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Narrow-band microcavity waveguides in photonic
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A novel device, formed by a widely spaced periodic array of defects in a photonic bandgap crystal, is studied
with the goal of designing a waveguide with a prescribed narrow bandwidth. Tunneling of radiation between
the defect sites allows wave propagation along the line of the defects. An analytical study based on the
weakly coupled cavity model is performed, and the dispersion relation v(b) of the new waveguide is derived.
The frequency shift and the band structure of the periodic defect waveguide are linked by an analytic relation-
ship to the distance between the defect sites and therefore can be tuned by varying the latter. Sections of such
waveguides can be employed as ultra-narrow-band filters in optical routing devices. Numerical simulations
demonstrate the performances of this new device and support the analytical predictions. © 2001 Optical So-
ciety of America
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1. INTRODUCTION
Photonic bandgap materials have attracted much atten-
tion in the context of designing optical and microwave de-
vices. Studies have shown that local defects in photonic
crystals can be used to create localized electromagnetic
fields within the frequency gap of the unperturbed photo-
nic crystals. The localized mode frequency depends on
the exact nature of the local defect.1,2 Numerical experi-
ments have shown that a line of a repeated defect in pho-
tonic crystals can be used to guide optical signals,1 to cre-
ate frequency-selective waveguides by properly designing
the nature of the repeated defect,3 and also to multiplex
and demultiplex these signals.4 Most researchers study-
ing wave guiding by line defects employ photonic band
waveguides obtained by removal or modification of con-
secutive nearby posts in the periodic structure. The
strong coupling between the adjacent defects produces
relatively wideband waveguides. Coupling between two
microcavities that are formed by two local defects sepa-
rated by a distance larger than the basic photonic crystal
period size (widely spaced defects) was studied in Ref. 5.
However, the interest there was essentially in the genera-
tion and shift of additional line spectra, and the propaga-
tion of electromagnetic radiation along a line of such
separated defects was not addressed.

In this paper we extend and elaborate on the prelimi-
nary investigation reported previously in Ref. 6. Here we
address the issue of designing photonic bandgap
waveguides with a prescribed narrow bandwidth. Spe-
cifically, we concentrate on the problem of a waveguide
formed by widely spaced periodic defects in the photonic
bandgap crystal. Tunneling of radiation between the de-
fect sites allows wave propagation along the line of de-
fects. Sections of such waveguides can be employed as
ultra-narrow-band filters in optical routing devices.
Here we propose an asymptotic analytical study and exact
numerical simulation of these devices. The analytical
study is based on the weakly coupled cavity model. This
0740-3232/2001/112799-07$15.00 ©
approach resembles the tight binding perturbation theory
of solid-state physics.7 (A similar analytical approach
has been applied in the context of photonic crystals with
application to field enhancement and nonlinear optics.8)
A single defect mode with a resonant frequency v0 in the
bandgap is introduced first. Coupling between the peri-
odic defects causes the discrete spectral line at v0 to turn
into a narrow band of guided frequencies slightly shifted
from the original frequency v0 of the single defect. Per-
turbation theory facilitates an approximate calculation of
both the frequency shift and the band structure of the pe-
riodic defect waveguide. Furthermore, these parameters
are linked by an analytic relationship to the distance be-
tween the defect sites. Consequently, the latter distance
can be directly adjusted to achieve the desirable wave-
guide properties.

The validity of our analytical results is verified by a
comparison with numerically rigorous computations.
Here, care must be taken to handle the new configuration
properly. Since the perfect multidimensional periodicity
of the background photonic crystal no longer exists in the
presence of the periodic array waveguide, and since weak
coupling among remote microcavities constitutes the ba-
sic physics of the device under study, numerical ap-
proaches that assume perfect multidimensional periodic-
ity and/or suffer from unwanted coupling artifacts such as
the plane wave and supercell methods1,2 are ruled out al-
together. Furthermore, we wish to check the perfor-
mance of the new devices in a realistic configuration in
which finite-size specimens are used. Thus, from the nu-
merical point of view, we formulate the problem as that of
fully vectorial scattering in which the scatterer is a dielec-
tric body of arbitrary shape that assumes no periodicity at
all. A well-tested and efficient approach for solving such
scattering problems is the current model technique re-
ported, for example, in Refs. 9 and 10. To reduce the
complexity of the problem, the numerical simulations are
performed for two-dimensional crystals, although the
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analytical study is valid for both two- and three-
dimensional geometries. The results of numerical com-
putations support the analytical predictions.

