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Abstract—Conventional theories addressing the wave-dynamic lidity of the conventional-to-MRH conversion for these alternative
behavior of plane-stratified multilayer environments usually field representations. This lays the foundation for an MRH-based
involve wavenumber spectral and asymptotic techniques, which effective networktheory for multiscale laminate conglomerates
apply to layer thickness of the same “macroscale” order as comprising a sequence ofnicro-macroscale laminateonstituents,
the wavelengths in the spectrum of the excitation. However, to be presented in Part Il of this paper.
in applications of multilayer bonded laminates (for example,
in biological and other “exotic” materials”) wherein the layer
structure contains extremely fine “microscale” constituents as well
as the conventional macroscales, the desired “observables” involve
the macroscale response, which accounts self-consistently for the
macroscale loading by the microscales. A novahultiresolution
homogenization(MRH) has been presented previously to provide .
the segllf-consistg(nt rig())rous analyt?c micro-mgcro scalg frargework A. Background Perspectives
for calibrated parameterization of the wave dynamics in terms ISCRETE/continuous plane stratified media have long
of a microscale-loaded macroscale medium with corresponding served as models for the study of wave propagation in

“effective” field observables. The outcome has been an algorithm di | d d | ; Th
that allows the conversion of the conventional macroscale prop- dIVerse natural and man-made complex environments. The

agation models to their “effective” micro-macroscale versions Solution strategy for this “conventional” class of problems
by direct substitutionof the MRH-based effective fields, media, has been the use of alternative problem-matched discrete/con-

etc., in place of the corresponding conventional quantities, with tinyous transforms from the three-dimensional (3-D) actual
error bounds that quantify the quality of the substitution. This (physical) domain to the appropriate 1-D or 2-D wavenumber

theory may accommodate broad ranges, discrete and continuous, | d ins: thi d d h iqinal
of wavenumber spectra and thus can be applied in conjunction SPectral domains; this procedure decomposes the origina

with the spectral techniques noted above. In this paper, relevant source-excited wavefield into superpositions of simpler wave

“pragmatic” results of the MRH-based field theory are extracted types in the corresponding 2-D or 1-D spectral subdomains, re-
from the previous formal treatment and are extended to accom- gpectively. The wave species in the spectral domain can broadly
modate alternative physics-matched MRH field representations. be grouped into complementaryrogressing(ray-type) and

The reflection, transmission, and waveguiding properties, in free ; . . -
space, of a dipole-excited laminate slab whose scales span a wid@Scillatory (mode-type) categories, which are characterized by

continuum from micro to macro are examined in detail, with their distinct wavenumber spectral footprints. A self-consistent
emphasis on alternative MRH field representations (ray, guided hybrid ray-mode (progressing-oscillatory) formulation has
mode, etc.) that are best matched to the wave physics for speci-peen constructed to exploit the most favorable characteristics of

fied ranges of operating frequencies, source-observer locations, o 5.y [1]_[5]. For further details on related spectral techniques,
etc. Extensive numerical experiments have been performed to

calibrate, via quantified error bounds, the quality and range of va- €€ also [6]-{13]. .
The description above refers essentially to thacro (or

. . . __large-scale) properties of the multilayer ambient medium,
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homogenizatiofMRH) procedure for finely multiscalé&ami- introducing the two-scales formulation; a two-step Green’s
natesthat bridges the gap between the macro- and micro-scél@ction procedure for dealing with several heterogeneity func-
field phenomena, and shows how one may adapt the arsendiafs; and a more accessible formulation for the error bounds
parameterization techniques for conventional macro-type wawneterms of the norm of the micro heterogeneity (rather than its
problems discussed above to describe wave interactions wdégree of regularity as in [25]-[27]). Furthermore, the theory
complex multiscale structures. now contains the complete spectral expansion of the wave

Traditional homogenization schemes have been developgukrator expressed in the observables spaceConsequently
for periodic micro structures (see, e.g., [14] and [15]) anthe MRH can now deal with three-dimensional source-excited
deal essentially with the bulk properties of the homogenizedectromagnetic (EM) problems (e.g., obtain EM Green'’s
media, assuming space-invariant effective properties. A méilinctions) in bounded or nonbounded plane-layered multiscale
tiresolution approach fonumericalhomogenization, and for laminate configurations making use of the extensive toolbox of
calculating the large-scale response, has been introducedspatial-spectral parameterization techniques described in the
[16]-18], using a sophisticated “decimation” algorithm, bufirst paragraph and its cited references (see, e.qg., [27], [32], and
the analysis has remained on the level of the correspondii33]).
matrix equation without recourse to affective formulation
involving effective medium and boundary conditions.

In the MRH theory here, the medium and the resulting fiel
equations are decomposed into binary-based scales via thBuilding upon the previous investigations in Section I-A,
theory of multiresolution decompositiofMRD) [19], [20] we are now planning a systematic sequence of studies focused
and are then solved self-consistently in the desired resolution radiation from, guiding within, and junctions between
scale. The theory makes a distinction betweerfitld homog- different multilayer micro/macroscale composite slab con-
enization scalgF-HS) 27/ and themedium homogenizationfigurations characterized by their “effective” equivalents,
scale (M-HS) 2, which is typically smaller (i.e.r > 7). and on “effective” field-network (transmission line) models
The F-HS defines the resolution spaég, which contains the for such conglomerates. The goal is a validated “pragmatic”
relevant “physical observables” chosen by the wave modelapproximate formulation that permits the “effective” field-net-
and whose scale is larger than the F-HS. The effect of albrk description of a multiscale laminate conglomerate to be
neglected micro scales is embedded within an effective mateidgtained by direct substitution of the homogenized “effective”
operator (EMO), which describes the couplings between tfields, media, etc., into available corresponding formulations
micro-scale components in the medium heterogeneity and toe their conventional macro counterparts. Our adopted format
field response in the observable space The EMO, through toward learning the rules is a two-part sequence concerned with
its bound, formalizes and quantifies the errorVin between the MRH treatment of network-matched Green’s functions
the “actual” (or true) field observables and those predicted §@Fs) for typical multiconstituent multiscale plane-layered
the “effective” theory for a given HS. Unlike traditional ho-laminate slab configurations. This paper deals with fibl
mogenization procedures [14], [15], the novel two-scales MRiHeory for a typical constituent within this framework. The
can deal with nonperiodic structures anchist a perturbation corresponding MRH-parameterizedetwork relations will
theory that requires weak micro heterogeneities or a scale-gagpear in Part Il of this paper [34].
between the macro and micro heterogeneities. This property isfwo broad objectives guide this presentation.
due to the fact that the ratio (M-HS/F-HS) between the scale of
the medium homogenization and the relatively larger scale of
the observables is an inherent small parameter that governs the
bound on the error in the observables sp¥geThis allows the
MRH to accommodate media with continuous distributions of 2)
scales, thereby facilitating the choice of homogenization scale .
that best models the physics of the problem, as well as control @) To extend the scope of the “basic” MRH Green’s func-

g. This Investigation

1) To extract from the comprehensive and heavily math-
ematical treatment in [28] and [29] those “pragmatic”
results that are required to perform the above-mentioned
planned extensions.

of the actual-effective formulation error. For example, the tions in [28] and [29] so as to match the GFs (via ap-
continuous distribution property is relevant for ultra-wide-band propriate boundary conditions) tdternative useful
(UWB) excitation scenarios, where it is desirable to change network representations to be explored in Part Il.

the HS in accord with the wavelength, or for localized sources ~ P) To produce a comprehensisgnthetic data bastor

in 3-D configurations where the HS should accommodate a typical multiscale laminate example by numerical
the spectral wavenumbers. The theory is accompanied by experimentation over problem parameter ranges se-

lected so as to demonstrate the parametric sensitivity
of the perceived wave physics and of the overall
performance of our model, thereby establishing
understanding of, and confidence in, our calibrated
analytic error quantifications for the actual/effective

comprehensive error analysis, with explicit expressions for the
error bounds in terms of dimensionless estimators that clearly
identify and quantify all sources of error in the homogenization,

and it may be applied in general to uniaxial media wherein both
e andy can be multiscale “messy” heterogeneous functions. )

The principal concepts and mathematical foundations per- equivalence.

taining to the MRH were introduced originally in [21]-[27].Item 2a) and the laminate model in 2b) are new and have not
The theory has been generalized and refined in [28]-[31] Imeen explored in [28] and [29].
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In this paper, Section Il contains the description of the actual p=x,y

problem environment and the definition of the MRH-smoothed A
3

“effective” field observables. Section Ill is concerned with the £
C-cross sectional boundary

details of the effective 3-D vector field problem:

1) the 2-D vector mode decomposition of the field in the
(z, y) cross-section parallel to the stratification and the
resulting spectral transmission-line (TL) formulations
along the z-axis for the actual and effective modal (@
amplitudes in the effective medium (Section Il11-A);

2) the quality assessment of the desired equivalence between
the actual and effective field amplitudes by quantitative
error bounds (Section IlI-B);

3) derivation of the MRH via formal MRD of the TL equa-
tions into macro (smooth) and micro (detail) components,
with absorption of the micro scales within the macro-
scale format via the EMO (Section IlI-C).

