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Coupled Lasers Rotation Sensor (CLARS)

Jacob Scheuer, Senior Member, IEEE, Member, OSA, and Ben Z. Steinberg, Senior Member, IEEE

Abstract—We study the lasing eigen-modes and dynamics of cir-
cular array of coupled lasers in a rotating framework for ultrasen-
sitive integrated optical rotation sensing applications. The depen-
dence of the mode and frequency splitting on the array parame-
ters and pumping level is studied in details. The impact of struc-
ture variations and disorder such as variations of the resonance
wavelength of the individual cavities and the inter-cavity coupling
is studied and found to generate a ‘“dead-zone”” which limits the
sensitivity of the sensor.

Index Terms—Gyroscopes, integrated optics devices, Sagnac
effect.

1. INTRODUCTION

N electromagnetic wave propagating along a circular path

in a rotating medium accumulates additional phase shift
which depends on the medium rotation. This phase shift, known
as the Sagnac effect, is the underlying mechanism of contem-
porary high-resolution optical rotation sensors and Gyros. Op-
tical rotation sensors can be roughly divided into two subcate-
gories: 1) passive devices that generally measure the phase shift
between the clockwise (CW) and counterclockwise (CCW) ro-
tating waves using interferometric methods and 2) active de-
vices (lasers) that measure the beating between the resonance
frequencies of the CW and CCW rotating waves [1]. The de-
tection threshold of Gyros belonging to these subcategories is
limited by different mechanisms. Passive devices are basically
limited by the minimal power which can be detected, which is
determined by Schott noise while laser Gyros are theoretically
limited by a phenomenon called injection locking which tends
to lock the frequencies of the CW and CCW rotating waves at
low rotation rates. This frequency locking is caused by unde-
sired reflections and backwards scattering of one mode to the
other due to imperfections in the optical path. However, the in-
jection locking phenomenon can be eliminated by employing
various techniques [1] such as biasing the Gyro using a known
rotation rate, etc. As a result, laser Gyros are more commonly
used then their passive counterpart, especially when the detec-
tion of very low rotation rates are desired. Nevertheless, the re-
sponsivity, which determines the device accuracy, of both active
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and passive devices is determined almost solely by the area cir-
cumvented by the optical path [2], thus necessitating relatively
large devices.

Recently, the Sagnac effect was studied in slow-wave struc-
tures consisting of single and multi mode coupled micro-cavi-
ties [3], [4]. These studies demonstrated the slow-wave structure
potential for responsivity enhancement while retaining compact
dimensions. In particular, it was found that the Sagnac effect is
manifested differently in slow-wave structure and that the re-
sponsivity is determined not only by the area of the device. Other
parameters such as number of cavities, inter-cavity coupling and
the area of the individual cavities play a role in determining the
Gyro responsivity [3]-[5].

These studies, however, where focused on passive devices
which exploit the difference in the phase accumulated by
the CW and CCW rotating waves. Generally speaking, the
performances of passive CROW based devices, particularly
CROW delay lines, are inherently limited by the losses (i.e.,
the Q-factor) of the individual cavities [6]. Recently, it was
suggested to incorporate gain into the cavity to overcome
this problem [7]. Here we study active slow-wave rotation
sensors in which each cavity is a micro-laser. A realization
of such structure employing a circular array of vertical cavity
surface emitting lasers (VCSELSs) is depicted in Fig. 1. Un-
like continuous optical path ring lasers (such as fiber lasers)
the “backwards scattering” in a coupled resonator optical
waveguide (CROW) structure is inherently manifested by the
inter-laser coupling coefficient and does not need to be intro-
duced phenomenologically. Another novel configuration for
rotation sensing, based on radial Bragg reflection, was recently
proposed and studied theoretically [8].

In Section II we present the theoretical framework and
derive a set of rate equations for the circular laser array. In
Section III we study the lasing modes and dynamics of the
array. In Section IV we study the effect of structural variations
and inaccuracy on the device performance. In Section V we
discuss the results and summarize.

