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Confluent with the single dimension of time, breach of time-reversal symmetry is usually perceived as a
one-dimensional concept. In its ultimate realization—the one-way guiding device—it allows optical
propagation in one direction, say þz, and forbids it in the opposite direction −z. Hence, in studies of time-
reversal asymmetry the mapping t↦ − t is naturally associated with z↦ − z. However, strongly
nonreciprocal or one-way nanoscale threads can be used to weave metasurfaces thus adding dimensions
to this concept. In this new family of surfaces the aforementioned association cannot be made. An example
of appropriate threads is the planar one-way particle chains based on the two-type rotation principle. The
resulting surfaces—the metaweaves—possess generalized nonreciprocity such as “sector-way” propaga-
tion, and offer new possibilities for controlling light in thin surfaces. We study several metaweave designs
and their asymmetries in the wave-vector space.
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Strongly nonreciprocal structures and one-way propaga-
tion schemes have attracted considerable attention in the last
decade. Numerous different configurations were suggested
to create one-way structures; most of them share a common
concept. First, one violates Lorentz’s reciprocity, either by
making the susceptibility χ asymmetric using magnetization
or by time modulation of χ . Hence, propagation in opposing
directions possesses different sets of features. Then, another
mechanism (e.g., geometric) is employed to make one set
preferable, yielding one-way behavior. One-way total reflec-
tion from infinite periodic magneto-optical (MO) layers was
demonstrated in Ref. [1]. In other configurations, one-way
behavior exists at the interface between two photonic
crystals (PhCs), or between a PhC and a metal, where at
least one of them consists of MO or gyromagnetic material
[2–8]. Photonic topological insulators based on edge states
between two bianisotropic metamaterials were suggested in
Ref. [9]. In all these schemes the one-way edge states are
assumed to be completely separated from the surrounding
free space by the semi-infinite supposedly impenetrable
structures on both sides. One-way transmission through a
screen assembly composed of a perforated perfect electric
conductor placed at the interface of a MO medium is shown
in Ref. [10]. Likewise, one-way transmission through
combined screens of MO material and ϵ-near-zero material
[11], through combined screens of MO and negative-ϵ
materials [12], or through a screen of magnetized ϵ-near-
zero material in a Voigt configuration [13], were suggested.
Nonmagnetic one-way behavior was achieved by time-
modulation of ϵ [14,15]. In all the schemes above, the
transverse dimensions of the one-way structure must be of
several wavelengths (or several PhC periods) to operate
properly.
One-way guiding structures consisting of a single linear

chain of nanoscale plasmonic particles were suggested in

Refs. [16–19]. These studies include analytical models
based on the discrete dipole approximation (DDA), and
full-wave simulations with material loss and finite particle
size verifying the one-way property for realistic parameters.
The underlying physics is based on the interplay of two
types of rotations: geometric and electromagnetic. An
example is shown in Fig. 1(a). A chain of plasmonic
particles supporting trapped plasmonic modes is exposed
to transverse magnetization B0 ¼ ẑB0. B0 induces longi-
tudinal rotation of the chain modes: the excited dipole in

FIG. 1 (color online). A basic one-way thread that can be used
to weave surfaces, and our metaweaves. (a) A planar chain of
plasmonic ellipsoids with transverse magnetization and longi-
tudinal chirality, supporting one-way guiding. (b)–(d) Some
optional weaves, subject to a bias magnetization B0 ¼ ẑB0. (b)
A “snug” rectangular weave of two identical chains with Δθ ¼
60° (Dx ¼ Dy ¼ 3d). (c) A tight rectangular weave of the same
chains. (d) A tight hexagonal weave of any two of the three chains
with Δθ1;2;3 ¼ 60°; 75°; 15°. The rectangular period is marked by
dark ellipsoids.
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each particle rotates in the ðx; yÞ plane. Then, a longitudinal
chirality is introduced by using nonspherical particles that
rotate in the ðx; yÞ plane, with rotation step Δθ, as shown
in the figure. Two-type rotations coexist in a single plane,
and their interplay enhances nonreciprocity and creates
one-way guiding [17]. This structure has several appealing
properties: (a) It possesses nanoscale transverse size.
(b) Propagation in the “forbidden” direction decays by 2
orders of magnitude over distances of OðλÞ. (c) B0 is
weaker than other magnetization-based approaches. (d)
Since both rotations take place in a single plane coinciding
with the chain axis, particle dimension in the ẑ direction
is unimportant; one may use flat ellipsoidal flakes. Hence,
the structure is flat, amenable to planar fabrication.
The purpose of the present work is to generalize the one-

