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Waves in almost periodic particle chains
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Almost periodic particle chains exhibit peculiar propagation properties that are not observed in perfectly
periodic ones. Furthermore, since they inherently support nonnegligible long-range interactions and radiation
through the surrounding free space, nearest-neighbor approximations cannot be invoked. Hence the governing
operator is fundamentally different from that used in traditional analysis of almost periodic structures, e.g.,
Harper’s model and almost Mathieu difference equations. We present a mathematical framework for the analysis
of almost periodic particle chains, and study their electrodynamic properties. We show that they support guided
modes that exhibit a complex interaction mechanism with the light cone. These modes possess a two-dimensional
fractal-like structure in the frequency–wave number space, such that a modal phase velocity cannot be uniquely
defined. However, a well-defined group velocity is revealed due to the fractal’s inner structure.
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I. INTRODUCTION

Linear periodic chains of plasmonic nanoparticles were
studied in a number of publications [1–21]. The interest stems
from both theoretical and practical points of view. Particle
chains were proposed as guiding structures and junctions in
[3–10], as surface waves couplers [11], as polarization-
sensitive waveguides [12], and as nonreciprocal one-way
waveguides and isolators [13,14]. The chain Green’s function
computation was considered in [15], and the modal features of
these periodic chains were studied deeply and thoroughly using
a general approach and spectral analysis in [9,10] and were
also considered in [16]. Green’s function theories revealing all
the wave constituents that can be excited in these structures,
including new features such as the continuous spectrum
wave not exposed before, were developed and discussed in
detail in [17–20]. Scattering due to structural disorder and
its effect on the chain modes were studied in [15] and
in [21].

Almost periodic one-dimensional (1D) structures were also
studied, mainly in the context of electron dynamics in periodic
magnetized crystals, or in almost periodic crystals [22–29]. In
these works the system dynamics is dominated by short-range
interactions that naturally lead to nearest-neighbor approxi-
mations and tight-binding formulation. The resulting discrete
Hamiltonian is of the general form Hψn = ψn+1 + ψn−1 +
λ cos(αn)ψn with irrational α/π , termed Harper’s model
(the names almost Mathieu or almost periodic Hamiltonian
are also used). This operator is known to possess a fractal
(Cantor set) spectrum. The dependence of the latter and the
associated eigenfunctions, or modes, on the parameters α,λ

were studied extensively. The existence of the critical value
of the modulation contrast λ = 2 has been observed both
theoretically and experimentally. For λ < 2 the corresponding
eigenfunctions are extended; i.e., the structure supports guided
propagating modes. Beyond the critical value (λ > 2) the
eigenfunctions become localized and no extended modes are
supported.
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In carefully designed settings, these previous studies may
apply also to optical systems. The works in [30–32] considered
a 1D array of closely spaced parallel optical waveguides, ar-
ranged as an almost periodic lattice. The optical mode trapped
in one waveguide may couple only to its two neighboring
waveguides and cannot radiate to the free space. Therefore
this system exhibits optical dynamics compliant with Harper’s
model. Other works on two-dimensional quasicrystals with
optical band gaps, localized modes, and directive leaky waves
from slablike domains were reported, e.g., in [33–35].

In this work we study the propagation of optical signals
in almost periodic particle chains. The chains considered
here—two typical examples of which are schematized in
Fig. 1—possess the following general properties. The par-
ticles are equally spaced by a distance d, and all possess
an identical resonant frequency governed for convenience
by a plasmonic-Drude model. The resonant wavelength is
much larger than the particles’ typical size. At least one
physical/geometrical property of the particles constitutes an
almost periodic sequence; in Fig. 1(a) this property is related
to the (spherical) particle’s volume, and in Fig. 1(b) it is related
to the (ellipsoidal) particle’s spatial orientation (see details
below). Due to these features, our structures differ from the
previously studied ones by several important physical aspects.
These differences pertain, first and foremost, to long-range vs
short-range interactions. Since the free-space dyadic Green’s
function describing the radiation from an excited particle
decays algebraically with distance, long-range interactions
between remote particles cannot be neglected and Harper’s
model ceases to hold. Studies of periodic chains show that the
long-range interactions are essential to expose the (possible)
interaction of the chain with the free-space radiation and
the ensuing light cone [9]. The light-cone and radiation
modes are present in our structures and play an intricate
role in determining the guided modes and chain dynamics—a
mechanism absent in Harper’s model. Second, the internal
particle resonance plays a role in the chain spectra; it eliminates
the critical passage from extended modes to localized ones.
Last but not least, we show that due to the fractal nature of
the chain spectra, phase velocity of the chain guided modes
does not exist. However, due to the fractal’s inner structure, a
definite group velocity exists.
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FIG. 1. (Color online) Examples of almost periodic particle
chains. Despite the apparent long-range order, the structures never
repeat themselves.