Section IV is concerned with the construction of the effec- )

ivi ra of the TL ions alon Xi ilizin

tive ,‘SpeCt a 0. t. e equations ao g theaxis, ut - g Fig. 1. Problem formulation: (a) waveguide filled with a complex laminate
the “characteristic” GF procedure in [6, ch. 3], and with thg (b) a complex laminate slab.

quality assessment (via error bounds) of the spectral equiva-

lence between the actual and effective spectra. Included are @eSmoothed Effective Field Observables: MRH

construction of the complete (discrete and continuous) spec- o o

trum of the multiscale wave equation and the definition of TO implement our stated objective of generalizing conven-
the relevant (or effective) and nonrelevant (detailed) parts pnal field-network theory so as to include “effective” field and
the spectrum within a prescribed formulation accuracy. THRedium characterization of multiscale laminate configurations,
section also contains the new extension to network-match¥§ réquire previously obtained results from MRH, which are
alternative GF representations. The results are utilized in S§¢mmarized below. o

tion V for the spectral synthesis and quality assessment of thet) Macro- and Micro-Scale ParameterizatiorAn effec-

3-D effective GFs for the total field. In Section VI. the vardive formulation for themacro-scale fieldsmooths out the
ious spectral domain and total field effective formulations arf#icro-scale heterogeneities while retaining their effect on the
their analytic quality assessments, developed in Sections |Ijacro-scale observables. Although the multiscale structure of
are validated further by new extensive “actual” versus “effeé?® medium induces multiscale components in the 3-D elec-
tive” calibrated numerical comparisons for our chosen lamindf@magnetic field, the relevant fielobservablesare described

model. Concluding remarks are presented in Section VII. On @ scale that is typically determined by thave physics
(e.g., the wavelength, near/far fields) or by the measurement

arrangement (e.g., the spatiotemporal resolution of the detector,
[I. STATEMENT OF THE PROBLEM the dynamic range and the polarization, etc.). Accounting for
these aspects permits simplification of the field calculations
through retention of only the large-scale components of the

We consider source-excited electromagnetic fields in comesponse, which thus define tlield homogenization scale

plex laminates characterized by multiscale (macro/micro) h&tfe shall choose the F-HS according to the wave physics.
erogeneities along the stratification axis The propagation The most basic scale is characterized by libgal effective
domain may have any bounded or unbounded cross-sectizavenumbein the material; i.e., F-HS (ko\/Emax/tmax) '
perpendicular to the-axis (Fig. 1). Two special cases are avith kg = w/c being the free-space wavelength at the fre-
transversely unboundecbmplex laminated slab andteans- quencyw [see (8) and (9) for a precise definition]. However,
versely boundediaveguide filled with a complex laminate. Thein waveguiding configurations, the waveguide width motivates
laminate is located i < z < d and generally has penetrableconsideration of darger F-HS. Thus, for frequencies high
boundaries that grant access to the surrounding homogenesnsugh to suppompropagatingmodes transverse to in the
media inz < 0 andz > d. The normalized laminate constitu-slab configuration of Fig. 1(b), the relevant scale for such a
tive parameters may be diagonal tensors whose componentsle is its spectral wavenumbéy2z! wherel = 1,2,...
(e2, er) and (., pe) (Where the subscripts denote theand is the mode index and is the slab width (for further details,
transverse ta components) arenultiscalefunctions ofz that see Section V). The resulting (F-HS(d/2x C) even for the
comprise both macro and micro scales. The field is excitéolvest order propagating modes may now be much larger than
by a current distributiod (r) located either inside or outside(kq/Emax/tmax)'. On the other hand, if one is interested in
the laminate, and a monochromatic time dependenée’ is the field in the source region, the F-HS might be much smaller,
assumed and suppressed; the frequency or time dependermigswould be determined essentially by the detector size.
will be displayed explicitly only under conditions of wide-band Having chosen a relevant field homogenization scale, we
excitation [30]. Boldface symbols denote vector quantitiesinvoke the theory of multiscale resolution decomposition [19]

p=xy

A. Physical Configuration
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(which is briefly summarized in the Appendix) to parameterizasterisk« denotes the complex conjugate. It is convenient to use
the F-HS macro and micro components in terms of the binafyas a dimensionless frequency-normalized spectral parameter
scale basis (i.e., the transverse wavenumber is giverkhy= kq§).

The spectral voltage and currearmplitudeqV, I) of (3) ex-
M) cited by the spectralourceqv*, +*) corresponding td (r) are

whered is an arbitrary reference scale. A given field functioficund via thespectral transmission-linequations in the hetero-
f(2) is thereby decomposed into its “smooth” (macro-scal@fneous medium (here assumed to be uniaxially anisotropic)

F-HS =d277, j = integer

and “detailed” (micro-scale) orthogonal componeiftsand d_ . . N N
f?, respectively, via the projection operat@sandD; defined %V = thopI®™ — v (42)
in (AS5). P; projectsf onto the linear (field amplitude) spaces d ., . o0 o
V; C L, containing all scales> d2~7, while D; projects El =ikoqV*" — (4b)

f onto the orthogonal complementary spa@ﬁ:j W,,
(m = integer) that contains all smaller scales; the wavel
spaceW,, consists only of the scald2=™~!. The sets of
scaling and wavelets function§p;,.}, ., and {Ymn},cz

v%/ith (Ve, I*) continuous across interface discontinuities. In
e'(4), the (multiscale) heterogeneity functiops= p(z,£) and
= ¢(z,€) are given by [28]

with Z being the set of all integers, constitutes a basis of the Emodes: p(z,€) = —el '€, q=-¢ (5a)
homogenization spad@r observables spagév/,; and ofW,,, H modes : . 12 _ 5h
respectively. modes :  ¢(z,§) =er—pz &, p=p  (5D)

2) Smoothed Approximation of the Actual Fielttaving de- wheree, . andy, . are the (transverse, longitudinal) medium
termined the F-HS, we are interested only in the smoothed figldrmittivity and permeability, respectively. Moreover,
observables, and the corresponding “effective” medium that dey,/pg and \/p/q represent, respectively, the local spec-
scribes these observables. This is accomplished by projectirg wavenumber (propagation coefficient) and characteristic
the “actual” field &, H) onto V;, and is formalized by the impedance along. Note that the formulation in (4) is normal-
condition ized differently from what is conventional [6]. In view of the
P-(E"f Hef) _ p.(E,H) @ n—l. factor in (3b), .bothV. andI in (4) are measured in volts,

J ’ IR A St s while p andq are dimensionless.

