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Longitudinal chirality, enhanced nonreciprocity, and nanoscale planar one-way plasmonic guiding
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When a linear chain of plasmonic nanoparticles is exposed to a transverse dc magnetic field, the chain modes
are elliptically polarized in a single plane parallel to the chain axis; hence, a new chain mode of longitudinal
plasmon rotation is created. If, in addition, the chain geometry possesses longitudinal rotation, e.g., by using
ellipsoidal particles that rotate in the same plane as the plasmon rotation, strong nonreciprocity is created. The
structure possesses a new kind of chirality—longitudinal chirality—and supports one-way guiding. Since all
particles rotate in the same plane, the geometry is planar and can be fabricated by printing leaflike patches on a
single plane. Furthermore, the magnetic field is significantly weaker than in previously reported one-way guiding
structures. These properties are examined for ideal (lossless) and lossy chains.
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I. INTRODUCTION

Linear chains of identical and equally spaced nanoparticles
were explored in a number of studies.1–4 They support optical
modes with relatively low attenuation and with no radiation
to the free space if the interparticle distance is smaller than
the free space wavelength λ, and then the modes can be
much narrower than λ, hence the name “subdiffraction chains”
(SDC). SDCs were proposed as waveguides, junctions, and
couplers.1–6

Recently, SDCs were suggested as candidates for one-way
guiding.7 The physics there is based on creating an interplay of
two types of rotations: geometrical chirality and Faraday
rotation (caused by longitudinal magnetization). This interplay
strongly enhances nonreciprocity and eventually leads to
one-way guiding. The attractive features in Ref. 7 are the
three-dimensional (3D) nanoscale dimensions and the fact
that the magnetic field bias is an order of magnitude weaker
compared to some alternative structures.8 However, its chiral
geometry is difficult to fabricate. Other works on one-way
guiding employ periodic structures of nonreciprocal material
operating around their Bragg point, thus requiring relatively
large structures.9

Here we suggest an alternative type of SDC for one-way
optical guiding. The structure is planar in nature, so it can be
fabricated by relatively simple printing procedures of leaflike
patches on a single plane. Moreover, it requires a magnetiza-
tion field that is significantly weaker than that in Refs. 7 and 8.
The underlying physics and geometry are described in Figs. 1
and 2. A conventional SDC of spherical plasmonic particles
supports three independent electric dipole modes: one with
longitudinal polarization pz and two degenerate modes with
transverse and mutually orthogonal polarizations px,py .4 If
this SDC is exposed to transverse magnetization, as shown
in Fig. 1, the py mode is unaffected, but B0 = ŷB0 couples
px and pz. This coupling creates two new modes of elliptical
polarizations in the x,z plane, with two new dispersion curves
(see the analysis below). At any operation frequency, one wave
propagates in the direction of rotation (“paddles” forward and
“rides” forward) and the second propagates counter to the
rotation (paddles forward and rides backward). Hence, these
new SDC modes are nonreciprocal. However, their dispersion
is still reciprocal (i.e., even in β). The route to enhanced

nonreciprocity and one-way guiding is to create an interplay
of two-type rotations. Hence, we add a longitudinal chirality:
we replace the spheres by ellipsoids, rotated in the same plane
of the elliptical polarization, i.e., in the x,z plane, as shown
in Fig. 2. The rotation step is �θ . As we show below, this
chain indeed supports one-way guiding. It is periodic only for
rational �θ/π . If �θ/π = n/m and m,n are coprime, then
the period consists of m particles. Unlike the spiral structure
in Ref. 7, if this ratio is irrational then there is no coordinate
transformation under which the chain becomes periodic.