II. FORMULATION

We use the discrete dipole approximation. If an electrically
small particle with electric polarizability α is subject to an
exciting electric field whose local value in the absence of the
particle is EL, its response is described by the electric dipole
p = αEL. The equation governing the particle chain dynamics
is

ε0α
−1
m pm =

∑
n, n�=m

A[(m − n)d] pn, (1)

where A is the free-space dyadic Green’s function with source
and observer restricted to the chain axis,

A(z) = eik|z|

4π |z|
[
k2A1 +

(
1

z2
− ik

|z|
)

A2

]
, (2)

d being the interparticle distance, A1 = diag(1,1,0), A2 =
diag(−1,−1,2), and k is the free-space wave number. The
polarizability of a general ellipsoidal particle is provided
in [13,14]. The chain’s properties are determined by the
polarizability sequence {αn}∞n=−∞. If it is periodic, the chain
is periodic as well. Here we study the case where {αn} is
an almost periodic (a.p.) sequence; see [36] for a definition
of quasiperiodic and almost periodic sequences. Examples
are shown in Fig. 1. Figure 1(a) shows a chain of spherical
particles whose inverse volume (and hence α−1

n ) is modulated
by an a.p. sequence; e.g., 1 + δ cos(n). Another example, of
further interest, is shown in Fig. 1(b). It is a chain of ellipsoidal
particles, where the nth particle is rotated in the (x,z) plane by
�θ relative to the n − 1 particle. Then αn = TnαT−n where
Tn is a n�θ rotation operator. If �θ/π is irrational {αn} is
rendered a.p. We note that every a.p. sequence F(n) of scalars
or matrices may be expressed uniquely by the Fourier series

F(n) =
∑

k

ake
in
k . (3)

The set {
n}, called the spectrum of F(n), is at most a
countable set [36]. The additive group defined by the spectrum
is termed the module of F (n), and it is denoted by the set {
̂r}.

If the sequence of matrix polarizabilities αn is a.p., so is the
sequence α−1

n in Eq. (1). Then, from Eq. (3) we may represent
it as

α−1
n =

∑
r

are
in
r =

∞∑
r=−∞

âre
in
̂r , (4)

where ar are matrices and 
r are the elements of the
corresponding spectrum. The second summation is due to the
fact that with no loss of information one may extend the first

summation by replacing the spectrum {
r} by its additive
group {
̂r}, and add more matrix coefficients ân that may
or may not take the value 0. For convenience of subsequent
derivations, the summation is indeed treated as over the entire
module of {α−1

n }.
Borrowing from the theory of differential equations with

almost periodic coefficients [37], the solution can be expressed
as

pn = p̃ne
iβnd, (5)

where p̃n is by itself an almost periodic sequence whose
module must be contained within the module of the almost
periodic coefficients α−1

n in the governing formulation in
Eq. (1) (i.e., within the set {
̂r}). This lets us write the solution
as

pn =
[ ∞∑

�=−∞
��e

in
̂�

]
eiβnd . (6)

We seek a solution for the spectral vector sequence �� and
for β. Note that the physical meaning of β is different from
that seen in periodic systems, in the sense that it does not
exclusively control the phase accumulation from one particle
to its neighbor (or in the more general sense from one unit cell
to its neighbor). This phase accumulation is also governed by
the dominant frequency components in the expansion given in
Eq. (6). By using Eqs. (4)–(6) in Eq. (1) we obtain

ε0

∑
�′

∑
r

âr��′eim(
̂r+
̂�′ )

=
∑

�

⎡
⎣ ∑

q, q �=0

A(qd)��e
−i
̂�q−iβdq

⎤
⎦ eim
̂� , (7)

where all summations above extend from −∞ to ∞. This
equation holds several important properties which will allow
further simplification in particular cases. It is an equation
between two a.p. sequences, both displayed in their corre-
sponding formal Fourier representation. The term 
̂r + 
̂�′

is included within the 
̂� sequence itself. The uniqueness of
these expansions [36] implies that one must require equality
between the coefficients of identical frequencies. This imposes
the relation 
̂r + 
̂�′ = 
̂�. We denote by C� the set of all
pairs (r,�′) that satisfy the latter relation [beware: the pairs
(r,�′) ∈ C� satisfy �′ = � − r only in the spacial case where

̂� is linear with �]. Then Eq. (8) reduces to a difference
equation for the unknown spectral vectors ��,