2. DESCRIPTION OF THE PROBLEM AND
FORMULATION
Our analysis here applies to two-dimensional and three-
dimensional photonic crystals. For clarity, the basic con-
figuration under study is schematized in two dimensions
in Fig. 1. A photonic crystal with primitive lattice vec-
tors a1 , a2 , and a3 (the smallest vectors pointing from
one lattice point to another) is characterized by a periodic
relative permittivity ep(r), as shown in Fig. 1(a). A
single local defect of arbitrary nature is shown schemati-
cally in Fig. 1(b). We term this defect the basic microcav-
ity. The relative permittivity of the photonic crystal in
the presence of the basic microcavity is denoted by ed(r).
We define the difference in the reciprocal relative permit-
tivities between the microcavity-perturbed and unper-
turbed crystals by d(r):

d~r ! [
1

ed~r !
2

1

ep~r !
. (2.1)

This quantity is different from zero only near the basic
microcavity. It will be used below in subsequent deriva-
tions. A linear array of identical defects can be formed
now by periodic repetitions of the basic microcavity, as
shown in Figs. 1(c) and 1(d). The intercavity vector, de-
fined as the vector connecting two consecutive microcavi-
ties in the array, is denoted by b. Since the repeated mi-
crocavity locations are restricted to the photonic crystal
points, we must have

b 5 (
i51

3

miai , (2.2)

where $ai% i51 ,... 3 is the set of primitive lattice vectors and
$mi% i51 ,... 3 is a set of constant integers that quantify the
distance between two adjacent microcavities in units of
basic lattice cells. The reciprocal relative permittivity of
the photonic crystal with the linear array can be written
now as

1

e~r !
5

1

ep~r !
1 (

n52`

`

d~r 2 nb !, (2.3)

where d(r) is defined in Eq. (2.1).
Our purpose is to study the propagation of time-

harmonic electromagnetic waves in this configuration.
The time-harmonic electromagnetic problem in an inho-
mogeneous dielectric can be cast in an eigenvalue form for
the vector magnetic field H (Ref. 1):

QH~r ! 5 S v

c D 2

H~r !, (2.4)

where v is the frequency, c is the free-space speed of light,
and Q denotes a Hermitian operator defined by

QH [ ¹ 3 F 1

e~r !
¹ 3 HG . (2.4a)
Alternatively, the eigenfrequencies can be expressed in
the variational form1

S v

c D 2

5
^H, QH&

^H, H&
, (2.5)

where ^• , •& denotes the inner product defined by

^F, G& 5 E F • Ḡdr (2.6)

and F • Ḡ is the Cartesian scalar product of the two
three-dimensional vector fields F and G and the overbar
denotes a complex conjugate.

It is well known that often a local defect in a photonic
crystal allows for a localized ‘‘trapped’’ mode with a fre-
quency falling in the bandgap of the unperturbed crystal.1

Thus we denote the magnetic field of the localized mode
associated with the basic microcavity and the correspond-
ing frequency by H0(r) and v0 , respectively. By analogy
to Eq. (2.4), the localized mode satisfies the equation

~Qper 1 Q0!H0~r ! 5 S v0

c D 2

H0~r !, (2.7)

where Qper is the operator of the periodic structure and
Q0 is the defect operator. We define the operators Qper

and Q0 by analogy to Eq. (2.4a) by replacing 1/e(r) with
1/ep(r) and with d(r) [see Eq. (2.1)], respectively. Since
Qper and Q0 are self-adjoint real operators, it is easily
verified that for a lossless medium we can normalize
H0(r) such that

Im@H0~r !# 5 0. (2.7a)

