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Green’s function theory for one-way particle chains
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Recently, it has been shown that a new class of particle chains that support the simultaneous interplay of
two-type rotations—geometric and electromagnetic—may possess strong nonreciprocity and one-way guiding
effects. Here, we use the Z transform to develop a rigorous Green’s function theory for these one-way chains.
A study of the chain’s spectra and its analytic properties in the complex spectral (Z) plane, where each and
every singularity (e.g., pole, branch cut, etc.) represents a distinct wave phenomenon, reveals all the wave
constituents that may be excited. We explore the breach of symmetry of the complex Z plane singularities
and their manifestations as the symmetry breaking wave mechanisms that underly the one-way guiding effects.
It is shown that this breach of symmetry in particle chains is possible only when both rotations—geometric
and electromagnetic—are simultaneously present. It is also shown that the continuous spectrum (e.g., branch
singularity) plays a pivotal role in suppressing the radiation into the “forbidden” direction.
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I. INTRODUCTION

Subdiffraction chains (SDC) are linear periodic arrays of
nanoparticles. They can support guided optical modes whose
spatial width is smaller than the free-space wavelength λ if the
interparticle distance d < λ.1–6

Recently, SDCs were suggested as candidates for one-way
guiding on the nanoscale.7–9 These studies include analytical
models based on the discrete dipole approximation (DDA) and
full-wave simulations with material loss and finite particle size
verifying the one-way property for realistic parameters. The
underlying physics is based on the interplay of two types of
rotations: geometric and electromagnetic. Two examples are
shown in Figs. 1 and 2. The first example (see Fig. 1) consists of
a plasmonic-particles chain of spiral (chiral) geometry exposed
to a longitudinal static magnetic field B0 = ẑB0. Due to B0,
the chain plasmonic modes possess Faraday rotation, i.e., the
dipoles in each particle rotate in the x,y plane. When such
a mode interacts with the chain chirality, its nonreciprocity
is strongly enhanced and a one-way guiding is created.7

This structure has three appealing properties: (a) nanoscale
transverse size, (b) propagation in the “forbidden” direction
decays exponentially by about two orders of magnitude over
distances of O(λ), and (c) B0 is weaker than that used
in other magnetization-based one-way structures. However,
although chiral nanochains were already fabricated,10 they
may be difficult to implement. The second example (see Fig. 2)
overcomes this difficulty since it is essentially planar. Here, the
chain is exposed to transverse magnetization B0 = ŷB0, which
induces longitudinal rotation of the SDC modes: the dipoles
in each particle rotate in the x,z plane. When a longitudinal
chirality is introduced (by using nonspherical particles that
rotate in the x,z plane) two-type rotations interplay takes place
and creates one-way guiding.8

There are numerous previous studies of different
magnetization-based schemes for achieving one-way guiding.
One-way total reflection from transversely infinite periodic
magneto-optical layers was demonstrated in Ref. 11. In
alternative approaches, the one-way property exists at the
interface between two semi-infinite photonic crystals (PhC),
or between a semi-infinite PhC and a metal, where at least one

of these two semi-infinite structures consists of magnetooptic
or gyromagnetic materials.12–16 In all these schemes, the
one-way electromagnetic edge states are supported at the
interface and are assumed to be completely separated from
the surrounding free space by the semi-infinite, supposedly
impenetrable structures on both sides. Hence no radiation
modes are present. As a result, an “absolute” one-way property
is achieved in the sense that backscattering from obstacles is
totaly eliminated.

How does the particle chain approach compare to these
schemes? A complete separation from free space is a
macroscopic concept whose microscopic validity is somewhat
limited. Separation from the surrounding free space is difficult
to obtain in guiding structures of nanoscale transverse dimen-
sions. Particularly, any linear chain of nanoparticles embedded
in free space or printed on dielectric layer inherently interacts
with semi-infinite or infinite free spaces that surround it. There
are two major ramifications to this fact; in addition to the well
localized plasmonic modes of the chain, other types of waves
are formally present. The first and widely recognized one is
the presence of “light-line modes” whose dispersion follow
closely the light line β = ±ω/c. These modes are weakly
trapped by the chain, and their spatial properties are nearly
those of free-space plane waves.4 Formally, they are part
of the discrete spectrum of the chain’s governing operator.
The second are the continuous spectrum (CS) waves17 whose
existence can be formally attributed to the fact that the chain’s
governing operator is noncompact, hence it possesses a CS as
well. While the existence of chains discrete spectrum (modes)
is easily recognized via standard dispersion analysis, the CS
wave is less transparent; in analogy, this wave is reminiscent
of the lateral (head) waves in open dielectric waveguides,18,19

again governed by noncompact operators. However, despite
its less transparent nature, it should not be overlooked. The
CS plays a pivotal role in the excitation of particle chains. Its
presence is the main reason for the extremely weak excitation
of the light-line modes.17

Here, we develop a rigorous Green’s function theory for
nonreciprocal particle chains of the two-type rotation principle
shown in Figs. 1 and 2. The theory sheds light on the
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FIG. 1. (Color online) A chiral chain of plasmonic ellipsoids with
longitudinal magnetization. Chirality and Faraday rotation interplay
creates one-way guiding.

chain’s excitation mechanisms and exposes the critical role
of each wave constituent in creating the one-way guiding. Our
starting point is the discrete dipole approximation (DDA).1–6

It formally holds when the particle diameter D is much
smaller than λ and when d � D. Studies show excellent
agreement with exact solutions even when d = 1.5D.20 Also,
full wave simulations show that the DDA predicts well the
one-way chains dynamics.8,9 Then, following,17 we use the
Z- transform (ZT) to obtain a rigorous excitation theory.
The result is a physically transparent tool in which the
Green’s function wave constituents can be discerned directly
from the analytic properties of the chain’s spectra in the
complex Z plane. Each and every singularity (e.g., poles and
branch-points/cuts) is a distinct wave phenomenon, whose
excitation strength is nothing but the corresponding residue.
This analytical clarity reveals the wave mechanism and content
responsible for the one-way guiding. It is shown that the
simultaneous presence of the two rotations is crucial for
creating the symmetry breach needed for one-way guiding.
Furthermore, it is shown that the CS wave—manifested by a
branch point in the complex Z plane—plays a pivotal role in
suppressing the radiation towards the “forbidden” direction.

The structure of the paper is as follows. A general
formulation and the ZT are discussed in Sec. II. Application
of the ZT to the chain in Fig. 1 is discussed in Sec. III, together
with detailed analysis of the wave mechanisms leading to
symmetry breach and one-way guiding. The operation of a
terminated one-way chain as a nonreciprocal nanoantenna
and the physical origin of novel properties that were left
unexplained in Ref. 9 are also discussed. In Sec. IV, the
analysis is applied to the chain shown in Fig. 2. Conclusions
are provided in Sec. V.