The challenge to the modeler is to choose the effecti
medium consistent with this requirement as simply as possi
so as to allow efficient humerical evaluation of the field an
a cogent interpretation of the “effective” wave physics. The 1) Construction of the Effective Formulation&eferring to
quality of this formulation to within a prescribed error needthe spectral TL equations (4), we are interested in finding a sim-

to be established in the homogenization space of physigdified effective medium with smoother parameteps’( ¢*').
observables. The modal field amplitudesi{f, I°f) in this medium satisfy

effective TL equations, which are given by (4) but with ¢) re-

. EEFECTIVE FIELD PROBLEM placed by £°f, ¢°f). Referring to (2), this implies equality of the
projectionsP; (V*f, 1t) = P;(V, I) of the actual and effective
modal amplitudes to within tolerable prescribed error bounds. It
can be shown that the equality is satisfied up to a specified error

The configurations in Fig. 1 can be analyzed via modal d#-one neglects all scales in the heterogeneity functions of (5)
composition and transmission-line theory [6, ch. 2]. The actuilat are smaller than ttrmedium homogenization scqM-HS)
vector field is expressed as a spectral superposition (discrete _ )
and/or continuous) of both E (TM)- and H (TE)-type modes, M-HS = d27", v = integer (6)

tagged by the superscript = cor h, respectively. lts tran_s- i.e., the M-HS defines themallesscale in the effective (homog-
verse-toz componentgt) are given by the spectral summationg, iy medium. The M-HS is typically finer than the F-HS but
E _ Ve(z,6)e(p, 3g) Should be chosen as large as is tolerably possible in order to sim-
+(r) Z Z (2,8)e%(p,8) (32) plify (by reducing the number of basis functions) the effective
. N N medium description. The effective and detail (neglected) parts
Hy(r) =7 Z Z 1%(2,)h" (p, §) (3D)  of the medium are given by the respective projections

a=eh £
ef ef d d
) = Pum(p, q), , =D,(p,q), M>v (7
wheren = /(uo/eo). Herer = (z,y,2) = (p,z) denotes ¥, a%) apra) (0% 4°) (p-4) %

the 3-D coordinate, witlp denoting the coordinates transversevhere M = v, in general, except for cases where there is a
to z; £ = (&, ¢&,) identifies the vector transverse wavenumbescale-gap in the medium; in that case the sdafe! of the ef-
spectral coordinates with= |¢ - £|'/2; ande® andh® = z x  fective medium can be larger thd2—>. To clarify these consid-

e® are the vector mode functions corresponding to the specteahitions, we refer to Fig. 2, which describes two typical media.
paramete€ and thex mode-type, and they are normalized suchMedium 1 possesses a continuum of scales from macro to micro,
that [ [ d*>pe™*(p,€) - e*(p, &) = be.er (Kronecker's delta), whenceM = v and the M-HS is chosen so as to render the
where the integration is performed over the cross-section and greor bound for the effective formulation “sufficiently small.”

. Effective Field: Effective Spectral Transmission Line and
fective Medium Formulations

A. Actual Field: Wavenumber Spectral Representation and
Source-Excited Transmission Line Formulation

a=e,h &
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scales field medium 1 medium 2 ¢ =0,ie,K() < /Emaxkmax. If, On the other hand, one
m§ is interested only in an effective formulation for the dominant
(propagating) modesin a waveguiding configuration[see
discussion preceding (1)], then the F-HS can be chosen larger
"""""" than (kom)—l, thereby concentrating the relevant
spectral range NeAYe maxMmax-
The considerations above imply that the error of the effective
formulation is controlled via (6) and (10) by tldémensionless
scale parameter defined as

field
large | observables(V;)

scales

small
scales

. . o N, =koK(£)d2™ (11a)
Fig. 2. MRA scales: the field homogenization scale (F-HS) separates the M—HS
field into scales larger and smaller than’2and is typically determined by the < 27(:/7]') _ <1 (11b)
operating wavelength. The medium homogenization scale (M-HS) removes - F—HS

all heterogeneity scales smaller than*2 wherer < j. The scale ratio . .
N, < (M-HS/F-HS) = 2-(“—4) controls the error (see (11)). If the mediumwhere, referring to (9), (11a) expressgs as the ratio between

- whioh is aréater thap, < 1 (yieking a simpler medium representationy . M-S and the scale of variations of the field, for a gi¢en
Hére, too, thg error is cgntrolledyby Whigch reprgsents the Iargepst scale of théNh”e (11b) is a bound oWV, that follows from (10) and applies
detailed heterogeneity that is neglected in the homogenization. to the entire relevant wavenumber spectrum.

The quality assessment can be systematized by examining the
Medium 2, on the other hand, has a gap between the macro 8ifterence inV; between the actuaburce-exciteéield solution
micro scales around the F-HS, whencs still determined by and the solution of the effective formulation, formalized in terms
the above error bound but the effective medium is describefithe nondimensional estimatéy, which yields the spectral

more efficiently by the smallest scale above the gap, denoté@main error bounds (see [28])

in Fig. 2 and in (7) by the index/. |P; Vet — P, V||
Substituting (7) into (5), one finds that the homogenieéd & = W ~ koK dN2M? (12a)
fective constitutive parametease given by J J
<2 (=) 2 2= 2 12b
ggf _ 7)1\151‘,7 = <d> v ( )
/ﬁf =P tu (8a) whereM,, is defined below and is the thickness of the lami-
eof = [Par (e21)] - nate. Here and elsewhere the sympol| denotes the conven-
o 1yl tional [0, d] norm via = (["|f|2d2z)"/? (note that the
i = [Par (2] (8b) 2[0, d] A1l = (Jy [fPPdz)"2 (

functions on the left-hand side of (12a) arévin C L,, whence

which implies aneffective anisotropye.g.,e" # < even if the normis in fact inV;). While (12) is expressed in terms of
e, = £.). See samples in Figs. 3 and Fig. 4, which are furthdr, the estimato€; for I'is the same. The bound in (12b), which
discussed in Section VI-A. follows from (12a) via (10), is globalbound for the entireel-

2) Quality Assessment of the Effective Formulations: Err@vantspectrum, as defined in (10).
Bounds: The quality of the effective spectral formulations has In addition to the small parameté, in (12), which quanti-
been tested in observables spatewhere field variations on fies the ratio between the F-HS and the M-H3,in (12) also
scales smaller than the F-HS are not resolved. These variatidggends on norms of the neglected detailed parts of the medium
are incorporated in the effective spectral wavenumber inztheheterogeneity assembled into thendimensionaparameter
direction,x*f(z) = ko+/pTq°f [see (4) with (5)]. We therefore [28]

introduce the dimensionless bound 2

2
S | R

v

K (&) = max y/|p*f(2)q ()| 9) et e

z

(13)

where||¢*f|| and||p°f|| refer only to the norm of the effective
medium within the slab region wher¢ and/orp? contribute
(i.e., not to the entire-domain).
Note that the MRH isiota perturbation theory valid for weak
micro-heterogeneities (smaW, ) since&; in (12) is controlled
F-HS < [koK (€)™ (10) @also by the small pargmetéf,?, which can be made as small
as required by increasing Equation (11b) explains the reason
with diminishing contribution from all other spectral regimegor choosing different scales for the medium homogenization
with larger K(¢). For a given F-HS, (10) therefore de-(M-HS) and for testing the field (F-HS) since this introduces a
fines therelevant spectral range. If the F-HS is chosen abuilt-in small parameter that controls the error.
(kov/ef, et )1, characteristic of the bulk medium proper- Finally, as expected, the bour&} in (12) on thesource-
ties, then the relevant range, in terms of the homogenizati@xcitedV” solution fails for¢ close to a modal eigenvalue. This
coincides with the visible range whefg < /eof, _pef . limitation, however, does not imply that the effective formula-
this caseK (&) is bounded by its maximal value that occurs dfon is invalid for{ ~ ¢ (I is the mode index); it has been

and note that in the evanescent regime (where ejttieor ¢°f
becomes negativel (£) tends to infinity like~ O(&) for large
&. Thus the projection ofy(, /) ontoP; retains only the contri-
butions from theelevant(i.e., “visible”) spectral range
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shown that the actual eigenvalues and eigenfunctions are well 35 T T T T
described by their effective counterparts [25], [26]. Thus the
field solutions there can be modeled in terms of the effective 3t
eigenfunctions [see also (24)]. The region around the eigen-
values where the bound in (12) is invalid is found in [28] to be 25!

K
Ay~ T (14) 2t

In summary, we note the role of the individual homogeniza- 1.5f
tion parameters on the required smallness of the overall nondi-
mensional error estimatdy; in (12). Increasing for a givenky 1
reduces\/, and therefore;, but this reduction is overpowered
by that due toN?2, which behaves like 22 [see (11)]. For a 0.5

constant/, on the other hand, the error behaves igeas one "2 0 02 04 06 08 1 12
infers from (12a) usingv,, from (11a). If, however, is changed
with ko such thatV,, in (11a) is constant [i.e., the M-HS in (6)Fig. 3. Heterogeneous permittivity(z) = 2(1 + sin(160722))

decreases ak K in (11a) increases], theﬁj varies linearly correspor_\dir_]g to the medium in _(33), characterized by a continuous narrowly
(with the electrical widthkg K'd of the laminate). These trendsSIDaCEd distribution of the resolutions.
are substantiated in the numerical examples of Section Vland . . ‘ ‘ . . . i
in Figs. 5-Fig. 7. — eff

This completes the review of the MRH techniques for the for- 3 e g
mulation of the effective field and medium parameterizations,

which are required for the tasks that follow.

