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The effect of rotation of a photonic crystal that contains a set of microcavities is studied using the formu-
lation of electrodynamics in rotating media. A new manifestation of the Sagnac effect is observed. It is shown
that the phase shift or frequency difference between rotation-codirected and rotation-counterdirected propaga-
tions depends on a set of parameters not previously reported. The use of the new configuration for designing
compact optical gyroscopes is studied and discussed.

DOI: 10.1103/PhysRevE.71.056621 PACS numberssd: 41.20.2q, 42.70.Qs, 42.25.Bs

I. Introduction

The phase accumulated by a light signal that propagates
along a slowly rotating circular path depends linearly on the
path’s angular velocityV. This phenomenon, known as the
Sagnac effect, has been studied quite extensively in the lit-
erature. The interest stems not only from the theoretical
viewpoint, but also from the practical one; highly sensitive
rotation measurement devices can be designed using this ef-
fect f1–3g.

The purpose of the present study is to explore the effect of
rotation on light that propagates along a circular path within
a photonic crystalsPhCd. We use the coupled cavity wave-
guidesCCWd f4–6g—shown in Fig. 1—as the mean for pro-
viding a controlled guiding of the light signal along the cir-
cular path, as shown schematically in Fig. 2. This specific
setting has several attributes that are not present in classical
studies of rotating optical systemsf1–3g. The first and most
significant difference stems from the basic physics associated
with the propagation mechanism. In classical studies, the
propagation is essentially that of a plane wave, or a fiber-
optical mode, within a medium that is homogeneous along
its axis; the phase accumulation is essentially of the nature of
a geometrical optics ray, or a local plane wave. In contrast,
the CCW is a linear array of equally spaced identical local
defects, situated within an otherwise perfect PhC. Examples
of CCWs are shown in Fig. 1. It is well known that each of
the local defects, when isolated, forms a high-Q microcavity
that can trap light at frequencyv0 within the frequency band
gap of the background perfect PhCsthe trapped moded.
When a set of such microcavities is situated along an array
sforming the CCWd, signal propagation along the CCW is
based on tunneling of light from one microcavity to the next.
Thus, the propagation mechanism is quite different from that
of a conventional fiber or laser resonator. The second impor-
tant difference lies in the dispersion relation and bandwidth
associated with the CCW. The classical cases of plane waves
or fiber optical modes are associated with relatively weak
dispersion and large bandwidth. The CCW propagation
modes, constructed via a global treatment of the local tun-
neling effects described abovef5g, possess essentially a

Floquet-Bloch charactersafter all, the CCW is a periodic
structured and are relatively narrowband.

The specific geometry under study is shown in Fig. 2 and
3. We shall call it thering resonator CCWsRR-CCWd. Fig-
ure 2 shows the two CCWs of Fig. 1, folded back upon
themselves, in angles that preserve thesymmetryproperties
along the CCWsthat is, the relative orientation of each mi-
crocavity with respect to its neighbors is preserved along the
pathd. The total number of microcavitiesM is finite, where in
these examples we haveM =6. The system is at rest in the
inertial frameI : sx,y,zd.

Figure 3 shows a RR-CCW, rotating in a counterclock-
wise direction, at an angular velocityV around its center.
This RR-CCW is at rest in thesnonmertiald rotating refer-
ence frameR : sx8 ,y8 ,z8d. The main purpose of this work is
to derive the system response–dispersion relations and band-
width, in the rotating frameR. It extends the basic idea
outlined by the author in a short letterf7g, provides the math-
ematical and technical details, and discusses the applications.
We expect the dispersions inR of clockwise and counter-
clockwise propagation to differ, depending on the sign and
magnitude ofV. Since the system is noninertial, we shall
reformulate the problem within the framework of electrody-
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FIG. 1. Two examples of coupled cavities waveguidesCCWd, in
a hexagonal photonic crystal. Shaded circular domains represent
local defects of a prescribed type. Filled circular domains represent
yet another type of local defects. The type of local defect deter-
mines the microcavity resonant frequencyv0, while the intercavity
spacing determines the waveguide bandwidth.
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namics of accelerating or rotating systemsf8,9g. This set of
equations differs from the conventional set of Maxwell’s
equations essentially by the introduction of modified consti-
tutive relations that depend of the angular velocityV. The
resulting wave equation is no longer self-adjoint—a fact that
clearly indicates,a priori, that clockwise and counterclock-
wise propagations should possess different dispersions. As
we shall see, this manifestation of the Sagnac effect yields
phase shifts and frequency dispersion that depend on a new
set of parameters, not previously reported or studied.

