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Abstract—Conventional theories addressing the wave-dynamic
behavior of plane-stratified multilayer environments usually
involve wavenumber spectral and asymptotic techniques, which
apply to layer thickness of the same “macroscale” order as
the wavelengths in the spectrum of the excitation. However,
in applications of multilayer bonded laminates (for example,
in biological and other “exotic” materials”) wherein the layer
structure contains extremely fine “microscale” constituents as well
as the conventional macroscales, the desired “observables” involve
the macroscale response, which accounts self-consistently for the
macroscale loading by the microscales. A novelmultiresolution
homogenization(MRH) has been presented previously to provide
the self-consistent rigorous analytic micro-macro scale framework
for calibrated parameterization of the wave dynamics in terms
of a microscale-loaded macroscale medium with corresponding
“effective” field observables. The outcome has been an algorithm
that allows the conversion of the conventional macroscale prop-
agation models to their “effective” micro-macroscale versions
by direct substitutionof the MRH-based effective fields, media,
etc., in place of the corresponding conventional quantities, with
error bounds that quantify the quality of the substitution. This
theory may accommodate broad ranges, discrete and continuous,
of wavenumber spectra and thus can be applied in conjunction
with the spectral techniques noted above. In this paper, relevant
“pragmatic” results of the MRH-based field theory are extracted
from the previous formal treatment and are extended to accom-
modate alternative physics-matched MRH field representations.
The reflection, transmission, and waveguiding properties, in free
space, of a dipole-excited laminate slab whose scales span a wide
continuum from micro to macro are examined in detail, with
emphasis on alternative MRH field representations (ray, guided
mode, etc.) that are best matched to the wave physics for speci-
fied ranges of operating frequencies, source-observer locations,
etc. Extensive numerical experiments have been performed to
calibrate, via quantified error bounds, the quality and range of va-
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lidity of the conventional-to-MRH conversion for these alternative
field representations. This lays the foundation for an MRH-based
effective networktheory for multiscale laminate conglomerates
comprising a sequence ofmicro-macroscale laminateconstituents,
to be presented in Part II of this paper.

Index Terms—Effective properties, layered media, medium com-
plexity, multiresolution homogenization, wavelets.

I. INTRODUCTION

A. Background Perspectives

D ISCRETE/continuous plane stratified media have long
served as models for the study of wave propagation in

diverse natural and man-made complex environments. The
solution strategy for this “conventional” class of problems
has been the use of alternative problem-matched discrete/con-
tinuous transforms from the three-dimensional (3-D) actual
(physical) domain to the appropriate 1-D or 2-D wavenumber
spectral domains; this procedure decomposes the original
source-excited wavefield into superpositions of simpler wave
types in the corresponding 2-D or 1-D spectral subdomains, re-
spectively. The wave species in the spectral domain can broadly
be grouped into complementaryprogressing(ray-type) and
oscillatory (mode-type) categories, which are characterized by
their distinct wavenumber spectral footprints. A self-consistent
hybrid ray-mode (progressing-oscillatory) formulation has
been constructed to exploit the most favorable characteristics of
each [1]–[5]. For further details on related spectral techniques,
see also [6]–[13].

The description above refers essentially to themacro (or
large-scale) properties of the multilayer ambient medium,
where the thickness of the layers is of the same macro order
over the prevailing frequency spectrum. However, in many
situations, the medium is characterized also by a rich variety
of micro structures whose effect on the macro field equations
and the ensuing field structure needs to be attended to. Such
multiscale laminates can serve as models for certain fabricated
composite materials with micro bonding regions between macro
layers, dense electronic circuits, geophysical environments,
biological media, etc. In most cases, one is interested only in
the macro field observables (which, however, incorporate the
microscale effects), either because they dominate the field (e.g.,
in the far zone) or because of the macro measurement setup
(e.g., the space-time integration window of the detector). This
paper presents aself-consistentscale-basedmultiresolution
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homogenization(MRH) procedure for finely multiscalelami-
natesthat bridges the gap between the macro- and micro-scale
field phenomena, and shows how one may adapt the arsenal of
parameterization techniques for conventional macro-type wave
problems discussed above to describe wave interactions with
complex multiscale structures.

Traditional homogenization schemes have been developed
for periodic micro structures (see, e.g., [14] and [15]) and
deal essentially with the bulk properties of the homogenized
media, assuming space-invariant effective properties. A mul-
tiresolution approach fornumericalhomogenization, and for
calculating the large-scale response, has been introduced in
[16]–[18], using a sophisticated “decimation” algorithm, but
the analysis has remained on the level of the corresponding
matrix equation without recourse to aneffective formulation
involving effective medium and boundary conditions.

In the MRH theory here, the medium and the resulting field
equations are decomposed into binary-based scales via the
theory of multiresolution decomposition(MRD) [19], [20]
and are then solved self-consistently in the desired resolution
scale. The theory makes a distinction between thefield homog-
enization scale(F-HS) 2 and themedium homogenization
scale (M-HS) 2 , which is typically smaller (i.e., ).
The F-HS defines the resolution space, which contains the
relevant “physical observables” chosen by the wave modeler,
and whose scale is larger than the F-HS. The effect of all
neglected micro scales is embedded within an effective material
operator (EMO), which describes the couplings between the
micro-scale components in the medium heterogeneity and the
field response in the observable space. The EMO, through
its bound, formalizes and quantifies the error in between
the “actual” (or true) field observables and those predicted by
the “effective” theory for a given HS. Unlike traditional ho-
mogenization procedures [14], [15], the novel two-scales MRH
can deal with nonperiodic structures and isnot a perturbation
theory that requires weak micro heterogeneities or a scale-gap
between the macro and micro heterogeneities. This property is
due to the fact that the ratio (M-HS/F-HS) between the scale of
the medium homogenization and the relatively larger scale of
the observables is an inherent small parameter that governs the
bound on the error in the observables space. This allows the
MRH to accommodate media with continuous distributions of
scales, thereby facilitating the choice of homogenization scale
that best models the physics of the problem, as well as control
of the actual-effective formulation error. For example, the
continuous distribution property is relevant for ultra-wide-band
(UWB) excitation scenarios, where it is desirable to change
the HS in accord with the wavelength, or for localized sources
in 3-D configurations where the HS should accommodate
the spectral wavenumbers. The theory is accompanied by
comprehensive error analysis, with explicit expressions for the
error bounds in terms of dimensionless estimators that clearly
identify and quantify all sources of error in the homogenization,
and it may be applied in general to uniaxial media wherein both

and can be multiscale “messy” heterogeneous functions.
The principal concepts and mathematical foundations per-

taining to the MRH were introduced originally in [21]–[27].
The theory has been generalized and refined in [28]–[31] by

introducing the two-scales formulation; a two-step Green’s
function procedure for dealing with several heterogeneity func-
tions; and a more accessible formulation for the error bounds
in terms of the norm of the micro heterogeneity (rather than its
degree of regularity as in [25]–[27]). Furthermore, the theory
now contains the complete spectral expansion of the wave
operator expressed in the observables space. Consequently
the MRH can now deal with three-dimensional source-excited
electromagnetic (EM) problems (e.g., obtain EM Green’s
functions) in bounded or nonbounded plane-layered multiscale
laminate configurations making use of the extensive toolbox of
spatial-spectral parameterization techniques described in the
first paragraph and its cited references (see, e.g., [27], [32], and
[33]).