Below we use the discrete dipole approximation (DDA)
and polarizability theory. These are standard tools in SDC
analysis.3–6 They hold when the particle radius a and inter-
particle distance d satisfy a � λ and a � d, but studies show
good accuracy even for d = 3a.10

II. FORMULATION

If a small particle with polarizability α is subject to an
electric field whose local value in the absence of the particle is
EL, its response is described by the electric dipole p = αEL.
The dynamic tensor polarizability of a general ellipsoid whose
principal axes are aligned with the x,y,z axes, made of an
anisotropic material with electric susceptibility χ , is obtained
via

ε0α
−1 = V −1(χ−1 + L) − ik3

6π
I. (1)

Here k is the vacuum wave number, I is the 3 × 3 identity
matrix, and the imaginary term ik3(6π )−1I represents radiation
loss. V = 4πaxayaz/3 is the ellipsoid volume with ax,ay,az

its principal semiaxes, and L = diag(Nx,Ny,Nz) is the depo-
larization matrix whose entries are obtained from ax,ay,az by
elliptic integrals and satisfy

∑
u Nu = 1.11 Under the Drude

model and magnetization B0 = ŷB0, χ is12

χ = −ω̄−2

(ω̄ + iσ )2 − ω̄2
b

⎛
⎜⎝

χ̄xx 0 χ̄xz

0 χ̄yy 0

−χ̄xz 0 χ̄zz

⎞
⎟⎠ , (2)

with χ̄xx = χ̄zz = ω̄2 + iσ ω̄, χ̄yy = χ̄xx − ω̄ω̄2
b/(ω̄ + iσ ),

and χ̄xz = iω̄ω̄b, and where ω̄ = ω/ωp, ω̄b = ωb/ωp, and
where ωp and ωb = −qeB0/me are the plasma and cyclotron
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FIG. 1. (Color online) Top: a chain of spherical plasmonic
particles with transverse magnetization. This chain supports modes
with longitudinal rotation. Bottom: supported mode dispersion.

frequencies. σ = (τωp)−1 represents loss, where τ is the
dissipation time constant. Equations (1) and (2) fully describe
the ellipsoid at the origin. The nth particle polarizability, αn,
is given by the n�θ longitudinal rotation (about ŷ),

αn = T�
−nαT�

n, (3)

where the nonzero entries of T�
n are t11 = t33 = cos n�θ , t22 =

1, and t13 = −t31 = sin n�θ . The electric field at (0,0,z) due
to a short dipole p at (0,0,z′) is given by the matrix relation
E(z) = ε−1

0 A(z − z′) p, where

A(z) = eik|z|

4π |z|
[
k2A1 +

(
1

z2
− ik

|z|
)

A2

]
. (4)

Here A1 = diag(1,1,0) and A2 = diag(−1, − 1,2). We ex-
press now the local exciting field of the mth particle in the
chain as a sum of contributions from all its neighbor dipoles,
and we apply αm. The result relates the mth dipole excitation

FIG. 2. (Color online) A chain of plasmonic prolate ellipsoids
with transverse magnetization and longitudinal chirality. This chain
supports one-way optical guiding.

pm to its neighbors,

pm = ε−1
0 αm

∑
n, n�=m

A[(m − n)d] pn. (5)

This equation is not shift-invariant. Furthermore, since T�
n is

a rotation about ŷ and not about the longitudinal axis ẑ, it
does not commute with the propagator A so the mathematical
transformation used in Ref. 7 cannot be applied. However,
we set �θ/π = N/M rational, hence the period D = Md

consists of M particles with polarizabilities α0,α1, . . . ,αM−1

as in Eq. (3) and αm+lM = αm ∀ integer l. Then by periodicity

pn+lM = pne
iβlMd, (6)

and the chain modes are determined from the M vectors of
the reference period p0, . . . , pM−1. We substitute this solution
into Eq. (5). For each m within a period, we decompose the
infinite sum into a sum S0 of contributions from identical
particles (n = m + lM, l �= 0) and a set of summations Sm−n′

of contributions from the rest (n = n′ + lM, n′ �= m). The
result is the 3M × 3M matrix equation

(
ε0α

−1
m − S0

)
pm −

M−1∑
n=0,n�=m

Sm−n pn = 0, (7)

with m = 0, . . . ,M − 1, and where

Sq =
{∑

l �=0 A(lD)eiβlD, q = 0,∑
l A(qd − lD)eiβlD, 1 � |q| < M.

(8)

The modes are obtained by looking for ω(β) at which
the Eq. (7) determinant vanishes. The vectors that span
the corresponding null space are p0, . . . , pM−1, which, with
Eq. (6), describe the entire chain excitation.