dimensional concept of broken time-reversal symmetry,
by suggesting the metaweaves. Being a nanoscale wide,
flat, one-way “thread,” the longitudinal-chirality chain in
Fig. 1(a) may be used to “weave” metasurfaces that add
dimensions to the concept of broken time-reversal sym-
metry. In these structures the natural association of the
1D mapping t↦ − t with the 1D mapping z↦ − z, so
commonly used in studies of time-reversal asymmetry,
cannot be made. Rather, the former needs to be associated
with a higher dimensional mapping in the plane. To
characterize this association and the ensuing optical behav-
ior we define the notion of sector-way propagation; a
structure is said to be ϕ sector-way if, when excited by a
point source, it allows propagation only into a cone whose
vertex angle is ϕ. Our metaweaves possess sector-way
propagation dynamics and offer new possibilities for
controlling the flow of light in a plane.
There are many ways to weave a surface. Some examples

are shown in Figs. 1(b)–1(d). The most natural choice is the
“snug” weave, defined as the case where the weave period
(= interthread distance) matches the chain period. The
“tight” weave is defined as the case when the interchain
distance is the same as the interparticle distance within the
corresponding single chain. The weave periods in the x̂; ŷ
directions Dx;Dy for the snug and tight weaves coincide
with the corresponding chains period.
Due to interthreads coupling, the metaweave properties

may not always be inferred by a mere “product” of the
single threads. Nevertheless, sector-way propagation is
observed even in tight weaves, reflecting the robust nature
of the two-type rotation principle and its compatibility for
multidimensional nonreciprocity.
Our weaves are systematically structured as follows.

All particles possess the same shape, differing only by
rotation. Them; n lattice location rm;n and rotation θm;n, are
given by

rm;n ¼ ma1 þ na2; (1)

θm;n ¼ mΔθ1 þ nΔθ2: (2)

Here a1; a2 are the fundamental lattice vectors along which
the chains are weaved, and Δθ1;2 are the corresponding
rotation steps. In tight weaves all lattice points are occupied
by a particle, but every nontight weave possesses empty
points. We denote by P the set of all occupied points.
We use the DDA to study our metaweaves. Under the

DDA, a particle response to an exciting local field EL

(the field at the particle’s location, in the absence of the
particle), is described by its dipole moment p ¼ αEL,
where α is the particle polarizability matrix. It formally
holds when the particle size Dp is much smaller than λ and
when the interparticle distance d ≫ Dp. However, studies
show excellent agreement with exact solutions even when
d ¼ 1.5Dp [20]. Also, full wave simulations with finite
particle size and material loss show that the one-way chains
dynamics is predicted well by the DDA [17,18]. Note that
B0 affects only the xy; yx entries of α. Hence, the z
components of α can be ignored, rendering α a 2 × 2
matrix, and p a two-element vector. In our weaves, the m; n
particle polarizability αm;n is

