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Rotating photonic crystals: A medium for compact optical gyroscopes
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The effect of rotation of a photonic crystal that contains a set of microcavities is studied using the formu-
lation of electrodynamics in rotating media. A new manifestation of the Sagnac effect is observed. It is shown
that the phase shift or frequency difference between rotation-codirected and rotation-counterdirected propaga-
tions depends on a set of parameters not previously reported. The use of the new configuration for designing
compact optical gyroscopes is studied and discussed.
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I. Introduction Floguet-Bloch characte(after all, the CCW is a periodic

) . structure and are relatively narrowband.
The phase accumulated by a light signal that propagates The specific geometry under study is shown in Fig. 2 and

along a slowly rotating circular path depends linearly on thez \wg shall call it thering resonator CCWRR-CCW. Fig-
path’s angular velocity2. This phenomenon, known as the ;e 2 shows the two CCWs of Fig. 1, folded back upon
Sagnac effect, has been studied quite extensively in the lithemselves, in angles that preserve syenmetryproperties
erature. The interest stems not only from the theoreticaljong the CCWthat is, the relative orientation of each mi-
viewpoint, but also from the practical one; highly sensitive cqcayity with respect to its neighbors is preserved along the

rotation measurement devices can be designed using this §fath. The total number of microcavitied is finite, where in

fect[1-3]. _ these examples we haw¢=6. The system is at rest in the
The purpose of the present study is to explore the effect of,artial frame7: (X,Y,2).

rotation on light that propagates along a circular path within Figure 3 shows a RR-CCW, rotating in a counterclock-
a photonic crysta(PhQ. We use the coupled cavity wave- \ise girection, at an angular veloci€® around its center.
guide(CCW) [4—6]—shown in Fig. 1—as the mean for pro- thig RR.CCW is at rest in thénonmertial rotating refer-
viding a controlled guiding of the light signal along the cir- .o frameR : (x',y',Z'). The main purpose of this work is

cular path, as shown schematically in Fig. 2. This specif_icto derive the system response—dispersion relations and band-

setting has several attributes that are not present in cIasa%tdth in the rotating frameR. It extends the basic idea
studies of rotating optical system$—3]. The first and most o tlin,ed by the author in a short lettéf], provides the math-

significant difference stems from the basic physics associate atical and technical details, and discusses the applications.

with the _propagation _mechanism. In classical studies,_ th%Ve expect the dispersions iR of clockwise and counter-
propagation s e_ss_ennally that of a plane wave, or a fibery, o ise propagation to differ, depending on the sign and
optical mode, within a medium that is homogeneous alon agnitude of€2. Since the system is noninertial, we shall

its axis; th? phase_ accumulation is essentially of the nature Yeformulate the problem within the framework of electrody-
a geometrical optics ray, or a local plane wave. In contrast,

the CCW is a linear array of equally spaced identical local
defects, situated within an otherwise perfect PhC. Examples
of CCWs are shown in Fig. 1. It is well known that each of
the local defects, when isolated, forms a highmicrocavity
that can trap light at frequeney, within the frequency band
gap of the background perfect PhEhe trapped mode
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When a set of such microcavities is situated along an array
(forming the CCW, signal propagation along the CCW is
based on tunneling of light from one microcavity to the next.
Thus, the propagation mechanism is quite different from that
of a conventional fiber or laser resonator. The second impor-
tant difference lies in the dispersion relation and bandwidth
associated with the CCW. The classical cases of plane waves
or fiber optical modes are associated with relatively weak
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Inter Cavity Spacing

Local defects

dispersion and large bandwidth. The CCW propagation . _
modes, constructed via a global treatment of the local tun- F'G- 1. Two examples of coupled cavities waveguiGEW), in

: : . hexagonal photonic crystal. Shaded circular domains represent
neling eff ri ntiall a . X . )
eling effects described abo®], possess essentially a local defects of a prescribed type. Filled circular domains represent

yet another type of local defects. The type of local defect deter-
mines the microcavity resonant frequenay, while the intercavity

