3)

n reduces to

(ω3/ωp)
2 p̃(3)

n = Nz p̃(3)
n −σ S̃(3)

n − iNx(A1/2)
[
p̃(1)

0

]2
. (25)

By direct substitution, it is easily verified that an exact solution to Eq. (25), that satisfies the
initial condition in Eq. (24), is given by [use (ω3/ωp)

2 = Nz+2σ ,β3 = 2β1 = π , as implied by
Eqs. (7)–(8)) and their solution in Fig. 2]

p̃(3)
n = iNx(A1/4σ)

[
p̃(1)

0

]2
n2. (26)

It is seen that the SDC’s second-harmonic wave grows as n2 - a quadratic growth typical to
SHG.
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3.2. Chain with loss

We solve now Eqs. (22)–(23) under lossy conditions and for pump wave not necessarily at
(ω1,β1) = (

√
Nx,π/2), but still with the exact phase matching conditions in Eq. (8). Note that

the mode magnetization (which carries the gain) is maximized at β1 ≈ 0.4π - see Fig. 3. We
“generalize” the non-depleted pump assumption to hold for a lossy medium: we assume that the
pump attenuation is mainly due to loss mechanism, and the attenuation due to energy transfer
to wave# 3 can be neglected. Hence, we have for the pump:

p̃(1)
n = p̃(1)

0 e−γn (27)

The attenuation factor γ can be computed by generalizing the dispersion relation to hold for
complex β [4]. Typical values for Ag particles, for example, are γ ≈ 0.1 : 0.15 [1, 3]. Since the
chain is lossy, and the pump itself decreases exponentially, we have the following initial/final
conditions for wave# 3:

p̃(3)
0 = 0, lim

n→∞
p̃(3)

n = 0. (28)

Substituting p̃(1)
n of Eq. (27) into Eq. (22) and rearranging, we obtain for p̃(3)

n

Bp̃(3)
n + eiβ3 p̃(3)

n+1 + e−iβ3 p̃(3)
n−1 = [p̃(1)

0 ]2 D e−2γn (29)

where

B =−2cosβ3 +
iω3

ω2
pτσ

, D =− iA1

2σ
[Nx +σ cosh(γ − iβ1)] . (30)

The solution to the difference Eq. (29) consists of two terms. The first is the particular solution
p̃(3),p

n that due to the forcing on the rhs it should be proportional to e−2γn. A straightforward
substitution of ae−2γn into the equation shows that the particular solution is given by

p̃(3),p
n = [p̃(1)

0 ]2 ap e−2γn, ap =
D

B+2cosh(2γ − iβ3)
. (31)

The second term is the homogeneous solution that satisfies the homogeneous counterpart (no
forcing) of Eq. (29). It has the form p̃(3),h

n = arn, where r is obtained by substituting this solution
into the homogeneous equation and looking for the roots of the characteristic polynomial

r2 +Be−iβ3r+ e−2iβ3 = 0 ⇒ r1,2 =
e−iβ3

2

(
B±

√
B2 −4

)
. (32)

Note that r1r2 = e−2iβ3 . A careful examination shows that one of the roots, say r1, satisfies
|r1|< 1. Thus, the solution that satisfies Eq. (29) and the boundary conditions in Eq. (28) is

p̃(3)
n = [p̃(1)

0 ]2 ap
(
e−2γn − rn

1

)
. (33)

It is interesting to point out that the solution for lossless chain with β1 = π/2 studied in
Sec.3.1 cannot be obtained by a mere substitution of β1 = π/2, 1/τ = 0 in Eq. (33). For
β1 = π/2, 1/τ = 0 the characteristic polynomial has a higher order root multiplicity, in which
case the solution must be written in terms of powers of n.

It may be convenient to cast the last results in terms of the chain electric fields, rather than
the dipole moments. Let E(1,L)

n = x̂Ẽ (1)
n eiβ1n be the n-th particle local field associated with chain

mode#1, and E(3,L)
n = ẑẼ (3)

n eiβ3n be that for mode#3. They are related to their respective dipole
moments via the polarizability α . Hence

Ẽ (3)
n =

(α1x̂)2

α3ẑ
[Ẽ (1)

0 ]2 ap
(
e−2γn − rn

1

)
. (34)
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where α1,3 = α(ω1,3).
Finally, it is interesting to examine the local ratio between the pump wave and the second

harmonic. This ratio is given by

Ẽ (3)
n

Ẽ (1)
n

=
(α1x̂)2

α3ẑ
Ẽ (1)

0 ap
(
e−2γn − rn

1

)
eγn. (35)

Hence, there is a critical value for r1: if |r1|> e−γ this ratio increases unboundedly as the waves
propagate along the chain, signifying an efficient energy transfer from the pump to the second
harmonic. Clearly, for very large n the non-depleted assumption in lossy chain, defined at this
subsection onset, ceases to be valid.