Note that the series for Sq above converge poorly. However,
they can be cast in terms of the polylogarithm functions Lis , for
which efficient summation formulas exist (see Refs. 4 and 13
and the Appendix). First observe that the matrix S0 is identical
to that obtained in conventional chains with d = D. Hence4

S0 = k3

4π

3∑
s=1

usfs(kD,βD)As , (9)

where (u1,u2,u3) = (1, − i,1),A3 = A2, and

fs(x,y) = x−s[Lis(e
ix+iy) + Lis(e

ix−iy)], (10)

where Lis(z) ≡ ∑∞
n=1

zn

ns is the sth-order polylogarithm func-
tion. To write Sq in terms of Lis , note that all sums in Sq have
the general form

ζ =
∞∑
l=0

(eiξ )lM+q

(lM + q)s
=

∞∑
n=1

(eiξ )n

ns
an(q), (11)

where an(q) = an+M (q) is an M-periodic sequence with
an(q) = 0 for 1 � n �= q � M , and aq(q) = 1. But Man(q) =∑M−1

r=0 ei2πr(n−q)/M , hence

ζ = M−1
M−1∑
r=0

e−i2πrq/MLis(e
iξ+i2πr/M ). (12)

Following the standard steps leading from Eq. (8) to Eq. (9)
and using Eq. (12), we get for Sq, 1 � |q| < M , the same
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expression as in Eq. (9) but with fs replaced by hs(kd,βd; q),

hs(x,y; q) = eiyq

M

M−1∑
r=0

e−i2π
rq

M fs

(
x,y − 2πr

M

)
. (13)

III. EXAMPLES

We turn to study the structure. First, we examine a
transversely magnetized chain of spherical particles of radius
a. It is a special case of Eq. (7) with the sum over Sq,q �= 0
dropped, with M = 1(D = d), �θ = 0, and α0 = α given by
Eqs. (1) and (2) with all depolarization factors set to 1/3.
The chain dispersion is obtained by det(ε0α

−1 − S0) = 0. For
a lossless chain, this can be satisfied only if Im[diag(S0)] =
−k3/(6π ). Also, the first and third rows of Eq. (7) are now
linearly dependent and read

{ω̄2 − 1/3 + V [(S0)11 + ik3/(6π )]}px = iω̄ω̄bpz. (14)

However, as discussed above, the term in the square brackets
must be real. Hence there is a phase difference of ±π/2
between pz and px if ω̄b �= 0. This implies that the chain
modes are elliptically polarized in the (x,z) plane.

The chain dispersion for d = 3a = λp/30 and no loss
was calculated numerically and is shown in Fig. 1. We have
applied a relatively strong magnetization of ωb = 0.05ωp in
order to observe the features clearly (the one-way property
shown below is obtained at much weaker magnetizations).
The ŷ-polarized mode is identical to that of a conventional
chain. Two additional modes of elliptic polarization in the
x,z plane exist in the chain. When observed from y > 0, one
rotates clockwise [shown by the upper (red) curve] and the
second rotates counterclockwise [shown by the lower (black)
curve]. This elliptic polarization is only due to the transverse
magnetization. It is mathematically evident from the ±π/2
phase difference between the x̂ and ẑ components we have
observed in the solutions for p0, as seen in Eq. (14). All
dispersion curves are even in β, permitting propagation in both
+z and −z directions. Also all dispersion curves possess the
light-line gap clearly seen in the center. However, the light-line
dispersion branches that run parallel to the light-line cone
β = ω/c and that are associated with transverse polarization in
conventional chains4,14 represent modes that are practically not
excited14 in the elliptically polarized curves (red and black).
To avoid cluttering up the figure, they are not shown here.