FIG. 2. (Color online) A planar chain of plasmonic ellipsoids
with transverse magnetization and longitudinal chirality. It supports
one-way guiding.

II. FORMULATION

Our chains are infinite linear arrays of equally spaced
particles. The nth particle is located at rn = (0,0,nd), and
its electric polarizability is represented by the 3 × 3 matrix
αn. Hence its response to an exciting local field EL(rn)—the
field at the location of the nth particle but in the absence
of this particle—is faithfully described by the dipole moment
pn = αn EL(rn). The polarizability of the reference ellipsoidal
particle whose principal axes are aligned with x,y,z—the blue
ellipsoid at the origin in Figs. 1 and 2—can be obtained via21

ε0α
−1 = V −1(χ−1 + L) − ik3

6π
I. (1)

Here, k is the vacuum wave number, I is the 3 × 3 identity
matrix, and the imaginary term ik3(6π )−1I represents ra-
diation loss. V = 4πaxayaz/3 is the ellipsoid volume with
ax,ay,az its principal semi-axes, and L = diag(Nx,Ny,Nz) is
the depolarization matrix whose entries are obtained from
ax,ay,az by elliptic integrals and satisfy

∑
u Nu = 1.21 χ is

the matrix susceptibility of the ellipsoid material assumed here
to be a Drude-model metal. The effect of the static magnetic
field B0 = B0(x̂ sin γ + ẑ cos γ ) is expressed in χ by using a
magnetized plasma model,7,8,14,22

χ = −ω̄−2

(ω̄ + iσ )2 − ω̄2
b

χ̄ , (2)

where ω̄ = ω/ωp, ω̄b = ωb/ωp. ωp and ωb = −qeB0/me

are the plasma and cyclotron frequencies, respectively. σ =
(τωp)−1 represents loss, where τ is the dissipation time
constant. χ̄ is given in Appendix A. αn is obtained from α by
using the appropriate rotation operators. This will be discussed
in the corresponding sections.

In our chains, EL(rn) can be expressed as a summation over
contributions from all the particles in the chain (except for the
nth) plus the incident field. Therefore the entire chain response,
expressed as a sequence of the particles dipole responses, is
governed by the difference equation

α−1
m pm − ε−1

0

∑
n�=m

A[(m − n)d] pn = Ei(rm), (3)

where A(z) is the free-space dyadic Green’s function, giving
the electric field at r = (0,0,z) due to an infinitesimal dipole
p at r ′ = 0:

E(z) = ε−1
0 A(z) p, (4)

A(z) = eik|z|

4π |z|
[
k2A1 +

(
1

z2
− ik

|z|
)

A2

]
(5)

with A1 = diag(1,1,0) and A2 = diag(−1,−1,2). The type of
chain is determined by αm. In subsequent sections, Eq. (3) is
transferred to a discrete convolution of the form

∞∑
n=−∞

Dm−nqn = Fm, (6)

where Dn is a sequence of matrices determined by the
propagator A and the particle polarizabilities and where the
vector sequence qn and Fn are linearly related to the chain
response pn and to the incident field Ei(rn), respectively.
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Due to its discrete convolution structure, the above equation
can be studied and solved using the double-sided Z transform
(ZT). The ZT of a bounded vector or matrix series is obtained
by applying the conventional (scalar-series) Z transform to
each of the entries. Hence

q̂(Z) =
∞∑
n

qn Z−n (7)

and the transform of Dn is obtained similarly. The series region
of convergence (ROC) is a ring that contains the unit circle
C1 : |Z| = 1. The inverse ZT (IZT) is given by

qn = 1

2πi

∮
C±

q̂(Z) Zn−1dZ. (8)

The original integration contour should reside within the ROC,
and encircle the origin in a counterclockwise direction; C1 is
an appropriate path. To enhance physical insight, however,
we shall replace the original contour with integrations around
singularities (poles and branch cuts) of the inverse transform
kernel. Thus C1 is replaced with C±. For observation points
located at n � 0, the integration contour C± = C+ encircles
all the singularities within C1 in the complex Z plane in a
counterclockwise direction. The contour C± = C− used for
n < 0 encircles all the singularities external to C1 in the
complex Z plane in a clockwise direction. The contours are
shown in Fig. 3. The contributions of the different singularities
may readily be used to discern between various wave species.
Poles located on (off) the unit circle correspond to propagating
(radiation) modes whereas branch points and cuts correspond
to continuous spectrum (CS) waves.

By applying the ZT to Eq. (6), one obtains for q̂(Z),

q̂(Z) = [D̂(Z)]−1 F̂(Z). (9)

With the equation above, we define the chains Green function
matrix sequence Gn as the IZT of Ĝ(Z) = [D̂(Z)]−1,

Gn = 1

2πi

∮
C±

[D̂(Z)]−1 Zn−1dZ. (10)

FIG. 3. (Color online) The integration contours for the IZT. Poles
are marked by ×, branch points by •, and branch cuts by wiggly
lines. Singularities inside (outside) the unit circle contribute to n � 0
(n < 0).

This Green’s function represents the chain response due to
an excitation of the n = 0 particle by an arbitrary unit forcing
vector. The chain response to an arbitrary excitation is obtained
by a discrete convolution of Gn and the incident field forcing
vector sequence Fm,

qn =
∑
m

Gn−m Fm ≡ Gn ∗ Fn. (11)

The chain’s electrodynamics depends directly on the analytic
properties of [D̂(Z)]−1. Clearly,

[D̂(Z)]−1 = adjD̂(Z)


(Z)
, (12)

where 
 and adjD̂ are the determinant and adjugate of D̂. Let
Zpm

,m = 1,2, . . . be the poles of the expression above. Then
by applying the residue theorem we obtain from Eq. (10),

Gn =
∑
m

G(pm)
n +

∑
�

G(b�)
n , (13)

where G(pm)
n (G(b�)

n ) is the contribution due to the mth pole (�th
branch point and cut). For n � 0 (n < 0), the summation is
done only over singularities inside (outside) the unit circle,
encircling each of these singularities in a counterclockwise
(clockwise) direction, see discussion after Eq. (8) and Fig. 3.
Due to the structure of the integrand in Eq. (10), the residue
associated with Zpm

has the general form C(Zpm
)Zn

pm
. Hence

it represents the mth mode. Its excitation amplitude is C(Zpm
)

and its dispersion βm(ω) is determined by

Zpm
(ω) = eiβmd . (14)

Real βm corresponds to a mode that propagates along the chain
with no radiation to the free space and with no material loss.
In this case, Zpm

resides exactly on C1 (the unit circle). Hence
its classification as a singularity that contributes to n � 0
(encircled by C+) or to n < 0 (encircled by C−) cannot be
done according to its location inside or outside C1. Rather,
this classification is done according to its group velocity as
obtained from Eq. (14): vg = 1/β ′

m(ω) = idZpm
/Z′

pm
(ω). The

pole contributes to n � 0 and encircled by C± if vg ≷ 0.
Alternatively, one may examine the shift in Zpm

when loss is
added to the system (it would shift away from the unit circle),
and classify accordingly.