C. Derivation of the MRH Via Integral Equation Formulation
of the TL Problem

The effective formulation for the spectral domain GF has
been defined in terms of the TL equations in (4) and has been
discussed in Section IlI-B1, together with the related error
bounds that are found via multiresolution decomposition of
the TL equations and field constituents with as yet unspecified
boundary conditions. Implementation and justification of this
procedure requires the projection of these equations onto
V;. This is best addressed by recasting (4) in an integral
equation form since: 1) the integral operator is continuous
and 2) the boundary conditions are implicitly included in the
kernel, whence the homogenization procedure yields not only
the effectivepu, ¢ parameters but also theffective boundary
conditions in the macro-scale formulation [25], [26]. This
strategy has been implemented in [28, Sec. 5.1] Wia@step
procedure wherein each step addresses the effect of only one
of the heterogeneity functions and ¢ (however, see [31] for
the derivation of the MRD homogenization directly from the
differential wave operator). In the summary below, we consider
only one function, say.

1) The Integral Equation:An integral equation is obtained 05l
by decomposing, ¢ into the background(smooth) andore- 57 o 02 o7 o8 o8 i 13
ground (detail) components defined in (7), using the effective ' ’ T ‘ ‘
smooth components®f, ¢°f € V,; as the background. This ®)
l?ads tatwo coup_led.mpmann—Schwmger typellntelgral equai:ig. 4. Effective permittivity for the medium in Fig. 3 using M-HS with
tions [28] wherein theforegroundcomponents*, ¢* act as (@) = M = 4 and (b) finer resolution scate = M = 6. Note the effective
induced sources conjunction with thedyadic Green'’s func- anisotropy=s* # =<' (dashed and solid curves, respectively).
tion for the background. As mentioned above, for simplicity,
we assume here that there are aptype micro heterogeneities. (p,q) = (p°', ¢°"), the integral equation fdr in a medium with
Starting with the known background G, (z, 2’) which is the p = p°f butq = ¢°f + ¢? is given symbolically by
V -type response in (4) at to an:-type delta function source
(v = 0,2 = 6(z — 2)/iko) at 2’ in a smooth background V =F+ kG (V). (15)
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Here, the integral operator is defined W {f(2)} =

O’l gt (z,2")f(2)dz', and the forcing term is given by
F = iko(G$H {1} + G§t {v}), whereG$! is defined in a similar
fashion but for the -type response to antype source.

2) Multiresolution Decomposition of the Integral Equa-
tion: We proceed by expressiiig = V* 4+ V< in terms of its
smooth and detail components in accord with (A4) and (A5),
and then take the inner product of (15) with the sets of scalingo- I
(¢) and wavele{(y)) basis functions, thereby reducing (15) to
the algebraic equation 0.4

1.2} g,/

I-®7 —C¢ s8¢ s°f .
( -Ct I- \Ilq> <d‘1> - ( f) : (16) 02 — actual
Here, the unknown vectors andd? represent the smooth and or ‘ . l il v=6
detailexpansion coefficientsf V, while the known vectors®! 0 0.2 0.4 0.6 0.8 1
andd®’ are the corresponding expansion coefficientgFoin z

(15). The elements of the matricés C, C and ¥, which de- _ , _ ,
: . . Fig.5. Spectral Green’s functigsy,, for a source at’ = 0.5 with frequency
scribe the MRD of the integral operator, are defined by the'— 15 4 = 1, and for the spectral parametet= 0.5. The curves are shown

projections for |gr,| multiplied by 20 andarg{g;.} divided by ten. The solid, dashed,
and dashed-dotted curves correspond to the actual solution and to the effective
9 fcd - _ - . L2 . _
[(I)q]nm’ — ko <¢jn; gg Z{q ¢jn’ }> (17a) solutions forr = 4 and6, respectively. (See discussion in Section VI-B.)
[CYmrns = kg (D jn, Gir{a V' }) (17b)

~q 2 of fdy with the error estimatgs? — s°f||/||s°!|| ~ ||[EMO?||. Thus,
[ e = kg (o, gl’fl{qd(ﬁ”” b (17¢) the bound on the error may be calculated readily from the bound
(U n,minr =k (W, G {d Y })  (A7d)  on the matrices that form tHBMO in (18).

. . ) . d This brings us back to Section 1lI-B2 and the quality as-
wherel is the identity matrix. Note thdlf, g) = [, f(2)9(2)dz  sessment of the effective formulation in (12). Although the
is not an inner product (in the sense of metric spaces), but thi$,r pound in (12) applies to the more general case where
definition of the matrices is typically used in Galerkin-type prog,are are botly andp micro heterogeneities, it also applies to
jection of integral equations [35]. The properties of the matricgg, present case by using only theart of M, in (13), i.e.
ip (17) are explored in [28, Sec_. 6.1], by analyzing the propeMg = ll¢?ll/lla*¢|l. Comparing the error bounds in (12) with
ties of the known effectwe med“!f,“ OPera@ﬂi; those from (19), one concludes ti&t ~ || EMO?|| and that

The snjooth/deta|[ decomposition ”1 ("16) 'S:‘ (?'xact a.nd fo 'EMOQ?|| is quantified by the expression on the right-hand side
mally assigns equal importance to the “s” and “d” constituentg; (12). As in the discussion following (13), we assume here
Since we are interested in an effective smooth-scale formu{ﬁatg is sufficiently removed from the modal eigenvalugs
tion, we eliminated” by solving for it from the second equationyiheryise theEMO* is unbounded. In that case, the solution
in (16) and subsfituting into the first equation to obtain can be obtained in terms of the source-free eigenfunctions [29].

IV. SPECTRAL EQUIVALENCE FOR THE ACTUAL AND

-1~ __ gef =1 gef
I—(<I>q+Cq(I—‘I’q) Cq) 81=8s"+CII-T")" d". EFFECTIVE FIELDS

~

EMO* A. Characteristic Green’s Functions and the Spectral

(18) Completeness Relations
The “effective material operato®MO? in (18) incorporates P

the effects of the detail scales within the smooth-scale equa-The z-domain wavenumber spectrum of the wave equation
tion (we use the superscripto identify the special case wherePl2ys an important role in guided wave theory, where itis often
there is onlyg-type micro heterogeneity). The second term ofidvantageous to describe the source-excited field in terms of
the right-hand side in (18) represents the coupling of the mic}a Spectrum of the-domain eigenfunctions. Following [6, Sec.
scales in the forcing teraf* into the macro-scale fielg viathe ~3-3] and [39], the:-domain spectral problem will be discussed
medium micro-heterogeneities: since the source functiemel from the fundamental perspective of dsaracteristic Green's

2 represent physical sources they are typically smooth, wherfbgctionswhich are defined in theomplexspectral domain.
Fin (15) is also smooth and the noffd®f|| ~ 0. Solving the ~ AS discussed in Section II-A, the complete source-excited

thus reduced equation (18) fef requires the inverse uopera_vector field solution involves a discrete and/or continuous
tion” (I — EMO?)~". Since our goal is to approximasé by summation over the transverse E- and H-type vector modes,
s°f, the norm|EMO¢|| should be small. Choosing the prob|em'dentified by the superscript: = e and h, respectively. The

parameters accordingly, the first-order Neumann series solutf@dal field amplitudesi(*, /) are described by solutions of
of (18) becomes, usind — EMO?)~! ~ EMO? the z-domain spectral TL equations, excited by sources whose

amplitudes (~, «) are obtained by projecting the actual vector
57 ~ 8°F + EMOYs° (19) current distribution onto the modal eigenfunctions. Referring
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to [6, Sec. 2.3c], the most general solution of the TL problem -4 —
can be expressed in terms of the characteristig G 2, 2'; £), Q ° gh
which expresses tié> or I response atdue to a® or:-type -6 g
impulsive sourced(z — 2')/iko at 2’ [e.g., g%, IS an I-type
solution of (4) for an E-type mode withwé(z) = 6(z—2")/iko S -gf
excitation; this notation has already been used in connectior @ 5
with (15)]. It is sufficient to solve only for the fundamental § -10
functionsg$, and gf., since they determine the solutions due s
to all other types of excitations via reciprocity. From (4) and g 12l
(5), we obtain theSturm-Liouvilleequation forg{,(z, z’; §) z
+
dld o) [d1d ., AT . ~14r o +
{dzqd + }QI”_[dzetd + 0(/“+;)]‘]1u o
= —6(z -2 (20) 10 5 6 7

where) is a spectral parameter in the compleplane that is Fig. 6. Normalized error estimatd; M2_, /M2 in (12) (see text for an
. . .0 . explanation of the normalization) is plotted oria, scale as a function of

related tog in Section Il viag® = £-§ = —\. The equation the M-HS indexv for the effective GFg¢, andg?,. The medium is shown in
for g, is given by (20) withy, < . Henceforth we shall only Figs. 3and 4. Problem parameters (see Figi&)= 15,d = 1and=’ = —0.1,
consider the E-type Green’s function and omit the indexes= 0-5- (See discussion in Section VI-B.)
i.e., g5, = g. The H-type solutions can be analyzed in a similar
fashion. radiative GF is employed in this paper in the example in Sec-