ε0

∑
(r,�′)∈C�

âr��′ − D��� = 0, (8a)

where D� is a diagonal matrix, given by the summation

D� =
∑

q, q �=0

A(qd)e−iq(
̂�+βd)

= diag(D�x,D�y,D�z), D�x = D�y. (8b)

D� can be expressed in terms of the polylogarithm functions
Lis , for which efficient summation formulas exist (see [9,38]

045151-2



WAVES IN ALMOST PERIODIC PARTICLE CHAINS PHYSICAL REVIEW B 90, 045151 (2014)

and Appendix in [14]),

D� = k3

4π

3∑
s=1

usfs(kd,βd + 
̂�)As , (8c)

where (u1,u2,u3) = (1,−i,1),A3 = A2, and

fs(x,y) = x−s[Lis(e
ix+iy) + Lis(e

ix−iy)], (8d)

and where Lis(z) ≡ ∑∞
n=1

zn

ns is the sth-order polylogarithm
function.

III. ANALYSIS AND EXAMPLES

The spectral domain formulation in Eqs. (8a)–(8d) governs
the chain dynamics. Generally, it is not a tight-binding
formulation, and its properties depend on the sequence {âr}
which, in turn, is determined by the sequence of polarizabilities
{α−1

n }. The polarizability of a general ellipsoidal particle whose
principal axes are aligned with the reference Cartesian system
is given by

α−1 = α−1
s − ik3

6πε0
I, (9a)

where αs is the nonradiating (“static”) component of the
polarizability, obtained from

α−1
s = (ε0V )−1(χ−1 + L), (9b)

and where χ is the particle material susceptibility, I is the iden-
tity matrix, and V is the particle volume. L = diag(Nx,Ny,Nz)
where Nu are the depolarization factors that are given by
elliptic integrals. These factors depend only on the ratios
between the principal axes, and satisfy

∑
u Nu = 1 [39]. It is

important to emphasize that the expression in Eq. (9a) includes
radiation loss via the last imaginary term; i.e., it takes into
account the fact that the particle may radiate into the free space
around it and lose energy. Note that for deep subwavelength
particles this term is geometry independent.

Finally, we note that generally χ = χ (ω). Hence the parti-
cle possesses a resonance frequency ωr whenever Re{α−1

s } =
0, or

Re{χ−1(ωr )} = −L. (10)

For simplicity, in this work we assume an isotropic Drude
model for χ (ω).

Below we consider two specific examples of a.p. {α−1
n } and

study the corresponding chain dynamics.

A. The scalar case: Spherical particles

Here we examine a chain of spherical particles, as shown
in Fig. 1(a), with the modulated volume V −1

n = V −1[1 +
δ cos(n�θ )] where �θ/π is irrational. Since we have here L =
(1/3)I, α−1

n �→ α−1
n = α−1

s n − ik3/(6πε0) become scalars. The
Fourier series for the sequence α−1

n —i.e., the first series in
Eq. (4)—contains only 3 nonzero coefficients so α−1

n may be
written as

α−1
n =

1∑
r=−1

are
irn�θ (11a)

with coefficients

a−1 = a1 = δ

2
α−1

s , a0 = α−1, (11b)

where α ≡ αn|δ=0 and αs ≡ αs n|δ=0 correspond to a particles
whose volume modulation contrast shrinks to zero. We note
that the series in Eqs. (11a)–(11b) has a finite spectrum {
�};
it is the set {−�θ,0,�θ}. Hence, the module of α−1

n is the set

{
̂�} = {��θ}∞�=−∞. (11c)

By using Eqs. (11a)–(11c) in Eq. (8) we obtain the
difference equation for the pn’s spectral amplitudes ��:

M��+1 + Q��� + M��−1 = 0, ∀ � ∈ Z. (12)

Here M = ε0a1 and Q� = ε0a0 − D�. The D� coefficients are
obtained from Eqs. (8b)–(8d), with D� = D�x (D� = D�z) for
transverse (longitudinal) excitation.

Since �θ/π is irrational, the sequence Q� never repeats
itself. However, we emphasize that despite the structural
similarity between Eq. (12) and Harper’s equation, the former
is not a result of the tight-binding approximation. Furthermore,
while Harper’s model governs the lattice response itself,
Eq. (12) is written on the response’s spectral decomposition.
The effects of long-range interactions in our lattices are
encapsulated within the structure of D� or Q�. In addition,
the fact that the equation involves the �th spectral component
plus its two neighbors ±� only is due to the simplicity of
the particle’s polarizability; only three terms are involved
in the spectral decomposition in Eq. (11a). Generally, the
number of spectral neighbors involved in this equation is
strictly determined by the number of spectral terms in the
expansion of the a.p. sequence in Eq. (4). Finally, we note
that in the traditional Harper’s model the index-dependent
coefficient is real and is of a simple cosine form, while the
present formulation is generally complex and with a more
complicated dependence on �.