Now we turn to the case of the linear array obtained by
periodic repetition of the basic microcavity. The recipro-
cal relative permittivity of the entire structure is given in
Eq. (2.3). The operator Q, which corresponds to the pho-
tonic crystal with the linear array of defects, can be writ-
ten now as

Q 5 Qper 1 (
n52`

`

Qn , (2.8)

which comprises a superposition of Qper and shifted op-
erators Qn defined by analogy with Eq. (2.4a) by replace-
ment of 1/e(r) with d(r 2 nb) for n P Z. Two observa-
tions are made now: First, the basic microcavity mode is
well confined around the local defect. Second, if the basic
microcavities are widely spaced, their mutual coupling is
weak and the local field is well approximated by the field
of a single isolated microcavity. Thus we follow the
strong binding perturbation theory7 and describe the
modal solution of the entire problem as a summation over
appropriately shifted versions of the basic microcavity
mode:

H~r ! 5 (
n52`

`

AnHn~r !, Hn~r ! [ H0~r 2 nb !,

(2.9)

where $An%nPZ is a set of yet-to-be-determined coeffi-
cients. Substitution of Eq. (2.9) into Eq. (2.5) yields
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Fig. 1. Elements of the microcavity array waveguide. (a) Unperturbed background photonic crystal, with periodic relative permittivity
ep(r). (b) Basic microcavity, created by a local defect of arbitrary nature. The relative permittivity of the crystal with the basic mi-
crocavity is ed(r). (c) Linear array formed by periodic repetitions of the basic microcavity by use of an intercavity vector b 5 2a1 . (d)
Same as (c) but with an intercavity vector b 5 2a1 1 a2 .
S v

c D 2

5

(
n52`

`

(
m52`

`

AnĀm^Hn , QHm&

(
n52`

`

(
m52`

`

AnĀm^Hn , Hm&

. (2.10)

Since the array is periodic and since Q is self-adjoint, the
inner products in Eq. (2.10) depend only on the difference
n 2 m, and this dependence is Hermitian. Thus we de-
fine

hn2m [ ^Hn , Hm& 5 h̄m2n , (2.11a)

tn2m [ ^Hn , QHm& 5 t̄m2n . (2.11b)
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Furthermore, using Eqs. (2.7) and (2.8), we can write a
relation between tm and hm:

tm 5 S v0

c D 2

hm 1 (
n52`,nÞ0

`

tmn8 , (2.12)

where

tmn8 [ ^Hm , QnH0&, Im@tmn8 # 5 0 (2.12a)

and where the realness of tmn8 follows from that of H0 [see
Eq. (2.7a)]. According to the variational principle in Eq.
(2.5), the frequency expressed in Eq. (2.10) is stationary
(extremal point) with respect to the coefficients $An%.
Therefore

;k,
]

]Ak
S v

c D 2

5 0 ⇒ (
m52`

` F tk2m 2 S v

c D 2

hk2mG Ām

5 0, (2.13a)

;k,
]

]Āk
S v

c D 2

5 0 ⇒ (
n52`

` F tn2k 2 S v

c D 2

hn2kGAn

5 0, (2.13b)

and, because of the hermiticity of hn and tn [see Eqs.
(2.11a) and (2.11b)], relations (2.13a) and (2.13b) are
equivalent. Thus we have

(
m52`

` F tm 2 S v

c D 2

hmGAm1k 5 0 ;k. (2.14)

The form of Eq. (2.14) is shift invariant with respect to
k. This implies a modal solution for Am :

Am 5 exp~ibm !, (2.15)

where b is the (yet-to-be-determined) wave number asso-
ciated with modal propagation in the linear array wave-
guide. Substituting Eq. (2.15) into Eq. (2.14) and using
Eq. (2.12), we get

S v

c D 2

2 S v0

c D 2

5

(
m

(
nÞ0

tmn8 exp~ibm !

(
m

hm exp~ibm !