The branch cut contributions in Eq. (13) represent the
chain’s continuous spectrum.17,18 They can be expressed
formally as

G(b�)
n = 1

2πi

∮
Cb�

[D̂(Z)]−1Zn−1dZ, (15)

where Cb�
encircles the �th branch point and cut in the direction

discussed above.
Finally, we refer to an important special case in which the

entries of D̂(Z) possess only branch points and cuts, with
neither zeros nor poles. It holds for conventional particle
chains,17 and as we show in the next sections it applies
also here. Then the poles are given only by the zeros of the
determinant


(Zpm
) = 0, m = 1,2, . . . . (16)
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By applying the residue theorem to this specific case, we get
for G(pm)

n ,

G(pm)
n = sign(n)

adjD̂(Zpm
)


′(Zpm
)

Zn−1
pm

, (17)

where a prime denotes derivative with respect to the argument.
It can be expressed explicitly in terms of the matrix


′(Z) = Tr

[
(adjD̂)

d

dZ
D̂

]
. (18)

Finally, we note that poles may reside in the principal
Riemann sheet R0 or in any other Riemann sheet Rm.
Pole locations depend on ω hence when ω is varied, a
pole may move from Rm to Rm±1 as it travels across a
branch cut. Formally, only poles in R0 contribute to the
sum in Eq. (13). However, in some applications, one may
find advantages in deforming the original integration contour
into other Riemann sheets or in deforming the branch cut,
especially if a steepest descent path (SDP) can be found in
oscillatory integrands.19 In such cases, the deformed path may
sweep across a pole singularity out ofR0 (i.e., the singularity is
caught between the original and the deformed paths), leading
to a spurious (implicit) inclusion of its residue. Then one
needs to compensate for the spurious inclusion, leading to
the so-called “improper pole” contribution that is limited to
confined regions in space and can be given ray or mode
interpretations (depending on the SDP deformation). Improper
modes in the context of particle chains were studied in Ref. 23.
It should be emphasized, however, that in our formulation,
there is no SDP, and improper pole contribution does not exist.
In the next sections, we use the tools above to explore the wave
constituents associated with our one-way chains.

III. LONGITUDINAL MAGNETIZATION,
CONVENTIONAL CHIRALITY

Here, we study the chain described by Fig. 1. α and χ

are given by Eqs. (1) and (2) and Eq. (A 1) with γ = 0. The
polarizability of the nth particle is αn = T−nαTn. Here, Tn is
a transverse rotation operator (rotates by n
θ about ẑ) whose
nonzero entries are t11 = t22 = cos n
θ , t33 = 1, t12 = −t21 =
sin n
θ . We substitute this expression for αm into Eq. (3),
apply Tm on both sides, use the identities T−1

m = T−m, Tm =
Tm−nTn, and the fact that Tn commutes with A (here, the field
on the chain axis due to a rotated dipole is the rotated field of
the reference dipole). The result is the convolution (6) where

qn = Tn pn, Fm = Tm Ei(rm), (19)

and

Dn =
{

−ε−1
0 A(nd)Tn, n �= 0,

α−1, n = 0.
(20)

This is a description in a reference frame that rotates together
with the chain. Tn leaves the ẑ polarization unchanged. Also,
as γ = 0, Eqs. (A1e) and (A1f) vanish, leaving only χ̄zz in the
third row and column of χ̄ . Hence, the ẑ polarization in our
chain is very similar to that of a chain with nonmagnetized
plasmonic spheres; the only change is a shift in the resonance

frequency due to the presence of ω̄b and due to the depolariza-
tion factor Nz, which is different than that of a sphere (1/3).
This is clear, as B0 = B0 ẑ couples only the x̂, ŷ polarizations.
Therefore, for simplicity, we concentrate only on the transverse
polarizations and ignore the third row and column of the chain
equation, and deal only with the upper 2 × 2 blocks in the
matrix-series equation above. We have for the ZT of Dn (use
T±n = T±n

1 ),

D̂(Z) = α−1 − ε−1
0

∞∑
n=1

A(nd)[(T1Z)−n + (T1Z
−1)−n]. (21)

After some algebra, this gives

D̂ = α−1 − C, C =
[

Cc Cx

−Cx Cc

]
(22)

with

Cc,x(Z) = k3

8πε0

3∑
n=1

ac,x
n

(kd)n
f c,x

n (Z), (23)

where ac
n = in−1, ax

n = −iac
n and

f c
s (Z) = Lis[e

i(kd+
θ)Z−1] + Lis[e
i(kd−
θ)Z−1]

+Lis[e
i(kd+
θ)Z] + Lis[e

i(kd−
θ)Z], (24a)

f x
s (Z) = Lis[e

i(kd+
θ)Z−1] − Lis[e
i(kd−
θ)Z−1]

−Lis[e
i(kd+
θ)Z] + Lis[e

i(kd−
θ)Z]. (24b)

Lis(z) is the sth order polylogarithm function24

Lis(z) =
∞∑

n=1

zn

ns
⇒ Li ′s(z) = z−1Lis−1(z), (25)

with Li0(z) = z/(1 − z),Li1(z) = − ln(1 − z). While the sum
in Eq. (25) converges formally only for |z| < 1, it can be
extended into the entire complex plane via analytic continu-
ation. Lis(z) has neither poles nor zeros, only branch-point
singularities.24 This implies that the elements of D̂(Z) have
no poles nor zeros, as stated in the discussion preceding
Eq. (16). Additional properties of the polylogarithm functions
needed here are presented in Refs. 8 and 17. Generally,
Lis(z) inherits the singularity of ln(1 − z) ∀s � 1, possessing
Riemann sheets of infinite multiplicity Rm,m = 0,±1,±2 . . .

with branch points at z = 1. Hence, in the zeroth (or principle)
Riemann sheet, R0 f c

s (Z) and f x
s (Z) possess four branch

points Zb 1,2,3,4 and corresponding branch cuts,

Zb 1,3 = e∓i(kd+
θ), Zb 2,4 = e∓i(kd−
θ). (26)

Consistently with the logarithmic functions, two cuts emerge
from the branch points at Zb 1,2 and extend to the origin,
and other two cuts emerge from the branch points at Zb 3,4

and extend to infinity. These branch points result solely
from the analytic properties of the Polylogarithm functions
(which in turn result from interparticle interactions). Hence
they are independent of the particle material. This fact is of
importance for understanding the complete chain behavior in
the presence of loss. The Green’s function analytic properties
and the various wave constituents supported by the chain are
completely determined by the expressions above.
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A. Analytic properties, symmetries, and wave constituents