*Email address: steinber@eng.tau.ac.il spacing determines the waveguide bandwidth.
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OHONONONONCHONONONORS) written in the accelerating system frame of reference is more
convenient for the study of the Sagnac effect discussed
O000O0O00000O0 4 d

above and for the present application. Furthermore, in many

OHONONON NONOEONOEONS actual implementations and usage of optical gyroscopes, an

inertial frame of reference is not availakle.g., gyroscopes
CRONORCRONCRONON RONC in navigation system)s
OHONOCHONOROHEOEONONONS) The structure of the paper is as follows. In Sec. Il A, we
oo NoRoReNoNoNeoNoNe study the RR-CCW at rest and establish the basic mathemati-

cal approach and physical quantities needed for the ensuing

ONONONORONONONONONONOS) noninertial system study. The analysis is very similar to the
O00000000 @O0 one used if5], with some modifications mainly in order to

refrain from using variational principles used there, that hold

ONONOHNONONONORONONONS) for self-adjoint operators only. In Sec. Il B, we extend the
O00@0000O00O0 results to rotating systems, using the equations of electrody-

namics in rotating media. In Sec. lll, we discuss the applica-

COHONONONONON NONONONO tion to optical gyroscopes.
ONONONONONORONONONONRS

FIG. 2. Two examples of ring resonator CCWs, constructed
from the linear CCWs shown in Fig. 1. A. System at rest
. . . . We shall start by a brief description of the system at rest:
namics of accelerating or rotating systefBs9]. This set of ¢ — \we shall essentially follow the lines presented i,
equations differs from the conventional set of Maxwell's \pere the strong binding/weak coupling perturbation theory
equations essentially by the introduction of modified constiy s peen used to study thieear CCW at rest. We note that

tutivtla_relations that depend Olf the angll#la(rjlvglocmyf'rhe H the variational solution procedure adopted%j holds only
resulting wave equation is no longer seli-adjoint—a fact thak, se|f-adjoint operators. Since self-adjointness is lost due to
clearly indicatesa priori, that clockwise and counterclock-

. ; : ) : rotation, and since the purpose of this subsection is to lay
wise propagations should possess different dispersions. me of the mathematical foundations for the caseQof

we shall see, this manifestation of the Sagnac effect yields. 5 e shall use here a solution procedure that does not rely
phase shifts and frequency dispersion that depend on a NeYY variational principles.

set of parameters, not previously reported or studied.
Finally, we note that previous studies of accelerating o
rotating photonic crystals have been reported@,11. In
addition, numerical studies of time-dependent PhC structur
using finite difference time domaif*DTD) codes were per-
formed, for example in12]. In these works, interesting fre-
guency transition effects are reported. Particularly1i,11]
a theory is developed in which the formulation is written in

the laboratory(inertial) frame of reference. However, these wherec= (eouo) Y2 is the speed of light in vacuum, and the

works do not address directly the goals articulated above ; '
) ) r i fin
The author of the present paper believes that a formulauoﬁpe ator® is defined as

Il. Theory

We assume that the PhC is made of a dielectric material
'with the permittivity e= eye,(r) and the constant vacuum per-
meability u=uo. A time harmonic dependencg'! is as-
€Sumed and suppressed. The magnetic fitlid governed by
the wave equation

OH = (w/c)’H, (2.1

0=V X

<) VvV X. (2.7)

As in [5], let the relative permittivity of the perfect periodic
PhC beey(r), and that of the PhC with the presence of a
single, isolated microcavity located at the referefaefec)
locationry be g4(r—rg). We define the reciprocal difference

d(r;ro),
1
d(l’,l’o) = m - Ep(r). (2.2)
ONONO) ONONONONONONG
OC00000@000O0 Define now the locations of the RR-CCW local defects as
O000000000O0 n=0,... M-1, whereM is the total number of the micro-

cavities(M =6 in Figs. 2 and 8 Using Eq.(2.2), we have for
FIG. 3. A rotating ring resonator CCW. The photonic crystal is the reciprocal of(r) (dielectric property of the entire struc-
at rest in the rotating reference frame. ture)
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1 1 'V'E—l dimensional space. Using now Ed2.4) and(2.5), we ob-
= + d(r;r,). (2.3 tain
Er(r) ep(r) n=0 "
M-1
With this definition we can expredd as the sum of opera- > AL(wE - @)l + 1] =0, M=0,..., M -1,
tors n=0
M-1 (2.9
0 =0 0,, 2.4
* g " 24 where
where©OP*" and ©,, are defined as in Eq2._1’) with 1/€(r) Tom= 2 (OH L H . 2.9)
replaced by 1¢,(r) and byd(r;r,), respectively. k#n

