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Quasistatic resonance of a chemical potential interruption in a graphene layer and its polarizability:
The mixed-polarity semilocalized plasmon
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The chemical potential of a graphene layer can be locally interrupted by electrostatic gating or chemical doping.
When properly designed, electrically small local interruption can possess quasistatic resonance and be strongly
excited by electromagnetic field. This excitation generates a mixed-type semilocalized plasmon wave, e.g., it
launches TM mode within the interruption domain and TE modes into the surrounding layer. Since the resonance
is quasistatic, it is essentially independent of the interruption size and it exists also for sizes much smaller than
the corresponding wavelengths of the aforementioned modes. Furthermore, the interruption’s polarizability can
be defined and calculated. Unlike the conventional polarizability, which is defined directly via a particle’s dipole
response, here it is defined via the induced currents in the interruption and in its surrounding. We verify our
results by comparing them to full-wave numerical simulations. The results have potential applications in many
one-atom-thick metamaterials and devices.
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I. INTRODUCTION

One-atom-thick metamaterials made of, e.g., graphene lay-
ers, have attracted considerable attention. Local electrostatic
gating or chemical doping can induce local interruption of the
chemical potential in an otherwise-perfect infinite graphene
layer,1–5 attaining a “surface inclusion” or a “surface structure”
embedded in the graphene background. In Ref. 4 the scattering
of graphene plasmons by one-dimensional defects in the chem-
ical potential was studied via an integral equation procedure.
Dispersion of surface plasmons propagating on a graphene
layer with a one-dimensional conductivity modulation was
studied in Ref. 5. In Refs. 6 and 7 it has been shown that the
extreme case of a single-point defect in a graphene layer may
constitute an atomic surface plasmon resonator of subnanome-
ter scale. In Ref. 8 the polarizability of disjoint graphene nan-
odisks was used to study the absorption by an array of graphene
patches. It should be emphasized that in these previous studies,
patch or interruption resonance is based on interference of
internal waves; hence it is size dependent and not quasistatic.

Modeling multiscale problems, e.g., the design of metama-
terials and structures made of a large number of subwavelength
inclusions, can be efficiently addressed using polarizability
theory. The excitation of a subwavelength particle exposed to
a local exciting field EL

0 (the local field in the absence of the
particle) can be modeled as a dipolar moment p. The particle’s
internal dynamics is entirely encapsulated in its polarizability
α, defined via the relation p = αEL

0 . Interparticle interactions
are taken into account via the medium’s Green function. The
electric response of deep subwavelength metallic particles,
the associated quasistatic resonance, and the polarizability
were studied in a number of publications (see, e.g., Ref. 9).
The technique has been used for the study of one-dimensional
plasmonic particle chains,10–14 as well as for the study
of metasurfaces that consist of two-dimensional arrays of
resonating particles.15–19

Here we study the excitation physics and the polarizability
of an electrically small circular interruption of radius R in an
otherwise-perfect infinite graphene layer as shown in Fig. 1.
Since graphene layers can be modeled by local conductivities

down to nanometer scales,20 the latter and the former are
characterized by their surface conductivities σ1,2, respectively,
as obtained from the Kubo formula.21 We show that it may
exhibit a quasistatic resonance that is independent of R, and
takes place when �{σ1 + σ2} = 0. Due to the opposite signs
of the σ1,2 imaginary parts, this resonance possesses a unique
structure of a semilocalized mixed-modes plasmon; e.g., when
�{σ1,2} ≶ 0 the interruption itself (σ2) is of inductive nature,
supporting a TM mode with current confined essentially to
the interruption area, but also “spills over” to the surrounding
graphene layer (σ1) that is of capacitive nature and supports
a TE mode. See Fig. 1(b) for an example of the currents that
spills out to the graphene layer. The mixed polarity nature
of the excitation is shown in Fig. 2. We study this resonance
and also extend the concept of polarizability to this important
class of problems. If one can use polarizability to model the
response of a single interruption, interinterruption dynamics
in a system of many interruptions can be studied using the
Green function of a homogeneous medium in the presence of
a graphene sheet.22,23 Note, however, that the following issues
naturally arise:

1. While the electric charge and current occupy the entire
plane, the interruption’s dipole moment p and the ensuing
polarizability α are supposed to replace only the interruption
itself, and not the current and charge that are “all over” the
plane.