The Green’s function spectrum Ĝ(Z) = [D̂(Z)]−1 is given
generally in Eq. (12). Here,


(Z) = D̂xxD̂yy − D̂xyD̂yx, (27a)

adjD̂(Z) =
(

D̂yy −D̂xy

−D̂yx D̂xx

)
. (27b)

The adjD̂ entries have neither poles nor zeros, hence Eqs. (16)–
(18) apply. The entries possess only branch-point singularities,
which are given in Eq. (26). The determinant 
 inherits these
very same points. In addition, it has eight zeros which are
poles of [D̂(Z)]−1, given by Eq. (16) with m = 1, . . . ,8. They
represent the chain discrete spectrum—the chain modes—see
Eq. (14). The excitation magnitude of these modes is nothing
but the associated residue given generally in Eq. (17). Finally,
the branch points in Eq. (26) and the associated branch cuts
represent the chain’s continuous spectrum (CS).17,18

By using the property in Eq. (25), 
′(Z) can be expressed
explicitly in terms of Lis in a structure similar to Eqs. (23)
and (24). This is presented in Sec. A 2 in Appendix A. We
note that the branch points and cuts of 
′(Z) are identical to
those of f c,x

n (Z), and are given in Eq. (26) and the discussion
thereafter. Furthermore, from Sec. A 2, we have

lim
Z/Zb=x→1

1


′(Z)
= C

(1 − x)

ln(1 − x)
→ 0 (28)

that is essential for understanding the CS role in suppressing
the modal propagation towards the “forbidden” direction in
one-way chains.

From the discussions and results above, it follows that
analytic investigation of the matrix function D̂−1 is reduced
to an investigation of the scalar function 
(Z) and its
singularities. From Eqs. (16)–(18), (23), (24), and (A2)–(A4),
we reach the following observations.

(1) D̂uu(Z) = D̂uu(Z−1), where u = x or y.
(2) For 
θ �= 0, f x

s (Z) = −f x
s (Z−1) ⇒ Cx(Z) =

−Cx(Z−1).
(3) Without rotation, 
θ = 0, f x

s (Z) ≡ 0 ⇒ D̂xy =
−D̂yx = [α−1]xy Z independent.

(4) Without magnetization [α−1]uv|u�=v
= 0. Hence, from

Eq. (22), D̂uv(Z) = −D̂vu(Z). Also, by observation 2,
D̂uv(Z) = −D̂uv(Z−1) hence D̂uvD̂vu(Z) = D̂uvD̂vu(Z−1)
where u �= v, u,v = x or y.

(5) With magnetization [α−1]uv|u�=v
�= 0 ⇒ D̂uvD̂vu(Z) �=

D̂uvD̂vu(Z−1), where u,v = x or y.
(6) From Eq. (26), the branch points come in pairs indepen-

dently of magnetization or rotation: Zb n = 1/Zb n+2, n = 1,2.
Without rotation, Zb n coincides with Zb n+1.

(7) From Eqs. (17), (28), and the fact that D̂(Zpm
) has only

logarithmic singularity, limZpm→Zb
G(pm)

n = 0. That is, if a pole
approaches a branch point, its residue is vanishingly small (see
below for numerical values).

Consider first a chain of nonrotating ellipsoids (whether
magnetized or not). By observations 1 and 3 above, we
conclude that 
(Z) = 
(Z−1). Namely, singular points
come in pairs and therefore to each forward propagating wave
there is a backward propagating counterpart, both having
the same dispersion (inverse poles) and the same absolute

FIG. 4. (Color online) Maps of singularities in R0 for spiral
nonmagnetized chain. There are eight poles, four of them denoted
by thin (thick) lines correspond to modes with positive (negative)
group velocity. Note the symmetric locations of the poles that indicate
the reciprocal nature of the system. The dispersion for poles that
reside on C1 are shown in the inset, color coded according to the
pole trajectories. ωi corresponds to the ith critical point in the pole
trajectory.

magnitude (same residues). The specific vector structures of
the modes are determined by adjD̂. With no magnetization the
vectors corresponding to ±ẑ propagation are exactly the same.
In case that the chain is magnetized, these vectors possess
±π/2 phase difference between px and py , thus the waves
experience Faraday rotation and the chain can be considered
as weakly nonreciprocal. Next, consider a nonmagnetized
spiral chain. By observation 4, we conclude that the symmetry

(Z) = 
(Z−1) still holds and the structure is reciprocal.
The singularities map of this case is shown in Fig. 4. For
simplicity, we assume now that σ = 0 (no loss). Referring
to the figure, branch points are shown by solid black circles,
branch cuts by wiggly lines, and poles are marked by black
×, all for a specific frequency. Poles trajectories as a function
of frequency are denoted by solid color lines in the zeroth
Riemann sheet R0. Pole locations at critical frequencies are
marked by numbers. Outside R0 poles have no significant
importance since they do not contribute. Therefore trajectory
sections in these sheets were omitted for the sake of clarity
(only one exception for demonstration, shown by dashed line
in the figure). In addition, the evolution of the branch points as
a function of frequency as given in Eq. (26) is omitted to avoid
cluttering the figure. Following Eq. (14) and the discussion
thereafter, the dispersion curves for poles that reside on C1

are shown in the inset of Fig. 4, color coded according to the
corresponding pole trajectories. The critical frequency marked
by ωi corresponds to the ith critical point in the pole trajec-
tory. Note that the critical frequencies ω2, . . . ,ω5 represent

035130-5



Y. HADAD, Y. MAZOR, AND BEN Z. STEINBERG PHYSICAL REVIEW B 87, 035130 (2013)

points where two first-order pole trajectories coincide (thus
creating a higher-order pole) and then bifurcate to first-order
poles again.

As pointed before, there are eight poles. We denote
by Zp 1,3,5,7 (Zp 2,4,6,8) the poles pertaining to propagation
in n < 0 (n � 0). At very low frequencies, four poles
Zp 1,2,7,8,Zp 1,7 = Z−1

p 2,8 are located in R0 on C1 near Z =
ei(±
θ±kd) at location 1. Their location indicates they corre-
spond to propagation modes of the chain, with characteristic
dispersion very close to the light line (“light-line poles”).
They possess no low-frequency cutoff, and their evolution with
frequency is shown by the red and purple lines. For ω < ω3,
their location remains close to the brunch points [the latter
evolve along C1, see Eq. (26)]. Note that by observation 7, the
corresponding residues are very small, see below. These poles
correspond to “light-line modes” that poorly interact with the
chain and exist as a background plane waves.