Equations of this type, with a general periodic or a.p.
complex Q�, were studied in [40], where sufficient conditions
for the existence of Bloch solutions for that equation were
developed. However, recall again that Eq. (12) is written for the
spectral decomposition of the chain modes; see Eq. (6). Hence,
a Bloch-wave solution of Eq. (12) implies a localized solution
for the chain response, and vice versa; a localized non-Bloch
solution of Eq. (12) implies a Bloch-wave solution (i.e., a
propagating mode) for the chain response. Thus, borrowing
from [40], we find that a necessary condition for the latter is

q− ≡ inf
�

|Q�| � 2 |M| . (13)

The result above defines the domain in the β,ω space in which
Bloch-wave solutions of the original a.p. difference equation,
Eq. (1), exist. It is used in our numerical examples below.

It is interesting to examine the chain dynamics exactly at
the particle resonance ω = ωr for lossless material (radiation
losses are still kept). In this case α−1

s n = 0 ∀n, hence α−1
n =

−ik3/(6πε0) ∀n; the a.p. character is lost. The chain behaves
exactly as a perfectly periodic one, which always possesses
a trapped mode with well-defined real β(ωr ) [9]. This fact
can also be observed mathematically directly from the a.p.
formulation in Eqs. (12)–(13), as shown in Appendix A. In the
presence of material loss α−1

s n �= 0 at resonance; hence formally
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the above results do not hold, but they may still provide an
approximate solution for low loss material.

When ω �= ωr or/and when material loss is present, the
structure may still support Bloch modes, but their analysis
and the associated dispersion are not as straightforward and
transparent as the case of precise resonance. To obtain a
condition for the existence of a nontrivial solution sequence
{��}∞�=−∞ to Eq. (12), we employ a procedure as in [41] (it is
not limited to periodic medium) and obtain a double continued
fraction relation,

K(+)
� K(−)

�−1 = 1, (14a)

where

K(±)
� = 1

q�
− 1

q�±1
− 1

q�±2
− · · · (14b)

and where q� = Q�/M . Formally, the dispersion is obtained by
the “solution pairs”—the pairs (ω,βd) for which this relation
is satisfied. In Appendix B we prove the following important
properties:

(1) All solution pairs are � independent.
(2) If (ωs,βsd) is a solution pair, so is the pair (ωs,βsd +

�θ ).
(3) If {��}� and {��

� }� are the coefficient sequences that
correspond to (ωs,βsd) and (ωs,βsd + �θ ), respectively, then
they are related by a simple shift: ��

� = ��+1.
Generally, for each ωs there could be more than a single

wave number βs . We number the latter as β(n)
s . From property

2 it follows that for any solution pair (ωs,β
(n)
s d), there exist

infinitely many additional solution pairs (ωs,β̄
(n)
s m) where m =

±1,±2, . . ., and where β̄(n)
s m = β(n)

s d + m�θ . Now let [x]π−π

be the modulo 2π of x, shifted into the interval [−π,π ):

[x]π−π = x − 2π 
x/(2π )� , (15)

where 
·� denotes the nearest integer (±0.5 go up). The
pairs (ωs,[β̄(n)

s m]π−π ),m = ±1,±2, . . . form an equivalent set of
solution pairs, obtained uniquely from the infinite set discussed
above. For each ωs and n, denote the set of the infinitely many
corresponding [β̄(n)

s m]π−π ’s where m roams on Z by B(n)(ωs).
Since �θ/π is irrational, B(n)(ωs) is dense in the interval
[−π,π ) and so is B(ωs) = ⋃

n B
(n)(ωs) (at least). Due to the

above, additional properties are observed:
(4) For any ωs that admits a nontrivial solution, the sets

B(ωs),B(n)(ωs) always contain points inside the light cone
(|Re{β}| < ω/c).

(5) For any such ωs , it is sufficient to find the solutions
β(n)

s d within an arbitrary interval of length �θ in [−π,π ). All
other solutions are obtained by m�θ shifts.