B. This Investigation

Building upon the previous investigations in Section I-A,
we are now planning a systematic sequence of studies focused
on radiation from, guiding within, and junctions between
different multilayer micro/macroscale composite slab con-
figurations characterized by their “effective” equivalents,
and on “effective” field-network (transmission line) models
for such conglomerates. The goal is a validated “pragmatic”
approximate formulation that permits the “effective” field-net-
work description of a multiscale laminate conglomerate to be
obtained by direct substitution of the homogenized “effective”
fields, media, etc., into available corresponding formulations
for their conventional macro counterparts. Our adopted format
toward learning the rules is a two-part sequence concerned with
the MRH treatment of network-matched Green’s functions
(GFs) for typical multiconstituent multiscale plane-layered
laminate slab configurations. This paper deals with thefield
theory for a typical constituent within this framework. The
corresponding MRH-parameterizednetwork relations will
appear in Part II of this paper [34].

Two broad objectives guide this presentation.

1) To extract from the comprehensive and heavily math-
ematical treatment in [28] and [29] those “pragmatic”
results that are required to perform the above-mentioned
planned extensions.

2)

a) To extend the scope of the “basic” MRH Green’s func-
tions in [28] and [29] so as to match the GFs (via ap-
propriate boundary conditions) toalternativeuseful
network representations to be explored in Part II.

b) To produce a comprehensivesynthetic data basefor
a typical multiscale laminate example by numerical
experimentation over problem parameter ranges se-
lected so as to demonstrate the parametric sensitivity
of the perceived wave physics and of the overall
performance of our model, thereby establishing
understanding of, and confidence in, our calibrated
analytic error quantifications for the actual/effective
equivalence.

Item 2a) and the laminate model in 2b) are new and have not
been explored in [28] and [29].
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In this paper, Section II contains the description of the actual
problem environment and the definition of the MRH-smoothed
“effective” field observables. Section III is concerned with the
details of the effective 3-D vector field problem:

1) the 2-D vector mode decomposition of the field in the
( , ) cross-section parallel to the stratification and the
resulting spectral transmission-line (TL) formulations
along the -axis for the actual and effective modal
amplitudes in the effective medium (Section III-A);

2) the quality assessment of the desired equivalence between
the actual and effective field amplitudes by quantitative
error bounds (Section III-B);

3) derivation of the MRH via formal MRD of the TL equa-
tions into macro (smooth) and micro (detail) components,
with absorption of the micro scales within the macro-
scale format via the EMO (Section III-C).

Section IV is concerned with the construction of the effec-
tive spectra of the TL equations along the-axis, utilizing
the “characteristic” GF procedure in [6, ch. 3], and with the
quality assessment (via error bounds) of the spectral equiva-
lence between the actual and effective spectra. Included are the
construction of the complete (discrete and continuous) spec-
trum of the multiscale wave equation and the definition of
the relevant (or effective) and nonrelevant (detailed) parts of
the spectrum within a prescribed formulation accuracy. This
section also contains the new extension to network-matched
alternative GF representations. The results are utilized in Sec-
tion V for the spectral synthesis and quality assessment of the
3-D effective GFs for the total field. In Section VI, the var-
ious spectral domain and total field effective formulations and
their analytic quality assessments, developed in Sections II–V,
are validated further by new extensive “actual” versus “effec-
tive” calibrated numerical comparisons for our chosen laminate
model. Concluding remarks are presented in Section VII.

II. STATEMENT OF THE PROBLEM

A. Physical Configuration

We consider source-excited electromagnetic fields in com-
plex laminates characterized by multiscale (macro/micro) het-
erogeneities along the stratification axis. The propagation
domain may have any bounded or unbounded cross-section
perpendicular to the -axis (Fig. 1). Two special cases are a
transversely unboundedcomplex laminated slab and atrans-
versely boundedwaveguide filled with a complex laminate. The
laminate is located in and generally has penetrable
boundaries that grant access to the surrounding homogeneous
media in and . The normalized laminate constitu-
tive parameters may be diagonal tensors whose components
( , ) and ( , ) (where the subscripts denote theand
transverse to components) aremultiscalefunctions of that
comprise both macro and micro scales. The field is excited
by a current distribution located either inside or outside
the laminate, and a monochromatic time dependence is
assumed and suppressed; the frequency or time dependencies
will be displayed explicitly only under conditions of wide-band
excitation [30]. Boldface symbols denote vector quantities.

(a)

(b)

Fig. 1. Problem formulation: (a) waveguide filled with a complex laminate
and (b) a complex laminate slab.

B. Smoothed Effective Field Observables: MRH

To implement our stated objective of generalizing conven-
tional field-network theory so as to include “effective” field and
medium characterization of multiscale laminate configurations,
we require previously obtained results from MRH, which are
summarized below.

1) Macro- and Micro-Scale Parameterization:An effec-
tive formulation for themacro-scale fieldsmooths out the
micro-scale heterogeneities while retaining their effect on the
macro-scale observables. Although the multiscale structure of
the medium induces multiscale components in the 3-D elec-
tromagnetic field, the relevant fieldobservablesare described
on a scale that is typically determined by thewave physics
(e.g., the wavelength, near/far fields) or by the measurement
arrangement (e.g., the spatiotemporal resolution of the detector,
the dynamic range and the polarization, etc.). Accounting for
these aspects permits simplification of the field calculations
through retention of only the large-scale components of the
response, which thus define thefield homogenization scale.
We shall choose the F-HS according to the wave physics.
The most basic scale is characterized by thelocal effective
wavenumberin the material; i.e., F-HS ,
with being the free-space wavelength at the fre-
quency [see (8) and (9) for a precise definition]. However,
in waveguiding configurations, the waveguide width motivates
consideration of alarger F-HS. Thus, for frequencies high
enough to supportpropagatingmodes transverse to in the
slab configuration of Fig. 1(b), the relevant scale for such a
mode is its spectral wavenumber2 where
is the mode index and is the slab width (for further details,
see Section V). The resulting (F-HS ) even for the
lowest order propagating modes may now be much larger than

. On the other hand, if one is interested in
the field in the source region, the F-HS might be much smaller,
and would be determined essentially by the detector size.

Having chosen a relevant field homogenization scale, we
invoke the theory of multiscale resolution decomposition [19]
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(which is briefly summarized in the Appendix) to parameterize
the F-HS macro and micro components in terms of the binary
scale basis

integer (1)

where is an arbitrary reference scale. A given field function
is thereby decomposed into its “smooth” (macro-scale)

and “detailed” (micro-scale) orthogonal components and
, respectively, via the projection operatorsand defined

in (A5). projects onto the linear (field amplitude) spaces
containing all scales , while projects

onto the orthogonal complementary space
that contains all smaller scales; the wavelet

space consists only of the scale . The sets of
scaling and wavelets functions and ,
with being the set of all integers, constitutes a basis of the
homogenization space(or observables space) and of ,
respectively.