Four additional poles, Zp 3,4 with Zp 3 = Z−1
p 4 (Zp 5,6 with

Zp 5 = Z−1
p 6) emerge from Z = −∞ and from the origin (from

Z = ∞ and the origin) in R0 and move along the blue (green)
trajectories towards Z = −1 (Z = 1). They reach point 2
(4) where Zp3 and Zp4 (Zp5 and Zp6) meet at frequency
ω2(ω4) and bifurcate to trajectories on C1, representing the
lower cutoff of the corresponding chain propagating modes.
As frequency increases, all these eight poles evolve along C1

towards points 3 (5). The corresponding frequency ω3(ω5) is
the upper cutoff of the chain modes. For ω > ω3 (ω > ω5),
the poles represent radiation modes that move along the red
and blue (purple and green) trajectories, intersect the branch
cuts and stop contributing. It should be emphasized that for
sufficiently large frequencies, there exist no poles in R0 and
the chain Green’s function consists of branch cut (i.e., CS)
contribution only; in this frequency domain, no propagation
modes or radiation modes are supported by the chain. Finally,
note that when losses are present Zp 1,3,5,7 (Zp 2,4,6,8) are
slightly shifted outwards (inward) of C1, but the branch point
locations are not affected.

Once the spiral structure is magnetized, the symmetry
disappears. This pivotal difference can be inferred from
observations 1 and 5, and can clearly be seen in Fig. 5. We have

(Z) �= 
(Z−1), in this case, pole singularities do not come in
pairs. Thus the (complex) phase coefficients of the forward and
backward propagating modes are different and consequently
the structure’s electrodynamics is strongly nonreciprocal. The
dispersion curves derived from Eq. (14) for the poles that
reside on C1 are shown in the figure’s inset. Regarding the
CS; the branch points, which are material independent, are
still located symmetrically according to Eq. (26). However,
this fact alone does not result in reciprocal CS waves since the
Green’s function spectrum along the cuts is not symmetric as
before.

To demonstrate enhanced nonreciprocity and one-way
guiding, let us examine the picture at the frequency ωl , for
which the poles are marked (by ×) in the figure. As mentioned
already, there are eight poles. Four of these, Zp 2,4,6,8 (denoted
by thin lines), correspond to modes with positive group veloc-
ity (propagation toward +z). Three of them, Zp 2,4,6, reside off
C1 hence they are radiation modes that decay exponentially
along the chain. The fourth, Zp8, is poorly excited as it

FIG. 5. (Color online) Maps of singularities for spiral and
magnetized chain. There are eight poles, four of them denoted by
thin (thick) lines correspond to modes with positive (negative) group
velocity. Note the nonsymmetric locations of the poles which indicate
the strong nonreciprocal nature of the system. The dispersion of poles
that reside on C1 are shown in the inset together with the critical
frequencies.

resides very close to a branch point (recall previous discussion
and observation 7). Other four poles, Zp 1,3,5,7 (denoted by
thick lines), correspond to modes with negative group velocity
(propagation toward −z). Two of them, Zp 1,3, reside off C1

hence they correspond to exponentially decaying radiation
modes. The third, Zp 7, is located in different Riemman sheet
and therefore does not contribute at all. Thus, finally, we
observe a significant, propagating mode contribution, only
from the fourth pole, Zp5, contributing only to n < 0. In Fig. 6,
we show the residues of Zp8 and Zp5, the two poles that reside
on C1. The chain parameters are d = λp/30, where λp is the
wavelength associated with the plasma frequency ωp. The
ellipsoids semiaxes are ax = 0.25d, ay = az = 0.5ax . Chain
rotation step 
θ = 70◦, and magnetization is ωb = 0.01ωp.
The dominance of ResZp5 over ResZp8 due to the proximity
of the latter to the CS, is in evident. The residue of Zp8

is exponentially weaker (note the logarithmic scale), and
at the critical frequency ω6 that represents the lower end
of the one-way band (see inset in Fig. 5) it is nearly six
orders of magnitude smaller. Hence the strong nonreciprocity
and preference of the n < 0 range. These conclusions are
demonstrated numerically below. Figure 7 shows the Green’s
function Dyad and its components for ŷ-polarized excitation.
The chain parameters are the same as those used for Fig. 6
(detailed above), and the frequency is shown by the vertical
dash-dot line in Fig. 6. Figure 7(a) shows the total response.
The propagation into the n > 0 domain decays exponentially
to a relative level of 10−3 within a range of less then 4λ.
Figure 7(b) shows the contribution of the CS. In the domain
near the source (e.g., |z| < λ) the CS wave is significant, but
it decays away from the source. Note that for n � 0 (n < 0)
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FIG. 6. (Color online) Residues of Zp5 and Zp8, representing
modes excitation magnitudes. The locations of critical frequencies
from the inset of Fig. 5 are shown. Within a finite frequency band, the
excitation magnitude of the mode that propagates in the “forbidden”
direction is orders of magnitude weaker than that of the mode that
propagates in the “allowed” direction. This is due to the proximity
of the former to the CS wave (branch point). The one-way domain
is defined as the region where the residues ratio is below 10−2. The
numerical example below is at the frequency shown by the vertical
dash-dot line.

only the cuts inside (outside) the unit circle contribute, but
although the associated branch points always reside on the
unit circle the former cuts contribution is considerably weaker
than that of the latter. The reason is that the integrand itself
lost its symmetry in the complex Z plane. Finally, Fig. 7(c)
shows the pole contributions. For n < 0, there is a significant
contribution due to the pole Zp5 that resides on the unit
circle and corresponds to a guided mode of the chain. All
other modes that contribute to n < 0 reside outside the unit
circle hence they decay exponentially and their contribution
cannot be seen in the graph. Pole contributions for n � 0 decay
exponentially since all the relevant poles reside inside the unit
circle, except for pole Zp8, which is practically not excited due
to its proximity to the branch point.

To summarize, symmetry in the spectral plane is broken
only under the simultaneous presence of rotation and magne-
tization. Under this breach of symmetry, the proximity of a
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FIG. 7. (Color online) Relative magnitudes of (a) the chain
Green’s function and its components, (b) CS, and (c) Poles
(modes).

FIG. 8. (Color online) A single leaky mode with longitudinal
wave number β transmits to and receives from opposite directions.

pole to the branch point (or CS) is responsible for “shutting
down” the wave constituents that propagate in the “forbidden”
direction.

B. A terminated one-way waveguide

Recently, full-wave simulations were used to demonstrate
that a terminated one-way waveguide can be viewed as
a matched nonreciprocal waveguide-antenna assembly.9 It
exhibits a novel property that was left unexplained: it transmits
to and receives from complementary directions, i.e., θT x +
θRx = 180◦. This property can be explained by the asymmetric
spectral maps revealed in the previous section.

First, recall the basic principle of this nanoantenna. Under
one-way operation, there is only one propagating mode, and
only in one direction, since there is only one pole located on
the unit circle in Fig. 5 that can be practically excited. As it
hits a termination, back-reflections cannot take place and the
mode is converted to leaky modes and CS waves—all of which
are radiating waves. Hence the terminated one-way chain acts
as a waveguide that over the entire one-way frequency band is
perfectly matched to an antenna; the latter consists of a limited
number of particles near the termination. Moreover, the guided
mode conversion to CS is minor compare to its conversion to
leaky modes as the guided mode longitudinal wave number is
much larger than that of the CS βg � k. Thus it is essentially
a leaky wave antenna.

