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Magnetized Spiral Chains of Plasmonic Ellipsoids for One-Way Optical Waveguides
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When a linear chain of plasmonic nanoparticles is subject to longitudinal magnetic field, it exhibits
optical Faraday rotation. If the magnetized nanoparticles are plasmonic ellipsoids arranged as a spiral
chain, the interplay between the Faraday rotation and the geometrical spiral rotation (structural chirality)
can strongly enhance nonreciprocity. This interplay forms a waveguide that permits one-way propagation
only, within four disjoint frequency bands, two bands for each direction.
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Linear chains of identical and equally spaced micro-
particles have been studied in a number of publications
[1-4]. It has been shown that they allow the propagation of
optical modes with relatively low attenuation and with no
radiation to the free space. This property is obtained if the
interparticle distance is smaller then the free space wave-
length A, and then the total width of the modes can be much
smaller than A. Hence the name ‘‘subdiffraction chains”
(SDC). SDC:s are potential candidates for dense integration
of optical systems, and were proposed as guiding struc-
tures, junctions, and couplers [1-5]. Very recently, a spiral
SDC was suggested as a chiral waveguide [6].

One-way waveguides are another type of key compo-
nents in optical systems. In addition to their potential role
in reducing disorder effects and unwanted couplings [7],
they are used in practice as optical isolators and circulators.

We suggest the SDCs as candidates for one-way wave-
guides. The propagation in plasmonic particles SDCs sub-
ject to a longitudinal magnetic field, is nonreciprocal as it
possesses Faraday rotation [8,9]. We suggest a SDC in
which the plasmonic particles are prolate ellipsoids ar-
ranged in a spiral structure as in [6], but under a longitu-
dinal magnetic field (see Fig. 1). We show that the interplay
between the Faraday rotation and the geometrical spiral
rotation (structural chirality) can strongly enhance non-
reciprocity, and practically forms a one-way waveguide.
This one-way waveguide is more compact than the one
suggested in [7] (but perhaps more difficult to fabricate),
and requires an order of magnitude weaker magnetic field.
At first glance it has a clear physical interpretation; a
needlelike particle may act locally as a polarizer in the
sense that it is strongly excited by fields aligned with its
longest axis, and weakly excited by fields normal to this
axis. Therefore the spiral chain of ellipsoids acts as a
distributed polarizer that rotates together with the
Faraday-rotated SDC mode, doing in a distributed fashion
the same job that a couple of polarizers do in a conven-
tional polarization-dependent isolator. However, this
physical interpretation is somewhat short of capturing the
rich physics conveyed by the two-type rotations interplay.
The one-way property exists even with “footballs™ with
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axes ratio of 1:2. Furthermore, a single spiral chain can
support one-way behavior in four disjoint frequency bands
simultaneously, two for each direction. The propagation in
the “forbidden” direction is practically scattered from the
chain to the free space; it becomes a radiation mode.
Principally these radiation modes can be blocked by a
periodic structure as in [7]. It should be emphasized that
the effects reported here are not restricted to prolate-
ellipsoid particles. Thin wire particles or any other parti-
cles with geometry that breaks spherical symmetry would
convey essentially the same physics; the heart of the matter
lies in the interplay between chirality and Faraday rotation,
and not in the specific form of the ellipsoids. The choice of
ellipsoids is made to simplify the mathematical analysis.
Structures as in Fig. 1 were fabricated using force mediat-
ing polymer to bend silicon nanopillars [10], that can be
coated by metal. The bending angle can reach 50°-60° and
it can be tuned by varying, e.g., electron beam exposure. A
linear array of vertically grown silicon nanopillars was
deformed by bending the pillars sideways, with a bending
angle that gradually increases along the array, thus produc-
ing a chain very similar to Fig. 1 (see Figs. 2 and 6 in [10]).

To study the system, we use the discrete dipole approxi-
mation (DDA) and polarizability theory. These are stan-
dard tools used in many works on SDCs [3,6]. They hold
when the particle diameter D is much smaller than the
wavelength, and the interparticle distance d is large com-
pare to D. Studies show excellent agreement with exact

FIG. 1 (color online). A spiral chain of prolate ellipsoids,
subject to a longitudinal magnetic field.
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solutions even when d = 1.5D [11]. Finally we note that
the chain is periodic only for rational Af/27, but in a
reference frame that rotates together with the spiral it is
periodic for any A#. Our analysis does not assume a priori
any periodicity.