Let us denote now the magnetic field associated with the

single, isolated microcavity at locatian, asH(r). It is a Note thatl,_m, 7,-m depend only on the distaneg-ry,

and they decrease exponentially when this distance increases.
h principle, these terms are completely equivalent to their
“linear” counterparts in the linear CCW problem studied in
fJS]' Thus, we can follow5] and suggest the solution

all resonate at the same frequensy. We use the notation
Ha(n=HO(r-r,), whereHO(r) is the trapped mode as if
the microcavity is located at the origin. These fields satis

the eigenvalue equation A, =, (2.10
(0P + O )H, = (wy/C)°H,, We substitute this solution back into E¢R.9). Note that
ImH,(r)=0, n=1,..M-1, (2.5 since the local modeBl(r) are highly localized around

_ ) _ . ) =r,, I, n#0 is exponentially smaller thahy. Likewise, 7,
whereH, is the eigenfunction antlo/c) is the eigenvalue. =7, are the dominant terms between the See[5] for
Note that since the differential operator in Eg.5) is self-  technical details. Using the equation shift-invariance prop-

adjoint and all the equation coefficients are real, we can alerty, and collecting only the dominant terms, we are left with
ways normalizeH ,(r) to be real. Since thel(r)’s are highly  the dispersion relatiofsee[5])

localized within the isolated microcavities and decay expo-

nentially outside them, and since the RR-CCW cavities are w? - wi = 2¢%7||Hol| %cog k), (2.11
widely spaced, one can assume that the field within each of 5 o

the cavities of theentire RR-CCW is essentially the same as wherez||H0|| =(Ho,Ho)=lo. Simplifying one step further by
the isolated cavity model,(r). Thus, we expand the total ®@“~ 5= 2wo(w=wp), we get

Ilr?;dHT’g,) of the entire RR-CCW as a linear combination of (k) = wy+ Aw codk),  Aw=Eril(wgHdD.

M-1 (2.11)

H(r) = X AHq(1), (2.6)  This dispersion relation is completely analogous to the dis-
n=0 persion obtained if5]. However, since the structure here is

where theA,'s are unknown coefficients. We substitute Eq. Periodic with respect to rotation, the relatidy,/ A, ,=€"
(2.6) into the operator equatiof®.1), and require that the that holds for all G=n<M=1 should hold also between the
expansion error be orthogonal to each of the expansiofffMsnN=M-1 andn=0. Thus

modesH (r), @M-Dr= 1] = o = 2rm/M,
M-1 P
=0,+1,%£2,...,x(M-1). (2.1
EAH{(GHn,Hm>—<%> |n_m}:o, m=0,...M-1, m=0,+1,+£2,.., £( ). (212
n=0 This condition selectsM -1 points on the continuous dis-
(2.7 persion curve of Eqg2.11) and(2.11'). Note that positive or
where negative values ofx correspond to counterclockwise or

clockwise propagation, respectively. However, since Eq.
Lo = (Hp Hi (2.7)  (2.11) is even with respect ta, the two opposing propaga-

tion directions possess exactly the same frequency character-
and where( F,G) is the inner product between the vector istics.

functionsF and G, defined as

B. The rotating system

(F.G)= fv F - Gdx dy dz (2.8 Let the entire PhC rotate at angular velod®yaround the

. center of our RR-CCW, as shown in Fig. 3. The system is at
Here G is the complex conjugate @&, and the dot denotes restin the noninertial reference frarfe (x,y’,z'). Without
the conventional Cartesian scalar product between two vedess of generality, we assume that the rotation is ara,is0
tors. The integration domain extends over the entire threewe have
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Q=20 2.1 1
o (2133 O'H'=K°H' + ik<V' X =Br') X H'
€

where(), is a scalar measuring the angular velocity magni-

tude; it possesses a positive or negative sign for counter- i ., , ,
clockwise or clockwise rotations, respectively. Thus, * erﬂ(r )X VIXHT. (2.18
x' cogQgt) sin(Qqt) 01 /x This is the new wave equation that has to be solved. I@ere
y' | =[ =sinQg) cogQgt) 0 ||y (2.13b is defined the same & in Eq. (2.1'), but with the unprimed
. 0 0 1\ coordinates replaced by the primed ones. The difference be-

tween this equation, and the equation of the system at rest
2.1, is only in the introduction of the additional terms mul-
tiplied by ik on the right-hand side. It has been showr2h

that the effect of rotation on the modal shape of the field is
generally completely negligible. The major contribution of
the Sagnac effect is manifested in the phase property of the
field. Thus, motivated by the expansion of the field in the
system at rest, we use now exactly the same expansion,

and the RR-CCW lies on the ,y’ plane.