The boundary conditions (BCs) that are satisfiedgbgnd tion V-B. To construct a network representation for the radiative
are therefore imposed on the solutions of the correspondihl problem, one selects a set of left and right “modal terminals”
TL equations are dictated by the ambient physical problefar from a central reference place. Augmenting thegoing
environment (recall thag is an I- or a V-type solution for “scattered’secondaryfields at these terminals dpgoing pri-
E or H modes, respectively). The “basic” BC is that for amaryexcitation leads to scattering matrixnetwork description
infinitely extended medium along the propagation coordinatéatched to the modal Alternatively, byaddingto theingoing
[chosen ag in (20)], which translates in the spectral domaifropagating mode fields at the TL terminals, the corresponding
into the “radiative” (outgoing wave) condition for TL modaloutgoingpropagating fields that satisfy the source-free TL equa-
fields (V, I®) excited by actual or induced modal sourceons, one generatetanding waveBCs that define the “reac-
(v, ). However, other types of Green’s functions that satisfjve” TL-GF g% with its correspondingmpedance/admittance
different boundary conditions can be constructed by addingm@atrix network representations. Finally, lgubtractingfrom
the basic solutions, denoted by any source-freesolution of ¢ its left-propagatingsource-free mode portion, one generates
the Sturm-—Liouville equation (20), which renders the resuiright-radiating unidirectionalTL-GF g’ . Together with its
better adapted to other problem environments. Examplasidirectionaleft- radlatlngcounterpart_ these TL-GFs de-
may involve smooth and abrupt (junction) inhomogeneitidse atransfer matrixnetwork description that is well adapted
along the TL propagation coordinate, cascaded and terminated¢ascaded configurations. These aspects are explored in detail
geometries, etc., where appropriately modified BCs on tlie Part 11 [34].
conglomerate TL equations can be matched self-consistentlyFor any of the above boundary conditions, the characteristic
(via a comprehensive field-network architecture) to alternativ@reen’s functions generate the complete spectrum of equations
network formulations for complex systems of transmissiof20) via the completeness theorem [6, Ch. 3.3], [39]
lines (media) that are connected at one or more terminals

. 2
(interfaces) [36]-[38] (see Part Il [34]). e.(2)8(z = 2') = k_O %d)\g(z,z’; by (22a)
Returning to (20), the basic solution is given formally by [6, 27”C
Sec. 3.3b]
= S Uz 2 /d)\U SAUS(25A) (22b)
Jo i) = VDV ) l B
T g;lw(‘v7 7) yvhere the asterisk denotes complex conjuga_tion. In (22:_;1), the
- _ integration contoucC, at |A\| — oo encloses in the positive
W(V 7) _ ‘—/d_V B Vd_V 21) sense the entire upper Riemann sheet of the generally multi-
’ dz dz sheeted complex-plane (see Fig. 8). Using Jordan’s lemma

and Cauchy’s theorem, (22b) is obtained by deforming the in-
where z- and z- denote the smaller and larger values xof tegration contour around the pole and branch point singularities

on the upper Riemann sheet [whémey/' A + 1 > 0; see (20)],
andz’, respectwely,V are source-free solutions that satisfy thand invoking the residue theorem plus branch cut integration.
basic radiative boundary conditions on the left- and right-handThus, the first term in (22b) is a summation over
sides of the propagation medium, didlis the Wronskian. The the discrete eigenfunctions U;(z), which represent the
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residue contributions from the poles; of g such that T ‘ ; ; ‘ o
Ui(z)Uf (2') = res[k3g(z,2';M)]5,. The second term in -5 '
(22b) represents the contribution of the continuous spectrum,
obtained by integrating around the branch cutgoih the A ?
plane and symmetrizing the integrand. Assuming, for example,
thate = 4 = 1 outside the slab, the branch cut extends from 5~
A = —1to +oo along the real axis. The integration contour
BT follows the side of the cut wheredm{\} = i0" (i.e, the
upper half of3 in Fig. 8. For details, see [6, ch. 3.3].

The spectral theorem for tledfectiveproblem is given by (22)
with the replacements

— g°f Ul—)UOf €t 24 et ef 23 1y H i ‘ ‘ \ ‘
979 Co Etaes = E Mz (29) s 3 35 4 a5 5 55

log, (k,)

B. Quality Assessment of the Actual-Effective Spectral Fig. 7. AsinFig. 6 butfo€; as a function o, with constany. Withv = 8,
Equivalence the M-HS is chosen fine enough to validate the effective formulation over the
. . . . entire relevant frequency spectrum. (See discussion in Section VI-B.)
As before, it is important to establish the desired equivalence

between the spectra of the actual and effectivc_e formulations igax of _cof el (:the relevant spectrum consists of all
the (_)bservables_ Sp?“-"‘%- The spectr_al expansions W, are discrete (trapped) modes and a portion of the continuous spec-
obtameq by prolectm-g (22,) onty; via the smoothing oper- trum (this case is schematized in Fig. 8). For details, see [29, see
atorP; in (Aba), applied with respect to both theand thez’

coordinates. This practically annihilates the contribution from

what will be termed the “irrelevant spectral ranga] > A;, the same as (24), with the replacements in (23). It has also been

whe_re|_ng ISa r_apu_jly varying f“r.‘c“‘_’” ok and hefﬁc? y|e|ds_ shown in [29] that the spectral constituents of the actual and
vanishing contributions in the projection. Thus, shrinking the i Sffective problems are equivalent up to a given error, which is
tegration contouf. in (22) toC,; that encircles only the “rele- bounded by '

vant” regime (to be defined later; see Fig. 8), and combining the

The expressions for the corresponding effective problem are

contributions outsid€,, in a remainder;, we are led to the | ;U — P; US| 2272
following “smooth-space expansions” for the actual problem HijlefH ~ [[EMO]| ~ ko KdN, M,
- (d :
k2 <27 (=)272r=p2 (25
Pi{e.(2)0;(2,2')}= ﬁoi %733-73]’»9(2./2'; A)dA+R; - (d) v (259)
e, A= XfT| ~ KPN2M < kg?d=22%272"=) M (25b)
. (242) where)\;, U; and)\‘;f, Uff are the eigenvalues and eigenfunctions
RS U U T of the actual and effective problems. The various parameters in
= 2_Piti(2)P; [Ui(z)] (25) are defined and discussed in (12) and (13) (see also [28,
=0 Sec. 3.3]). Note, that the error bound (25a)fardalfields at the

+ /d)\PjU(z, A) x P[U(Z' N +R;.  (24b) eigenvalues is the same as in (12) for soairce-excitedields

far enough from these eigenvalues, as specified in (14). (For
the proof of (25), see [29, Sec. 5]). Numerical examples are
provided in Section VI-C and in Figs. 9 and 10.