(6) For any such ωs and for a given n, the effective wave
number associated with the coefficient �� is [β̄(n)

s � ]π−π .
Property 4 has far reaching ramifications. In open struc-

tures, spatial harmonics with wave number smaller than
k = ω/c always couple to the free space around the structure.
Hence, formally, there are infinitely many �′ for which
|Re{[β̄(n)

s �′]π−π }| < kd and the corresponding coefficients ��′

leak energy out. However, recall that the sequence {��}∞�=−∞
is a nontrivial vector solution of Eq. (12) so it must retain the
same ratio between the sequence elements, independently of
the specific values of β. As a result, if there is at least one

nonvanishing coefficient ��′ for which |Re{[β̄(n)
s �′]π−π }| < kd,

then the entire modal solution would experience exponential
decay. The rate of decay depends on the number of such
�′’s, how deep inside the light cone they reside, and their
magnitude ��‘ relative to the spatial harmonics that reside
outside of the light cone. Since all the spatial harmonics must
decay at the same rate (in order to conserve their relative
magnitudes), all the wave numbers [β̄(n)

s �′]π−π should have the
same imaginary part. Recall now that a localized solution for
the chain mode implies an extended type Bloch-wave solution
of Eq. (12) (for the ��’s), which evidently must have infinitely
many nonvanishing coefficients inside the light cone. Hence,
in contrary to Harper’s model, all localized modes in our a.p.
chain must leak energy to the free space and cannot survive
for a long time.

To contrast, recall that only solutions that provide a
localized coefficient sequence {��}� generate chain Bloch
waves. These solutions may possess the property that the wave
numbers of all nonvanishing �� would reside outside of the
light cone, thus supporting trapped modes. Below, we look for
these solutions numerically in the domain defined by Eq. (13).

Finally, although the proper way to analytically define and
study the dispersion relation is to use Eqs. (14a)–(14b), as done
above, we found it very inconvenient numerically. Therefore,
to get the dispersion we truncate the infinite matrix in Eq. (12)
to a finite equation and solve it by searching numerically for
pairs (ω,βd) for which the matrix is rank deficient. Naturally,
some clipping of the data occurs, meaning that we set some
threshold and treat only ��’s which surpass the threshold.
This has no significant effect on the solution accuracy since
dealing with the guided modes implies a localized nature of the
coefficients as mentioned before. To summarize, we choose a
priori frequencies within the boundaries in Eq. (13), seek for
solutions with diminishing values of ��, and set the threshold
in values well below the diminishing tail of the �� distribution.
Typical values were below 10 orders of magnitude relative to
the maximal ��. As shown below, this approach can provide
very accurate results when compared to an actual simulation
of an excited particle chain.

To demonstrate the properties discussed above, consider a
chain with d = λp/30, δ = 0.5, and �θ = 0.4 radians. We
applied the numerical approach described above to compute
the solution pairs (ωs,[β̄

(n)
s � ]π−π )—i.e., frequencies and spatial

wave numbers—and the corresponding excitation magnitudes
��. The results are shown in Fig. 2, color-coded according
to the ��’s magnitudes. We emphasize that although these
pairs are solutions of the dispersion relation defined by
Eqs. (14a)–(14b), the results should not be perceived as a
“dispersion” in the usual sense. That is, a single point in the
chart does not constitute a chain solution. Rather, all points
in the charts at a given frequency are excited, each with its
own excitation magnitude, in order to constitute together a
wave solution. Hence, we refer to Fig. 2(a) as the excitation
chart. This chart possesses a fractal-like nature in the sense that
formally the band depicted in the figure is filled with solution
pairs, due to the fact that the setB(n)(ωs) is dense in the interval
[−π,π ).

The results shown in the excitation chart imply that it is
impossible to define a single or even a finite set of phase
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FIG. 2. (Color online) (a) The calculated excitation chart in the
(ω,Re βd) plane for δ = 0.5, �θ = 0.4. Here � = −45 . . . 45. Solid
black lines represent the light cone β = ω/c. (b) Zoom-in on the
frequency range selected for the numerical simulations. (c) The
imaginary part of βd . Dashed lines show the frequencies for which
significant transition occurs in the magnitude of Im{βd}.

velocities that will characterize the propagating modes along
the chain. However, an inner structure of different but parallel
“branches” is clearly observed, along which all solution pairs
are ordered. Hence, it is possible to define a group velocity as
the slope. As we show below, this uniquely defined velocity
is consistent with the properties of wave-packet propagation
along the chain. Panel (b) zooms in a selected region, showing
better this inner structure.

The wave numbers [β̄(n)
s � ]π−π may be complex. Our numeri-

cal solutions for their values verified what has been predicted
in the discussion following properties 4–6: all possess the
same imaginary part. Panel (c) shows this calculated imaginary
part of βd. It is clear that when a significant branch in the
excitation chart (one with color of dark red) enters the light
cone, the imaginary part increases dramatically, whereas when
it resides outside the light cone, Im{βd} is too small to be
calculated precisely (we left the value 10−9 since it is the
smallest value where our calculations are reasonably precise
and in fact Im{βd} may become much smaller).