Our purpose now is to solve Maxwell's equations in the
rotating systenik. Some important points are observed.

(i) In R, the system properties do not vary in time.

(i) The angular velocitf), and the PhC maximal dimen-
sionL satisfy|QL| <c. Therefore, no relativistic effects take

place.
(i) Consistent with the slow velocity assumption above, M-1
no geometrical transformations or deformations take place. H'(r') = > AHA(r), Ha(r')=Hg(r’ =1},
Thus, for example, th& operator is conserve® =V'. For n=0
the very same reason, time is invariant in both systems: (2.19

=t'.

According to the formal structure of electrodynamics, thewhere the Sagnac effect is expressed essentially through the
basic physical laws are invariant undat space-time trans-  modal amplitudes and phases, i.e., throughAfie. Further-
formations (including noninertial ongs Therefore, the more, for the very same reasons, the solution procedure used

source-free Maxwell's equations iR are given by[8,9] in the previous section applies here as well. It should be
, R o, emphasized that the expansion functidths are treated as
V' XE'=iwB’, V'-B'=0, (2.143  pure mathematical entities; these are not field quantities that
must obey electrodynamics lajheir sum according to Eq.
V' XH' =-iwD’, V'-D'=0. (2.14n  (2.19 should. SinceV=V’ [see item(iii) abovd, we have
The transformation from the inertial systeito the ro- (e’pef+ er’])Hn(r’) = kSH a(r"), ko= awglc. (2.20

tating oneR is manifested via the local constitutive rela- o _ .
tions. Let the material properties at rest be givenepy. ~ Substituting Eq(2.19 into Eq.(2.18), and following exactly
Then up to the first order in velocity, the constitutive rela-the same procedure executed in Sec. Il A, we end up with an

tions in R take on the forni9] equation similar to Eq(2.7), but with correction term§&
D'=eE —c2Q X1’ X H', (2.153 M o
E An[( elHner> - I(Zln—m:l = |k2 Anana
n=0 n=0
’— ’ -2 ’ ’
B'=uH'+cQ Xr’ X E’. (2.15b m=0..M-1,
Substituting into Eqs(2.143 and (2.14h, Maxwell's equa- (2.2

tions become
wherel,_, is defined as in Eq(2.7), the inner product is

DXE' =iouH’, (2.169  defined similarly to that irZ, and
D XH'=-iweE’, (2.16b an:<V’x§an,Hm>+<§xV’><Hn,Hm>,
whereD is the operator, r r (2.21)
D=V'-ikB(r'), k=wlc, Br)=ciQxr’. and whereB=B(r") andk are defined as in Eq2.17). After

(2.17) some algebraic vector manipulations, we can revkijig as
follows (see the Appendix for detajts

We follow now the standard procedure of deriving the wave 0
, n=m
an: {

Z(QO)qn—mi n # m'

C

equation forH’, with D replacingV. The resulting equation
is DX (1/€)DXH'=k?H’. Collecting terms that are first
order only(with respect to velocity,and rearranging, we end
up with the new wave equation whereq,_n, is given by

(2.22
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! [
r N A
qn_m:<u¢',Hn><V' X Hm>:—qm_n. (2.22) 2
€
Substituting this back into Eq2.21), using Eq.(2.20, and @ (K o) 7 S
recalling that®’ can be decomposed as in E@.4), we @ (K L) o " Aw
obtain o I
M-1 M-1 \w(kbn. Q{):o)
E An[(“)g - w2)| n-m™* CZTn—m] =120 2 AnOn-ms K -QogQ K K
n=0 n,n#m
m=0,. . M-1, (2.23 FIG. 4. Dispersion curves of the stationary syst@ashed ling