, (2.16)

where tmn8 is defined in Eq. (2.12a). Equation (2.16) is an
expression for the frequency shift of the linear array mode
with wave number b/ubu relative to the frequency of the
localized mode. For sufficiently spaced defects, we can
make the first-order approximation by retaining only the
nearest-neighbor interactions. This procedure is exam-
ined in Subsection 2.A.

A. Dominant Terms in Eq. (2.16) and Approximate
Bandwidth
It can be seen from Eq. (2.11a) that hm is the inner prod-
uct of two basic microcavity modes @Hm 5 H0(r 2 mb)#
separated a distance mb 5 m S imiai . Since defect
modes decay exponentially away from the defect,1 this in-
ner product decreases very rapidly with increasing m.
Thus the dominant term in the donominator of Eq. (2.16)
is h0 , which is nothing but the square of the H0 norm.
Consequently, we are left with

S v

c D 2

2 S v0

c D 2

' iH0i22 (
m52`

`

(
nÞ0

tmn8 exp~ibm !.

(2.17)

The evaluation of the numerator’s dominant terms is
somewhat more involved. We start by rewriting the op-
eration QnH0(r) as

QnH0~r ! 5 iv0¹ 3 @d~r 2 nb !ed~r !E0~r !#, (2.18)

where E0(r) is the electric field associated with the basic
microcavity mode H0(r) and we make use of the fact that
¹ 3 H0 5 iv0ed(r)E0(r). Substituting this result into
Eq. (2.12a), using the standard vector identity (¹ 3 A)
• B 5 ¹ • (A 3 B) 1 A • (¹ 3 B), and applying the
Gauss theorem, we find that

tmn8 5 2iv0 E
]Vn

d~r 2 nb !ed~r !

3 @Ē0~r ! 3 H0~r 2 mb !#

• ds 1 v0
2 E

Vn

d~r 2 nb !ed~r !ed~r 2 mb !

3 @Ē0~r ! • E0~r 2 mb !#d3r. (2.19)

Recall that d(r 2 nb) is different from zero only at the
nth microcavity. Thus the integrations above are limited
to the nth microcavity volume Vn and its surface ]Vn .
Since E0(r) and H0(r) become very small as r increases,
and since the summation in relation (2.17) excludes the
n 5 0 term, the dominant terms are (m, n) 5 (0, 61)
and (m, n) 5 6(1, 1). Furthermore, for symmetric de-
fects we have t018 5 t0218 and t118 5 t21218 . Thus

S v

c D 2

2 S v0

c D 2

' 2iH0i22~t018 1 t118 cos b!, (2.20)

Fig. 2. Dispersion curve v(b) of the microcavity array wave-
guide (solid curve). We assume here that b 5 m1a1 , with a1 de-
fined in Fig. 1(a) and m1 5 3. The unperturbed crystal disper-
sion that corresponds to propagation along the vector a1 (the
wave numbers along G –M in the reciprocal lattice domain) is
also shown (dashed curves).
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where we have used the second equality in Eq. (2.12a).
Relation (2.20) constitutes the dispersion relation v(b) of
the array waveguide. It can be seen that t118 determines
the total bandwidth of the array waveguide, whereas t018
determines the central frequency shift relative to the ba-
sic microcavity frequency v0 . Since E0 and H0 are well-
localized fields that decay exponentially with the distance
away from the microcavity, t018 and t118 decay exponentially
as the intercavity vector b increases. Therefore, by tun-
ing b, one can design extremely narrow-band waveguides.
Invoking the narrow-band approximation v2 2 v0

2

' 2v0(v 2 v0), we further reduce relation (2.20) to

v 2 v0 '
c2

v0iH0i2 ~t018 1 t118 cos b!. (2.21)

This dispersion relation is shown schematically in Fig. 2.
Finally, note that, because of the mb and nb field shifts in
Eq. (2.19), we have ut018 u ! ut118 u, so the central frequency
shift, relative to v0 and relative to the bandwidth, is neg-
ligible. Thus the waveguide central frequency vc 5 v0
1 c2t018 /(v0iH0i2) is approximately v0 , and its relative
bandwidth is given by

Dv

v0
5 2S c

v0iH0i D
2

t118 . (2.22)

Since E0(r) and H0(r) are localized fields that decay ex-
ponentially away from the defect site, it follows from Eq.
(2.19) that this bandwidth decays exponentially with the
increase of ubu.