Consider now a single leaky mode due to the single pole
Zp, and its corresponding chain wave number β as given in
Eq. (14). In order to couple to a plane wave that radiates at an
angle θT x , the phase-matching condition Re(β) = k cos(θT x)
has to be satisfied. Therefore, if a leaky mode transmits
toward θT x , then its excitation due to an impinging plane wave
is maximized if the latter hits from θRx = 180◦ − θT x . See
Fig. 8 for demonstration. In conventional, reciprocal, leaky
wave antennas—leaky modes come in pairs with opposite
longitudinal wave numbers β and −β. Assuming that the
β mode transmits at (receives from) θT x (θRx) then the
−β mode receives from (transmits at) that angle. Therefore
the radiation patterns in transmit and receive are eventually
identical. However, as we consider one-way waveguides,
this nice β, − β symmetry breaks yielding that the radiation
patterns in Tx and Rx remain as of a single leaky mode, i.e.,
in complementary directions as in Ref. 9.
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IV. TRANSVERSE MAGNETIZATION,
LONGITUDINAL CHIRALITY

We turn to the chain shown in Fig. 2. α and χ are given
by Eqs. (1) and (2) and Eq. (A 1) with γ = −π/2. The
polarizability of the nth particle is αn = T�

−nαT�
n. Here T�

n

is a longitudinal rotation operator (rotates by n
θ about
ŷ) with the nonzero entries t11 = t33 = cos n
θ , t22 = 1,
t13 = −t31 = sin n
θ . Note, however, that unlike the chain
of Fig. 1, here T�

n and A of Eqs. (4) and (5) do not commute.
Hence, while the previous chain can be regarded as periodic
with period d (in the rotating reference frame) for any 
θ ,
the present chain is periodic only for rational 
θ/π . For
this reason, the route from the general chain formulation in
Eq. (3) to the shift-invariant formulation in Eq. (6) is more
elaborated. Towards this end, we limit our discussion to cases
where 
θ/π is rational. Then the chain is D = Nd-periodic,
consists of N particles with polarizabilities α0,α1, . . . ,αN−1

in a period. Also, note that the static magnetic field B0 = B0 ŷ
couples the x̂,ẑ polarized dipole moments, but except for a
shift in the resonance frequency it leaves the ŷ polarization
essentially unchanged compare to the case of a conventional
chain of spherical particles. Hence, we concentrate only on the
x̂,ẑ components of the matrices and vectors involved.

To get a shift invariant formulation, we define the sequence
of unknown vectors qn as the dipole moments excited in the
nth period:

qn = ( pNn, pNn+1, . . . , pNn+N−1), (29)

this vector consists of 2N scalar unknowns. Then, by rearrang-
ing Eq. (3), we get the formulation in Eq. (6) with the matrix
sequence Dm that consists of N × N block matrices of 2 × 2
each, denoted [Dn]pl , p,l = 1, . . . N ,

[Dn]pl =
{

α−1
p , n = 0, p = l,

−ε−1
0 A(nNd + [l − p]d), else.

(30)

The right-hand side vector of Eq. (6), Fm is given by the
incident electric field Ei(rm) arranged as pm in Eq. (29). We
apply now the ZT to the resulting formulation. The ZT of the
sequence of matrices may be obtained by following essentially
the same steps as in Sec. III, together with the analysis
presented in Ref. 8 (particularly, see derivations leading from
Eq. (8) to Eq. (13) in Ref. 8, and use eiβd 
→ Z). The result
is a 2N × 2N matrix D̂(Z) that consists of N × N blocks of
2 × 2 submatrices D̂pq(Z), p,q = 0, . . . ,N − 1 that are given
by

D̂pq(Z) =
{

α−1
p − ε−1

0 S0(Z), p = q,

−ε−1
0 Sp−q(Z), p �= q,

(31)

where

S0(Z) = k3

4π

3∑
n=1

un

fn(kNd,Z)

(kNd)n
An, (32)

and where (u1,u2,u3) = (1,−i,1), the matrices An are the same
as in Eqs. (4) and (5) with A3 = A2 and with the second row
and column omitted (see discussion in the opening paragraph
of Sec. IV), and fn are given by

fn(x,Z) = Lin(eixZ) + Lin(eixZ−1). (33)

The matrices Sq(Z), q = ±1,±2 . . . ,±(N − 1) are given by
the same summation as for S0 in Eq. (32), but with fn(kNd,Z)
replaced by the functions hn(kd,Z,q)

hn(kd,Z,q) = Zq/N

N

N−1∑
r=0

e−i2πrq/Nfn(kd,Z1/Ne−i2πr/N ).

(34)

From Eqs. (31) and (34), it follows that all the components
of D̂(Z) are given by finite sums of Polylogarithm functions.
Hence they inherit exactly the same branch point and branch
cut singularities discussed in Sec. III. Apparently, there is
an additional branch point and cut associated with the Z1/N

term in Eq. (34). However, despite this branch singularity
that creates Riemann sheets of N multiplicity (i.e., Z1/N �=
(Zei2πm)1/N ,m = 1, . . . N − 1), the functions hn are analytic
across the cut. This is evident from the following identity (see
proof in Appendix B):

hn(kd,Z,q) = hn(kd,Zei2πm,q), (35)

for all integer m. Hence this cut does not show up in our
Green’s function spectra and it can be ignored.

The results above express the Z-transformed chain matrix
D̂ in terms of finite sums of polylogarithmic functions Lis—
defined in Eq. (25) and discussed thereafter. Recall Lis(z)
possess neither poles nor zeros and inherit only the branch-
point singularity of ln(1 − z). Hence, as the branch point and
cut associated with the Z1/N argument in Eq. (34) do not
survive, we are left only with those associated with fn in
Eqs. (32) and (34). Hence, in the complex Z plane, D̂(Z) and
[D̂(Z)]−1 have only two branch points

Zb 1,2 = e∓iNkd . (36)

Consistently with the logarithmic functions, the first (second)
branch extends from Zb 1 (Zb 2) to the origin (infinity).