II. THEORETICAL FRAMEWORK

A. The Passive CROW

We base our derivation of the passive CROW based gyroscope
on the tight-binding approach, adapted to rotating systems [3].
Our CROW gyroscope consists of an array of N weakly cou-
pled optical resonators situated along a closed circular path as
shown in Fig. 1. The n-th resonator is centered at r,,, and in
the absence of its neighbors and under stationary conditions it
is completely characterized by the (possibly complex) relative
dielectric structure ec(r — 7, ), supporting a single optical mode
with resonance frequency wp, with electric and magnetic fields
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Ec(r—r,), Ho(r—r,), respectively. These modes satisfy the

standard wave equation:

OcHc =k2He, Oc =V x [1/ec(r)]Vx, ko=uwy/c
ey

where c¢ is the vacuum speed of light. Let Eq(r) and Hg(r)

be the electromagnetic fields of the entire structure, under rota-

tion. In the rotating system rest frame, Hg, satisfies the following

wave equation [3]

OH, = k*Hg+ikLoHqg, © = Vx[1/e(r)]Vx, k=w/c

2)
where e(r) describes the entire (relative) dielectric structure as
seen when stationary. It is assumed for the moment to be ideal
(i.e., without structural disorder). w is the optical frequency, and
L, is the rotation operator:

LoHo =V x [B/e(r) x Ho] + B/e(r) x [V x Hg],
B=c'Qzxr (3)

Here (2 is the angular velocity of the structure. It should be
noted that both ¢ and ¢ have real and imaginary parts, i.e.,
ec = €& +iel, e = e + ie’. To solve (2), we adopt the
extended tight binding approach and expand the total field of the
rotating system using the modes of the isolated and stationary
micro-cavities [3]:

N

E(r)=Y A,Ec(r—ry),

n=1

N
H(r)=) A.Hc(r—ry)

n=1
“4)
Due to the tight-binding (weak coupling) assumption, the ef-
fect of inter cavity coupling, as well as the effect of rotation,
are manifested essentially via the (yet unknown) expansion co-
efficients A,,. Note that the relevant wave equation for the total
field (2) is no longer self adjoint (due to rotation), thus the vari-
ational solution procedure usually employed in tight-binding
theory cannot be invoked. Instead, we introduce (4) and (1) into
(2) and multiply both sides by Hf(r — r,,), keeping only the
exponentially dominant terms (nearest neighbor coupling). The
result is the matrix equation for the field expansion coefficients
Ap(m=1...N):

. 1 i
AwA,, (1 —1ib) = §w0|fi1|ew"(Am_1 + Anmt1)

~ S0 AnAaE S i (A1 — Ant) )

where we assume w ~ wy, define Aw = w — wy and

-1 ec(r —ra)es(r—7ry)
=—— [ Aec(r—r
TR, / e ) ep(r)ec(r—r1)

”
1

Aa = 27}{2/77310
8 =word /mi Ty
Fo =78 +i7]

-]

Vit

Aec (T —Tmq1)
ep(P)ec(r — Prgt)

X lec(r = P Ec(r — ro) | dr
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AHo(r —11) x [V x Ho(r — 1))} d®r (6)

In the above V;, is the volume of the mth cavity, e, (r) is
the dielectric property of the background medium (the medium
when the optical resonators are absent) and Aec(r — r,) =
ec(r —ry) —ep(r) is the contrast property created by the pres-
ence of the nth cavity. These expressions are directly obtained
from their generic definitions in [3] [see Eqs (2.7°), (2.9’) and
(2.22°)], with some algebraic simplifications due to the fact that
the modal fields Ec(r — r,,), Ho(r — r,,) are associated with
stationary and isolated single resonator, e.g., VX He(r—1,,) =
—iwgegec(r — ro)Ec(r — r,,), etc. .. It is interesting to note
that, due to the last equality, the expression for the rotation cou-
pling coefficient ; is associated with the power circulating in
the CROW ring due to the mutual cavity coupling. This coef-
ficient represents the manifestation of the Sagnac effect in sys-
tems for which the optical signal cannot be expressed merely as
a geometric ray or a fiber mode. See [3] and [10] for more de-
tailed discussions.

We assume that 6 < 1 and thus the coefficient multiplying
A,, on the LHS of (8) merely introduces a negligible phase
shift. The assumption is valid because in all practical devices
(lasers) e! < e®. Aa is also, in principle, complex but its im-
pact can be divided into a frequency shift (the real part) and gain
shift (imaginary part) for each individual laser and, thus, can be
absorbed into the resonance frequency and cavity loss of each
laser. Therefore, the only significant contribution stemming for
the imaginary part of the refractive index is expressed in ¢,
(nearest neighbor coupling). Note that in the case of pure gain
guided lasers |#1|e'?” is a purely imaginary number (¢, = 7/2)
and, therefore, this phase cannot be neglected.