The efficiency of plasmonic SDC based SHG, is somewhat subtle to define. Since any plas-
monic structure is considerably lossy, it is clear that the pump itself decreases exponentially
due to loss, independently of the rate of energy transfer to SH. Then, its ability to ”pump” also
decreases exponentially. Any plasmonic mode undergoes this typical decay due to loss. Hence,
Eq. (35) suggests a better-suited figure for the efficiency in the presence of loss. It actually pro-
vides two measures. (1) The local ratio between the signal and the pump as stated before; (2)
the value of the signal when the typical loss decay is ”cleaned out” (due to the multiplication by
eγn). As will be shown in the example below, the result is exponentially increasing, with typical
numerical values shown in Fig. 4.

A design example is in order. Consider a SDC of Ag prolates, in which a x̂ polarized pump
wave propagates with β1 = 0.4π . To achieve SHG phase-matching, we choose ax/d = 0.5, and
we use Fig. 2(a) and get ax/az ≈ 2.93, ⇒ Nx ≈ 0.112. Solving for the corresponding com-
plex dispersion relation with Ag loss factor 1/(τωp) = 2 · 10−3 we get ω1 = 0.3323ωp and
γ = 0.143. For Ag, ωp ≈ 8.6 · 1015 rad/sec, hence ω1 = 2.86 · 1015 so λ1 = 660nm. The pro-
lates are spaced by d = 80nm, hence ax ≈ 40nm, az ≈ 14nm, and σ = V/(2πd3) = 0.0097.
We used these parameters to compute the SHG in Eqs. (34)–(35), with the exact magnetiza-
tion field in Eqs. (13)–(15). The results are shown in Fig.4 for Ẽ (1)

0 = 1V/m. For this example
|r1|= 0.8915 > e−γ = 0.8668, thus the local ratio between the second harmonic and the pump
increases along the array.

0 10 20 30 40 50
−13

−12.5

−12

−11.5

−11

−10.5

−10

−9.5

n

E
0
(1)=1V/m

a
x
/d=0.5

a
x
/a

z
=2.929

1/(τω
p
)=0.002

γ=0.143
σ=0.0097
N

x
=0.1119

β
1
=0.4π

ω
1
=0.3323ω

p

 

 

log
10

|E(3)
n

/[E(1)
0

]|

log
10

|E(3)
n

/[E(1)
n

]|

Fig. 4. SHG example in a lossy plasmonic chain, for pump of 1V/m at the chain input.
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4. Summary

A formulation governing parametric processes and second harmonic generation in sub-
diffraction chains of plasmonic particles has been developed. Phase matching conditions be-
tween the different modes supported by the chain can be achieved by a proper design of the
particle geometry. Specific particle designs discussed here in detail are prolate and oblate ellip-
soids, but in principle other geometries may be used too. Then, the plasma electric susceptibility
dependence on magnetic fields is used to establish the nonlinearity and coupling between the
magnetic field of a transversely-polarized e-dipole chain mode, and a longitudinally-polarized
e-dipole mode. The formulation is general and applies to any second-order parametric process,
but special emphasis is placed on SHG. Since the coupling process is essentially a Lorentz-force
mechanism, the resulting SHG can be supported by centrosymmetric particle chains. Specific
examples in the non-depleted pump approximation and in lossy chains are considered.

A. Derivation of Eq. (2)

We derive the plasmonic susceptibility under the weak H-field assumption. Since the force
exerted by H on the free charge is velocity dependent, and since H is assumed to be weak, we
present the charge displacement as r = r1 + r2 where the former is due to the electric field E
and the latter is a correction due to H and due to the movement exerted by E. Hence, up to first
order in H, the Lorentz force induced electron displacement is governed by

mer̈2 =−eμ0ṙ1 ×H (36)

We assume that E and H oscillate at frequencies ω1 and ω2, respectively (these are not Phasors;
time dependence is included). Hence r1 and r2 possess e−iω1t and e−i(ω1+ω2)t time dependen-
cies, respectively. Equation (36) reads now

r2 =
−iω1e

ω2
3 me

r1 ×B (37)

where ω3 = ω1 +ω2. Since charge displacement is proportional to dipole volume density, we
have

P2 =
−iω1e

ω2
3 me

P1 ×B ⇒ P2 =
−iω1e

ω2
3 me

χee(ω1)E×B (38)

where P1,2 are the dipole volume densities associated with the displacements r1,2 respectively.
The scalar χee(ω) = −ω2

p/[ω(ω + i/τ)] is the electric susceptibility in the absence of magne-
tization, derived e.g. in [18]. The last result can be re-written as

P2 =
iω1e

ω2
3 me

χeeB×EL ⇒ P = P1 +P2 = χee(ω1)

(
I3 +

ie
ω1m∗

e
B×

)
E (39)

where m∗
e = [1+ω2/ω1]

2me is an effective measure of the electron mass. Note that in parametric
processes and SHG the typical relations between ω1 and ω2 imply that m∗

e/me =O(1). Equation
(39) is in fact the result written in Eqs. (2)–(3).
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