and rotating systen(solid line) in their rest frame of reference. In
which is the “rotating counterpart” of Eq2.9). As with the  the stationary system, we hawgxy) = w(=«p). In the rotating sys-
static problem, the coefficients here depend only on the digem, they split into two different frequencies as shown.
tancer,—r,, and decrease exponentially as this distance in-

creases. Thus, we assume a solution of the form of Eqo express in terms of the system bandwidtidentical inZ
(2.10, and follow exactly the same steps. The result is theand inR), and substitute it in the expression Qr[see Eq.
following y-dependent dispersion relation: (2.25)]. With this, the expression fan, becomes

w? = wh= 2677 [H o 2cog k) + 4w Q0 ||H ol %sin . wp = 4Q0[[Hol 2. (3.3

(2.29 Furthermore, assuming that the RR-CCW radiuss large
Assuming again thab~ w, (as with the stationary systgm Ccompare to the microcavity dimensiofsee Fig. 3, and re-

within it, gq; can be approximated as
w(k) = wy+ Aw cogk — QQ), (2.25
~R(Ly — i
where the bandwidthw is identical to that of the stationary 01~ Rle b, = Hy X iwoeq Fo), 3.4
CCW given in Eq.2.11), Q is given by whereey =€,(r—ry) with the latter defined after E¢2.1).
Q = 2wy0y/(c?7y), (2.25) Some observations are made now.

(i) SinceEg,H, are the mode functions of isolated micro-
and it is noteworthy that we still have ther2periodicity  cavity, their mutual Poynting vector does not carry real
requirement, for which the selection rule in £g.12 holds.  power. Power flow in the CCW is only due to terms of the

The last result is the dispersion curve we sought afterform ReE,x H;. Therefore, the second quantity in the inner
Unlike the stationary system, the curve is not symmetricoroduct in Eq.(3.4) is larger than, or equal to, the volume
around the origin of the axis. Clockwise and counterclock- averagdover a CCW microcavityof e4 S, whereSis the net
wise propagations differ in frequency, due to the shiQ,  real power that flows along the circular path.
which depends linearly on the rotation frequency. The curves (i) The total electromagnetic power stored in a micro-
of the stationary and rotating systems are shown in Fig. 4. cavity volume is 1/2¢|Eq|?+ u|H|?). However, all cavities

are close to resonance; the electric and magnetic stored en-
lll. The Photonic Crystal Optical Gyroscope ergies are equal. Hence, the total electromagnetic power
_ . stored in the volume of each microcavity Us= ugf|H /%

Using Eq.(2.29, it is seen that the beat frequency ob- (iii) The group velocityv, is given by the ratio of the

tained when both clockwise and counterclockwise propagacaveraged over medium peripgower flow S to the stored

tions are present is given ldy_,,=—xm) energyU [13].
_ . VAR - . . With the observations above and with E§.4), it is now
@p = @(ximi (o) = (= Kmi (o) = 280 Sin(wgQ) Sm(sz/('\?:l )1') straightforward to show that

_ _ _ _ U1Holl % = Rugwo/c?, (3.5
Assuming thatM is large, the maximal beat frequency is

obtained when siZms/M) = 1. Thus, for slow rotations we whereR is the RR-CCW radiusgsee Fig. 3. At the point of

obtain maximal beat frequencyk,,= m/2), we also havdsee the
dispersion curve in Fig.)J&4=Aw b, whereb is the intercav-
wp=200A0Q, 32 ity spacing, shown in Fig. 3. Thus we get from E8.5)
whereQ is given in Eq.(2.25). wp= 400R bA® wc2. (3.6

While the results of the previous section characterize the
system dynamics, the relevant parametgrsr, and conse- This last result is a rough estimate of the beat frequency due
quentlyQ are given in terms of operators on field quantitiesto rotating RR-CCW in photonic crystals. New parameters,
that are not easily calculated. It is most desirable to get anot present in classical studies of the Sagnac effect, deter-
estimate forQ using physical quantities that are easier tomine the beat frequency: system bandwidth and intercavity
compute or to measure. Towards this end, we us€Ef1’)  spacing.
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FIG. 5. Typical values for relative bandwidthw/wy, and
(Aw/ wg) (b/a) vsb/a for a CCW in a PhC with hexagonal sym-