Finally, we note that previous studies of accelerating or
rotating photonic crystals have been reported inf10,11g. In
addition, numerical studies of time-dependent PhC structures
using finite difference time domainsFDTDd codes were per-
formed, for example inf12g. In these works, interesting fre-
quency transition effects are reported. Particularly, inf10,11g
a theory is developed in which the formulation is written in
the laboratorysinertiald frame of reference. However, these
works do not address directly the goals articulated above.
The author of the present paper believes that a formulation

written in the accelerating system frame of reference is more
convenient for the study of the Sagnac effect discussed
above and for the present application. Furthermore, in many
actual implementations and usage of optical gyroscopes, an
inertial frame of reference is not availablese.g., gyroscopes
in navigation systemsd.

The structure of the paper is as follows. In Sec. II A, we
study the RR-CCW at rest and establish the basic mathemati-
cal approach and physical quantities needed for the ensuing
noninertial system study. The analysis is very similar to the
one used inf5g, with some modifications mainly in order to
refrain from using variational principles used there, that hold
for self-adjoint operators only. In Sec. II B, we extend the
results to rotating systems, using the equations of electrody-
namics in rotating media. In Sec. III, we discuss the applica-
tion to optical gyroscopes.

II. Theory

A. System at rest

We shall start by a brief description of the system at rest:
V=0. We shall essentially follow the lines presented inf5g,
where the strong binding/weak coupling perturbation theory
has been used to study thelinear CCW at rest. We note that
the variational solution procedure adopted inf5g holds only
for self-adjoint operators. Since self-adjointness is lost due to
rotation, and since the purpose of this subsection is to lay
some of the mathematical foundations for the case ofV
Þ0, we shall use here a solution procedure that does not rely
on variational principles.

We assume that the PhC is made of a dielectric material
with the permittivitye=e0ersrd and the constant vacuum per-
meability m=m0. A time harmonic dependencee−ivt is as-
sumed and suppressed. The magnetic fieldH is governed by
the wave equation

UH = sv/cd2H , s2.1d

wherec=se0m0d−1/2 is the speed of light in vacuum, and the
operatorU is defined as

U = ¹ 3
1

ersrd
¹ 3 . s2.18d

As in f5g, let the relative permittivity of the perfect periodic
PhC beepsrd, and that of the PhC with the presence of a
single, isolated microcavity located at the referencesdefectd
location r0 be edsr −r0d. We define the reciprocal difference
dsr ; r0d,

dsr ;r0d =
1

edsr − r0d
−

1

epsrd
. s2.2d

Define now the locations of the RR-CCW local defects asrn,
n=0, . . . ,M −1, whereM is the total number of the micro-
cavitiessM =6 in Figs. 2 and 3d. Using Eq.s2.2d, we have for
the reciprocal ofersrd sdielectric property of the entire struc-
tured

FIG. 2. Two examples of ring resonator CCWs, constructed
from the linear CCWs shown in Fig. 1.

FIG. 3. A rotating ring resonator CCW. The photonic crystal is
at rest in the rotating reference frame.
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1

ersrd
=

1

epsrd
+ o

n=0

M−1

dsr ;rnd. s2.3d

With this definition we can expressU as the sum of opera-
tors

U = Uper+ o
n=0

M−1

Un, s2.4d

whereUper andUn are defined as in Eq.s2.18d with 1/ersrd
replaced by 1/epsrd and bydsr ; rnd, respectively.

Let us denote now the magnetic field associated with the
single, isolated microcavity at locationrn, as Hnsrd. It is a
trapped mode. Since all the local defects are identical, they
all resonate at the same frequencyv0. We use the notation
Hnsrd=H s0dsr −rnd, whereH s0dsrd is the trapped mode as if
the microcavity is located at the origin. These fields satisfy
the eigenvalue equation

sUper+ UndHn = sv0/cd2Hn,

ImHnsrd = 0, n = 1,…,M − 1, s2.5d

whereHn is the eigenfunction andsv0/cd2 is the eigenvalue.
Note that since the differential operator in Eq.s2.5d is self-
adjoint and all the equation coefficients are real, we can al-
ways normalizeHnsrd to be real. Since theHnsrd’s are highly
localized within the isolated microcavities and decay expo-
nentially outside them, and since the RR-CCW cavities are
widely spaced, one can assume that the field within each of
the cavities of theentireRR-CCW is essentially the same as
the isolated cavity modeHnsrd. Thus, we expand the total
field Hsrd of the entire RR-CCW as a linear combination of
the Hn’s,