B. The Active CROW Rate Equations

To derive the rate equations for temporal evolution
of the slowly varying field envelope of E we assume
the following: The time dependent amplitude of the
field in each cavity can be represented by a Fourier
integral—A,,,(t) = [ A (w)exp(iwt)dw. This am-
plitude is assumed to have a relatively narrow band-
width around wq, ie., An(t) = E,.(t)exp(iwgt) and
En(t) = [ En(Aw)exp(iAwt)dAw where Aw = w — wy.
By inverse Fourier transforming (4), we get the following set of
coupled ordinary differential equations describing the temporal
evolution of the field in each micro-laser:

dE,, 1. i
L = 51‘00'116 Pn (Bt + FEmg1)
1.
—g’éonmAOé - Q’Yl (Em-I-l - Em—l) (7)

The frequency shift term due to the self-coupling co-
efficient Aa can be eliminated from (7) by substituting
En(t) = En(t) exp(—(1/2)iwpAc - t). Similarly, the imagi-
nary part of A« can be absorbed into the photon lifetime. Next,
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we introduce the cavity photon lifetime and the gain into (7), as
well as, the rate equation for the carrier population inversion:
dEm 1 -1 . o
1. o~ ~
+ §lw0ﬁ1el¢*(Emf1 + Epi1)

= 71 (Emg1 — Ere1)
dd% =P — Nyl = G(N) | Em|? (8)
where N, is the excess carriers in laser m, P is the pump level,
Tp and 75 are correspondingly the photons and carriers life-
times and R is the linewidth enhancement factor connecting the
change in the gain level of the semiconductor material with the
change in it refractive index. G(N,,) is the optical gain in laser
m given by: G(N,,,) = G(Npm) + g+ (N, — Ny, ) where g is the
differential gain 9G/ON at threshold and G(Nyy,) = 1/7,. Fi-
nally, we normalize the rate equations according to the conven-
tions of [9]: A., = \/(1/2)97s By Zm, = NengTp(Nim /Nen —
1)/2, Pm = Nthng(Pm/Pth — 1)/2 where Pth = Nth/Ts,
n = woTpk1/2, m = TN, T = Ts/7p, and 7 = t/7,. In-
troducing the normalized variables to (7) yields the following
normalized rate equations:

Am = Zm<1 + LR)Am + in€i¢’7 (Am+1 + Amfl)
- UlQ(Am+1 - Am—l)
T Z =P — Zon — (1L + 2Z,) | A | 9)

where the dot indicates a derivative with respect to 7. For a cir-
cular array consisting of L lasers the boundary conditions are
Ay = Arp and A1 = Aq. (9) possesses the functional form
of the conventional rate equations but with an additional term
which is linearly dependent on the mechanical rotation rate, €2
and a new coupling coefficient, n;, defined by the overlap inte-
gral in (6).

III. THE LASING MODES IN THE ROTATING FRAMEWORK

A. The Responsivity

To study the dynamics and lasing properties of the circular
arrays subjected to mechanical rotation, (9) were solved numer-
ically using a forth order Runge—Kutta integration scheme [7].
For simplicity it was initially assumed that the two coupling
coefficients between adjacent micro-lasers (r and 7;) and the
pumping levels (p,,) are identical for all the lasers in the array.
An array consisting of L lasers has L eigen-modes of which
L — 1 (L — 2) are degenerate for an odd (even) L. The degen-
erate modes correspond to CW and CCW rotating waves. The
nondegenerate modes of the array are the in-phase (no phase
shift between adjacent lasers) and the anti-phase (7 phase shift
between adjacent lasers) modes which are stationary (standing
waves). In should be noted that, in a circular array of odd L the
anti-phase mode does not exist due to phase frustration [12] and,
therefore, for such arrays there is only a single nondegenerate
eigen-mode.