B+
J

The functiond;(z,2") = Pjé(z — 2') = 32, din(2")Pjn(2)
is the canonical “point source” for the homogenized formul
tion, obtained by projecting(z — z’) ontoV;. The first term in
(24b) is a summation ovéy discrete “relevant modes,” while
the second term represents the “relevant continuous (radiationHaving completed and “calibrated” the actual-effective field
spectrum” defined over the relevant part of the branch&ut formulation in the 1-Dz-domain spectral regime, we can now
(see Fig. 83T follows the side of the cut wheredm:\ = iot). return to Section IlI-A for spectral synthesis of the 3-D effec-
The remainder?; expresses the contributions of the irrelevaritve total vector field. It is well known that the 3-D dyadic GFs
spectrum outsid€, ;. A bound onF; is given in [29]; itis pa- excited by arbitrarily oriented electric or magnetic dipoles can
rameterized by\;, which identifies the location on the real be constructed in terms df-type andH -type scalar GFs [6, ch.
axis of the highest order mode included in the “relevant specti@R]. To highlight relevant issues pertaining to implementation
range.” For a given choice of the F-H$; should be chosen of the theory for the 3-D effective field in a simple format, we
such thatR; is negligible relative tds,|, which isO(27d=1).  consider the special case of excitation by a vertically polarized
As an example, consider the case discussed in connection veilictric current sourcd = z.Jy6(r — r’) [see Figs. 1(b), 11(a),
(1), where thé—HS ~ (kg \/emaxm)*1 is chosen according or 12(a) with the source located either inside or outside the lam-
to the shortest wavelength in the medium. One finds Ahat  inate], which permits the 3-D vector field in the presence of the

a\_/. SPECTRAL SYNTHESIS AND QUALITY ASSESSMENT OF THE
3-D EFFECTIVE SCALAR GREEN S FUNCTIONS
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Y Im A

Fig. 8. Relevant (unshaded) and nonrelevant (shaded) regimes in the complex spetara. The corresponding physical configuration is that of Fig. 1(b).
The spectral contotﬂxj encircles only the “relevant” spectral domain; the exterior nonrele\ént is parameterized by its point of intersection with the largest
spectral pole\; on the real axis [see discussion after (24)].spectral poles\,; located on the real axis segmen{/m < A < —1. Wiggly line: branch
cut extending from the branch point &at= —1 along the real axis segmeht> —1. B and B;: the complete and “relevant” branch-cut integration contours,
respectively.

complex laminate to be fully described by the E-type scalar pentirely different phenomenologies, with different parameter-
tential. The corresponding E-mode Green'’s funciigfiir,r’) izations of the same 3-D vector field. Either of them can be

is defined by derived from generalized characteristic GFs set in the three
) complex wavenumber spectral domains corresponding to the
%g% L2y kout} Ge(r,r') = —s(r—1') (26) three physical coordinates [6, ch. 3]
t €z

A. Transverse Eigenfunction ExpansianPropagation
whereV; = 92 + 92. OnceG* is found (and properly parame-
terized), the total vector electromagnetic field can be found V&%n
[6, ch. 7.2c], [29]

The 3-D effective field in thez-propagation representation
be found in terms of the scalar counterpart of the vector
transverse mode expansion in Section IlI-A

_1 ~
H(r,1') ()V x 2 G (x,7') Z@ p.E)8% (0 £)g* (2, 7'\ = —€2)  (28)
Ei(r,r") | = Jo (1k0) e 1 (2)ex!(2/)0: Ve G°(r,1').
E.(r,r) - (m) e (2)es 1 (2)V7 where ®(p, ¢) are the E-type scalar mode functions corre-

(27) sponding to the transverse spectral parangter(¢,., ¢,) and
We shall henceforth omit the superscriptThe field in the ¢! isthe effective GFs correspondingto= —¢2 = —¢-£. For
effectivemedium is described by the same formulation excefiie case of unbounded transverse cross-sections, (28) becomes
that the medium coefficients, . and . . are replaced by the [6]
effective coefficients in (8). The effective observables are then 2
obtained by smoothing these fields with respect to botnd ~ G*f(r, r') = /dzg ol (0= gef (5 21 X = —¢£2) (29)

; a2
2. A

Although the original 3-D vector field decomposition inyherey°f(z, 2/; \) is defined by (20) and is given formally by
Section IlI-A was performed in terms of transverse vectqgee (21)]
eigenfunctions with propagation along the use of charac-

teristic Greens’s functions in theomplex spectral domain of ‘Vef(2<)7ef(2>)

permits selection of propagation along any of the three coor- 99 (2,255 0) = Lot ot T ot

dinate directions, with eigenmodes defined in the remaining (7)) Wel(V e, Vel

2-D cross-sections [6, ch. 3]. Two such alternative representa- ot = opn ot AV e — o AV f

tions are shown in SectionsV-A and V-B below. They exhibit eV, V)=V — =V — (30)
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Note thaty*! is evanescent faf > /et . ust - therefore ® : o =1 ||
if z # 2/, the integration can be limited to< /et pust . B S A B M
The M-HS (medium homogenization scale) will be determined 5 12 » ——
here by requiring the error of the effective formulation to be ° d’
smallin this spectral regime. From (R), in this range, is largest § -14} o) oo
for & = 0 with K = \/ect__pet. | thus implying from (12) that g :
the largest error occurs at= 0. Using the first expression in o 161 i ¥ ’ o ””””””
(11a) for N, in (12), we obtain the desired value for M-HS ;:':; _1gl “ b
27"d ~ Mu_l(ko V E(renfax/l’(relgax)_3/2d_l/2‘ g

The representation in (28) is convenient for determination of = ol = S SR &
the field away from the source in the vicinity of theaxis [see v ' X
Fig. 12(a)], where:-propagation phenomena (with multiple re- -2—, 5 é ; s
flections) predominate. v

. i i (@
B. z-Domain Eigenfunction Expansion: Transverse
Propagation 0.01
: O actual

As noted earlier, the 3-D scalar Green’s function can alter- 2 x v=4
natively be calculated as a summation over the eigenfunctions | L+ V6 ]
in the z domain, propagating in the lateral (transverse) direc- ' s : :
tion. This guided mode representation is convenient when the E =1 2 3 4 5
source and observer are at laterally separated locaioos S o e @ ® ® ®
near the inhomogeneous laminate, where transverse propaga- %
tion phenomena predominate. Using the eigenfunction set in &
(24b), we obtain ~0.005]
G ) =D U0 (85657 = 7 ) N | ; |

098 -16 -14 -12 -1
real part

+ [ AU N 0,056 = V)
(b)
B+

(31) Fig. 9. (a) Eigenvalue errgAs’ — A for I = 1,3, and> modes, normalized
by M?2_,/M? (see text), is shown onlag, scale as a function of the M-HS
scale index. (b) A; and A¢f in the complex\ plane forv = 4 and6. (See

where the first and second terms involve the discrete and caiieussion in Section VI-C.)

tinuous spectral constituents in thelomain. Applying (22) to
the present problem, where the laminate is surrounded by a uni- 3
form medium atz < 0 andz > d, withe = u = 1, we note
that the upper Riemann sheet in the complegxane is defined
by Imy/1+ A > 0, with a branch cui3 extending from the
branch point ah = —1 to co along the real axis (see Fig. 8).
Following the discussion in (22b), the integration is performed
along the siddmA > 0 of B, denoted in (22b) and (31) &".
Thus, in (31) we havé > 0 for that part of B+ where) < 0
and¢ = i/ for the part where\ > 0. The discrete modes in
(31) are generated by possible pole singularitieg<bfat A*,

l = 1,2..., which are located (for a lossless medium) along

eigenfunctions

the real axis segment € (— max, {e*tu°t}, —1) [see (22b)], =3 e
so thatést > 0 there. 4 ‘ : ‘ R
The lateral propagation of these constituents is described by -1 -0.5 0 0.5 1 1.5 2

the known transverse-domain Green functipfyp, p’; ¢) that z

satisfiesVZ + k3&2)g:(p, p'; &) = —6(p — p') with appropriate Fig. 10. Thel{= 1,3, and5) actual and effective modal fields for= 4 and
boundary conditions. For an unbounded transverse domain witk 6 as a function ot (solid, dashed, and dashed-dotted curves, respectively).
its “radiative” (radiation) condition a6 — oo, the solution is Note the exponential decay outside the laminate slalj 0 andz > d = 1).
. . 1 1
given bygi(p,p':¢) = (i/4) H" (koélp — p']), where HS"
is the Hankel function of the first kind ard= /—A, with A provides a good approximation to the Green’s function so-
denoting the spectral parameter in thdomain. lution of the actual problem. This statement applies as long
In view of the spectral equivalence established in Seas the error accumulation of the lateral phase, which arises
tion IV-B, the effective spectrum representation in (31from errors in the eigenvalues in (31), is smalt =), i.e.,
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Fig. 11. 3-D Green'’s functiod+(r, r’) within the complex laminate slab for a source located inside the slab=at 0.5 and(z’, y’) = (0.0). (a) Physical

configuration. (b), (c), and (d) Cross-sectional cut$®@f atkop = 0.5, 2°, and2'!, respectively, wherp = |p| is the lateral displacemeht: The solid, dashed,
and dashed-dotted curves correspond to the actual solution and to the effective solutioes 40and6, respectively.

kolp—p'| < & = &F|7 ~ &H(K N, M, )~2, where the bound through the lower (improper) Riemann sheet, the result can
on & — &7t is obtained from (25b). This expression is usefule expressed as [6, Sec. 5.6a]

if [£5T] is not too small; note that this is indeed the case for the

dominant laterally propagating modes.