Hsrd = o
n=0

M−1

AnHnsrd, s2.6d

where theAn’s are unknown coefficients. We substitute Eq.
s2.6d into the operator equations2.1d, and require that the
expansion error be orthogonal to each of the expansion
modesHmsrd,

o
n=0

M−1

AnFk UHn,Hml − Sv

c
D2

In−mG = 0, m= 0,…,M − 1,

s2.7d

where

In−m ; kHn,Hml s2.78d

and wherek F ,Gl is the inner product between the vector
functionsF andG, defined as

kF,Gl ; E
V

F ·Gdx dy dz. s2.8d

HereG is the complex conjugate ofG, and the dot denotes
the conventional Cartesian scalar product between two vec-
tors. The integration domain extends over the entire three-

dimensional space. Using now Eqs.s2.4d and s2.5d, we ob-
tain

o
n=0

M−1

Anfsv0
2 − v2dIn−m + c2tn−mg = 0, m= 0,…,M − 1,

s2.9d

where

tn−m = o
kÞn

k UkHn,Hml. s2.98d

Note thatIn−m,tn−m depend only on the distancern−rm,
and they decrease exponentially when this distance increases.
In principle, these terms are completely equivalent to their
“linear” counterparts in the linear CCW problem studied in
f5g. Thus, we can followf5g and suggest the solution

An = eikn. s2.10d

We substitute this solution back into Eq.s2.9d. Note that
since the local modesHnsrd are highly localized aroundr
=rn, In, nÞ0 is exponentially smaller thanI0. Likewise, t1
=t−1 are the dominant terms between thetn. See f5g for
technical details. Using the equation shift-invariance prop-
erty, and collecting only the dominant terms, we are left with
the dispersion relationsseef5gd

v2 − v0
2 = 2c2t1iH0i−2cosskd, s2.11d

whereiH0i2=k H0,H0l= I0. Simplifying one step further by
v2−v0

2<2v0sv−v0d, we get

vskd = v0 + Dv cosskd, Dv = c2t1/sv0iH0i2d.

s2.118d

This dispersion relation is completely analogous to the dis-
persion obtained inf5g. However, since the structure here is
periodic with respect to rotation, the relationAn/An−1=eik

that holds for all 0ønøM −1 should hold also between the
termsn=M −1 andn=0. Thus

eiksM−1deik = 1 ⇒ k = km = 2pm/M,

m= 0, ± 1, ± 2,…, ± sM − 1d. s2.12d

This condition selects 2M −1 points on the continuous dis-
persion curve of Eqs.s2.11d ands2.118d. Note that positive or
negative values ofk correspond to counterclockwise or
clockwise propagation, respectively. However, since Eq.
s2.11d is even with respect tok, the two opposing propaga-
tion directions possess exactly the same frequency character-
istics.

B. The rotating system

Let the entire PhC rotate at angular velocityV around the
center of our RR-CCW, as shown in Fig. 3. The system is at
rest in the noninertial reference frameR : sx8 ,y8 ,z8d. Without
loss of generality, we assume that the rotation is aroundz, so
we have
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V = ẑV0, s2.13ad

whereV0 is a scalar measuring the angular velocity magni-
tude; it possesses a positive or negative sign for counter-
clockwise or clockwise rotations, respectively. Thus,

1x8

y8

z8
2 = 1 cossV0td sinsV0td 0

− sinsV0td cossV0td 0

0 0 1
21x

y

z
2 s2.13bd

and the RR-CCW lies on thex8 ,y8 plane.
Our purpose now is to solve Maxwell’s equations in the

rotating systemR. Some important points are observed.
sid In R, the system properties do not vary in time.
sii d The angular velocityV0 and the PhC maximal dimen-

sionL satisfyuV0Lu!c. Therefore, no relativistic effects take
place.

siii d Consistent with the slow velocity assumption above,
no geometrical transformations or deformations take place.
Thus, for example, the= operator is conserved:===8. For
the very same reason, time is invariant in both systems:t
= t8.