For rotation sensing applications we are interested in the
beating frequency generated due to the rotation induced split-
ting of originally degenerate CW and CCW rotating modes.
Therefore, the nondegenerate solutions are unusable (see
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Fig. 2. Beating frequency of the different modes of CROW Gyro with 3-11
cavities. R = 0, p = 0.1 and T' = 300. The parameter w indicates the specific
resonance frequency of each CROW mode w = (w — wg)/wo.

e.g., [10] and [11] for a general discussion on the role of
mode-degeneracy under rotation). However, it is well known
that (nondegenerate) anti-phase mode tends to be the dominant
lasing solution in coupled laser arrays, having the lowest lasing
threshold [13]. On the other hand, the in-phase mode generally
has the highest threshold level and is seldom exhibited unless
specific arrangements are made [13]. Therefore, in order to
suppress the anti-phase lasing mode, it is advantageous to use
an array of odd number of lasers.

Fig. 2 depicts the (normalized) beating frequency as a func-
tion of the (normalized) rotation rate for the various lasing
modes of circular arrays consisting of 3—11 micro-lasers. The
coupling coefficient n = 0.01 is identical for all the arrays and
—107% < 7 Q < 107, The rest of the parameters are defined
in the figure caption. Each curve in the figure corresponds to
the rotation induced frequency difference of originally degen-
erate CW and CCW rotating waves, and is designated by the
(normalized) frequency shift of the degenerate modes (i.e., at
Q = 0) from the resonance frequency of the individual cavity.

Fig. 2 illustrates several important properties of the active
CROW rotation sensor. The responsivity of Gyro, represented
by the slope of the curves, is mode dependent, i.e., each
(originally) degenerate mode exhibits different splitting when
subjected to rotation. As can be expected, the mode with
highest sensitivity is the one for which the resonance frequency
is closest to that of the individual laser. This is because the
slope of the dispersion relation is steepest at this point. Another
prominent characteristic is the increase in the responsivity for
larger array. This trend is not surprising as it stems directly
from the corresponding increase in the device area (assuming
the inter-laser distance remains constant).

B. The Impact of the Pumping Level

The rate (9) describing the evolution of the field amplitude
and carrier population inversion in each laser are inherently non-
linear due to the dependence of the optical gain on the field in-
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Fig. 3. Temporal evolution of the intensity as a function of the pumping level.
(a) 112 = 1.4734 x 1077; (b) 12 = 5.8935 x 1075,

tensity. As a result it can be expected that the responsivity of an
active CROW rotation sensor is affected by the pumping level.

Fig. 3 shows the temporal evolution of the intensity in one
of the lasers in an odd circular array as a function of the
pumping level while the device is rotating in various angular
velocities. Two important features can be observed from Fig. 3:
1) higher pumping level results in higher output power and 2)
the amplitude of the RF beating signal depends on the pumping
level nonmonotonically. While the first characteristic is quite
obvious, it is the second one which is rather unexpected. The
ability to detect rotation in this scheme relies on the ability
to detect the beating frequency between the CW and CCW
rotating waves. This ability is determined by the RF measure-
ment apparatus frequency response but also by the overall
power of the signal. Increasing the pumping level increases
the overall output but decreases the fractional part of the RF
beating signal. It can, therefore, be expected that there exists an
optimal pumping level taking into account the tradeoff between
these effects. Fig. 4 shows the dependence of the beating-signal
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Fig. 4. Steady state RF power for 17,2 = 1.4734 x 1075,

power on the pumping rates for 7;Q = 5.8935 x 1075, The de-
pendence of the emitted RF power on p for other rotation rates
is nearly identical. The existence on an optimal pumping level
is evident—the beating signal is maximal for p = 2.4 x 10~6
for all rotation rates. At this point it is not clear what the exact
mechanism determining the optimal p is and although this
mechanism is important and interesting, its study and identi-
fication is beyond the scope of this paper. Nevertheless, the
existence of this optimal pumping level indicates that in order
to enhance the sensitivity of the rotation sensor it is necessary
to identify the optimal pumping for the given structure.