To examine the validity of this chart we simulated the
response of a chain of 10 000 spherical particles, excited by
forcing a ẑ-directed unit dipole moment on the central particle
at two different frequencies [both within the inset in Fig. 2(b)].
Figure 3(a) shows the chain response at ω/ωp = 0.563495.
According to the excitation chart, at this frequency all the ma-
jor branches of the excitation curve are outside the light cone.
Consistent with this observation, we see from Fig. 3(a) that
no visible attenuation is noticed. Figure 3(b) shows the spatial
Fourier transform of the response in Fig. 3(a). The �θ spacing
between the peaks is also visible. The red dots, representing the
spatial harmonics as predicted by the excitation chart, along
with the corresponding excitation amplitudes, also show very
good agreement with the direct calculation peaks. Next, we
look into the response for the frequency ω/ωp = 0.567057,
displayed in Figs. 4(a) and 4(b). According to Fig. 2(b), at this
frequency a significant branch of the excitation chart resides
inside the light cone. Hence, although very mild, attenuation
is visible in the response shown in Fig. 4(a). The value of
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FIG. 3. (Color online) Response of a finite almost periodic parti-
cle chain for ω = 0.563495ωp . (a) The dipole intensity as a function
of z. (b) Fourier transform of the response. The red dots indicate the
peaks predicted by the chart in Fig. 2.

Im{βd} predicted by Fig. 2(c) is 4.09 × 10−5. This implies
an attenuation by about 16% over 80λ where λ = 2πc/ω.
From the simulation we obtain attenuation of 15.9% so the
match is very good. Figure 4(b) shows the Fourier transform
of this response (blue), and compares it to the data predicted
by the excitation chart (red dots). Again, excellent agreement
is observed. Note the two peaks inside the light cone that
provide the radiation-loss mechanism that leads to the response
attenuation.

Next, we examine how the modulation frequency �θ affects
the range of frequencies for which propagating modes may
be excited. The results are displayed in Fig. 5. This plot
shows a structure which has many features that resemble
Hofstadter’s butterfly [22]. The fractal nature is clearly visible.
The frequency range for which guided modes exist, predicted
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FIG. 4. (Color online) Response of a finite almost periodic parti-
cle chain for ω = 0.567057ωp . (a) The dipole intensity as a function
of z. (b) Fourier transform of the response. The red dots indicate the
peaks predicted by the chart in Fig. 2.
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FIG. 5. (Color online) Excitable frequencies as a function of the
modulation frequency �θ . White areas represent frequencies for
which guided modes exist.

by Eq. (13), is ω/ωp ∈ [0.5316,0.6093] and is used as limits
for the vertical axis.

Note that the limit �θ = 0 corresponds to a conventional
periodic chain of identical spheres. In this case both the
spectrum and module of α−1

n collapse to a point; see Eq. (11c).
Then Eq. (12) governing �� becomes shift invariant since Q�

is rendered � independent. Moreover, the shift-and-duplicate
process described in points 1–6 and in Eq. (15) produce the
same dispersion ∀ � as the shift itself is zero. Hence the fractal
structure of the excitation chart disappears, and the conven-
tional chain dispersion is reconstructed.

Finally, it is possible to excite several frequencies together,
and observe the chain response to a pulse-excitation. Towards
this end, we have simulated the chain response in the
time domain due to a ẑ-directed dipole excitation of the
central particle at 30 equally spaced frequencies in the range
ω = [0.57,0.5725]ωp. The frequencies are weighted by a
Hamming window. This excitation creates a pulse whose
temporal width is about 400Tp where Tp is the oscillation
period of ωp. Snapshots of the chain response as a function
of z, at four equally spaced times, are shown in Fig. 6.
This response shows a pulse that preserves its shape while
propagating along the chain at constant velocity. This velocity
is consistent with the local slopes of the inner structure revealed
in Figs. 2(a)–2(b). Hence, as predicted, although a phase
velocity cannot be defined, a uniquely defined group velocity
does exist.

B. The vector case: Rotating ellipsoidal particles

We now turn to analyze the chain presented in Fig. 1(b). This
chain is a.p. for irrational �θ/π . Many of the results reported
in Sec. III A hold here, and particularly the formal properties

10 15 20

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

z/λ

p z

t/Tp=40000
t/Tp=41500
t/Tp=43000
t/Tp=44500

FIG. 6. (Color online) A pulse propagating through the a.p. chain
of modulated spherical particles.