If a small particle with electric polarizability e is subject
to an exciting electric field whose local value in the ab-
sence of the particle is E*, its response is described by the
electric dipole p = aE"L. The tensor-polarizability of a
general ellipsoid made of an anisotropic material € can
be found in [12] for the static case. In the dynamic case it
needs to be augmented to incorporate radiation loss [13].
If the ellipsoid principal axes are aligned with the x, y, z
axes, its dynamic polarizability e is obtained via
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Here k is the free space wave number. I3 is the 3 X 3
identity matrix; together with the factor —i 6“0 it repre-
sents the particle radiation loss [13]. @), is the normahzed
Hermitian matrix representing the ellipsoid geometry and
material. V = 4ma,aya./3 is the ellipsoid volume and a,,
a,, a, are its semiaxes. L = diag(N,, N,, N,) is the depo-
larization matrix whose entries are obtained by elliptic
integrals and satisfy > N, = 1 [12]. To get a feeling of
the numbers involved, note that a sphere of radius r has
a, =r, N, = 1/3. A prolate ellipsoid (a,>a,=a,.=a),

has N, =N, =(1—N,)/2, N, = (1 —ez)[ln('+€) ~2¢]/
(2€%), where e =41 —a?/a’. “football” with

a, = 2a has N, = 0.1736, N, = 0.4132. A needle with
a, = 10a has N, = 0.02, N, = 0.49.

If the plasmonic particle is subject to an external dc
magnetic field By = ZB,, € is that of a magnetized plasma

[14]. Then
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where w, and w, = —g,B/m, are the plasma and cyclo-
tron frequencies. Equations (1)—(4) describe the ellipsoid
at the origin. The nth particle polarizability, «,,, i

a,=T_,aT, %)
where T, is a rotation matrix, whose nonzero entries
are ty =i = COSYZA&, t33 = ], tip = —1h = sinnA#.

The electric field at (0, 0, z) due to a short dipole p at
(0, 0, ) is given by the matrix relation

E(x)=¢€,'A(z—Z)p (6)

ro-grlensG-igh] o

here A; = diag(1,1,0), A, = diag(—1, —1,2). We ex-
press now the local exciting field of the mth particle in
the chain as a sum of contributions from all its neighbor
dipoles, and apply «,,. The result relates the mth dipole
excitation p,, to its neighbors

DPm = 60_1T*maTm Z A[(m - n)d]pn (8)
nn¥m
Note that T_,, =T,' T, =T,_,T,. Also, T, and A
commute: T,A(z) = A(z)T,. Hence we obtain the shift-
invariant difference matrix equation

prn==¢'ad Al(m—ndT,_,p, )

nn#m

where pJ, is the rotated dipole
py=T.pn (10)

For infinite chains, every solution of (9) can always be
expressed as

P = e (11)
Substituting it back into Eq. (9), using Egs. (1)-(3) and
rearranging, we get

(@;' —il; — C)p; =0, (12)

where C is a matrix defined by the sum

C = —ZA(nd)T e iBnd, (13)
k n#+0

A nontrivial solution for the vector p; exists if and only if
the determinant vanishes. In addition, the structure sup-
ports an optical mode that does not radiate to free space if
and only if the radiative-loss part represented by —ilj
cancels out, rendering B real [4]. This can be achieved
only with the help of C since &;1 has a real diagonal.
Hence, the guided mode satisfies simultaneously

Det(a; ! — il; — C) = 0, (14)

— Im[diag(C)] = I5. (15)

These equations should be solved for the dispersion curve
B(w). Where, in the parameter space d, A6, B, o should
we look for the solution? Equation (9) observes the system
within a reference frame that rotates together with the
spiral. In this frame the structure is periodic, and from
(11) B is 27/d periodic. When observed in the “lab”
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frame, B splits to two wave numbers B, = B *+ A6/d.
This is easily verified: apply T_, to Eq. (11), and use
T_, eigenvalues and eigenvectors A;, = exp(*inA6)
and vy, = (1, %, 0)/2 (A3, vs are ignored as we look
for transverse excitations). The result is

P =7 ppv "B + (u3 - prluye™BITAD. - (16)

In the lab frame, any SDC guided mode must have a real
wave number within the interval k < |B,| < 7/d [4], es-
tablishing our search domain kd < |Bd * Af| < . The
entries of C can be evaluated efficiently using the poly-
logarithm functions as in [4], with appropriate =A@ shifts
(we skip the details as they pertain only to numerical
efficiency). Finally, note that e of a prolate ellipsoid has
two resonant frequencies due to the two different axes.
Hence, an ellipsoid’s SDC possesses two frequency bands
of guided modes. As we show below each of the bands
supports two one-way waveguides.