IV. STRUCTURE VARIATIONS—THE FORMATION OF A
DEAD-ZONE

In any realization of these new rotation sensors, structural
disorder (e.g., due to limited fabrication accuracy) may intro-
duce new factors that are not present in the idealized geome-
tries. Hence, the purpose of this section is to investigate the ef-
fect of structural disorder on the ED of rotating CROWSs. Our
study applies to the basic schemes shown in Fig. 1. We start our
analysis by noting that although each individual micro-cavity
does not support mode-degeneracy under stationary conditions
(€2 = 0), the entire ideal structure does. At any given frequency
within its transmission band and in the absence of structural dis-
order, it supports at least two optical signals: a clock-wise (CW)
and a counter-clock-wise (CCW) propagating mode. Alterna-
tively, since any linear combination of degenerate modes is by
itself a degenerate mode, these modes can be equally well pre-
sented as two real standing waves. When the structure rotates,
the corresponding degenerate resonance splits into two distinct
resonances [10]. Similarly, structural disorder splits mode de-
generacy. Thus, one can invoke the theory of mode-degeneracy
under rotation, and extend it to hold also under structure inac-
curacy using essentially the tools of [11]. This combined ap-
proach has three important advantages. First, it enables one to
obtain quickly the general expression for the effect of rotation
and structure inaccuracy on the mode splitting, where the fact
that each global mode can be expressed as a summation of the
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form of tight binding theory is done at a later stage, and is used
only to get more explicit final results pertaining to the gyro-
scope dead-zone. Second, it enables one to express the structure
variation using its most fundamental form—the variation of ¢,
while its manifestation as variation of the individual cavity res-
onances and its effect on the gyro dead-zone “pops out” later as
derived results. Finally, this approach also reveals an interesting
physical picture of two competing effects: both, structure inac-
curacy and mechanical rotation break the mode degeneracy and
cause resonance splitting. Splitting due to the former is Q2-inde-
pendent, while splitting due to the latter scales linearly with (2.
The device can be used as a gyroscope only when the splitting
due to rotation exceeds the splitting due to structure inaccuracy.
Hence, a dead-zone in 2 is formed. This novel physical effect
of competing processes is derived analytically and backed up by
numerical simulations.

A. Theoretical Analysis

Let Hg, and Eq be the magnetic and electric fields of the en-
tire structure, under rotation and structural disorder. It satisfies
the wave equation (2), (3) where £(r) describes now the entire
dielectric structure, including structural disorder. At rest, and
in the absence of structural disorder, the two degenerate modes
H (()m)(r)(m = 1,2) of the entire structure satisfy:

OuH™ = K2H™, 09 =V x [1/ev(r)] VX, ky =wy/c

(10)
where ey (1) describes the entire unperturbed structure and wy
is the corresponding resonance frequency. As shown below, ro-
tation and structural disorder causes it to split into two different
resonances. Since Oy is self-adjoint H (()m) (r) can always be pre-
sented as real and orthogonal set. Also, we write:

O =00+ 60, §0 =V x (8§ [1/e(r)]) Vx
§[1/e(r)] =e "t (r) —ep'(r) (11)

so the wave equations (2)—(3) pertaining now to rotating and
disordered structure, can be written as [neglecting higher order
terms proportional to Q6(1/¢)]:

OoHq — K*Hq = (ikLY — 60)Hq (12)
where LY is defined as in (3), but with £(r) replaced by the
unperturbed structure Y (r)

Clearly, the LHS of (12) is nothing but the conventional wave
equation governing the field in the stationary and unperturbed
structure. The RHS describes two effects; that of rotation and
that of structural disorder. Following a similar analysis to [10]
with the exception that an additional term (structural disorder)
appears in the RHS, the total field is a summation over H, én) ()
serving merely as building blocks:

2
Ho(r) =Y a,H(r) (13)
n=1

‘We substitute this expansion into (12), use (10), perform inner
product of the resulting equation with H ém) and use their mutual
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orthogonality. The result is the following 2 x 2 matrix-eigen-
value equation for the expansion coefficients «,, and frequency
splitting k — ky

(14)

|:D11
D21

Dq» a1l ax
=2ky(k -k

DzJ [az} o v) [aJ

where

Dy = — ik (LoHS, HY™ ) + (s0H", H{™ )
=k QBun + dinn (15a)

and where (f, g) is the Lo(R) inner-product. Clearly, the two
different eigenvalues of the equation above represent the fre-
quency splitting. The coefficients B,,,, here are due to the first
inner product in (15). After some algebraic manipulations they
can be expressed as

Bun =20 (2 x 1. HY" x B + H{™ x B{Y")