2. What, then, is the extent or component of the cur-
rent/charge that should be included in the evaluation of p
and α? And what should be left out?

3. The component of the current/charge that is not included
in the evaluation of p should be considered as a result of the
existence of p; i.e., it is driven by it. Hence, the current that
is included in the evaluation of p should be considered as a
source. What is the formulation that makes this distinction
unique?

4. To address these issues we provide below an equivalent
formulation and obtain an ensuing equivalent current ke that
exists on an infinite homogeneous graphene layer. ke is not the
actual current k. The relation between them is given below.
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FIG. 1. (Color online) (a) A circular interruption in a graphene
layer. (b) The normal field Ez (color map) and current (arrows)
responses to E0 = x̂E0 for R = 3 nm and parameters as in the nu-
merical example below, calculated by CST STUDIO at f = 62.7 THz.
Ez ranges between ±1.44 kv/m (red and blue colors). The surface
charge is given by η = 2ε0Ez. The current spills out of the interruption
domain, creating a semilocalized plasmon excitation.

Despite this fact, ke provides the interruption’s equivalent
dipole, as seen in our analysis and verified by full-wave
simulations.

The points raised above should be contrasted with conven-
tional cases of quasistatically resonating disjoint plasmonic
particles studied in Refs. 9–19, where the current and charge
are confined within the particle’s volume. It should also be
contrasted with Ref. 8 that deals with large, nonquasistatic,
and yet disjoint graphene disks. Thus we derive α via the
surface currents excited on the entire graphene layer by using
our specially tailored equivalent problem. Our result can then
be used in the design of electrically tuned one-atom-thick
metasurfaces, IR optical components, defects analysis, etc.
Moreover, the procedure presented here can also be applied
for an ab initio calculation of α of few atoms defects as in
Refs. 6 and 7.

II. FORMULATION

We define the problem as follows. Consider an infinite
graphene layer on a z = 0 plane, exposed to a localized circular
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FIG. 2. (Color online) The relation between the normal and
transverse fields as obtained from full-wave numerical simulations by
CST STUDIO, along the line y = 0 for an interruption with R = 5 nm
with parameters as in the numerical examples below, and at resonance.
The mixed-polarity property (TM inside, TE outside) is evident.
Essentially similar results are obtained along other lines and for
smaller values of R.

spot of a static electric field on a subwavelength domain with
radius R. The chemical potential would be locally interrupted,
leading to the surface conductivity of σ2 (σ1) for ρ < R

(ρ > R) according to the Kubo formula.21 The system and
a typical charge response are shown in Fig. 1. We define
[(E0,H0)] (E,H) as the total [un]interrupted fields excited
by a time harmonic source in the [absence] presence of the
interruption. Our goal is to study the interruption response in
terms of the excited currents and to qualify the interruption by
some polarizability α such that the total field in the interrupted
case, outside of the interruption domain, would be (E0,H0)
plus the fields of a dipole with moment p = αE0.

We start by solving for the surface current, which forms the
basis for deriving the dipole moment and the polarizability.
Since the latter is nothing but the interruption’s equivalent
representation, a rigorous mathematical definition of the
equivalent problem is in order. The uninterrupted fields obey

∇ × E0 = iωμH0, (1a)

∇ × H0 = −iωε E0 + δ(z)σ1 Et
0, (1b)

where the superscript t denotes the field’s tangential com-
ponent. The fields in the presence of the interruption
obey

∇ × E = iωμH, (2a)

∇ × H = −iωε E + δ(z)

{
σ2 Et ρ < R

σ1 Et ρ > R.
(2b)

We define the equivalent mathematical problem by introducing
a localized field-dependent surface current ke such that the
governing formulation possesses the same structure as that of
Eq. (1a), plus the localized term that lies on an uninterrupted
layer with σ1. Hence our equivalent formulation is

∇ × E = iωμH, (3a)