2) Smoothed Approximation of the Actual Field:Having de-
termined the F-HS, we are interested only in the smoothed field
observables, and the corresponding “effective” medium that de-
scribes these observables. This is accomplished by projecting
the “actual” field ( , ) onto , and is formalized by the
condition

(2)

The challenge to the modeler is to choose the effective
medium consistent with this requirement as simply as possible
so as to allow efficient numerical evaluation of the field and
a cogent interpretation of the “effective” wave physics. The
quality of this formulation to within a prescribed error needs
to be established in the homogenization space of physical
observables.

III. EFFECTIVE FIELD PROBLEM

A. Actual Field: Wavenumber Spectral Representation and
Source-Excited Transmission Line Formulation

The configurations in Fig. 1 can be analyzed via modal de-
composition and transmission-line theory [6, ch. 2]. The actual
vector field is expressed as a spectral superposition (discrete
and/or continuous) of both E (TM)- and H (TE)-type modes,
tagged by the superscript or , respectively. Its trans-
verse-to- components are given by the spectral summations

(3a)

(3b)

where . Here denotes
the 3-D coordinate, with denoting the coordinates transverse
to ; identifies the vector transverse wavenumber
spectral coordinates with ; and and

are the vector mode functions corresponding to the spectral
parameter and the mode-type, and they are normalized such
that (Kronecker’s delta),
where the integration is performed over the cross-section and the

asterisk denotes the complex conjugate. It is convenient to use
as a dimensionless frequency-normalized spectral parameter

(i.e., the transverse wavenumber is given by ).
The spectral voltage and currentamplitudes( , ) of (3) ex-

cited by the spectralsources( , ) corresponding to are
found via thespectral transmission-lineequations in the hetero-
geneous medium (here assumed to be uniaxially anisotropic)

(4a)

(4b)

with ( , ) continuous across interface discontinuities. In
(4), the (multiscale) heterogeneity functions and

are given by [28]

(5a)

(5b)

where and are the (transverse, longitudinal) medium
permittivity and permeability, respectively. Moreover,

and represent, respectively, the local spec-
tral wavenumber (propagation coefficient) and characteristic
impedance along. Note that the formulation in (4) is normal-
ized differently from what is conventional [6]. In view of the

factor in (3b), both and in (4) are measured in volts,
while and are dimensionless.

B. Effective Field: Effective Spectral Transmission Line and
Effective Medium Formulations

1) Construction of the Effective Formulations:Referring to
the spectral TL equations (4), we are interested in finding a sim-
plified effective medium with smoother parameters (, ).
The modal field amplitudes ( , ) in this medium satisfy
effective TL equations, which are given by (4) but with (, ) re-
placed by ( , ). Referring to (2), this implies equality of the
projections of the actual and effective
modal amplitudes to within tolerable prescribed error bounds. It
can be shown that the equality is satisfied up to a specified error
if one neglects all scales in the heterogeneity functions of (5)
that are smaller than themedium homogenization scale(M-HS)

integer (6)

i.e., the M-HS defines thesmallestscale in the effective (homog-
enized) medium. The M-HS is typically finer than the F-HS but
should be chosen as large as is tolerably possible in order to sim-
plify (by reducing the number of basis functions) the effective
medium description. The effective and detail (neglected) parts
of the medium are given by the respective projections

(7)

where , in general, except for cases where there is a
scale-gap in the medium; in that case the scale of the ef-
fective medium can be larger than . To clarify these consid-
erations, we refer to Fig. 2, which describes two typical media.
Medium 1 possesses a continuum of scales from macro to micro,
whence and the M-HS is chosen so as to render the
error bound for the effective formulation “sufficiently small.”
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Fig. 2. MRA scales: the field homogenization scale (F-HS) separates the
field into scales larger and smaller than 2and is typically determined by the
operating wavelength. The medium homogenization scale (M-HS) removes
all heterogeneity scales smaller than 2, where� < j. The scale ratio
N � (M�HS=F�HS) = 2 controls the error (see (11)). If the medium
has a scale-gap as sketched in Medium 2, then the M-HS can be taken to be
m, which is greater thanj < � (yielding a simpler medium representation).
Here, too, the error is controlled by�, which represents the largest scale of the
detailed heterogeneity that is neglected in the homogenization.

Medium 2, on the other hand, has a gap between the macro and
micro scales around the F-HS, whenceis still determined by
the above error bound but the effective medium is described
more efficiently by the smallest scale above the gap, denoted
in Fig. 2 and in (7) by the index .

Substituting (7) into (5), one finds that the homogenizedef-
fective constitutive parametersare given by

(8a)

(8b)

which implies aneffective anisotropy(e.g., even if
). See samples in Figs. 3 and Fig. 4, which are further

discussed in Section VI-A.
2) Quality Assessment of the Effective Formulations: Error

Bounds: The quality of the effective spectral formulations has
been tested in observables spacewhere field variations on
scales smaller than the F-HS are not resolved. These variations
are incorporated in the effective spectral wavenumber in the
direction, [see (4) with (5)]. We therefore
introduce the dimensionless bound

(9)

and note that in the evanescent regime (where eitheror
becomes negative), tends to infinity like for large
. Thus the projection of ( , ) onto retains only the contri-

butions from therelevant(i.e., “visible”) spectral range

(10)

with diminishing contribution from all other spectral regimes
with larger . For a given F-HS, (10) therefore de-
fines the relevant spectral range. If the F-HS is chosen as

, characteristic of the bulk medium proper-
ties, then the relevant range, in terms of the homogenization,
coincides with the visible range where . In
this case is bounded by its maximal value that occurs at

, i.e., . If, on the other hand, one
is interested only in an effective formulation for the dominant
(propagating) modes in a waveguiding configuration[see
discussion preceding (1)], then the F-HS can be chosen larger
than , thereby concentrating the relevant
spectral range near .

The considerations above imply that the error of the effective
formulation is controlled via (6) and (10) by thedimensionless
scale parameter defined as

(11a)

(11b)

where, referring to (9), (11a) expresses as the ratio between
the M-HS and the scale of variations of the field, for a given,
while (11b) is a bound on that follows from (10) and applies
to the entire relevant wavenumber spectrum.

The quality assessment can be systematized by examining the
difference in between the actualsource-excitedfield solution
and the solution of the effective formulation, formalized in terms
of the nondimensional estimator , which yields the spectral
domain error bounds (see [28])

(12a)

(12b)

where is defined below and is the thickness of the lami-
nate. Here and elsewhere the symbol denotes the conven-
tional norm via (note that the
functions on the left-hand side of (12a) are in , whence
the norm is in fact in ). While (12) is expressed in terms of

, the estimator for is the same. The bound in (12b), which
follows from (12a) via (10), is aglobalbound for the entirerel-
evantspectrum, as defined in (10).