Ay = (6@H§"),H§)’”)) (15b)

The coefficients B,,, depend only on the perfect (unper-
turbed) structure and form a skew-symmetric imaginary matrix,
with By; = Bss = 0. It increases linearly with the radius of
the structure. d,,,,, depend only on §© and therefore represent
only structure disorder effects. By careful examination one
can show that dis = ds; and di; + d12 — 0 as the number
of (statistically independent) micro-cavities comprising the
entire structure, increases. By solving algebraically for the
eigenvalues of (14) we are left with the following analytical
expression for the frequency splitting:

B(Q) — ko = + %|B12| 02 4+ 2

Qq =1/di, — dy1daa | k¥ | Bis|

Thus, the splitting versus ) clearly possesses the form
of Hyperbola, with a “dead-zone” )3 originating from the
“competition” between disorder-induced splitting and rota-
tion-induced splitting. The d,,,, coefficients, responsible for the
dead-zone extent, are related to the variance of the individual
cavity resonance frequency. This is shown by expanding each
of the (doubly-degenerate) modes of the entire stationary and
unperturbed structure H ((]m)(r), with the modes Heo(r — )
of the N isolated unperturbed and stationary micro-cavities in
the structure (consistent with tight-binding theory, described
in Section III above), and with expansion coefficients c¢; that
should satisfy the CROW dispersion relation at rest (in fact,
they are given by the A,, of (4) at {2 = 0; there are two possible
solutions)

(16)

N
H{" =3 (@) Ho(r — 1)

J=1

7)

By definition, the modal field of the j-th cavity, Hc (r —r;),
satisfies (1) with e (r) replaced by e (r—r ;). Substituting (17)
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into the d,,,, definition (15a), using (1) shifted to the jth posi-
tion, using also the fact that V x He (1 —1;) = —iwgepec (T —
1;)Ec(r —r;), and that Ec(r — r;) is highly localized within
the jth micro-cavity, we end up with

N
- ggz 7 (8eLE;, ;)
N

= Qk‘()c_l ||II()||2 Z C?E}"&uj

J=1

(18)

where 6aé is the variation of the dielectric structure of the j-th
resonator due to structural disorder, and E; = Ec(r — r;).
The last equality above is due to cavity perturbation theory [11],
[14], and éw; is the deviation of the j-th micro-cavity resonant
frequency due to structural disorder. Hence, one can relate the
statistics of the individual resonances variations to the dead-
zone extent. Our analysis reveals an important phenomenology.
Note that (18) depends only on the disorder statistics, while
By, in (15b) increases linearly with the gyroscope size [10]
(note the r vector within the inner product). Therefore, for a
given level of structural disorder, the dead-zone €24 in (16) de-
creases as the gyroscope size increases; the effect of scattering
does not “add up” as one uses more micro-cavities in the gyro.
In adds up only when disorder increases.

B. Numerical Results

A numerical statistical analysis of the impact of fabrication
errors was performed for a 7-cavity circular CROW. The
coupling coefficient between adjacent cavities was set to be
7 = 0.01 and the normalized rotation rate is scanned between
—107% < m < 10~%. For an ideal structure (all cavities
having identical resonance frequency) the stationary system
has four resonance frequencies where three of them are doubly
degenerate. Under rotation the degeneracy is lifted and a beat
signal between the originally degenerate modes is formed.
Fig. 5 shows the frequency of the beat signal of an ideal system
undergoing rotation. The three lines correspond to the three
different degenerate modes.

Fabrication errors are modeled by introducing shifts (devi-
ations) in the resonance frequencies of the individual cavities.
The deviations lift the degeneracy of the modes and, as a re-
sult, there is a beat frequency even without rotation. More over,
at low rotation rates the sensitivity of the Gyro is reduced. The
differences between the resonance frequencies of the cavities
comprising the CROW are assumed to be normally distributed
with variance o. Fig. 6 shows the frequency of the beat signal
of a “realistic” CROW Gyro with ¢ = 1073