1–6 discussed there. However, there are some important
differences. First and foremost, due to the ellipsoids rotation
the longitudinal and transverse polarizations are coupled, and
the general matrix formulation in Eqs. (8a)–(8d) cannot be
reduced to a scalar one. Also, unlike the scalar case, here the
ideal (lossless material) a.p. chain does not possess a solution
identical to that of a perfectly periodic one. Last but not least,
in our numerical calculations and simulations we were not
able to find a case in which a significant spatial harmonic
enters the light cone. Hence, we may conclude that the modal
solutions of this chain are “better isolated” from the free space
surrounding it, and their attenuation due to radiation loss is
practically irrelevant. This observation, although based for
the moment on numerical simulations, may have important
practical implications.

From the almost-periodicity we again assume the solution
given in Eqs. (5)–(6), which will take the full vector nature
this time. Writing α−1

m explicitly we obtain

α−1
m = Tmα−1T−m, (16)

where α is the polarizability of the reference ellipsoidal particle
and Tm is the rotation operator by m�θ in the (x,z) plane.
The entries of this matrix are given in Appendix C. Note that
although the angle of rotation from one particle to its neighbor
is �θ the spectrum of the polarizability sequence is the set
{
n} = {−2�θ,0,2�θ} from which we write the module of
α−1

m as {
̂r} = {2r�θ}∞r=−∞. Hence the decomposition of the
sequence α−1

m according to Eq. (4) is

α−1
m =

∞∑
r=−∞

âr eir·2�θm, (17)

and in our specific case all the matrices âr are the zero matrix
except r = −1,0,1, for which they are identical to ar . These
matrices are also listed in Appendix C. Since there are again
only three terms in this expansion, the dynamics formulation
in Eqs. (8a)–(8d) reduce to a form identical to Eq. (12), but of
matrix nature

M��+1 + Q��� + M��−1 = 0, ∀ � ∈ Z, (18)

where M = ε0a1 and Q� = ε0a0 − D�.
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FIG. 7. (Color online) (a) Excitation chart for a chain of rotating
ellipsoids. (b) A zoomed view.

For numerical example, we consider a chain with �θ =
0.4rad, and prolate ellipsoid aspect ratio of 0.9. The corre-
sponding excitation chart is shown in Fig. 7. As with the
scalar case, it possesses a fractal-like structure in the sense
that a frequency band is filled with solution pairs; a phase
velocity is hard to define. However, an inner structure of
parallel lines is identified, along which all solution pairs (ω,β)
are ordered. The corresponding slope can be associated with
definite group velocity (see below). We found numerically
that all the corresponding wave numbers were real. This can
be attributed to the fact that at the frequency range shown, the
weight of |��| that resides inside the light cone is overwhelmed
by those that reside outside it.

Figure 8(a) shows the chain response due to a x̂-directed
unit dipole excitation at ω = 0.536445ωp. No attenuation is
observed over propagation distances of hundreds of wave-
lengths. In Fig. 8(b) we show the corresponding Fourier
transform (blue) compared to the data of the excitation chart
(red dots). Excellent agreement is seen. Note that there are no
significant peaks inside the light cone.

Finally, Fig. 9 displays the chain response to a point dipole
excitation that consists of 100 equally spaced frequencies in the
band ω = [0.546213,0.546324]ωp , weighted by a Hamming
window. A pulse that preserves its shape while propagating
with a constant group velocity is observed.
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0.1

1

z/λ

−1 −0.5 0 0.5 1
10

−5
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0

β d / π

(b)

(a)

FIG. 8. (Color online) The response of a finite chain to a dipole
excitation.

0 50 100 150
−4

0

4

z/λ

p z

0 50 100 150
−4

0

4

z/λ

p x

t/Tp=50000
t/Tp=80000
t/Tp=110000
t/Tp=140000

t/Tp=50000
t/Tp=80000
t/Tp=110000
t/Tp=140000

FIG. 9. (Color online) A pulse propagating through the ellip-
soidal particle chain.