According to the formal structure of electrodynamics, the
basic physical laws are invariant underall space-time trans-
formations sincluding noninertial onesd. Therefore, the
source-free Maxwell’s equations inR are given byf8,9g

¹8 3 E8 = ivB8, ¹8 ·B8 = 0, s2.14ad

¹8 3 H8 = − ivD8, ¹8 ·D8 = 0. s2.14bd

The transformation from the inertial systemI to the ro-
tating oneR is manifested via the local constitutive rela-
tions. Let the material properties at rest be given bye ,m.
Then up to the first order in velocity, the constitutive rela-
tions in R take on the formf9g

D8 = eE8 − c−2V 3 r8 3 H8, s2.15ad

B8 = mH8 + c−2V 3 r8 3 E8. s2.15bd

Substituting into Eqs.s2.14ad and s2.14bd, Maxwell’s equa-
tions become

D 3 E8 = ivmH8, s2.16ad

D 3 H8 = − iveE8, s2.16bd

whereD is the operator,

D ; =8 − ikbsr8d, k = v/c, bsr8d = c−1V 3 r8.

s2.17d

We follow now the standard procedure of deriving the wave
equation forH8, with D replacing=. The resulting equation
is D3 s1/erdD3H8=k2H8. Collecting terms that are first
order onlyswith respect to velocity,d and rearranging, we end
up with the new wave equation

U8H8 = k2H8 + ikS¹8 3
1

er
bsr8d 3 H8

+
1

er
bsr8d 3 ¹8 3 H8D . s2.18d

This is the new wave equation that has to be solved. HereU8
is defined the same asU in Eq. s2.18d, but with the unprimed
coordinates replaced by the primed ones. The difference be-
tween this equation, and the equation of the system at rest
2.1, is only in the introduction of the additional terms mul-
tiplied by ik on the right-hand side. It has been shown inf2g
that the effect of rotation on the modal shape of the field is
generally completely negligible. The major contribution of
the Sagnac effect is manifested in the phase property of the
field. Thus, motivated by the expansion of the field in the
system at rest, we use now exactly the same expansion,

H8sr8d = o
n=0

M−1

AnHnsr8d, Hnsr8d = H0sr8 − rn8d,

s2.19d

where the Sagnac effect is expressed essentially through the
modal amplitudes and phases, i.e., through theAn’s. Further-
more, for the very same reasons, the solution procedure used
in the previous section applies here as well. It should be
emphasized that the expansion functionsHn are treated as
pure mathematical entities; these are not field quantities that
must obey electrodynamics lawsftheir sum according to Eq.
s2.19d shouldg. Since===8 fsee itemsiii d aboveg, we have

sU8per+ Un8dHnsr8d = k0
2Hnsr8d, k0 = v0/c. s2.20d

Substituting Eq.s2.19d into Eq.s2.18d, and following exactly
the same procedure executed in Sec. II A, we end up with an
equation similar to Eq.s2.7d, but with correction termsFnm,

o
n=0

M−1

Anfk U8Hn,Hml − k2In−mg = ik o
n=0

M−1

AnFnm,

m= 0,…,M − 1,

s2.21d

where In−m is defined as in Eq.s2.78d, the inner product is
defined similarly to that inI, and

Fnm=K¹8 3
b

er
3 Hn,HmL +K b

er
3 ¹8 3 Hn,HmL ,

s2.218d

and whereb=bsr8d andk are defined as in Eq.s2.17d. After
some algebraic vector manipulations, we can rewriteFnm as
follows ssee the Appendix for detailsd:

Fnm=H0, n = m

2sV0

c dqn−m, n Þ m,J s2.22d

whereqn−m is given by
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qn−m =K ur8u
er

f̂8,Hn 3 ¹8 3 HmL = − qm−n. s2.228d

Substituting this back into Eq.s2.21d, using Eq.s2.20d, and
recalling thatU8 can be decomposed as in Eq.s2.4d, we
obtain

o
n=0

M−1

Anfsv0
2 − v2dIn−m + c2tn−mg = i2vV0 o

n,nÞm

M−1

Anqn−m,

m= 0,…,M − 1, s2.23d

which is the “rotating counterpart” of Eq.s2.9d. As with the
static problem, the coefficients here depend only on the dis-
tancern−rm, and decrease exponentially as this distance in-
creases. Thus, we assume a solution of the form of Eq.
s2.10d, and follow exactly the same steps. The result is the
following V0-dependent dispersion relation:

v2 − v0
2 = 2c2t1iH0i−2cosskd + 4vV0q1iH0i−2sink.

s2.24d

Assuming again thatv<v0 sas with the stationary systemd,
and slow rotations, this result can be rewritten as

vskd = v0 + Dv cossk − V0Qd, s2.25d

where the bandwidthDv is identical to that of the stationary
CCW given in Eq.s2.118d, Q is given by

Q = 2v0q1/sc2t1d, s2.258d

and it is noteworthy that we still have the 2p periodicity
requirement, for which the selection rule in Eq.s2.12d holds.

