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Reply to “Comment on ‘Green’s function theory for infinite and semi-infinite particle chains”’
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Here, we reply to the comment made by Markel and Sarychev regarding our paper on the particle chains
Green’s function. In particular, we argue that the distinction between discrete and continuous spectra is unique,
and the latter represents a novel wave in particle chains.
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For the sake of clarity and in order to avoid convoluted
arguments and text citations, below, we address the points
raised in the Markel and Sarychev Comment (MSC) in a
more general fashion. Clearly, we did not mean to imply that
there are errors in the paper by MS but to expose a novel wave
phenomenon that has not been discussed so far. The dispute
can be distilled to three main points:

(i) Misinterpretation of the continuous spectrum wave as
the “extraordinary” wave in MS’s paper1 (a statement made
by us in our paper2).

(ii) Distinction between discrete and continuous spectra—
is it unique, and what is the connection to the physics of the
problem? In particular, is the branch-cut contribution a novel
wave phenomenon?

(iii) The role of the insight gained by the Z transform (ZT)
approach and its connection to the physics of the problem.

Although it seems that MSC was motivated mainly by
point (i), point (ii) is the heart of the matter. If clarified, the
discussions regarding points (i) and (iii) become much simpler.
Therefore, we address point (ii) first.

We begin with a brief mathematical discussion and then
connect it to the physics. MSC does not distinguish between
the mere Fourier spectrum associated with an expansion and
the spectrum of an operator A. The former is nothing but an
expansion of any function [G(z) included] by a basis of the
Hilbert space L2. This expansion is indeed nonunique in the
sense that there are infinitely many bases to any given Hilbert
space be it continuous (e.g., conventional Fourier) or discrete
(e.g., Hermite-Gaussian, wavelets, etc.)—the Fourier basis is
just a convenient special example. In contrast, the latter—the
spectrum of an operator A—is defined as the set of values of
λ for which the inverse of (A − λI ) does not exist or exists
but is unbounded (under the operator norm). If the operator is
compact, then the spectrum consists of only a countable (dis-
crete) set of eigenvalues. By Hilbert-Schmidt theorem, G can
be expressed as a discrete weighted sum of the corresponding
eigenfunctions. If the operator is noncompact, the spectrum
consists of discrete points as well as a continuum. Then, the
discrete eigenfunctions summation must be augmented by a
contribution of a continuous summation in order to correctly
get G. In any case, the spectrum of an operator is unique, and
the distinction between the discrete points and the continuum
is unique as well. It is a property of the operator itself and,
in principle, it has nothing to do with the specific L2 basis by
which one chooses to describe the problem. Needless to say,
our infinite matrix that governs the response of an infinite or
semi-infinite chain [see, e.g., Eq. (1) in Ref. 1 and Eqs. (1)–(5)

in our paper2] is not a compact operator. Hence, it contains a
uniquely defined discrete as well as a continuous spectrum.

Clearly, the expansions in Eqs. (1) and (2) in MSC are
merely a Fourier (or ZT) expansion of the function G in terms
of a one specific basis of L2. Nothing more. What, then,
is the connection between these mere L2 expansions of G

and the spectrum of the operator? The values of q (or Z) that
nullify the corresponding chain matrix determinant provided,
by definition, the eigenvalues and eigenfunctions. Interestingly
enough, these are exactly the poles of the integrand in MSC’s
Eq. (1) and the poles of the inverse ZT integrand in our analysis.
If one can “close the integration contour” and can apply the
residue theorem, then the contribution of this discrete spectrum
is readily obtained. This is achieved by the ZT. However, this
is not enough: The operator is noncompact; a uniquely defined
continuous spectrum exists and must contribute as well. The
ZT approach conveys this contribution on a silver tray: It is the
contribution of all other singularities apart from the poles—the
branch cut. This is unique by the very fact that the continuous
spectrum of an operator is uniquely defined. Let us stress again
that a Fourier basis is just an L2 basis, and it is not necessarily
related to the physics of the problem at hand. To contrast,
the spectrum of an operator as defined rigorously above, is an
intimate and unique property of the governing operator, and
therefore, it is inherently related to the physics of the problem.

To get a feeling about this relation, let us put aside for a
moment the hot potato of our chain problem and discuss the
excitation of a conventional waveguide by a point source. For
a waveguide with metallic (impenetrable) walls, the problem
can be cast in terms of a compact and self-adjoint operator;
an infinite countable set of modes are excited—the problem
eigenfunctions. The response can then be described by the
discrete sum of modes. However, for “open” structures, e.g.,
dielectric waveguide with penetrable walls or layered media,
compactness is lost. The response is described by a sum over
a countable set of modes (an incomplete set) + a continuous
spectrum. The latter is manifested by the presence of branch-
cut integrals in the rigorous Green’s function representation.
This branch cut encapsulates a plethora of different waves,
each with genuinely different physics: leaky modes/“improper
modes” (appearing as poles in the lower Riemann sheet but
partly contributing to the field structure in some limited
domains in space), and lateral waves—obtained by a branch-
cut integration—that propagate along the dielectric interface.
These waves shed energy away as they propagate and generally
do not possess a constant magnitude. The lateral wave,
for example, decays algebraically as it propagates. Most
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importantly, each of these wave types represents a different
radiation mechanism.

The unique distinction among guided modes, leaky modes,
and lateral waves is well established and is recognized by the
scientific community. This distinction is not a mere mathe-
matical formality. All of these waves were even measured in
experiments. They have been explored in numerous papers,3,4

and they convey a physical picture that is uniquely defined by
the waveguide properties.

The analogy with the chain problem is clear. Simple poles in
the upper Riemann sheet, belonging to the (uniquely defined)
discrete spectrum, represent modes that are trapped by the
chain and do not radiate out energy as they propagate (poles
on the unit circle) or decay exponentially as they propagate due
to radiation (poles off the unit circle). The continuous spectrum
wave, obtained by the branch-cut integral in our analysis, is a
novel wave species, whose physics is the analog of the lateral
wave: It radiates energy out at an algebraic rate as it propagates.
This is clearly seen by our results: The branch-cut wave
attenuates as 1/[n(ln n)2] when it propagates in the chain,
independent of material loss. Hence, it may become dominant
in realistic chains. The fact that this result is “only asymptotic”

(i.e., valid for |n| � 1) does not change the essence of things:
It represents a different wave mechanism. Furthermore, it
agrees excellently with the exact numerical evaluation of the
branch-cut contribution even for short distances.

We turn to discuss points (i) and (iii) above.
Point (i): The unique distinction among the trapped wave

that is represented by a simple pole (a part of the discrete
spectrum), the wave that is due to a branch cut (continuous
spectrum wave), and the different physics conveyed by them,
remain unexposed in MS’s paper.

Point (iii): In hindsight, we believe this has been clarified
already in the discussion of point (i) above. The ZT leads us
naturally to express the total response as a sum of different
waves that convey different physics, each represented by
a different kind of singularity. In particular, it rescued us
from ignoring the differences between discrete and continuous
spectra.

Finally, we note that we have stated up front, in the
Introduction section of our paper,2 that the ZT is obtained by a
mapping of the Fourier transform variable (see column 2, first
page). The point is not the transform itself but the transparency
by which it conveys the physics.
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