metry (after[5]).
ONONONCHOHONONCHORONONONONONONON®,
It should be recognized, however, thi& andb cannot (ONCHONONONCHONONONONONORONONONONG)
be chosen freely and independently. In fact, it has been QO OO @O OO0 OO @®OOO0O
shown thatAw decreasesxponentiallywhenb increase$s]. OC00OO0000O@OO0O0OOO0OO0
This can be seen also in EqR.9) and (2.11): since the O0O0OO0O0O0OO0OOOOOOOLOOOO

microcavity modeH is exponentially decreasing, and since
7, In EQ. (2.9) consists of essentially an overlapping integral
of the fields in two neighboring microcavities, the resulting
Aw must decrease fast whéns increased. Indeed, a typical ) ) )
example of the dependence betweln andb, normalized !evel. This threshold has been fully characterized and studied
with respect to the length of the PhC primitive lattice vector'n [6].
a, is shown in Fig. 5see[5] for details.

For an operating wavelength of abougdn, the primitive
lattice vectora has a length of about 0,6m (Bragg condi-
tion). Using the data of Fig. 5, it is seen that for a CCW with  Using the equations of electrodynamics in rotating media,
intercavity spacing of two lattice cellsm=2), we have we have studied the effect of rotation on the propagation of
Awb/(wga)=1.1. Using now Eq.(3.6) with the values waves in a photonic-crystal-based coupled-cavity wave-
above, we obtainw,~1.6X 10°X R(),. For RR-CCW with  guide. Using a perturbation approach, a novel manifestation
a radius of about 1 mm, this yields,~ 1.6X 10°Q),,. of the Sagnac effect in photonic crystals has been investi-

In implementing the Sagnac effect to optical gyroscopesgated and demonstrated. This effect can be used to design
care should be taken to design the clockwise and counterery compact optical gyroscopes.
clockwise propagation paths as reciprocal as possible for
Qy=0[1]. Since the RR-CCW has an extremely small foot-
print, environmental conditions across the structure should ACKNOWLEDGMENTS
not vary significantly, thus we anticipate that the requirement
for reciprocity (at resj of the two circulating paths can be di
maintained relatively easily. The only parameter that seems
to demand more care during the design of the optical gyro-

FIG. 6. RR-CCW with two possible designs for reciprocal cou-
pling of the optical signal using linear CCW's.

IV. Conclusions

The author would like to thank M. Tur for a stimulating
scussion on the subject.

scope is the reciprocity of the optical couplings in and out. Appendix A: The F,, coefficients

Two design possibilities, using linear CCW’s as a means to

guide the optical signal, are shown in Fig. 6. We have the following identitiefuse (VX A)-B=V (A
Another point worth mentioning regarding practical X B)+A-(VXB), andA-(BxC)=(AXB)-CI:

implementation is that structural disorder resulting from de-

sign and fabrication inaccuracies may formally affect the [V’ % B % Hn:| ‘H,=V'- {(é % Hn> % Hm:|

CCW's and RR-CCW'’s operation. However, it has been & €&

shown in[6] that the CCW's sensitivity with respect to struc- B
tural disorder possesses a thresholdlike character; it is prac- + (— X Hn) (V' X Hp,
tically insensitive to disorder if the latter is below a certain &

level, but it may cease to operate if the disorder exceeds this (Ala)
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[E X V' X Hn} -Hm=—<é X Hm) (V' X Hyp). |:nm=<E X Hp V' X Hm> —<E X Hp V' X Hn>.
€ € € €r

(Alb) (A3)
The inner products of,, in Eq. (2.21) are nothing but Using again(AxB)-C=A:(BXC),
volume integrationgover arbitrarily large volumé/) of the
above terms. Using the Gauss theorem, we get for the con- g _ £ H XV XH.)- B H XV XH
tribution of the first term on the RHS of E¢Ala), g " m g M .

B 0, n=m
JV’- (—XHn>><Hm d3x’ {0 (Ad)
v & ZFan_m, n+#m,
_ B

_fﬁs:wK; X Hn) X Hm} ‘ds—0.  (A2) where, with B=Q02x1'/c=Qq|r'|¢'/c and with the obvi-
ous symmetries,

This is because the flux through the surf&wesV vanishes vl
.

qn—m = <

asV becomes very largéhe functionsH,, are exponentially _(;5/ H, X V' X Hm> =G (A4)

decreasing Therefore F,,, eventually comprises &
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