The last result is the dispersion curve we sought after.
Unlike the stationary system, the curve is not symmetric
around the origin of thek axis. Clockwise and counterclock-
wise propagations differ in frequency, due to the shiftV0Q,
which depends linearly on the rotation frequency. The curves
of the stationary and rotating systems are shown in Fig. 4.

III. The Photonic Crystal Optical Gyroscope

Using Eq. s2.25d, it is seen that the beat frequency ob-
tained when both clockwise and counterclockwise propaga-
tions are present is given bysk−m=−kmd

vb = vskm;V0d − vs− km;V0d = 2Dv sinsv0Qdsins2mp/Md.

s3.1d

Assuming thatM is large, the maximal beat frequency is
obtained when sins2mp /Md<1. Thus, for slow rotations we
obtain

vb = 2V0DvQ, s3.2d

whereQ is given in Eq.s2.258d.
While the results of the previous section characterize the

system dynamics, the relevant parametersq1,t1, and conse-
quentlyQ are given in terms of operators on field quantities
that are not easily calculated. It is most desirable to get an
estimate forQ using physical quantities that are easier to
compute or to measure. Towards this end, we use Eq.s2.118d

to expresst1 in terms of the system bandwidthsidentical inI
and inRd, and substitute it in the expression forQ fsee Eq.
s2.258dg. With this, the expression forvb becomes

vb = 4V0q1iH0i−2. s3.3d

Furthermore, assuming that the RR-CCW radiusR is large
compare to the microcavity dimensionsssee Fig. 3d, and re-
calling that the microcavity fieldHnsr8d is highly localized
within it, q1 can be approximated as

q1 < Rker
−1f̂,− H1 3 iv0edn

E0l, s3.4d

whereedn
=edsr −rnd with the latter defined after Eq.s2.18d.

Some observations are made now.
sid SinceE0,H0 are the mode functions of isolated micro-

cavity, their mutual Poynting vector does not carry real
power. Power flow in the CCW is only due to terms of the
form ReE03H1. Therefore, the second quantity in the inner
product in Eq.s3.4d is larger than, or equal to, the volume
averagesover a CCW microcavityd of edn

S, whereS is the net
real power that flows along the circular path.

sii d The total electromagnetic power stored in a micro-
cavity volume is 1/2seiE0i2+miH0i2d. However, all cavities
are close to resonance; the electric and magnetic stored en-
ergies are equal. Hence, the total electromagnetic power
stored in the volume of each microcavity isU=m0iH0i2.

siii d The group velocityvg is given by the ratio of the
saveraged over medium periodd power flow S to the stored
energyU f13g.

With the observations above and with Eq.s3.4d, it is now
straightforward to show that

q1iH0i−2 ù Rvgv0/c
2, s3.5d

whereR is the RR-CCW radiusssee Fig. 3d. At the point of
maximal beat frequencyskm<p /2d, we also havessee the
dispersion curve in Fig. 4d vg=Dv b, whereb is the intercav-
ity spacing, shown in Fig. 3. Thus we get from Eq.s3.5d

vb ù 4V0R bDv v0c
−2. s3.6d

This last result is a rough estimate of the beat frequency due
to rotating RR-CCW in photonic crystals. New parameters,
not present in classical studies of the Sagnac effect, deter-
mine the beat frequency: system bandwidth and intercavity
spacing.