∇ × H = −iωε E + δ(z)σ1 Et + δ(z)ke, (3b)

where

ke =
{

(σ2 − σ1)Et ρ < R

0 ρ > R.
(4)

ke can be viewed as a source, and it compensates for the
presence of σ2. The scattered fields Es = E − E0 and H s =
H − H0 can be shown to obey exactly the same formulation
of Eqs. (3a)–(4). Furthermore, by comparing this formulation
for the scattered fields to Eq. (1a), we conclude that ke is the
relevant current component that determines the dipole moment
associated with the interruption. Now, in order to “close the
loop” we need to relate ke to the uninterrupted field E0.
Once this linear relation ke(E0) is known, the interruption’s
equivalent dipole moment p and its polarizability α are
obtained from

p = i

ω

∫
Sint

ke(E0)dS = αE0, (5)

where Sint is the interruption’s area. A few important points
should be emphasized. First, despite the fact that ke is the
quantity that determines the dipole excitation, it is not the true
physical current within the interruption area. The latter and the
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former are related via

ke = σ2 − σ1

σ2
k(r), ρ < R (6)

and ke = 0 for ρ > R. Second, note that this is a quasistatic
problem, since we assume that the interruption size is
electrically small (R � λ) with respect to the wavelength
of all possible wave spectra in the problem. (The shortest
wavelength in the examples below corresponds to the TM
mode of the graphene layer.) Finally, we note that once the
relation in Eq. (5) is derived, the fields at observation points
located sufficiently far from the interruption (say, r > 2.5R)
and either on or off the layer, can be described by the
dyadic Green’s function above homogeneous graphene,22

weighted by p.
We now derive the quasistatic solution for the actual current

k(ρ), from which ke and p are obtained via Eqs. (5) and (6).
Clearly, for an uninterrupted layer exposed to a static and
uniform electric field E0 = E0 x̂, one obtains a flow of a static
surface current k0 = k0 x̂ = σ1E0 x̂. In the presence of the
interruption, and under quasistatic excitation, we express the
total surface current as k ∼= k(0) + k(1), where the zero-order
term k(0) is a solution of a static problem and k(1) is a quasistatic
correction approximated via the time derivative of surface
charge density of the zero-order solution. As we shall see
below, k(1) may not be negligible in the domain of parameters
of interest. In the following we begin with k(0).

In statics ∇ × E = 0, which leads to ∇t × Et = 0, where
∇t is the transverse part of ∇. In addition, k(ρ) = σ Et (ρ),
where σ is a piecewise constant function of ρ and ρ = (ρ,φ) is
the polar coordinate on the 2D sheet. Hence a potential can be
defined by Et (ρ) = −∇t�(ρ). Moreover, charge conservation
requires ∇t · k(ρ) = 0 and hence ∇2

t �1,2(ρ) = 0 in the two
conductivity regions 1 and 2. Under the excitation E0 = E0 x̂
the potentials �1,2(ρ) are subject to the following conditions:

(1) �1(ρ → ∞) = −E0ρ cos φ.
(2) �2(ρ = 0) is regular.
(3) �1 = �2|ρ=R .
(4) σ1∂ρ�1 = σ2∂ρ�2|ρ=R .

The potential solution is given by the sum of primary
and secondary potentials �1,2 = �p + �s

1,2, where �p =
−E0ρ cos φ (representing the uninterrupted solution), and

�s
1(ρ) = A

R2

ρ
cos φ, �s

2(ρ) = Aρ cos φ, (7)

where

A = σ2 − σ1

σ2 + σ1
E0. (8)

Using Eqs. (6)–(8) and the conditions above, we calculate the
zero-order surface current distribution inside the interruption
domain:

k(0) = 2σ1σ2

σ2 + σ1
E0x̂, ρ < R. (9)

The current outside can be calculated as well, but it will not
be needed in the following derivations. From Eqs. (7)–(9)
it becomes clear that k(0)(ρ) resonates had �{σ1 + σ2} = 0
inside as well as outside the interruption domain. A surface
charge is accumulated in the interruption’s vicinity. It will be
calculated next and used to find k(1). Consider now the potential

outside the surface (z �= 0), governed by the Laplace equation.
Moreover, at z = 0 it must obey continuity with the potential
in Eqs. (7) and (8). One may readily verify that the following
superposition of the cylindrical harmonics cos(φ)J1(κρ)e−κ|z|,