Next, we add longitudinal chirality. We replace the spheres
by prolate ellipsoids with semiaxis ax = λp/90, an axis ratio
of ay = az = 0.9ax (nearly spheres), and we add longitudinal
chirality with �θ = π/3 (hence the chain period is D = 3d =
λp/10). Figure 3 shows the results for the relatively weak
magnetization of ωb = 0.005ωp. Due to the added chirality,
the upper (red) dispersion curve of Fig. 1 that corresponds
to elliptical polarization with clockwise longitudinal rotation
splits into three branches, as shown in Fig. 3(a), and shifts
the light-line gap rightward. Hence symmetry is broken and
one-way guiding is supported at frequencies within the shifted
gap, as shown in Fig. 3(b). Finally, in Fig. 3(c) we show the
normalized response

∣∣ pn

∣∣ / ∣∣ p0

∣∣ of a finite chain of N = 600
particles with the parameters above, for a unit amplitude
excitation of the central particle (at the origin), at the selected
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FIG. 3. (Color online) One-way guiding in the upper band.
(a) Dispersion curves. The gap in Fig. 1 is shifted rightward by the
longitudinal chirality. (b) Frequency selection for one-way guiding.
(c) Chain response.

frequency. This response is obtained by solving Eq. (5) for a
finite number of particles, with only the central particle forced
to oscillate at the aforementioned frequency [hence it is a
matrix equation of 3(N − 1) unknowns]. The three curves in
Fig. 3(c) correspond to the three particles within each period.
One-way guiding is clearly observed (note the logarithmic
scale). Essentially the same picture holds for the lower (black)
dispersion curve of Fig. 1, which corresponds to elliptical
polarization with counterclockwise longitudinal rotation when
the above longitudinal chirality is added to the structure. This
is shown in Fig. 4.

We note that these results are obtained with a very slight
breach of spherical symmetry (az = 0.9ax). This low ellipticity
is sufficient to create one-way guiding if B0 = ŷB0 is present.
In addition, B0 is considerably weaker than that required in
previous studies on one-way plasmonic waveguides.

Next, we study chains with loss. Since a real dispersion
ω(β) does not exist, we have solved Eq. (5) for a finite
chain with N = 250 and for the same geometrical parameters
(�θ,d) as in the lossless example of Fig. 4. The operation
frequency ω and axes ratio r = az/ax were chosen by scanning
over the neighborhoods of ω,r for which the corresponding
lossless chain possesses a one-way property. The results
are shown in Fig. 5. Figure 5(a) shows the chain response
for loss parameter σ = (τωp)−1 = 8.2 × 10−4 corresponding
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FIG. 4. (Color online) One-way guiding in the lower band.
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FIG. 5. (Color online) One-way guiding in a lossy chain. (a)
Chain response. (b) Isolation ratio.

to palladium (Pd)15 and the magnetization of ωb = 7.5 ×
10−3ωp. It is obtained with ω ≈ 0.57ωp and r = 0.92. For
a clear assessment of the one-way property as a function of
magnetization and loss, we plot in Fig. 5(b) the “isolation
ratio” | p−n|/| pn| versus n for various values of loss and
magnetization. Again, one-way guiding is evident.

In the examples above, the particles are nearly spheres.
These examples are important from the theoretical/physical
point of view. They show that by using our approach of
two-type rotation interplay, a very slight breach of symmetry
is sufficient to create a profound nonreciprocity and one-way
guiding. However, from a practical point of view, structure
flatness is at least as important because it opens the way to
employing planar fabrication technologies. To demonstrate
this option, we have simulated a chain with the following
properties. The axis ratio is ax : ay : az = 1 : 0.1 : 0.75, hence
the particle’s size in the ŷ direction is an order of magnitude
smaller than its dimensions in the x,z plane. Since the
longitudinal chirality is obtained by rotating the particles about
their y axis, it follows that the entire structure is practically
flat and lies in the x,z plane. Other geometrical parameters
are as before, with a magnetization level of ωb = 0.0075ωp.
A strong one-way property exists and it is shown in Fig. 6.
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FIG. 6. (Color online) The same as Fig. 3 but for flat geometry
with ax : ay : az = 1 : 0.1 : 0.75.

FIG. 7. (Color online) A flat chain geometry for one-way guiding.
(a) Geometry details. (b) Excitation by a short dipole located in
between two identical chains.