L L'
G (1) ~ G () + ) G + Y Gil(r, )
=1 =1
C. Asymptotic Representation: Effective Rays and Effective

(32)
Leaky Modes

where G°f *P s the effective saddle point contribution de-

scribing the ray fields in the effective medium, while the first
Outside the inhomogeneous region, at distances large camnd the second sums are the effective guided and leaky mode

pared to the electrical width of the slab, the spectral integredntributions denoted by superscripts “g” and “I,” respectively.
in (29) can be evaluated asymptotically by deforming the orig- The improper leaky modes are generated by poles on the
inal integration contour into the steepest descent path (SO8yer Riemann sheetand are therefore notincluded in the proper
through the saddle poirg; in the complex¢-plane. The field (top Riemann sheet) spectrum pertaining to the field representa-
is thus described in terms of the saddle point contributiotipns (29) and (31); however, as noted above, they can contribute
which is interpreted as the geometrical ray field from the sour¢eia the SDP deformation) to the asymptotic field.

to the observer, witkt, defining the ray direction, plus the Subject to the constraints formalized in Section 1V-B, the ef-
contributions of the (real) guided and (complex) leaky wavective asymptotic field solutions agree “acceptably well” with

poles, which are intercepted during the deformation from thiee actual asymptotic fields. The equivalence is demonstrated
original path to the SDP. Since a portion of the SDP passesmerically in Section VI.
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VI. NUMERICAL STUDIES FORVALIDATION OF THE MRH

EFFECTIVE FIELDS observer location
90

A. Test Configuration source
New numerical results have been generated for the physical 0

configuration in Fig. 1(b) comprising a verticaldirected) elec-

tric dipole in the presence of a complex laminate slab occupying

the region0 < z < d in free space with an infinitex( y)

cross-section. All length scales are normalizedite- 1 (in-

cluding the wavelength and the reference secale 1). The YZ

frequency is specified indirectly biyd =1 ko = 15. Our test (@

configuration involves an isotropic medium with a constant per-  0.345——— . . ; ; .

meability u and a multiscale permittivity, = e, =¢ | - _ f:a'

0.34f - - V=B

e=2+sin(16072?) p.=p =1, 0<z<1l (33)
0.335[
The chirp-type heterogeneity in (33) comprises a continuum of
scales fromv1atz = 0to 28 atz = d = 1 (see Fig. 3). Since
emax = 31N (33), noting that;, = 15 and using (9) forK', we
havekoK ~ 26 so that the homogenization paramelér of
(11) becomes small if the M-HS is chosen such that M >
4. The effective constitutive parameters calculated for two dif-

0.33f

0.3251

0.32f

ferent values, = 4 and6 of the M—HS = 27" are shown in 0.315 i i i , ‘ i

Fig. 4. One readily discerns the effective anisotropy implied by 0 001 002 003 004 005 006 007
(8) and the finer resolution far = 6. We note that the chirped lo=pl

narrow-scale smoothly continuous heterogeneity profile in (33) (b)

poses a greater challenge with respect to the actual-effectig12. 3-Dreflected Green's function magnitude due to a dipole point source

bounds than the wide-scale heterogeneity profile investigatigii’-v'-=") = (0,0,—0.1). (a) Physical configuration. (b) The field as a
function of rangep at the source levet = —0.3: The solid, dashed, and

n [28] and [29]- the dashed-dotted curves correspond to the actual solution and to the effective
solutions forr = 4 and6, respectively. The actual and= 6 results coincide
on the scale in these plots. Compare with the results for largeFig. 13.

B. 1-D Green’s Functions
As discussed in connection with (20), it is sufficient tamultiplying £; by M2_,/M? where M, and the reasons for
consider only the fundamental spectral Green's functiofisis normalization are discussed in the next paragraph.
95,(2,2';€) and gt (2, 2';€) for the E- and H-type modes, To explain the normalization in Fig. 6, we note that the bound
respectively. In fact the vertical electrical dipole excitatioih (12) includes the explicit dependence orvia factor 27
considered here is described entirely g§y. However, in the as well as the factoM,, that depends implicitly om. As de-
framework of this section, we consider bajf), andgy,, since fined in (13), M, is the ratio between the norm of the detail
they exhibit different multiresolution complexity, as discusseghd smooth medium components. However, as follows from
next. the derivation in [28, Sec. 5]}, is mainly affected by the
The Green’s functiops,, satisfies (20), whilg{:, satisfiesthe norm of the detailed heterogeneities at the largest resolution
dual equation witl{p°, ¢°) < (¢", p"). For the constant case level 2-(**+1 (i.e., the largest scale neglected in the effective
considered here, the equation fg, has a more complicated medium). Referring to (13), we tag this parameter by an overbar,
structure than that fog{:, since, referring to (5) and thef;, i.e., M2 = |l¢*|2/ll¢°f 1% + Ilp?I2/|lp°f||2, where the sub-
counterpart of (20), the heterogeneityif) appears only in the script v indicates the norm of the function at the resolution
potential function, while iny{, it appears in both the derivativelevel 2-(*+1, Clearly,M, < M, so that using\/, provides a
and the potential terms. tighter bound in (12), yet in (13) we preferred the more general
In Fig. 5, we compare thactual and theeffectiveg;, solu- form. Now we normalize£; by M?2 as indicated above, since
tionsin (20) for a typical normalized spectral paraméter 0.5.  the medium in (33) has a nonuniform distribution of the hetero-
The numerical results show some error foe= 4 but excellent geneities in the resolution levels (i.84, varies withy).
agreement for = 6. Both solutions are generated via a direct Indeed, one finds in Fig. 6 th&t M2_, /M2 exhibits a 2%
numerical solution of (20) with either the actual or the effectivdecay, as predicted by (12), provided that the M-HS is fine
heterogeneity functions. enough(v > 4) to justify the homogenization fok, ~ 15.
Figs. 6 and 7 depict the dimensionless error estimgtan  Fig. 7 depictst; as a function of frequency, the M-HS2~"
(12) of g5, andg?, as a function of the M-HS index Actually, being kept constant with = 7. One observes & kg behavior
to verify the theoretical dependence&fon v as predicted in as predicted by (12a) if one notes from (11) that increases
(12), we present in Fig. 6 a normalized estimator obtained blge &y whenv is constant. Combining the results in Figs. 6 and
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7, it follows that if v is increased with increasing, such that
N, remains constant, thefy is linear withk, as predicted in
(12).

C. Spectral Equivalence

The equivalence of the discrete modal eigenvalues corre- 3 057
sponding to the actual and the effective problems is explored £

in Fig. 9. At the given frequency, there are only five discrete
eigenvalues representing five transversely propagating guided
modes, but in this section we illustrate the quality of the
analysis only for thé = 1, 3, and5 modes. As discussed after
(31), their accuracy plays a major role in tracking the 3-D
modal field over large transverse distances (see also Fig. 11).
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actual
v=4

1+ x O]

-0.5

0 0.5

Referring to (25b) and recalling the discussion concerning Rew1 1o

Fig. 6 above, the errdn;, — X¢f| as a function of/, presented )

in Fig. 9(a), is normalized with respect /2 (specifically, 3

it is multiplied by M?2_,/M?, whereM,, is as defined in the 7210

previous section). The results in Fig. 9(a) for the 1,3, and i af&‘a'
5 eigenvalues show good agreement, which improves for the 7l ~“7%s 0 e

finer M-HS like ~ 272" as predicted in (25b).

Fig. 9(b) depicts the actual and effective eigenvalues(fer
4 and6) in the complex\ plane. Finally, the mode functions
corresponding to the actual and effective formulations with
4 andv = 6 are depicted in Fig. 10. The eigenfunction accuracy
is described by (25a), and its behavior is found to be similar to
that of the source-excited fields in Fig. 7.