αm;n ¼ T−θm;n
αTθm;n

; (3)

where Tθ is a rotation by θ operator in the ðx; yÞ plane, and
α is the polarizability of a reference ellipsoidal particle.
A Drude-model α of a magnetized ellipsoid that takes into
account the particle’s radiation loss is used here (see, e.g.,
Ref. [17]). We assume lossless material. It has been shown
that material loss does not change essentially the one-way
thread properties if one uses much denser chains, but in this
case valid modeling requires full-wave simulations [17].
For our structures this is beyond currently available
computing power. With the definitions above, the surface
modes are governed by the difference equation

pm ¼ αm

X

m0∈Pm

Gðrm; rm0 Þpm0 ;m ∈ P; (4)

where m (m0) denotes the integers pair m; n (m0; n0).
Gðr; r0Þ is the dyadic Green’s function [21]; hence,
Gðr; r0Þp gives the electric field at r due to a dipole p at r0.
The set Pm is the set P excluding the point m.
The eigensolutions of Eq. (4) constitute the surface

modes (i.e., in-plane propagation). This equation can be
reduced to a finite matrix by exploiting the weave perio-
dicity. We find that using the rectangular periodicity is the
most convenient and efficient approach even for hexagonal
weaves, mainly because symmetry-based k-space reduc-
tions (e.g., irreducible Brillouin zone) cannot be applied
due to loss of reciprocity. For example, the parallelogram
period of the lattice in Fig. 1(d) obtained from the
hexagonal lattice vectors consists of 36 particles, while
the rectangular periodicity cell consists of only 12 particles.
Hence, we define P0 as the restriction of P to a reference
rectangular period containing the origin. P0 consists of M
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particle locations r1;…; rM, with the corresponding M
polarizabilities α1;…;αM [Eq. (3) consists of at most M
different αm;n’s]. Each pointm ∈ P can be expressed by the
three integers m;lx;ly where m ∈ f1;…;Mg counts the
points in P0, and lx;ly count the unit cells. By periodicity,
the dipole response in each particle pm;ðlx;lyÞ satisfies

pm;ðlx;lyÞ ¼ pme
iβ·Dlx;ly ; (5)

where β ¼ x̂βx þ ŷβy is the wave vector, and
Dlx;ly ¼ x̂lxDx þ ŷlyDy. Using the above expression in
Eq. (4), we obtain a matrix equation withM ×M blocks of
2 × 2 submatrices, governing the M vectors pm,

ðα−1
m − Sm;mÞpm −

XM

n¼1
n≠m

Sm;n pn ¼ 0; (6)

where Sm;n are the 2 × 2 matrices

Sm;n ¼
X

lx;ly

0Gðrm; rn þ Dlx;lyÞeiβ·Dlx;ly (7)

and where the lx;ly summation is over all integers. The
prime indicates that the summation excludes the singular
self-term arising in Sm;m when lx ¼ ly ¼ 0. This summa-
tion converges poorly, but it can be accelerated using the
Ewald method [22,23], modified to account the self term
exclusion [24]. The dispersion ωðβxDx; βyDyÞ is obtained
numerically by nullifying the corresponding determinant.
Since our metaweaves are non-Bravais lattices there are M
dispersion surfaces for each of the particle’s resonances,
which need to be searched.
We turn now to some examples, starting with the snug

rectangular weave of Fig. 1(b). The parameters are dx ¼
dy ¼ λp=14:5 (λp ¼ 2πc=ωp). The particle’s axis ratios

are ax∶ay∶az ¼ 1∶0.9∶0.25, where ax ¼ dx=4. With these
parameters the DDA is highly accurate. For Cu
(λp ¼ 142 nm) particles the diameter is 2ax ≈ 5 nm and
d ≈ 10 nm (for larger Cu particles see the last example).
Also Δθ ¼ 60°, and ωb ¼ −eB0=me ¼ 7 × 10−3ωp
denotes magnetization strength (cyclotron frequency).
The particle possesses two resonances (associated with
ax and ay), and there are M ¼ 5 particles in a period.
Hence, we have ten dispersion surfaces, only some of
which support sector-way guiding. An example is shown in
Fig. 2. It is seen that symmetry under the operation
ðβxDx; βyDyÞ↦ − ðβxDx; βyDyÞ is broken when rotation
and magnetization are simultaneously introduced. This
strong asymmetry leads to “sector-way” guiding, explained
as follows. There is a well-established theory of these one-
way threads [19], showing that the excitation magnitude of
a thread mode near the light-cone scales as