�s(r) = cos φ

∫ ∞

0
dκκJ1(κρ)e−κ|z|F (κ), (10)

satisfies the Laplace equation in the two half-spaces z > 0
and z < 0 separately, and vanishes as |z| → ∞. F (κ) can be
obtained by imposing continuity between �s(r) and the on-
sheet potentials in Eq. (7), and by using the Bessel-transform
pair. Calculation yields

F (κ) = A
2R

κ2
J1(κR). (11)

Next, by employing the boundary condition for the normal
fields on z = 0 one may obtain the surface charge density
accumulated on the surface impedance sheet,

η(0)(ρ) = 4Rε0A cos φ

∫ ∞

0
dκJ1(κρ)J1(κR). (12)

Next, we relate k(1) to η(0) via charge conservation
∇t · k(1) = iωη(0). Using Eq. (12) one obtains

∇t · k(1) = B cos(φ) f (u), (13a)

where u = ρ/R and

B = 4iωε0A, f (u) =
∫ ∞

0
J1(su)J1(s)ds. (13b)

An exact solution to Eq. (13a) is, e.g.,

k(1) = x̂RBg(u), with g′(u) = f (u), (14)

that as with k(0) in Eq. (9), resonates having �{σ1 + σ2} = 0,
but needs an integration constant for it to be unique. Note that
the condition limu→∞ k(1) = 0, which makes sense physically,
may not yield the correct result since k(1) is a quasistatic
correction that is not valid far from the interruption domain.
However, in light of Eqs. (5) and (6) for α, we only need the
surface integral of k(1) over the interruption area; the specific
shape of g(u) is unimportant. We have

∫
ρ<R

k(1)dS = x̂2πR3B

∫ 1

0
ug(u)du = x̂B R3 C. (15)

Furthermore, note that f (u) and g(u) are dimensionless
functions independent of any physical parameter of the
problem. All the electrical parameters are in B. Hence C =
2π

∫ 1
0 ug(u)du is a universal constant that can be obtained

by a single one-parameter fitting to a full-wave numerical
solution. Following this procedure we obtained C = π/8. We
emphasize that this constant does not depend on any of the
problem parameters but only on the fact that the interruption
size is sufficiently small so that the first-order quasistatic
solution is valid.

Since k ≈ k(0) + k(1), we may use now Eqs. (15) and (9) in
Eqs. (5) and (6) to obtain α. The result is

α = πR2

−iω

[
2σ1σ2 + i

2

k0R

η0
(σ2 − σ1)

]
1

σ2

σ2 − σ1

σ1 + σ2
. (16)
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FIG. 3. (Color online) Analytical and numerical results for α as
a function of frequency: blue- �{α}, red- �{α}.

Note that α possesses resonance when �{σ1 + σ2} = 0. By
virtue of the quasistatic correction, Eq. (16) incorporates
approximately the interruption’s radiation loss and other
mechanisms such as the graphene layer absorption.

III. EXAMPLES

We turn now to compare our analytic results to a full-wave
solutions carried out by CST STUDIO.24 We calculate α for
several values of R, temperature T = 3 K, chemical potentials
μc1 = 0.15 eV and μc2 = 0.2 eV, and damping factor � =
2.7 meV. In Fig. 3 α is compared to full-wave simulations.
The resonance condition �{σ1 + σ2} = 0 is at f = 67.29 THz,
however, due to finite interruption size. A resonance redshift
ranging between 5% for the smaller interruption to 10% for the
largest one was observed and compensated in the figure (i.e.,
the analytic results were shifted leftwards by the corresponding
resonance mismatch). The polarizability is depicted as a
function of the frequency with R being a parameter. Note
the good matching of the resonance linewidths.

With these simulation parameters the background layer
and the interruption conductivities near resonance are σ1,2 ≈
∓i2.1 × 10−5 + 4.5 × 10−7. [Siemens] σ2 supports a TM
mode that is highly confined and with a relatively short
wavelength (≈22 nm), compared with the surrounding layer σ1