Finally, we verify our approach via a full-wave numerical
solutions using the CST software package16 for the flat structure
shown in Fig. 7. The particles are disks of 2.5 nm thickness
and of elliptical shape in the x,z plane with long and short
diameters of 25 and 20 nm, respectively. The interparticle
distance is d = 27.5 nm. The longitudinal chirality angle is
�θ = −60◦. The particles’ material plasma frequency ωp and
loss parameter τ−1 are 2π × 2000 THz and 2 THz, respectively
(corresponding to Ag). Due to a limited availability of
computing power and memory resources, we can apply the
full-wave solution to chains of about 100 particles or less.
Hence our chain consists of 92 particles that create two
identical chains of 46 particles each, one chain on each side
of a short dipole antenna that serves as a local source—see
Fig. 7(b). Since this geometry should show significant one-way
guiding within a distance of 46 particles only (instead of
within hundreds of particles used to obtain the results of
Fig. 5), we need to apply stronger magnetization. Hence we use
ωb = 0.03ωp. We have used the DDA for a first estimate of
the chain operation parameters, and then we used the CST
to search more accurately around the initial guess and to
get full-wave solutions. The full-wave-based chain response
as a function of frequency is shown in Fig. 8. One-way
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FIG. 8. (Color online) E-fields just above the upright particle in
periods ±10 and ±15, obtained by full-wave solution of the chain
shown in Fig. 7. For each frequency, the values are normalized to the
field above the upright particle adjacent to the dipole from the left,
shown in Fig. 7(b).
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behavior can be clearly observed within the frequency band
of 541–543 THz. The ratio between the chain excitation on
the left and right side of the chain—the isolation ratio—is on
the order of 20 dB. Finally, Fig. 9 shows the E-field in the
y = 0 plane at the central frequency of the one-way band,
542 THz.

Note that in this frequency, λ ≈ 0.55 μm. Hence a signif-
icant one-way behavior is clearly observed over distances of
O(λ).

IV. CONCLUSION

When an interplay of two-type rotations is supported
in a guiding structure, strong nonreciprocity and one-way
guiding are created.7 In this work, a geometry possessing
longitudinal chirality in subdiffraction particle chains is
proposed. When combined with transverse magnetization,
the resulting elliptical rotation of the chain dipole modes
and the geometrical rotation (longitudinal chirality) provide
the two-type rotation that leads to strong nonreciprocity and
one-way guiding. The required magnetization is considerably
weaker than in previously reported studies. This one-way chain
can be fabricated by thin-layer printing of leaflike flakes of
thin metals. Since single-atom layers of graphene may behave
like thin metal flakes with controllable properties, exhibiting

SPP-like behavior with very low loss,17 the present work may
offer a basic scheme for one-way guiding on a graphene layer.
This is a subject of ongoing research.
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APPENDIX: EVALUATION OF Lis(eiθ )

Lis(eix) for real x can be expressed as finite sums of Clausen
integrals.13,18 The latter can be computed using series that
converge much faster than the algebraic convergence of the
formal definition in Eq. (8). Note that Li1(z) = − ln(1 − z).
Furthermore, from Eq. (8) it follows that

Lis+1(z) =
∫ z

0
t−1Lis(t)dt. (A1)

Collecting the Clausen integral components that constitute our
Lis and rearranging, we obtain for s = 2 and |x| � π ,

Li2(eix) = π2

6
− x

4
(2π − x)

− i

[
x ln x − x − 1

2

∞∑
n=1

B2nx
2n + 1

n(2n+ 1)(2n)!

]
, (A2)

where B2n are the absolute value of the Bernoulli numbers.
With terms up to n = 5 in the series above, the relative error
for x = π is on the order of 10−5. From the integral relation
Eq. (A1), we obtain

Li3(eix) = ζ (3) + x2

2
(ln x − 3/2)

− 1

4

∞∑
n=1

B2nx
2n+2

n(n + 1)(2n + 1)(2n)!

+ i

(
π2x

6
− πx2

4
+ x3

12

)
, (A3)

where ζ (3) ≈ 1.202 056 9. Higher-order polylogarithm func-
tions are not needed in the present work.
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