3. NUMERICAL EXAMPLES
For the sake of simplicity, we study waveguides embedded
in the two-dimensional photonic crystal previously inves-
tigated in Ref. 3. Specifically, we consider the problem of
a free-standing finite periodic array of dielectric cylinders
that is infinite in the z direction. The x, y-plane cross
section of the problem geometry is illustrated in Fig. 1.
The unperturbed hexagonal array is of the type shown in
Fig. 1(a), with the intercylinder spacing ua1u 5 ua2u 5 4
length units. The array comprises a total of 156
cylinders with centers confined within a rectangle 0 < x
< 46 and u yu < 20.8. All cylinders are 0.6 length unit
radius and are characterized by a refractive index of 2.9.
The specific locations of the cylinders are as depicted in
Fig. 1(c), for x , 47. We assume TM polarization, i.e., a
z-polarized electric field parallel to the cylinder axis. A
basic microcavity is formed by removing a single cylinder,
as shown in Fig. 1(b). The waveguiding structure is
formed in the photonic crystal by the creation of defects
along the line y 5 0 by removing selected posts, using an
intercavity vector b 5 m1a1 [see Fig. 1(c)]. The center
frequency of the resulting waveguide is determined
mainly by the resonant frequency of a single defect reso-
nance. The spacing between the defects determines the
amount of coupling between the adjacent microcavities,
which, according to the model presented in Section 2,
strongly affects the bandwidth of the resulting wave-
guide. To demonstrate this effect by means of numeri-
cally rigorous computations, we have developed a pro-
gram based on the current model technique.9,10 In this
technique the electromagnetic fields outside the cylinders
and those in each cylinder are simulated by sets of cur-
rents of adjustable amplitudes. The amplitudes of the
currents are determined by applying the boundary condi-
tions, namely, the continuity of the tangential electric and
magnetic fields on the surface of the cylinders. Since the
boundary conditions are enforced in the point-matching
sense, errors between the match points serve as a conve-
nient measure of the accuracy of the numerical solution.
To this end, we monitor the normalized rms boundary
condition errors DEbc and DHbc for the electric and mag-
netic fields, as defined in Ref. 9.

The attenuation of the waveguiding structure is evalu-
ated by computing the ratio of the field intensity in the
last cavity to that in the first one. The average squared
electric field is computed across the first and the last mi-
crocavity along the segment 25 < y < 5 passing through
the respective cavity center. Within the stop band, the
ratio between these fields represents the decay of the field
along the waveguide relatively independently of the mis-
match between the waveguide and the free space. Re-
flections at the ends of the waveguide, however, are ex-
pected to produce a ripple of the field ratio in the
passband. The cylinder array is illuminated by a plane
wave propagating in the positive x direction. We surmise
that a type of excitation (e.g., a plane wave or a Gaussian
beam) does not affect the essential characteristics of the
waveguiding structure.

First, to test the accuracy of the numerical computa-
tion, we evaluate the average electric field along the line
x 5 48, 25 < y < 5, for an unperturbed crystal that com-
prises all 156 cylinders. The boundary condition errors
incurred in this computation are DEbc ' 0.05% and
DHbc ' 0.5%, which are sufficiently low to produce accu-
rate results. The transmission of the unperturbed crys-
tal, defined as the ratio between the average field speci-
fied above and the incident field, is plotted in Fig. 3 (solid
curve). A clear bandgap is seen between the wavelengths
l 5 7.3 and l 5 10.7. This bandgap is in good agree-
ment with the results reported in Ref. 3. Next, we con-
sider the ‘‘conventional’’ photonic crystal waveguide ob-
tained by removing a horizontal row of posts. The
corresponding transmission curve is also plotted in Fig. 3.

Fig. 3. Unperturbed crystal transmission curve and transmis-
sion of a waveguide obtained by removing a complete row of posts
(dashed curve). The dashed curve corresponds to an array
waveguide with intercavity vector b 5 a1 .
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It can be seen that the transmission bandwidth is almost
as large as the entire bandgap.