FIG. 4. Dispersion curves of the stationary systemsdashed lined
and rotating systemssolid lined in their rest frame of reference. In
the stationary system, we havevskmd=vs−kmd. In the rotating sys-
tem, they split into two different frequencies as shown.
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It should be recognized, however, thatDv and b cannot
be chosen freely and independently. In fact, it has been
shown thatDv decreasesexponentiallywhenb increasesf5g.
This can be seen also in Eqs.s2.98d and s2.118d: since the
microcavity modeH0 is exponentially decreasing, and since
t1 in Eq. s2.98d consists of essentially an overlapping integral
of the fields in two neighboring microcavities, the resulting
Dv must decrease fast whenb is increased. Indeed, a typical
example of the dependence betweenDv and b, normalized
with respect to the length of the PhC primitive lattice vector
a, is shown in Fig. 5sseef5g for detailsd.

For an operating wavelength of about 1mm, the primitive
lattice vectora has a length of about 0.5mm sBragg condi-
tiond. Using the data of Fig. 5, it is seen that for a CCW with
intercavity spacing of two lattice cellssm=2d, we have
Dv b/ sv0ad<1.1. Using now Eq.s3.6d with the values
above, we obtainvb<1.631083 R V0. For RR-CCW with
a radius of about 1 mm, this yieldsvb<1.63105V0.

In implementing the Sagnac effect to optical gyroscopes,
care should be taken to design the clockwise and counter-
clockwise propagation paths as reciprocal as possible for
V0=0 f1g. Since the RR-CCW has an extremely small foot-
print, environmental conditions across the structure should
not vary significantly, thus we anticipate that the requirement
for reciprocity sat restd of the two circulating paths can be
maintained relatively easily. The only parameter that seems
to demand more care during the design of the optical gyro-
scope is the reciprocity of the optical couplings in and out.
Two design possibilities, using linear CCW’s as a means to
guide the optical signal, are shown in Fig. 6.

Another point worth mentioning regarding practical
implementation is that structural disorder resulting from de-
sign and fabrication inaccuracies may formally affect the
CCW’s and RR-CCW’s operation. However, it has been
shown inf6g that the CCW’s sensitivity with respect to struc-
tural disorder possesses a thresholdlike character; it is prac-
tically insensitive to disorder if the latter is below a certain
level, but it may cease to operate if the disorder exceeds this

level. This threshold has been fully characterized and studied
in f6g.

IV. Conclusions

Using the equations of electrodynamics in rotating media,
we have studied the effect of rotation on the propagation of
waves in a photonic-crystal-based coupled-cavity wave-
guide. Using a perturbation approach, a novel manifestation
of the Sagnac effect in photonic crystals has been investi-
gated and demonstrated. This effect can be used to design
very compact optical gyroscopes.
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Appendix A: The Fnm coefficients

We have the following identitiesfuses=3Ad ·B= = ·sA
3Bd+A ·s=3Bd, andA ·sB3Cd=sA3Bd ·Cg:

F=8 3
b

er
3 HnG ·Hm = =8 ·FS b

er
3 HnD 3 HmG

+ S b

er
3 HnD · s=8 3 Hmd,

sA1ad

FIG. 5. Typical values for relative bandwidthDv /v0 and
sDv /v0d sb/ad vs b/a for a CCW in a PhC with hexagonal sym-
metry safter f5gd.

FIG. 6. RR-CCW with two possible designs for reciprocal cou-
pling of the optical signal using linear CCW’s.
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F b

er
3 =8 3 HnG ·Hm = − S b

er
3 HmD · s=8 3 Hnd.

sA1bd

The inner products ofFnm in Eq. s2.218d are nothing but
volume integrationssover arbitrarily large volumeVd of the
above terms. Using the Gauss theorem, we get for the con-
tribution of the first term on the RHS of Eq.sA1ad,

E
V

=8 ·FS b

er
3 HnD 3 HmGd3x8

=R
S=]V

FS b

er
3 HnD 3 HmG ·ds→ 0. sA2d

This is because the flux through the surfaceS=]V vanishes
asV becomes very largesthe functionsHn are exponentially
decreasingd. Therefore,Fnm eventually comprises

Fnm=K b

er
3 Hn,=8 3 HmL −K b

er
3 Hm,=8 3 HnL .

sA3d

Using againsA3Bd ·C=A ·sB3Cd,

Fnm=K b

er
,Hn 3 =8 3 HmL −K b

er
,Hm 3 =8 3 HnL

= 50, n = m

2
V0

c
qn−m, n Þ m,6 sA4d

where, withb=V0ẑ3 r8 /c=V0ur8uf̂8 /c and with the obvi-
ous symmetries,

qn−m ;K ur8u
er

f̂8,Hn 3 =8 3 HmL = − qm−n. sA.48d
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