In addition to the small parameter in (12), which quanti-
fies the ratio between the F-HS and the M-HS,in (12) also
depends on norms of the neglected detailed parts of the medium
heterogeneity assembled into thenondimensionalparameter
[28]

(13)

where and refer only to the norm of the effective
medium within the slab region where and/or contribute
(i.e., not to the entire-domain).

Note that the MRH isnota perturbation theory valid for weak
micro-heterogeneities (small ) since in (12) is controlled
also by the small parameter , which can be made as small
as required by increasing. Equation (11b) explains the reason
for choosing different scales for the medium homogenization
(M-HS) and for testing the field (F-HS) since this introduces a
built-in small parameter that controls the error.

Finally, as expected, the bound in (12) on thesource-
excited solution fails for close to a modal eigenvalue. This
limitation, however, does not imply that the effective formula-
tion is invalid for ( is the mode index); it has been
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shown that the actual eigenvalues and eigenfunctions are well
described by their effective counterparts [25], [26]. Thus the
field solutions there can be modeled in terms of the effective
eigenfunctions [see also (24)]. The region around the eigen-
values where the bound in (12) is invalid is found in [28] to be

(14)

In summary, we note the role of the individual homogeniza-
tion parameters on the required smallness of the overall nondi-
mensional error estimator in (12). Increasing for a given
reduces and therefore , but this reduction is overpowered
by that due to , which behaves like 2 [see (11)]. For a
constant , on the other hand, the error behaves like, as one
infers from (12a) using from (11a). If, however, is changed
with such that in (11a) is constant [i.e., the M-HS in (6)
decreases as in (11a) increases], then varies linearly
(with the electrical width of the laminate). These trends
are substantiated in the numerical examples of Section VI and
in Figs. 5–Fig. 7.

This completes the review of the MRH techniques for the for-
mulation of the effective field and medium parameterizations,
which are required for the tasks that follow.

C. Derivation of the MRH Via Integral Equation Formulation
of the TL Problem

The effective formulation for the spectral domain GF has
been defined in terms of the TL equations in (4) and has been
discussed in Section III-B1, together with the related error
bounds that are found via multiresolution decomposition of
the TL equations and field constituents with as yet unspecified
boundary conditions. Implementation and justification of this
procedure requires the projection of these equations onto

. This is best addressed by recasting (4) in an integral
equation form since: 1) the integral operator is continuous
and 2) the boundary conditions are implicitly included in the
kernel, whence the homogenization procedure yields not only
the effective , parameters but also theeffective boundary
conditions in the macro-scale formulation [25], [26]. This
strategy has been implemented in [28, Sec. 5.1] via atwo-step
procedure wherein each step addresses the effect of only one
of the heterogeneity functions and (however, see [31] for
the derivation of the MRD homogenization directly from the
differential wave operator). In the summary below, we consider
only one function, say,.

1) The Integral Equation:An integral equation is obtained
by decomposing , into thebackground(smooth) andfore-
ground (detail) components defined in (7), using the effective
smooth components , as the background. This
leads totwo coupledLippmann–Schwinger type integral equa-
tions [28] wherein theforegroundcomponents , act as
induced sourcesin conjunction with thedyadic Green’s func-
tion for the background. As mentioned above, for simplicity,
we assume here that there are only-type micro heterogeneities.
Starting with the known background GF which is the

-type response in (4) at to an -type delta function source
( , ) at in a smooth background

Fig. 3. Heterogeneous permittivity"(z) = 2(1 + sin(160�z ))
corresponding to the medium in (33), characterized by a continuous narrowly
spaced distribution of the resolutions.

(a)

(b)

Fig. 4. Effective permittivity for the medium in Fig. 3 using M-HS with
(a)� = M = 4 and (b) finer resolution scale� = M = 6. Note the effective
anisotropy:" 6= " (dashed and solid curves, respectively).

, the integral equation for in a medium with
but is given symbolically by

(15)
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Here, the integral operator is defined by
, and the forcing term is given by

, where is defined in a similar
fashion but for the -type response to an-type source.

2) Multiresolution Decomposition of the Integral Equa-
tion: We proceed by expressing in terms of its
smooth and detail components in accord with (A4) and (A5),
and then take the inner product of (15) with the sets of scaling

and wavelet basis functions, thereby reducing (15) to
the algebraic equation

(16)

Here, the unknown vectors and represent the smooth and
detailexpansion coefficientsof , while the known vectors
and are the corresponding expansion coefficients ofin
(15). The elements of the matrices, , and , which de-
scribe the MRD of the integral operator, are defined by the
projections

(17a)

(17b)

(17c)

(17d)

where is the identity matrix. Note that
is not an inner product (in the sense of metric spaces), but this
definition of the matrices is typically used in Galerkin-type pro-
jection of integral equations [35]. The properties of the matrices
in (17) are explored in [28, Sec. 6.1], by analyzing the proper-
ties of the known effective medium operator .

The smooth/detail decomposition in (16) is exact and for-
mally assigns equal importance to the “s” and “d” constituents.
Since we are interested in an effective smooth-scale formula-
tion, we eliminate by solving for it from the second equation
in (16) and substituting into the first equation to obtain

(18)
The “effective material operator” in (18) incorporates
the effects of the detail scales within the smooth-scale equa-
tion (we use the superscriptto identify the special case where
there is only -type micro heterogeneity). The second term on
the right-hand side in (18) represents the coupling of the micro
scales in the forcing term into the macro-scale field via the
medium micro-heterogeneities; since the source functionsand

represent physical sources they are typically smooth, whence
in (15) is also smooth and the norm . Solving the

thus reduced equation (18) for requires the inverse “opera-
tion” . Since our goal is to approximate by

, the norm should be small. Choosing the problem
parameters accordingly, the first-order Neumann series solution
of (18) becomes, using

(19)

Fig. 5. Spectral Green’s functiong for a source atz = 0:5 with frequency
k = 15, d = 1, and for the spectral parameter� = 0:5. The curves are shown
for jg j multiplied by 20 andargfg g divided by ten. The solid, dashed,
and dashed-dotted curves correspond to the actual solution and to the effective
solutions for� = 4 and6, respectively. (See discussion in Section VI-B.)

with the error estimate . Thus,
the bound on the error may be calculated readily from the bound
on the matrices that form the in (18).

This brings us back to Section III-B2 and the quality as-
sessment of the effective formulation in (12). Although the
error bound in (12) applies to the more general case where
there are both and micro heterogeneities, it also applies to
the present case by using only the-part of in (13), i.e.,

. Comparing the error bounds in (12) with
those from (19), one concludes that and that

is quantified by the expression on the right-hand side
of (12). As in the discussion following (13), we assume here
that is sufficiently removed from the modal eigenvalues;
otherwise the is unbounded. In that case, the solution
can be obtained in terms of the source-free eigenfunctions [29].