We turn now to study array waveguides formed by
larger intercavity vectors. We start by characterizing the
single defect mode. In all cases we use a microcavity cre-
ated by removing a single post. The resonance of the
single defect is at l0 5 9.06, and the corresponding mode
is depicted in Fig. 4. Strong localization of the field about
the center of the defect (the removed cylinder) justifies
the application of the weak-coupling approximation when
one is dealing with arrays of cavities. Finally, we study a
number of waveguides with various spacings between
these defects. Specifically, we perform calculations for
three cases b 5 a1 (all cylinders centered on line y 5 0
are removed), b 5 2a1 [removing cylinders centered at
(x, y) 5 (6, 0), (14,0), (22,0), (30,0), (38,0), (46,0)], and
b 5 3a1 [removing cylinders centered at (x, y) 5 (10,0),
(22,0), (34,0), (46,0)]. The structure of the field along the
waveguides is presented in Fig. 5 for b 5 2a1 and
b 5 3a1 . Figure 5 clearly exemplifies the localized na-
ture of the field at the defect sites. Also, one can see that
the waveguide field can be represented by a superposition
Fig. 4. Basic microcavity mode electric field magnitude uE0(r)u (in decibels), corresponding to a local defect obtained by removing the
shaded post in Fig. 1(b).

Fig. 5. Electric field magnitude in the microcavity array waveguides (in decibels): (a) (m1 , m2) 5 (2, 0); (b) (m1 , m2) 5 (3, 0).
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of shifted single-cavity modal fields that forms the basis of
our study [see Eq. (2.9)]. The mismatch between the
propagation properties of the waveguides and free space
results in high reflection coefficients at the interfaces be-
tween the photonic crystal waveguide and free space.
Consequently, both forward- and backward-propagating
modes are excited in the waveguide. An uneven excita-
tion of the cavities in Fig. 5 apparently results from inter-
ference between these forward- and backward-
propagating modes. In Fig. 6 the ratio of the fields in the
last and the first cavities is plotted versus wavelength.
While this ratio is not the commonly used measure of
transmission (transmission coefficient) for the forward
propagating wave, it still allows us to identify the true
bandwidth of the waveguide, since the cutoff frequencies
are the same for forward and backward propagation.
The line spectrum of a single microcavity, which defines
the frequency v0 , is shown by a solid curve. This curve
represents the field in the center of a single microcavity
embedded in a large (12 3 13 posts) photonic crystal, il-
luminated by a unit amplitude plane wave. Relation
(2.21) predicts that the passband of microcavity array

Fig. 6. Waveguide transmission curves for m2 5 0 and various
values of m1 and the microcavity resonance.

Fig. 7. Computed transmission bandwidth for m2 5 0 and
three values of m1 .
waveguides will be offset in frequency from the single de-
fect resonance by a relatively small amount that is pro-
portional to t018 . Apparently the center frequency of all
the waveguides considered remains very close to that of
the single microcavity. Thus, t018 is indeed small in all
cases under study, as predicted in our theoretical analysis
[see the discussion after relation (2.21)]. However, as
predicted in Section 5, the bandwidth of these waveguides
diminishes rapidly with increased spacing between the
microcavities. We measure the bandwidth at the 20-dB
points. The bandwidth dependence on ubu 5 m1ua1u is
depicted in Fig. 7. These results support the assertion
made at the end of Section 2, namely, that the coupling
between the neighboring cavities and consequently the
bandwidth diminish exponentially with the intercavity
spacing.

4. CONCLUSION
A novel configuration that comprises a periodic microcav-
ity array in a photonic crystal is shown to behave as a
narrow-band waveguide. The bandwidth of the wave-
guide can be tuned by adjusting the intercavity distances.
The weak-coupling perturbation analysis that we have
developed allows for analytical evaluation of the
waveguiding properties. The proposed microcavity array
waveguides appear to be potentially useful in the design
of a variety of optical devices.
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