FIG. 2 (color online). Dispersion surfaces color coded accord-
ing to frequency in units of ω=ωp. (a) A weave with Δθ1;2 ¼ 0
and B0 ¼ 0. (b) Δθ1;2 ¼ 0, B0 ≠ 0. (c) Δθ1;2 ¼ 60°, B0 ¼ 0.
(d) Δθ1;2 ¼ 60°, B0 ≠ 0.
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FIG. 3 (color online). The response jpm;nj in dB of the snug
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FIG. 4 (color online). (a) Another dispersion surface of the snug
weave of Fig. 1(b). The light cone is shown by the black cylinder
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A ¼ 1 − x
lnð1 − xÞ ; x ¼ jβj=k0: (8)

Hence, modes touching or residing very close to the light
cone are practically nonexcitable. Figure 2(d) shows that
the dispersion contours within the blue to green range,
touch or nearly touch the light cone in the third quadrant;
the normalized distance 1 − x ≪ 0.05. Hence, Eq. (8)
predicts a reduction of more than 2 orders of magnitude
in the corresponding modes excitation. Therefore, propa-
gation in these directions (given by the dispersion’s local
gradient) is practically blocked. Figure 3 shows the
response of this weave to an excitation of a unit dipole
at its center. A π=2 and a π sector-way propagation are
seen. The latter picture exhibits much stronger oscillations,
because in the π=2 sector, most of the reflections occurring
at the surface edge are in “forbidden” directions; hence,
they decay exponentially as they leak energy to the free
space. In comparison, in the π sector-way case some
reflections occur at allowed directions and interfere with
the modes propagating towards the edge.
Figure 4 shows another surface of the same weave, and a

response to a dipole excitation at three different frequencies.
π=2 sector-way, π sector-way, and “all-way” are observed.
The sector-way shown in Fig. 4(b) is not obtained by an
obvious “cartezian product” of the individual threads. Such
a product would predict a sector that coincides with one of
the plane quadrants, while the sector obtained is centered
approximately around −ŷþ 0.3x̂; y < 0. The high intensity
saturated field in Fig. 4(c) is due to the fact that reflections
at edges are all into allowed directions; hence, they fill the
surface and increase the intensity. Now to the tight weaves.
Figures 5(a) and 5(b) show the dispersion and the response
of the tight rectangular weave of Fig. 1(c) with the same

parameters as above. Figures 5(c) and 5(d) show the
dispersion and the response of the tight hexagonal weave
of Fig. 1(d) with interparticle distance d ¼ λp=30, with
ax∶ay∶az ¼ 1∶0.9∶0.25 where ax ¼ d=4, and with the
same magnetization as above. Sector-way propagation is
observed in both weaves.
As a last example, Fig. 6 shows the response of the snug

rectangular weave of Fig. 1(b), using larger Cu particles
with 2ax ¼ 16 nm and the same axis ratios as before. Here
d ¼ 24 nm. Sector-way is observed. Finally, to get a better
feeling of the nature of the metaweave trapped modes,
Fig. 6(b) shows the same solution but multiplied by r1=2

where r is the distance from the source at the center. This
clears out a r−1=2 decay due to 2D geometrical spreading.
It is seen that now there is no decay at all along the sector
central line. The same behavior applies to all the previous
examples.
To conclude, a new family of metasurfaces, the meta-

weaves, was suggested and studied. These metaweaves are
made of strongly nonreciprocal or one-way threads based on
the two-type rotation principle. It has been shown that they
suggest a systematic generalization of the one-dimensional
concept of broken time-reversal symmetry, and its extension
to higher dimensions. The result is a surface that exhibits
sector-way guiding features that may offer new ways to
control the flow of light in thin surfaces.
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