We solved (14) and (15) for w(B), with the following
parameters. The ellipsoid axes are a, = 0.25d, a, = a, =
0.5a,, and d = /\,,/30, where A, is the w, wavelength.
The results are shown in Fig. 2. When no magnetic field is
present and all ellipsoids are lined up (A6 = 0), they
form a SDC with transmission bandwidth Aw, =
3.229 X 10 3w » around the central frequency wg; =
0.41702w,—the lower band, and a second SDC with
Aw, =2.05X 10w » around the central frequency
oy = 0.643 052w ,—the upper band. Both have disper-
sion properties similar to the transverse mode in [4]. For
these parameters, the DDA works very well [11]. The lower
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FIG. 2 (color online). The chain dispersion in the lower mode.
Dark grey (blue) lines are guided modes and black dashed lines
are radiation modes. (a) all ellipsoids are lined up (A6 = 0) and
H, = 0. Note the gap at |B| <k, confined between the two
radiation modes. Light lines are shown in light grey (red).
(b)y A9 =70° and Hy,=0. The gap splits symmetrically.
(c) The same as (a) but with a magnetic field of w;, = 0.01w,,.
(d) A spiral with A@ = 70°, and magnetic field of w, = 0.0l®,.
The gaps of (b) shift to nonsymmetrical locations. One-way
guiding in +z ( — z) direction is obtained in point A (B).

band is shown in Fig. 2(a). The vertical axis is 6w = w —
wg;, normalized to Aw,. Note the gap at |B|d < k. The
dispersion lines shown as dashed lines at the edges of this
gap are practically touching the lightline cone |8| = k
[shown in light grey (red)], representing plane-wave modes
that practically do not interact with the chain [4], and can
be considered as radiation modes. In Fig. 2(b) a
spiral rotation of A6 = 70° is added to the chain, yet
with By = 0. The gap splits in two symmetrically. For
clarity, the nearly vertical lines of the radiation modes
were omitted. In Fig. 2(c) the ellipsoids are lined up
(A0 = 0), with a magnetic field of w, = 0.0lw,. The
dispersion curve is symmetric, but a solution for p, reveals
Faraday rotation. Finally, Fig. 2(d) shows the dispersion
for A@ =70° and w, = 0.0lw,. The magnetic field
shifts the two gaps of (b), formed by the spiral rotation,
to nonsymmetrical locations. At point A (@ = wy,
dw = 0.0866Aw) the chain permits propagation only in
the +z direction (positive group velocity). Formally, the
horizontal line of point A intersects also the light-cone
that represents propagation in the opposite direction.
However this line represents a background radiation
mode that is practically not excited as its interaction with
the chain is very weak. Likewise, at point B (v = wg,
dw = 0.0278 A w) the waveguide permits propagation only
in the —z direction. Two one-way guiding are supported,
one for each direction.

Essentially the same holds also for the SDC modes in the
upper band, where we have dw = 0.1944A w for point A,
allowing only —z propagation, and dw = 0.111Aw at
point B, allowing only +z propagation. This is shown in
Fig. 3.

To verify these properties, we have simulated a finite
chain of N = 800 ellipsoids with the above parameters.
The ellipsoid at the origin is forced by a unit amplitude.
When hundreds of deep subwavelength particles are con-
sidered, full 3D solutions based, e.g., on finite difference
time domain technique would require tens of thousands of
grid points and may become too heavy to handle; an
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FIG. 3 (color online). The same as Fig. 2 but for the higher
mode. Note the antisymmetry with respect to the lower mode:
one-way —z ( + z) is obtained in point A (B).

233904-3



PRL 105, 233904 (2010)

PHYSICAL REVIEW LETTERS

week ending
3 DECEMBER 2010

—

FIG. 4 (color online).

The chain response to a unit excitation
of the ellipsoid at the origin. (a) Lower mode. Curves A, B
correspond to w = w,, wpg, respectively. (b) Upper band.

equivalent model that encapsulates the main physics, with
considerably fewer unknowns is called for. Recall that for
the parameters used here the DDA is usually in excellent
agreement with exact full-wave 3D numerical solutions
[11], whenever the latter can be practically applied.
Hence we use the DDA also here. Then Eq. (9) still applies,
but with two minor changes. The summation becomes
finite so the shift invariance is lost. Also, the excitation
of the forced particle at the origin is known: p; = X. Thus
Eq. (9) becomes a finite matrix equation for N — 1 un-
knowns p;,, n # 0, that is solved numerically. Figure 4(a)
shows |p’| on a logarithmic scale for excitation frequen-
cies w, wp at the lower band, and Fig. 4(b) shows the same
but at the higher band. In all cases, propagation in the
forbidden direction decays within a distance of O(A),
becoming at least 2 orders of magnitude weaker. Since
the simulated chain is of finite length, a reflected mode is
excited whenever the propagating mode hits the chain end.
This mode interferes with the propagating mode, and gen-
erates strong oscillations. However, since the reflected

mode is propagating in the forbidden direction, it decays
exponentially, and so do the oscillations. This is seen
clearly in the figures.
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