IV. SPECTRAL EQUIVALENCE FOR THE ACTUAL AND

EFFECTIVE FIELDS

A. Characteristic Green’s Functions and the Spectral
Completeness Relations

The -domain wavenumber spectrum of the wave equation
plays an important role in guided wave theory, where it is often
advantageous to describe the source-excited field in terms of
the spectrum of the-domain eigenfunctions. Following [6, Sec.
3.3] and [39], the -domain spectral problem will be discussed
from the fundamental perspective of itscharacteristic Green’s
functions,which are defined in thecomplexspectral domain.

As discussed in Section III-A, the complete source-excited
vector field solution involves a discrete and/or continuous
summation over the transverse E- and H-type vector modes,
identified by the superscript and , respectively. The
modal field amplitudes ( , ) are described by solutions of
the -domain spectral TL equations, excited by sources whose
amplitudes ( , ) are obtained by projecting the actual vector
current distribution onto the modal eigenfunctions. Referring
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to [6, Sec. 2.3c], the most general solution of the TL problem
can be expressed in terms of the characteristic GF ,
which expresses the or response atdue to a or -type
impulsive source at [e.g., is an -type
solution of (4) for an E-type mode with a
excitation; this notation has already been used in connection
with (15)]. It is sufficient to solve only for the fundamental
functions and since they determine the solutions due
to all other types of excitations via reciprocity. From (4) and
(5), we obtain theSturm–Liouvilleequation for

(20)

where is a spectral parameter in the complex-plane that is
related to in Section III via . The equation
for is given by (20) with . Henceforth we shall only
consider the E-type Green’s function and omit the indexes;
i.e., . The H-type solutions can be analyzed in a similar
fashion.

The boundary conditions (BCs) that are satisfied byand
are therefore imposed on the solutions of the corresponding
TL equations are dictated by the ambient physical problem
environment (recall that is an - or a -type solution for
E or H modes, respectively). The “basic” BC is that for an
infinitely extended medium along the propagation coordinate
[chosen as in (20)], which translates in the spectral domain
into the “radiative” (outgoing wave) condition for TL modal
fields ( , ) excited by actual or induced modal sources
( , ). However, other types of Green’s functions that satisfy
different boundary conditions can be constructed by adding to
the basic solutions, denoted by, any source-freesolution of
the Sturm–Liouville equation (20), which renders the result
better adapted to other problem environments. Examples
may involve smooth and abrupt (junction) inhomogeneities
along the TL propagation coordinate, cascaded and terminated
geometries, etc., where appropriately modified BCs on the
conglomerate TL equations can be matched self-consistently
(via a comprehensive field-network architecture) to alternative
network formulations for complex systems of transmission
lines (media) that are connected at one or more terminals
(interfaces) [36]–[38] (see Part II [34]).

Returning to (20), the basic solution is given formally by [6,
Sec. 3.3b]

(21)

where and denote the smaller and larger values of

and , respectively, are source-free solutions that satisfy the
basic radiative boundary conditions on the left- and right-hand
sides of the propagation medium, andis the Wronskian. The

Fig. 6. Normalized error estimatorE �M = �M in (12) (see text for an
explanation of the normalization) is plotted on alog scale as a function of
the M-HS index� for the effective GFsg andg . The medium is shown in
Figs. 3 and 4. Problem parameters (see Fig. 5):k = 15,d = 1 andz = �0:1,
� = 0:5. (See discussion in Section VI-B.)

radiative GF is employed in this paper in the example in Sec-
tion V-B. To construct a network representation for the radiative
TL problem, one selects a set of left and right “modal terminals”
far from a central reference place. Augmenting theoutgoing
“scattered”secondaryfields at these terminals byingoing pri-
maryexcitation leads to ascattering matrixnetwork description
matched to the modal. Alternatively, byaddingto theingoing
propagating mode fields at the TL terminals, the corresponding
outgoingpropagating fields that satisfy the source-free TL equa-
tions, one generatesstanding waveBCs that define the “reac-
tive” TL-GF with its correspondingimpedance/admittance
matrix network representations. Finally, bysubtractingfrom

its left-propagatingsource-free mode portion, one generates
a right-radiating unidirectionalTL-GF . Together with its
unidirectionalleft-radiatingcounterpart , these TL-GFs de-
fine a transfer matrixnetwork description that is well adapted
to cascaded configurations. These aspects are explored in detail
in Part II [34].

For any of the above boundary conditions, the characteristic
Green’s functions generate the complete spectrum of equations
(20) via the completeness theorem [6, Ch. 3.3], [39]

(22a)

(22b)

where the asterisk denotes complex conjugation. In (22a), the
integration contour at encloses in the positive
sense the entire upper Riemann sheet of the generally multi-
sheeted complex-plane (see Fig. 8). Using Jordan’s lemma
and Cauchy’s theorem, (22b) is obtained by deforming the in-
tegration contour around the pole and branch point singularities
on the upper Riemann sheet [where ; see (20)],
and invoking the residue theorem plus branch cut integration.

Thus, the first term in (22b) is a summation over
the discrete eigenfunctions , which represent the
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residue contributions from the poles of such that
. The second term in

(22b) represents the contribution of the continuous spectrum,
obtained by integrating around the branch cut ofin the
plane and symmetrizing the integrand. Assuming, for example,
that outside the slab, the branch cut extends from

to along the real axis. The integration contour
follows the side of the cut whereon (i.e, the

upper half of in Fig. 8. For details, see [6, ch. 3.3].
The spectral theorem for theeffectiveproblem is given by (22)

with the replacements

(23)

B. Quality Assessment of the Actual-Effective Spectral
Equivalence

As before, it is important to establish the desired equivalence
between the spectra of the actual and effective formulations in
the observables space . The spectral expansions in are
obtained by projecting (22) onto via the smoothing oper-
ator in (A5a), applied with respect to both theand the
coordinates. This practically annihilates the contribution from
what will be termed the “irrelevant spectral range” ,
wherein is a rapidly varying function of and hence yields
vanishing contributions in the projection. Thus, shrinking the in-
tegration contour in (22) to that encircles only the “rele-
vant” regime (to be defined later; see Fig. 8), and combining the
contributions outside in a remainder , we are led to the
following “smooth-space expansions” for the actual problem

(24a)

(24b)

The function
is the canonical “point source” for the homogenized formula-
tion, obtained by projecting onto . The first term in
(24b) is a summation over discrete “relevant modes,” while
the second term represents the “relevant continuous (radiation)
spectrum” defined over the relevant part of the branch cut
(see Fig. 8; follows the side of the cut whereon ).
The remainder expresses the contributions of the irrelevant
spectrum outside . A bound on is given in [29]; it is pa-
rameterized by , which identifies the location on the real
axis of the highest order mode included in the “relevant spectral
range.” For a given choice of the F-HS, should be chosen
such that is negligible relative to , which is .
As an example, consider the case discussed in connection with
(1), where the is chosen according
to the shortest wavelength in the medium. One finds that

Fig. 7. As in Fig. 6 but forE as a function ofk with constant�. With � = 8,
the M-HS is chosen fine enough to validate the effective formulation over the
entire relevant frequency spectrum. (See discussion in Section VI-B.)