A. Analytic properties, symmetries, and wave constituents

As in the previous case, since the entries of D̂ possess
neither poles and no zeros, poles are obtained only as the
zeros of the determinant 
(Z). Contributions from poles are
expressed generally in Eq. (17). Branch cut/CS are given now
in Eq. (36) and their contribution is expressed generally in
Eq. (15). However, since D̂(Z) is a 2N × 2N matrix, explicit
expressions of the Green’s function spectra D̂−1(Z) cannot be
obtained. Nevertheless, some general and important properties
can be discerned directly from the structure of the matrices
involved, for any N . First, note the symmetries of fn(x,Z) and
hn(x,Z,q). We have

fn(x,Z−1) = fn(x,Z), (37a)

hn(x,Z−1,q) = hn(x,Z, − q). (37b)

Equation (37a) follows straightforwardly from Eq. (30), and
Eq. (37b) is proved in Appendix C. The results above imply
the symmetries of the matrices Sq [see Eqs. (32)–(34)]:

Sq(Z−1) = S−q(Z), q = 0, ±1, . . . ±(N − 1). (38)

Note that Sq are the block matrices of the Z-transformed
matrix D̂(Z), see Eq. (31). Furthermore, Sq are independent
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of the magnetization. The latter affects α only. The following
observations can be made.

(1) For nonmagnetized particles, αn = αT
n with or without

particle rotation. Hence from Eq. (31) and Eq. (38), we have
D̂(Z−1) = [D̂(Z)]T . This implies Det{D̂(Z−1)} = Det{D̂(Z)}
or 
(Z) = 
(Z−1).

(2) For magnetized chain and without rotation, we have
N = 1, and D̂ is a 2 × 2 matrix [only the first row in Eq. (31)].
The off-diagonal terms are only due to α0 (Z independent),
with D̂xz = −D̂zx . Since only S0 in Eq. (32) survives, we again
have 
(Z) = 
(Z−1).

(3) When magnetization and rotation are present, αn �= αT
n .

Hence, despite the inherent symmetry in Eq. (38), we have

(Z) �= 
(Z−1).

(4) Due to Eq. (18) and the structure of the elements of
D̂ in Eqs. (30)–(34), we have limZ→Zb


′ = ∞ [note that
Li ′1(z) = (1 − z)−1 and that adjD̂ has no poles]. Hence, as
in the previous case, if a pole approaches a branch point, its
residue is vanishingly small.

From observations 1–3, it is clear that if rotation and
magnetization are not simultaneously present, symmetry in
the complex Z plane is preserved: if Z = Zpm

is a pole, then
so is Z = Z−1

pm
, with the same residue. The same applies for

the CS wave. Symmetry is broken only when rotation and
magnetization are simultaneously present. Under this breach
of symmetry, observation 4 “shuts down” wave constituents
that propagate in the “forbidden” direction. This mechanism
is demonstrated in the example below.

We have computed the Green’s function and its components
for a chain with the following parameters. The interparticle
distance is d = λp/30. The particles are prolate ellipsoids
with axis ratio 1 : 0.9 and major semiaxis ax = d/3. The
rotation step about ŷ is 
θ = π/3, creating a chain with
period of N = 3 particles. The full picture of the Z-plane
singularities and their evolution with ω is quite involved, and
is discussed in full in Appendix D. Here, we concentrate on
the singularities maps within a limited range of frequencies,

FIG. 9. (Color online) Map of singularities for the chain of lon-
gitudinal chirality, without magnetization. Only relevant singularities
are shown, corresponding to the frequency range shown by the
highlighted strip in the dispersion curves in the inset.

FIG. 10. (Color online) The same as Fig. 9, but for the magnetized
chain.

demonstrating the creation of the one-way operation. Typical
map of only the relevant singularities that reside on the unit
circle, at a given frequency ωl = 0.575625ωp within that
limited range, are shown in Figs. 9 and 10. Being a non-Bravais
chain that consists of three particles per period, there are
three dispersion curves associated with each chain resonance.
These dispersion curves are shown in the insets, and the
corresponding frequency range containing ωl is highlighted.
Without magnetization (see Fig. 9), six poles reside on the
unit circle in symmetric locations. Two of which (Zp1,2 ) are
remote from the branch-point singularity, creating the guided
plasmonic modes that propagate to n > 0 (Zp2 ) and n < 0
(Zp1 ), see Eq. (14) and the discussion thereafter. Four poles
(Zp3,4,5,6 ) reside close to the branch points, formally creating
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FIG. 11. (Color online) Relative magnitudes of (a) the chain
Green’s function and its components, (b) CS, and (c) Poles
(modes).
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two light-line modes that propagate to n > 0 (Zp4,6 ) and n < 0
(Zp3,5 ). Note, however, that since they are close to the branch
points, they are practically not excited (see point 4 above).
When magnetization of ωb/ωp = 5 × 10−3 is applied (see
Fig. 10), additional pole appears, and the symmetry of pole
locations is lost as predicted in the analysis above. Only a
single pole, Zp1 , resides on the unit circle remote from the
branch-point singularity, creating a guided plasmonic mode
that propagates to n < 0. All other poles are either too close
to the branch points (Zp2−6 ), or are off the unit circle (Zp7 ).

Finally, Fig. 11 shows the Green’s function dyad and the
contributing components for x̂ directed excitation at the first
particle of the reference period. The response is shown for
each particle in the chain, hence the dense small oscillation
(generally pn is not constant within a period).

V. CONCLUSIONS

A rigorous Greens function theory of one-way particle
chains is developed and studied. The theory exposes all the
wave constituents that may exist and provides an “under the
hood” view of the excitation properties of these nonreciprocal
chains.

In our analysis, we have used the Z transform to obtain
a complete spectral representation of the excitation problem.
Then, we studied the chains spectra and its analytic properties
in the complex spectral (Z) plane, where each and every sin-
gularity (e.g., pole, branch point/cut, etc.) represents a distinct
wave phenomenon. We explored the breach of symmetry of
the complex Z plane singularities, and their manifestations
as the symmetry breaking wave mechanisms that underly the
one-way guiding effects. It has been shown that this breach
of symmetry in particle chains is possible only when electro-
magnetic rotation (caused by magnetization) and geometric
rotation (chirality) are simultaneously present. Furthermore, it
is shown that under this breach of symmetry the CS wave
presented by a branch-point singularity practically “shuts
down” the modal wave that propagates into the “forbidden”
direction, thus playing a pivotal role in establishing the strong
nonreciprocal behavior of the chain.
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APPENDIX A: MATHEMATICAL EXPRESSIONS

Here, we summarize some of the mathematical expressions
used throughout the main text.