IV. CONCLUSIONS

Theoretical analysis of almost periodic particle chains
was presented, and a fractal-like dispersion relation, termed
here as the excitation chart, was obtained. New chain modes
existing in a.p. particle chains were extracted and confirmed
by simulations. It is shown that while phase velocity cannot
be uniquely defined, these guided modes do possess a
well-defined group velocity due to the inner structure of the
fractal-like excitation chart. An intricate radiation mechanism
that depends on the number of significant spatial harmonics
inside and outside the light cone has been observed.
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APPENDIX A: A SOLUTION TO EQUATION (12) AT
RESONANCE FOR LOSSLESS MATERIAL

We examine Eqs. (12)–(13) exactly at the particle resonance
ω = ωr for lossless material but with radiation loss. In this
case α−1

s = 0 hence M = 0, and Eq. (12) reduces to the
requirement Q��� = 0 ∀ �. Obviously, this can be satisfied
for every specific choice of �′ provided that

�� = 0 ∀ � �= �′, (A1a)

��′ �= 0, Q�′ |ωr
= 0, (A1b)

and the last equation implies

D�′ |ωr
= −ik3

r /(6π ), (A1c)

where kr = ωr/c. Now note that Eq. (A1c) is identical in
form to the dispersion relation of the modes of conventional
periodic particle chains [9] and thus always possesses a
solution at resonance. Let βp(ωr ) be that solution. Then at
resonance β of our a.p. chain must satisfy [use Eq. (11c) in
Eqs. (8b)–(8c)]

βd + �′�θ = βp(ωr )d. (A2)

Since this solution is associated with a single nonzero
coefficient ��′ , it constitutes a Bloch solution of the a.p. chain.
Furthermore, using this fact in Eq. (6), we find that at resonance
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the solution of the corresponding periodic chain always holds
for its a.p. counterpart.

APPENDIX B: PROPERTIES OF THE
CONTINUED-FRACTION DISPERSION EQUATION (14)

First, we note that K(±)
� satisfy the following property:

1

K(±)
�

= q� − K(±)
�±1. (B1)

Now assume that Eq. (14a) is satisfied by a pair (ω0,β0) and
rewrite it as

1

K(+)
�

= K(−)
�−1. (B2)

But with Eq. (B1) the dispersion relation in Eq. (B2) can be
written as

K(+)
�+1 = 1

K(−)
�

. (B3)

The last equation is identical to Eq. (B2) subject to the shift
� �→ � + 1. Hence, any solution pair (ω0,β0) is � independent,
as stated in property 1 in Sec. III A. Furthermore, note that from
Eq. (8c), from Eq. (11c), and from Eq. (12), the dependence
of q� on � and β has the form q�(β) = q(βd + ��θ ). Hence,
by substituting the solution pair (ω0,β0) into Eq. (B3), one
reconstructs the dispersion in Eq. (B2) but with βd + �θ . This
proves property 2 in Sec. III A. Finally, property 3 in Sec. III A
follows directly from the above and from the dependence of
Q� on �θ .

APPENDIX C: THE POLARIZABILITY SEQUENCE OF ROTATING ELLIPSOIDS CHAIN
AND ITS FOURIER DECOMPOSITION

The entries of the α−1
m are given by

αi
m,(11) = αi

xx + αi
zz

2
+ αi

xx − αi
zz

2
cos 2m�θ + αi

zx + αi
xz

2
sin 2m�θ, (C1a)

αi
m,(13) = αi

xz − αi
zx

2
+ αi

xz + αi
zx

2
cos 2m�θ + αi

zz − αi
xx

2
sin 2m�θ, (C1b)

αi
m,(22) = αi

yy, (C1c)

αi
m,(31) = αi

zx − αi
xz

2
+ αi

xz + αzx

2
cos 2m�θ + αi

zz − αi
xx

2
sin 2m�θ, (C1d)

αi
m,(33) = αi

xx + αi
zz

2
+ αi

zz − αi
xx

2
cos 2m�θ − αi

zx + αi
xz

2
sin 2m�θ, (C1e)

where αi
m = α−1

m is the inverse polarizablity of the mth particle and αi = α−1 is the inverse polarizability of the reference particle.
The corresponding Fourier coefficients according to Eqs. (C1a)–(C1e) are

a0 =

⎛
⎜⎝

1
2αi

xx + 1
2αi

zz 0 1
2αi

xz − 1
2αi

zx

0 αi
yy 0

− 1
2αi

xz + 1
2αi

zx 0 1
2αi

xx + 1
2αi

zz

⎞
⎟⎠, a1 = (a−1)∗ , (C2a)

a−1 =

⎛
⎜⎝

1
4αi

xx − 1
4i

αi
xz − 1

4i
αi

zx − 1
4αi

zz 0 1
4i

αi
xx + 1

4αi
xz + 1

4αi
zx − 1

4i
αi

zz

0 0 0
1
4αi

xz + 1
4i

αi
xx + 1

4αi
zx − 1

4i
αi

zz 0 − 1
4αi

xx + 1
4i

αi
xz + 1

4i
αi

zx + 1
4αi

zz

⎞
⎟⎠. (C2b)
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