; the relevant spectrum consists of all
discrete (trapped) modes and a portion of the continuous spec-
trum (this case is schematized in Fig. 8). For details, see [29, see
4.2].

The expressions for the corresponding effective problem are
the same as (24), with the replacements in (23). It has also been
shown in [29] that the spectral constituents of the actual and
effective problems are equivalent up to a given error, which is
bounded by

(25a)

(25b)

where , and , are the eigenvalues and eigenfunctions
of the actual and effective problems. The various parameters in
(25) are defined and discussed in (12) and (13) (see also [28,
Sec. 3.3]). Note, that the error bound (25a) formodalfields at the
eigenvalues is the same as in (12) for thesource-excitedfields
far enough from these eigenvalues, as specified in (14). (For
the proof of (25), see [29, Sec. 5]). Numerical examples are
provided in Section VI-C and in Figs. 9 and 10.

V. SPECTRAL SYNTHESIS AND QUALITY ASSESSMENT OF THE

3-D EFFECTIVE SCALAR GREEN’S FUNCTIONS

Having completed and “calibrated” the actual-effective field
formulation in the 1-D -domain spectral regime, we can now
return to Section III-A for spectral synthesis of the 3-D effec-
tive total vector field. It is well known that the 3-D dyadic GFs
excited by arbitrarily oriented electric or magnetic dipoles can
be constructed in terms of-type and -type scalar GFs [6, ch.
7.2]. To highlight relevant issues pertaining to implementation
of the theory for the 3-D effective field in a simple format, we
consider the special case of excitation by a vertically polarized
electric current source [see Figs. 1(b), 11(a),
or 12(a) with the source located either inside or outside the lam-
inate], which permits the 3-D vector field in the presence of the
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Fig. 8. Relevant (unshaded) and nonrelevant (shaded) regimes in the complex spectral�-plane. The corresponding physical configuration is that of Fig. 1(b).
The spectral contourC encircles only the “relevant” spectral domain; the exterior “nonrelevant”C is parameterized by its point of intersection with the largest
spectral pole� on the real axis [see discussion after (24)].
: spectral poles� located on the real axis segment�p� " < � < �1. Wiggly line: branch
cut extending from the branch point at� = �1 along the real axis segment� > �1. B andB : the complete and “relevant” branch-cut integration contours,
respectively.

complex laminate to be fully described by the E-type scalar po-
tential. The corresponding E-mode Green’s function
is defined by

(26)

where . Once is found (and properly parame-
terized), the total vector electromagnetic field can be found via
[6, ch. 7.2c], [29]

(27)
We shall henceforth omit the superscript. The field in the
effectivemedium is described by the same formulation except
that the medium coefficients and are replaced by the
effective coefficients in (8). The effective observables are then
obtained by smoothing these fields with respect to bothand

.
Although the original 3-D vector field decomposition in

Section III-A was performed in terms of transverse vector
eigenfunctions with propagation along, the use of charac-
teristic Greens’s functions in thecomplex spectral domain
permits selection of propagation along any of the three coor-
dinate directions, with eigenmodes defined in the remaining
2-D cross-sections [6, ch. 3]. Two such alternative representa-
tions are shown in SectionsV-A and V-B below. They exhibit

entirely different phenomenologies, with different parameter-
izations of the same 3-D vector field. Either of them can be
derived from generalized characteristic GFs set in the three
complex wavenumber spectral domains corresponding to the
three physical coordinates [6, ch. 3].

A. Transverse Eigenfunction Expansion:Propagation

The 3-D effective field in the -propagation representation
can be found in terms of the scalar counterpart of the vector
transverse mode expansion in Section III-A

(28)

where are the E-type scalar mode functions corre-
sponding to the transverse spectral parameter and

is the effective GFs corresponding to . For
the case of unbounded transverse cross-sections, (28) becomes
[6]

(29)

where is defined by (20) and is given formally by
[see (21)]

(30)
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Note that is evanescent for ; therefore
if , the integration can be limited to .
The M-HS (medium homogenization scale) will be determined
here by requiring the error of the effective formulation to be
small in this spectral regime. From (9), in this range, is largest
for with , thus implying from (12) that
the largest error occurs at . Using the first expression in
(11a) for in (12), we obtain the desired value for M-HS

.
The representation in (28) is convenient for determination of

the field away from the source in the vicinity of the-axis [see
Fig. 12(a)], where -propagation phenomena (with multiple re-
flections) predominate.

B. -Domain Eigenfunction Expansion: Transverse
Propagation

As noted earlier, the 3-D scalar Green’s function can alter-
natively be calculated as a summation over the eigenfunctions
in the domain, propagating in the lateral (transverse) direc-
tion. This guided mode representation is convenient when the
source and observer are at laterally separated locationsin or
near the inhomogeneous laminate, where transverse propaga-
tion phenomena predominate. Using the eigenfunction set in
(24b), we obtain

(31)

where the first and second terms involve the discrete and con-
tinuous spectral constituents in thedomain. Applying (22) to
the present problem, where the laminate is surrounded by a uni-
form medium at and , with , we note
that the upper Riemann sheet in the complex-plane is defined
by , with a branch cut extending from the
branch point at to along the real axis (see Fig. 8).
Following the discussion in (22b), the integration is performed
along the side of , denoted in (22b) and (31) as .
Thus, in (31) we have for that part of where
and for the part where . The discrete modes in
(31) are generated by possible pole singularities ofat ,

which are located (for a lossless medium) along
the real axis segment [see (22b)],
so that there.

The lateral propagation of these constituents is described by
the known transverse-domain Green function that
satisfies with appropriate
boundary conditions. For an unbounded transverse domain with
its “radiative” (radiation) condition at , the solution is
given by , where
is the Hankel function of the first kind and , with
denoting the spectral parameter in the-domain.

In view of the spectral equivalence established in Sec-
tion IV-B, the effective spectrum representation in (31)

(a)

(b)

Fig. 9. (a) Eigenvalue errorj� �� j for l = 1; 3; and5 modes, normalized
by �M = �M (see text), is shown on alog scale as a function of the M-HS
scale index�. (b) � and� in the complex� plane for� = 4 and6. (See
discussion in Section VI-C.)

Fig. 10. The (l = 1; 3; and5) actual and effective modal fields for� = 4 and
� = 6 as a function ofz (solid, dashed, and dashed-dotted curves, respectively).
Note the exponential decay outside the laminate slab (z < 0 andz > d = 1).

provides a good approximation to the Green’s function so-
lution of the actual problem. This statement applies as long
as the error accumulation of the lateral phase, which arises
from errors in the eigenvalues in (31), is small , i.e.,



2772 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 10, OCTOBER 2003

(a) (b)

(c) (d)

Fig. 11. 3-D Green’s functionG(r; r ) within the complex laminate slab for a source located inside the slab atz = 0:5 and(x ; y ) = (0;0). (a) Physical
configuration. (b), (c), and (d) Cross-sectional cuts ofjGj atk � = 0:5, 2 , and2 , respectively, where� = j���j is the lateral displacement. The solid, dashed,
and dashed-dotted curves correspond to the actual solution and to the effective solutions for� = 4 and6, respectively.