The stars indicate the numerically calculate beat frequency
while the solid line represent a fit to hyperbola—Awpeat =
Va2 + b2(n1Q)2. Fig. 6 illustrates the decrease of the Gyro
sensitivity for lower rotation rates. The excellent agreement of
the numerical data to the hyperbolic fit (as predicted by the
analysis of Section IV-A) enables the extraction of the sensi-
tivity (the slope of the linear parts of the hyperbola) and the
“dead-zone”—the minimal rotation rate that can be detected by
the Gyro.
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Fig.5. Beating frequencies of an ideal rotating CROW consisting of seven cav-
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x 1074
10 T T T - -
— »=-0018
®=-0.0045
9l — #=00125 |
8 L 8
— * *
< 5 N F y
\ 8 W
5l % N — ¥ |
\‘\ /4
% ,»'
4t i P ]
b2 _A
-
3 L ! 1 1 I
-15 -1 05 0 05 1 15
7, x 10

Fig. 6. Beating frequencies of a realistic rotating CROW consisting of seven
cavities. The parameters are as in Fig. 2, the standard deviation of resonance of
the individual cavities is 0 = 1073.

An intuitive method to define the sensitivity is to calculate at
the slope of hyperbola:

dwbeat b (19)
AmS) ~ T+ (/b7 )

For large rotation rate the slope is almost constant but when
2 becomes smaller than a/b the slope starts to decrease.
Therefore, it is reasonable to define the minimal detectable
(normalized) rotation rate as (71€2)min = a/b, where a and b
are the hyperbola parameters found from the fit.

The statistical analysis was performed by evaluating the sen-
sitivity and dead-zone for o ranging between 103 and 5 x 1073
(in the normalized time units). For each o, 10 different struc-
tures where analyzed and the average slope and (7, 2) min Were
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Fig. 7. Dead-zone (a) and sensitivity (b) of a “realistic” CROW as a function
of o. The rest of the parameters are as in Fig. 2.

found for each of the three beat signals. Fig. 7 depicts the av-
erage dead-zone (a) and the sensitivity (b) for different o.

Two points that are clearly indicated in Fig. 7 The sensitivity
is relatively independent of the fabrication errors—only a minor
decrease of the slope is observed when the resonance frequency
variance is increased. The dead-zone, on the other hand, in-
creases significantly as o is increased. Similar increase in the
dead-zone is found for the three different modes.

It should be emphasized that despite the different underlying
mechanism of the dead-zone observed in conventional laser
gyros (back scattering), the physics is similar. In both cases
the ideal degeneracy between the CW and CCW propagating
modes is removed and the Sagnac effect must exceed the
frequency splitting in order to be observed.

However, as the number of laser composing the gyro is in-
creased while keeping structural disorder at a constant level, the
dead-zone decreases and the minimal detected rotation rate is re-
duced (see Fig. 8). The reason for this phenomenon, which is in
contrast to conventional gyros in which larger loops increase the
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Fig. 8. The dependence of the dead-zone on the number of lasers comprising
the array.

dead-zone, stem from (16) and (18). The coefficient d,,,,, defined
in (18) are determined by the variations in the resonance fre-
quencies caused by the structural disorder while | B;2| defined
in (15b) increases linearly with the structure average radius (or,
equivalently, with the number of lasers). Consequently, as we
increase the number of laser comprising the array dead-zone,
Q,, decreases.

V. DISCUSSION AND SUMMARY

Closed loop slow light structures based on coupled micro cav-
ities form a novel approach for the realization of ultra-compact,
chip level, rotation sensors. The incorporation of optically ac-
tive cavities (i.e., lasers) can counteract the impact of optical
loss (existing in passive structures) which is the main factor lim-
iting the achievable sensitivity in CROW rotation sensors. We
studied the dynamical behavior of closed-loop coupled laser ar-
rays under mechanical rotation with applications to sensing. We
found that fabrication tolerances generate a “dead-zone”, sim-
ilar to that found in conventional laser gyros, which depends on
the variations of the individual lasers. This dead-zone is formed
because the originally degenerate modes of the circular arrays
split in the presence of fabrication errors. This splitting limits
the minimal rotation rate that can be detected by the gyro (the
rotation induced frequency different must exceed the original
splitting).

However, we have shown that expect that as we increase the
number of laser composing the gyro while keeping structural
disorder at a constant level, the dead-zone decreases and the
minimal detected rotation rate is reduced. Hence, the CLARS
structure provides an inherent mechanism to arbitrarily reduce
the dead-zone without necessitating enhanced fabrication
capabilities.
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