1. Material susceptibility

The magnetized plasma susceptibility tensor χ is given in
Eq. (2), where the entries of χ̄ are given by22

χ̄xx = ω̄2 + iσ ω̄, (A1a)

χ̄yy = χ̄xx − (1 + iσ/ω̄)−1ω̄2
b sin2 γ, (A1b)

χ̄zz = χ̄xx − (1 + iσ/ω̄)−1ω̄2
b cos2 γ, (A1c)

χ̄xy = −χ̄yx = iω̄ω̄b cos γ, (A1d)

χ̄xz = −χ̄zx = −iω̄ω̄b sin γ, (A1e)

χ̄yz = χ̄zy = −(1 + iσ/ω̄)−1ω̄2
b sin γ cos γ. (A1f)

2. Computation of �′(Z)

By using Eqs. (22)–(24) and the property in Eq. (25), 
′(Z)
can be expressed explicitly in terms of Lis in a structure similar
to Eqs. (23) and (24),


′(Z) = −C ′
c(Z)[D̂xx(Z) + D̂yy(Z)]

−C ′
x(Z)[D̂xy(Z) − D̂yx(Z)] (A2)

with

C ′
c,x = k3

8πε0

1

Z

3∑
n=1

ac,x
n

(kd)n
g

c,x
n−1(Z), (A3)

and where the functions gc,x
m (Z) are given by finite sum of

polylogarithm functions whose structure is very similar to the
functions f c,x

n (Z) of Eq. (24),

gc
s (Z) = −Lis[e

i(kd+
θ)Z−1] − Lis[e
i(kd−
θ)Z−1]

+Lis[e
i(kd+
θ)Z] + Lis[e

i(kd−
θ)Z], (A4a)

gx
s (Z) = −Lis[e

i(kd+
θ)Z−1] + Lis[e
i(kd−
θ)Z−1]

−Lis[e
i(kd+
θ)Z] + Lis[e

i(kd−
θ)Z]. (A4b)

Since the arguments of the various Lis terms above are
identical to those associated with Eq. (24), the branch points
and cuts of gc,x

m (Z) are identical to those of f c,x
n (Z), and

are given in Eq. (26) and the discussion thereafter. Note
that the leading term in limZ→Zb


′(Z) is obtained by the
multiplication g

c,x
0 (Z)f c,x

1 (Z) for any of the four possible
values of the branch point Zb. Therefore

lim
Z/Zb=x→1


′(Z) = C(1 − x)−1 ln(1 − x), (A5)

where C is independent of Z. Here, we used the fact that
Li0(x) = x/(1 − x) and Li1(x) = − ln(1 − x).

APPENDIX B: ANALYTICITY OF hn ACROSS
THE CUT OF Z1/N

We prove the identity in Eq. (35). From Eq. (34), it follows
that for all integer m,

hn(kd,Zei2πm,q) = Zq/N

N

N−1∑
r=0

[ei2π(m−r)/N ]q

× fn(kd,Z1/Nei2π(m−r)/N ). (B1)

Note that the summation index r appears only in the unity
roots ei2π(r−m)/N , and the only role of the index m is shifting
these roots. Since r roams over 0, . . . N − 1, the effect of m is
limited to changing the order of summation of the same terms.
Hence the equality of Eq. (35).
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APPENDIX C: PROOF OF Eq. (37b)

From Eqs. (34) and (37a), it follows that

hn(kd,Z−1,q) = Z−q/N

N

N−1∑
r=0

e−i2πrq/Nfn(kd,Z1/Nei2πr/N ).

(C1)

By using the transformation r 
→ N − r ′, we get

hn(kd,Z−1,q) = Z−q/N

N

1∑
r ′=N

ei2πr ′q/Nfn(kd,Z1/Ne−i2πr ′/N )

= hn(kd,Z, − q), (C2)

where the last equality is due to the fact that the term r ′ = N

can be replaced by a similar expression with r ′ = 0.

APPENDIX D: Z-PLANE DYNAMICS OF
THE SECOND CHAIN

A typical map of singularities for a nonmagnetized chain is
shown in Fig. 12. The branch points and their corresponding
cuts, given in Eq. (36), are denoted by solid circles and
wiggly lines, respectively. There are six poles grouped in
three pairs that obey the expected symmetry, i.e., Zp1 = 1/Zp2 ,
Zp3 = 1/Zp4 , and Zp5 = 1/Zp6 . Pole trajectories as a function
of ω are shown by solid lines. The specific pole locations
marked by × and branch-point/cut locations correspond to
the frequency ωl marked in the dispersion inset. Since there
are several poles with trajectories that coincide with the unit
circle C1, in the figure, we have separated them by shifting
the trajectories outside (inside) C1 for poles with vg ≶ 0.
Starting at ω = 0 and at low frequencies, Zp1,3,5 (Zp2,4,6 ) are
located on the unit circle just below (above) the branch point
at Zb = e−ikNd (Zb = eikNd ), thus creating three light-line

FIG. 12. (Color online) Maps of singularities for the nonmagne-
tized chain with longitudinal chirality. There are six poles, three of
them denoted by thin (thick) lines correspond to modes with positive
(negative) group velocity. Note the symmetric locations of the poles,
indicating the chain reciprocity. The dispersion for poles that reside
on C1 are shown in the inset, color coded according to the pole trajec-
tories. ωi corresponds to the ith critical point in the pole trajectory.

modes with dispersion very close to β = ±ω/c. At the critical
frequency ω1, the distance of Zp1,2 from their respective branch
points increases rapidly thus creating plasmonic guided modes
that are detached from the light-line cone, as these poles still
evolve along the unit circle and reach point 2 at frequency ω2

(dispersion curves and pole trajectories in blue). They shift off
the unit circle as shown, creating the plasmonic mode upper
cutoff. These poles return at frequency ω3 to the unit circle
in point 3 thus creating the lower cutoff of a new plasmonic
mode. At point 4 and frequency ω4, they shift off the unit circle
and eventually cross the branch cuts and leave the principal
Riemann sheet. We note that up to ω4, poles Zp3,4 evolve near
their respective branch points, and then meet Zp1,2 at point
4 and as frequency increases, they shift away from the unit
circle (red trajectories). Likewise, Zp5,6 evolve along the unit
circle adjacent to the branch points up to frequency ω5 at point
5. Beyond that frequency, the distance from their respective
branch points increases rapidly thus creating plasmonic guided
modes that are detached from the light-line cone, as these poles
still evolve along the unit circle and reach point 6 at frequency
ω6 (dispersion curves and pole trajectories in green). Beyond
that frequency, they shift away towards the origin (Zp6 ) and
−∞ (Zp5 ).

When magnetization is applied, pole symmetry is lost (but
branch point/cut locations are invariant). Maps of singularities
for ωb/ωp = 5 × 10−3 are shown in Fig. 13 together with the
corresponding dispersion curves in the inset. Pole locations
marked by × correspond to the frequency ωl = 0.575625ωp

at which the one-way property exists. There is only a single
pole, Zp1 , that is located on the unit circle and away from the
branch point. All other poles are either off the unit circle thus
generating radiation modes that decay exponentially (Zp7 ),
or adjacent to the branch points (Zp2,4,6,3,5 ). Since the only
contributing pole Zp1 evolves along a trajectory that possesses
negative group velocity [see Eq. (14) and the discussion
thereafter], the chain Green’s function excites significantly
only towards n < 0.

FIG. 13. (Color online) The same as Fig. 12 but for the magne-
tized chain. There are now seven poles. Symmetry is lost, indicating
the chain nonreciprocity.
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