, where the bound
on is obtained from (25b). This expression is useful
if is not too small; note that this is indeed the case for the
dominant laterally propagating modes.

C. Asymptotic Representation: Effective Rays and Effective
Leaky Modes

Outside the inhomogeneous region, at distances large com-
pared to the electrical width of the slab, the spectral integral
in (29) can be evaluated asymptotically by deforming the orig-
inal integration contour into the steepest descent path (SDP)
through the saddle point in the complex -plane. The field
is thus described in terms of the saddle point contribution,
which is interpreted as the geometrical ray field from the source
to the observer, with defining the ray direction, plus the
contributions of the (real) guided and (complex) leaky wave
poles, which are intercepted during the deformation from the
original path to the SDP. Since a portion of the SDP passes

through the lower (improper) Riemann sheet, the result can
be expressed as [6, Sec. 5.6a]

(32)
where is the effective saddle point contribution de-
scribing the ray fields in the effective medium, while the first
and the second sums are the effective guided and leaky mode
contributions denoted by superscripts “g” and “l,” respectively.

The improper leaky modes are generated by poles on the
lower Riemann sheet and are therefore not included in the proper
(top Riemann sheet) spectrum pertaining to the field representa-
tions (29) and (31); however, as noted above, they can contribute
(via the SDP deformation) to the asymptotic field.

Subject to the constraints formalized in Section IV-B, the ef-
fective asymptotic field solutions agree “acceptably well” with
the actual asymptotic fields. The equivalence is demonstrated
numerically in Section VI.
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VI. NUMERICAL STUDIES FORVALIDATION OF THE MRH
EFFECTIVE FIELDS

A. Test Configuration

New numerical results have been generated for the physical
configuration in Fig. 1(b) comprising a vertical (directed) elec-
tric dipole in the presence of a complex laminate slab occupying
the region in free space with an infinite (, )
cross-section. All length scales are normalized to (in-
cluding the wavelength and the reference scale ). The
frequency is specified indirectly by . Our test
configuration involves an isotropic medium with a constant per-
meability and a multiscale permittivity

(33)

The chirp-type heterogeneity in (33) comprises a continuum of
scales from 1 at to 2 at (see Fig. 3). Since

in (33), noting that and using (9) for , we
have so that the homogenization parameter of
(11) becomes small if the M-HS is chosen such that
. The effective constitutive parameters calculated for two dif-

ferent values and of the are shown in
Fig. 4. One readily discerns the effective anisotropy implied by
(8) and the finer resolution for . We note that the chirped
narrow-scale smoothly continuous heterogeneity profile in (33)
poses a greater challenge with respect to the actual-effective
bounds than the wide-scale heterogeneity profile investigation
in [28] and [29].

B. 1-D Green’s Functions

As discussed in connection with (20), it is sufficient to
consider only the fundamental spectral Green’s functions

and for the E- and H-type modes,
respectively. In fact the vertical electrical dipole excitation
considered here is described entirely by. However, in the
framework of this section, we consider both and since
they exhibit different multiresolution complexity, as discussed
next.

The Green’s function satisfies (20), while satisfies the
dual equation with . For the constant case
considered here, the equation for has a more complicated
structure than that for since, referring to (5) and the
counterpart of (20), the heterogeneity in appears only in the
potential function, while in it appears in both the derivative
and the potential terms.

In Fig. 5, we compare theactualand theeffective solu-
tions in (20) for a typical normalized spectral parameter .
The numerical results show some error for but excellent
agreement for . Both solutions are generated via a direct
numerical solution of (20) with either the actual or the effective
heterogeneity functions.

Figs. 6 and 7 depict the dimensionless error estimatorin
(12) of and as a function of the M-HS index. Actually,
to verify the theoretical dependence ofon as predicted in
(12), we present in Fig. 6 a normalized estimator obtained by

(a)

(b)

Fig. 12. 3-D reflected Green’s function magnitude due to a dipole point source
at (x ; y ; z ) = (0; 0;�0:1). (a) Physical configuration. (b) The field as a
function of range� at the source levelz = �0:3: The solid, dashed, and
the dashed-dotted curves correspond to the actual solution and to the effective
solutions for� = 4 and6, respectively. The actual and� = 6 results coincide
on the scale in these plots. Compare with the results for larger� in Fig. 13.

multiplying by where and the reasons for
this normalization are discussed in the next paragraph.

To explain the normalization in Fig. 6, we note that the bound
in (12) includes the explicit dependence onvia factor 2
as well as the factor that depends implicitly on . As de-
fined in (13), is the ratio between the norm of the detail
and smooth medium components. However, as follows from
the derivation in [28, Sec. 5], is mainly affected by the
norm of the detailed heterogeneities at the largest resolution
level 2 (i.e., the largest scale neglected in the effective
medium). Referring to (13), we tag this parameter by an overbar,
i.e., , where the sub-
script indicates the norm of the function at the resolution
level 2 . Clearly, so that using provides a
tighter bound in (12), yet in (13) we preferred the more general
form. Now we normalize by as indicated above, since
the medium in (33) has a nonuniform distribution of the hetero-
geneities in the resolution levels (i.e., varies with ).

Indeed, one finds in Fig. 6 that exhibits a 2
decay, as predicted by (12), provided that the M-HS is fine
enough to justify the homogenization for .
Fig. 7 depicts as a function of frequency, the M-HS
being kept constant with . One observes a behavior
as predicted by (12a) if one notes from (11) that increases
like when is constant. Combining the results in Figs. 6 and
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7, it follows that if is increased with increasing such that
remains constant, then is linear with as predicted in

(12).

C. Spectral Equivalence

The equivalence of the discrete modal eigenvalues corre-
sponding to the actual and the effective problems is explored
in Fig. 9. At the given frequency, there are only five discrete
eigenvalues representing five transversely propagating guided
modes, but in this section we illustrate the quality of the
analysis only for the and modes. As discussed after
(31), their accuracy plays a major role in tracking the 3-D
modal field over large transverse distances (see also Fig. 11).
Referring to (25b) and recalling the discussion concerning
Fig. 6 above, the error as a function of , presented
in Fig. 9(a), is normalized with respect to (specifically,
it is multiplied by , where is as defined in the
previous section). The results in Fig. 9(a) for the and

eigenvalues show good agreement, which improves for the
finer M-HS like 2 as predicted in (25b).

Fig. 9(b) depicts the actual and effective eigenvalues (for
and ) in the complex plane. Finally, the mode functions

corresponding to the actual and effective formulations with
and are depicted in Fig. 10. The eigenfunction accuracy

is described by (25a), and its behavior is found to be similar to
that of the source-excited fields in Fig. 7.