that supports a weakly confined TE mode with an approximate
wavelength of vacuum (≈4200 nm). With these parameters,
the ratio between the static and quasistatic terms of α is about
1:0.5 (1:0.2) for the interruption of D = 10 nm (D = 4 nm).
Therefore, as anticipated above, the quasistatic correction
cannot be ignored. We observe that the quasistatic resonance
condition extensively used in the context of local plasmons in
noble metals can also be used in graphene plasmonics to design
remarkably localized resonators. Next, we examine the validity
of the equivalent problem presented in Eqs. (1a)–(4) for the
definition of a disjoint dipole on a homogeneous graphene
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particle axis, a resonance redshift is observed. (b) The exciting field
is normal to the particles axis, a resonance blueshift is observed.
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FIG. 5. (Color online) (a,c) Magnitude and (b,d) phase of the
x and y components (cont. and dashed, respectively) of the dipoles
(p1,2) of the triangular configuration shown in Fig. 6. p3 is essentially
the same as p1, but with π added to the phase of p3,y . Blue lines:
analytic, magenta: full-wave solution.

layer. To that end, we calculate the resonance frequency shift
due to the coupling between three adjacent interruptions via
the dyadic Green’s function G(r,r ′) on an infinite graphene
sheet.22 Using the polarizability approach, a system of N

interruptions is governed by the matrix equation

α−1
m pm =

N∑
n,n�=m

G(rm,rn) pn + E0(rm), (17)

with m = 1, . . . N , and where αn,rn, pn are the nth inter-
ruption’s polarizability, center location, and dipole response,
respectively. A comparison between the polarizability-based
analytic formulation in Eqs. (16) and (17) and full-wave results
is shown in Figs. 4(a) and 4(b). In Fig. 3(a)[b] the excitation
field is parallel [normal] to the particles coaxis. In this case
the resonance frequency is lower [higher] than the resonance
frequency of a single interruption. The analytic result becomes
valid when the spacing between the particles is larger than
t ≈ 3D [t ≈ 2D]. In addition, note that large frequency shift
indicates strong coupling between the interruptions. Moreover,
it may be noticed that for a given interparticle spacing t the
frequency shift in the parallel case [Fig. 3(a)] is larger than
that in the transverse case [Fig. 3(b)]. Hence we conclude
that the interparticle interactions in the longitudinal case are
stronger—in accord with known results for particle chains in
homogeneous medium.13

In Figs. 5 and 6 we compare the excitation amplitudes and
phases of three interruptions located on the three vertexes of
an equal-sides triangle due to a ŷ-polarized plane wave that
hits the graphene layer. The spacing between the interruptions
is t = 1.5D. This small distance is chosen in order to

FIG. 6. (Color online) Charge distribution for the triangle config-
uration as obtained by CST: (a) lower resonance [Fig. 5(a) point A]
and (b) upper resonance [Fig. 5(a), point B].
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enhance the coupling effects. Although it is smaller than the
2 − 3D distance required for accurate results, the physics
is clearly revealed and with no qualitative differences in
the response. In Fig. 5 the magnitude and phase of the
x and y components (cont. and dashed, respectively) of
each dipole are shown. The blue lines present the excited
dipoles as obtained from the analytic results, whereas the
magenta lines present an approximation for the excited dipoles
obtained via sampling of the full-wave simulation current in
the center of each interruption and by the assumption that it
is uniform on the entire interruption domain. The exciting
field is y polarized. Due to symmetry, two modes can be
excited and observed. The lower [upper] resonance, marked
by a green circle at point A [B] in Fig. 5(a) is a “bonding,”
or inphase-like [“anti-bonding” or antiphase-like] mode. A
picture of its dipoles is shown in Fig. 6(a)[b]. Note that Fig. 6
only shows a “snapshot” of the system; the dipoles actually
oscillate in time. Also, the antiphase-like mode seems to be
associated with higher electromagnetic energy. This energy
is provided by the time-harmonic source (plane wave) that
excites the system.

IV. CONCLUSIONS

We have shown that an electrically small chemical potential
interruption in a graphene layer may possess a quasistatic reso-
nance that launches a mixed-type semilocalized plasmon wave:
a TM mode within the interruption domain, and TE modes
into the surrounding layer. By using an equivalent problem
formulation, we have derived the interruption’s polarizability
which enables one to interpret the interruption itself as an
equivalent source that is proportional to the local tangential
field, launching currents over the entire graphene layer. In
analogy to particles plasmonics, our polarizability can be used
to study the electrodynamics of one-atom-thick metasurfaces
made of a system of interruptions in an otherwise-perfect
graphene layer.
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