D. Total 3-D Fields

When the source and observation points are located in- 4 ; :
side or near the laminate and are laterally separated, the S
field is described most effectively by the-domain spec-
tral expansion (31) in Section V-B. The source location at (b)

(«',y',2") = (0,0,0.5) inside the laminate is shown inFig. 13. Asymptotic field evaluation for large lateral displacement
Fig 11(@); here, we have used the nommalization 4 = 1, ¢eespopdts © Ve cfoyaten i P 12 @) Commeplre
and specifykod — ko = 15. Fig. 11(b)—(d) depicts Cross-S€Cyyis), the Iéaky V\Zave poles (in the first quadrant of theplane), the_saddle
tional cuts of the total 3-D Green’s functioh§| and|G*f| at pointw,, and the corresponding SDP. The singularities of the effective problem
three transverse rangds;p = 0.5, 2°, and2''. The figures

with » = 6 are indistinguishable from the actual poles within the scale of the
. . . figure and are identified byc'” The singularities of effective problem with

compare the effective solutions for= 4 and6 with the actual 9 v g P

solutions.

v = 4 are identified by %.” (b) 3-D reflected field calculated via (32), using
the spectral constituents of (a). Solid curve: actual solution; dashed-dotted
In the near zonékop = 0.5), one needs to complement thé;urve:.effective solution for = 6 (indistinguishable on the scale of the

guided mode series in the first term on the right-hand side f('%“ re); dashed curve: effective solution for= 4.
(31) with the continuous spectrum integral in the second term,
which was generated by direct evaluation (point-wise summesror: one is associated with the eigenfunction error in Fig. 10;
tion) of the integral. Note the fine details of the field near thi affects the field structure but does not accumulate with range.
source in Fig. 11(b), which cannot be achieved by summatidie other source is the accumulation of the modal phase error
over the discrete modes of Fig. 10 alone (there are five guidkelé; — £5%|p ~ ko| A — A$E[(2€,) 1 p, which becomes dominant
modes for the values dfy andd in the present example; onlyin the intermediate and far zones. From Fig. 9(a), the eigenvalue
three of them are depicted in Figs. 9 and 10). The continuoesor is largest fof = 1 where, from Fig. 9(b)¢;—; ~ 1.3. For
spectrum models the near-zgnevanescent spectra that are nat = 4, we have from Fig. 9(a) thad; — X$f| ~ 2710, while for
accounted for in the propagation modes of Fig. 10. The final re—= 6, we use the normalizatioh/?_, / M2_, = 0.1065 to es-
sults depicted in Fig. 11(b) show excellent agreement (bettenate|\; — \§f| ~ 2714/0.1065. The distance where the phase
than the figure resolution) between the actual and effective G&isor becomes: 0.5 is therefore estimated to bgp ~ 21°
for the finer M-HS(v = 6). In the intermediate and far zonesand= 2!! for the coarse and fine M-H$, = 4 and6, respec-
(for large|z — 2'|), the contribution of the continuous spectruntively. Indeed, the results in Fig. 11(c) fbgp = 2° show excel-
(i.e., the effect of the “leaky” and the “evanescent” modes) Isnt agreement between the actual and effective solutions when
weak and may be neglected; the field is now mainly described= 6 and a certain error for = 4, which is mainly due to
by the discrete propagating modes. There are two sourceghs eigenfunction error noted above. The long-range results in
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Fig. 11(d) forkyp = 2'! show acceptable distortion for= 6 with respect to parametric variations pertaining to a partic-
but very substantial distortion far = 4 due to the intermode ular, but highly instructive, model micro-macro-scale laminate.
phase error accumulation. Whereas, conclusions in the earlier investigations [28], [29]
When the source and observation points lie outside thee based on relatively sparse preliminary numerics, the val-
laminate as in Fig. 12(a), the field is best described by tldations here provide a substantially better understanding of
z-propagation expansion in (28) and (29). For a point dipole tite performance capabilities of our approach. The foundation
z' = —0.1, p’ = 0, and observations on the plaae= —0.3, has thereby been laid for the judicious applications of MRH
Fig. 12(b) displays the reflected field as a function of théeld theory to the construction of an effective network theory
transverse displacement for two values of the M-HSy = 4 for interconnected multiscale conglomerates, which will be
and v = 6. The finer homogenization evidently yields bettecarried out in Part Il [34].
agreement.
The results in Fig. 12(b), which were calculated by straight- APPENDIX A
forward numerical integration (Riemann summation) of (29),
become numerically sensitive for large lateral displacement A SUMMARY OF MULTIRESOLUTION ANALYSIS (MRA)
where it is advantageous to parameterize the field asymptoti-

: - Let {V;}.., be a nested sequence of linear spaces dense in
caIIy_ via (3.’2)' Th_e outcomes are plotted |n_F|g. 13 for th_e same ,and |et(;g(z), 1(z) be the corresponding scaling and wavelet
configuration as in Fig. 12 but for larger Fig. 13(a) exhibits

the SDP and the spectral singularities of the actual and eff(%sz?.cuons’. respectively. The functionsy,(z) and ¢ (z) are
. . efined via
tive problems. They are shown in the complex-angle plane

defined bysinw = ¢ = \/=\. Identified are the guided wave 2i\Z (9,

poles (along th&ew = 7 /2 axis), the leaky wave poles (in the Pjn(z) = (g) ¢ <7 - n)

first quadrant of thev-plane that corresponds to the lower Rie- N

mann sheet in tha plane), the saddle point, (which defines run(2) = (ﬁ) 2 ’ <2mz _ n) . (A1)
the geometrically reflected ray), and the corresponding SDP. d d

The pole singularities of the effective problem with the fine{_he set of functiong ¢} is an orthonormal basis af
M-HS (v = 6) are indistinguishable on the scale of the figure T I Inel . 7

; . and the set of function$§i; ., } is an orthonormal basis of
from the actual pole locations and are denoted &y The ef- W which is the orth J | nez | O in Vs
fective poles forr = 4 are denoted by. j» WHICN IS € orthogona’ compiemen finVigs.

) . . The MRA is calledr-regular if forVN > 1and0 <[ < r,
For largek,p, the conventional Sommerfeld integration con(%(z) andy(z) satisfy

tour is deformed into the SDP through the saddle paintn
Fig. 13(a). The field is then given by the SDP contribution plus . N Z2\N—N
the contributions from the poles that are intercepted during the |OZ¢(z)| ’ |021/)(Z)| < Cn (1 + ‘ED :

contour deformation. These are the leaky wave and the guidﬁgi dition d ibes both th larity of the MRA and i
wave poles on the left-hand side of the SDP [see Fig. 13(a)]. IS condition describes both the regularity of the and its

The value of|G| for two values ofv calculated from (32) localization. The regularity is also related to the “cancellation

in terms of the spectral constituents (saddle point and relevgﬁ?perty'” If (=) anqh/J(_z) constifuter-regular MRA, then the
guided and leaky poles) of Fig. 13(a) is depicted in Fig. 13(b) &@velet hag+1 vanishing moments

a function of the lateral displacement for> 4 [see Fig. 12(a),

which depicts the field fop < 2]. As expected, the effective /an/’(z)dz =0 n=01....m (A3)
solution (dashed-dotted curve) for the finer M-HS with= 6 '

performs better than that for the coarser M-HS with= 4 A function f(z) € L. can then be written as the sum of its
(dashed curve) and is, in fact, indistinguishable from the actifanooth and detail coefficients

field (solid curve).

(A2)

F(z) = £2(2) + 1) (Ad)
VII. CONCLUDING REMARKS where
In this first part of a two-part paper, we are concerned fi(z)=P;f = Zsjngzsjn(z)
with the multiresolution homogenization of field-network rep- n
resentations, we have endeavored to extract from the formal Sin =(f, djn) (A5a)
mathematical treatment of MRH in [28] and [29] those “prag- Fiz) = D,f = Z oo (2)
matic” effective measures that allow conventional field rep- g
resentations in the presence of multilayered dielectric slabs Ao = (f V) (A5D)
to be converted directly to corresponding representations for
MRH-smoothed fields. A detailed summary of this processheres = {s;,}, ., andd = {dnn },,,cz Withm = j,. .., 00

was provided in Section I. Since the accuracy of the actual-efefine the MRA expansion coefficients.

fective equivalence of these formulations depends critically Further discussions on the localization, regularity properties,
on error assessments, we have performed a representativeasdtcharacterization of functional spaces can be found in [19]
of new numerical experiments that involve sensitivity studiesnd [20].
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