D. Total 3-D Fields

When the source and observation points are located in-
side or near the laminate and are laterally separated, the
field is described most effectively by the-domain spec-
tral expansion (31) in Section V-B. The source location at

inside the laminate is shown in
Fig. 11(a); here, we have used the normalization ,
and specify . Fig. 11(b)–(d) depicts cross-sec-
tional cuts of the total 3-D Green’s functions and at
three transverse ranges: , and . The figures
compare the effective solutions for and with the actual
solutions.

In the near zone , one needs to complement the
guided mode series in the first term on the right-hand side of
(31) with the continuous spectrum integral in the second term,
which was generated by direct evaluation (point-wise summa-
tion) of the integral. Note the fine details of the field near the
source in Fig. 11(b), which cannot be achieved by summation
over the discrete modes of Fig. 10 alone (there are five guided
modes for the values of and in the present example; only
three of them are depicted in Figs. 9 and 10). The continuous
spectrum models the near-zone-evanescent spectra that are not
accounted for in the propagation modes of Fig. 10. The final re-
sults depicted in Fig. 11(b) show excellent agreement (better
than the figure resolution) between the actual and effective GFs
for the finer M-HS . In the intermediate and far zones
(for large ), the contribution of the continuous spectrum
(i.e., the effect of the “leaky” and the “evanescent” modes) is
weak and may be neglected; the field is now mainly described
by the discrete propagating modes. There are two sources of

(a)

(b)

Fig. 13. Asymptotic field evaluation for large lateral displacement�,
corresponding to the configuration in Fig. 12. (a) Complexw-plane plot
(defined bysinw = �) shows the guided wave poles (along theRew = �=2
axis), the leaky wave poles (in the first quadrant of thew-plane), the saddle
pointw , and the corresponding SDP. The singularities of the effective problem
with � = 6 are indistinguishable from the actual poles within the scale of the
figure and are identified by “�.” The singularities of effective problem with
� = 4 are identified by “�.” (b) 3-D reflected field calculated via (32), using
the spectral constituents of (a). Solid curve: actual solution; dashed-dotted
curve: effective solution for� = 6 (indistinguishable on the scale of the
figure); dashed curve: effective solution for� = 4.

error: one is associated with the eigenfunction error in Fig. 10;
it affects the field structure but does not accumulate with range.
The other source is the accumulation of the modal phase error

, which becomes dominant
in the intermediate and far zones. From Fig. 9(a), the eigenvalue
error is largest for where, from Fig. 9(b), . For

, we have from Fig. 9(a) that , while for
, we use the normalization to es-

timate . The distance where the phase
error becomes is therefore estimated to be
and for the coarse and fine M-HS, and , respec-
tively. Indeed, the results in Fig. 11(c) for show excel-
lent agreement between the actual and effective solutions when

and a certain error for , which is mainly due to
the eigenfunction error noted above. The long-range results in
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Fig. 11(d) for show acceptable distortion for
but very substantial distortion for due to the intermode
phase error accumulation.

When the source and observation points lie outside the
laminate as in Fig. 12(a), the field is best described by the
-propagation expansion in (28) and (29). For a point dipole at

, , and observations on the plane ,
Fig. 12(b) displays the reflected field as a function of the
transverse displacement, for two values of the M-HS:
and . The finer homogenization evidently yields better
agreement.

The results in Fig. 12(b), which were calculated by straight-
forward numerical integration (Riemann summation) of (29),
become numerically sensitive for large lateral displacement
where it is advantageous to parameterize the field asymptoti-
cally via (32). The outcomes are plotted in Fig. 13 for the same
configuration as in Fig. 12 but for larger. Fig. 13(a) exhibits
the SDP and the spectral singularities of the actual and effec-
tive problems. They are shown in the complex-angle plane,
defined by . Identified are the guided wave
poles (along the axis), the leaky wave poles (in the
first quadrant of the -plane that corresponds to the lower Rie-
mann sheet in the plane), the saddle point (which defines
the geometrically reflected ray), and the corresponding SDP.
The pole singularities of the effective problem with the finer
M-HS are indistinguishable on the scale of the figure
from the actual pole locations and are denoted by “.” The ef-
fective poles for are denoted by .

For large , the conventional Sommerfeld integration con-
tour is deformed into the SDP through the saddle pointin
Fig. 13(a). The field is then given by the SDP contribution plus
the contributions from the poles that are intercepted during the
contour deformation. These are the leaky wave and the guided
wave poles on the left-hand side of the SDP [see Fig. 13(a)].

The value of for two values of calculated from (32)
in terms of the spectral constituents (saddle point and relevant
guided and leaky poles) of Fig. 13(a) is depicted in Fig. 13(b) as
a function of the lateral displacement for [see Fig. 12(a),
which depicts the field for ]. As expected, the effective
solution (dashed-dotted curve) for the finer M-HS with
performs better than that for the coarser M-HS with
(dashed curve) and is, in fact, indistinguishable from the actual
field (solid curve).

VII. CONCLUDING REMARKS

In this first part of a two-part paper, we are concerned
with the multiresolution homogenization of field-network rep-
resentations, we have endeavored to extract from the formal
mathematical treatment of MRH in [28] and [29] those “prag-
matic” effective measures that allow conventional field rep-
resentations in the presence of multilayered dielectric slabs
to be converted directly to corresponding representations for
MRH-smoothed fields. A detailed summary of this process
was provided in Section I. Since the accuracy of the actual-ef-
fective equivalence of these formulations depends critically
on error assessments, we have performed a representative set
of new numerical experiments that involve sensitivity studies

with respect to parametric variations pertaining to a partic-
ular, but highly instructive, model micro-macro-scale laminate.
Whereas, conclusions in the earlier investigations [28], [29]
are based on relatively sparse preliminary numerics, the val-
idations here provide a substantially better understanding of
the performance capabilities of our approach. The foundation
has thereby been laid for the judicious applications of MRH
field theory to the construction of an effective network theory
for interconnected multiscale conglomerates, which will be
carried out in Part II [34].

APPENDIX A

A SUMMARY OF MULTIRESOLUTION ANALYSIS (MRA)

Let be a nested sequence of linear spaces dense in
, and let , be the corresponding scaling and wavelet

functions, respectively. The functions and are
defined via

(A1)

The set of functions is an orthonormal basis of ,
and the set of functions is an orthonormal basis of

, which is the orthogonal complement of in .
The MRA is called -regular if for and ,

and satisfy

(A2)

This condition describes both the regularity of the MRA and its
localization. The regularity is also related to the “cancellation
property.” If and constitute -regular MRA, then the
wavelet has 1 vanishing moments

(A3)

A function can then be written as the sum of its
smooth and detail coefficients

(A4)

where

(A5a)

(A5b)

where and with
define the MRA expansion coefficients.

Further discussions on the localization, regularity properties,
and characterization of functional spaces can be found in [19]
and [20].
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