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We derive an exact spectral representation for the Green’s function of Maxwell equations in a two-
dimensional homogeneous and rotating environment. The formulation is developed in the medium �noninertial�
rest frame, and it represents the response to a point source, where both the source and observation points rotate
together with the medium. The closed form expression for the Green’s function is derived for �nonrelativistic�
slowly rotating media at finite distances. An approximate expression for the efficient evaluation of the Green’s
function, that avoids laborious summation of rotating-medium spherical harmonics, is provided and tested
against the exact expression. Furthermore, it is shown that our spectral theory can provide a broad view of the
optical response of rotating systems, from which the classical Sagnac effect is obtained as a special case.
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I. INTRODUCTION

There is a recent interest in the theory and applications of
rotating or accelerating optical systems that incorporate in-
tricate scattering phenomena, such as photonic crystal �PhC�
structures �1–3�. It was shown in Ref. �1� that a time-
dependent analog of Floquet-Bloch theorem exists in a PhC
that undergoes an accelerated motion, and that under certain
conditions interesting interband transitions can take place.
Translational and rotational symmetries of the electromag-
netic modes of a rotating PhC structure have been reported
�2�. These two works dealt with perfectly periodic PhCs and
concentrated on the fundamental properties as seen in the
laboratory �inertial� frame of reference. A more recent work
�3� deals with the effect of rotation on a set of PhC micro-
cavities, or local defects. The analysis is performed in the
rotating PhC rest frame, which is noninertial. Specifically, it
studies the dispersion properties of a slowly rotating set of
weakly coupled microcavities, in which a novel manifesta-
tion of the Sagnac effect has been observed �see Ref. �4� for
a review of the classical Sagnac effect�. An application of
this effect for the design of PhC-based optical gyroscopes
has also been suggested �3�. Further application of this idea
to a set of slowly rotating coupled microring resonators has
been reported �5�. The works mentioned above have adopted
diverse strategies to address the analytical challenges associ-
ated with the undertaking; direct modal analysis of time-
dependent Maxwell’s equation in the laboratory frame �1,2�;
extension of tight-binding theory to electrodynamics of ro-
tating medium �3�; or the extension of the transfer matrix
method �5�. On a somewhat different track of study, numeri-
cal finite difference time domain �FDTD� methods were used
to study time-dependent PhC structures �6,7�.

In light of these new reports, we anticipate that the optics
of slowly rotating or accelerating structures that support
complex multiple scattering effects constitutes a new area of
research of both theoretical and practical interest. Numerical
algorithms can provide a vital tool for an accurate assess-
ment of the analytical results, and for the design and optimi-
zation of optical devices based on the new theories. In de-
veloping such numerical tools, several basic considerations
should be taken into account. First, when observed in the

laboratory frame of reference, any rotating system inherently
exhibits two widely differing time scales: one is defined by
the optical frequency �, and the other by the rotation fre-
quency �. The large difference between these two scales
introduces stiff requirements from the numerical code and
needs special handling. Furthermore, it eliminates the pure
time-harmonic nature of the system response. Formally,
FDTD methods can provide the right answer for the latter
difficulty. However, it is well known that FDTD may exhibit
poor convergence and accuracy problems when dealing with
high-Q electromagnetic systems such as the resonators in
some of the above mentioned works �3,5�.

An alternative approach is to perform the study in the
system rest frame �3�. For slowly rotating systems, this
yields a set of equations in which the rotation rate � appears
as a small parameter within the medium constitutive rela-
tions �3,8�, and not as a dynamic variable. This means that
the time dependence e−i�t still constitutes a temporal eigen-
solution of Maxwell’s equations in the system rest frame, so
one can employ time-harmonic analysis. This is especially
advantageous when high-Q resonators are under consider-
ation, as in such cases time-harmonic approach is somewhat
advantageous to FDTD based codes. Furthermore, in appli-
cations such as optical gyroscopes, the system response in its
rest frame is the most relevant one, as it is directly connected
to the actual measurements.

Numerical codes based on time-harmonic analysis, such
as the classical method of moments �MOM� �9� or some of
its relatives �10,11�, require a prior knowledge of the Max-
well equations Green’s function G of an appropriately de-
fined background medium. When considering the rotation of
optical systems, a convenient choice for G is the Green’s
function of a slowly rotating homogeneous medium, in the
medium rest frame. This is the purpose of the present work.
We start by a systematic development of the relevant wave
equations that govern the fields in a slowly rotating two-
dimensional homogeneous medium, in the medium rest
frame. We show that the classical decomposition of the elec-
tromagnetic fields into independent TE and TM modes still
holds, and we derive the wave equations for these two polar-
izations. Using the TE-TM decomposition, an exact scalar-
ization of the vector wave equations is achieved. Then an
exact spectral construction of the problem Green’s function
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is developed. This Green’s function represents the response
to a point source, where both the point source and the ob-
server rotate together with the medium. Our spectral con-
struction provides an exact representation of the new Green’s
function via a summation of cylindrical Harmonics. An ap-
proximate expression, using an expansion based on the small
parameter � /�, is provided too. This approximation does
not need a summation of the cylindrical Harmonics series,
and is expressed via the well-known stationary medium
Green’s function. We study the effect of rotation on the new
solution and its approximation, and compare it to the Green’s
function of a stationary medium.

To demonstrate the efficacy of our spectral theory for a
detailed study of rotating optical systems, and its ability to
provide a somewhat broader view of the physics involved,
we use the new Green’s function in order to obtain the effect
of rotation on a circular resonator. We obtain the effect of
rotation on the entire set of resonances that constitute the
system response, and show that the classical Sagnac effect
can be obtained from this general spectral study as a special
case that pertains to a limited portion of the system spectrum.

Finally, we note that the theory developed here applies to
two-dimensional configurations. However, there are many
practical three-dimensional geometries of interest, for which
propagation and scattering analysis based on two-
dimensional theories can be used. For example, two-
dimensional �2D� realizations of PhC structures and high-Q
microcavities in dielectric slabs were studied by several re-
search groups �12,13�, and offer practical realization of PhC
structures and microcavities. Here, the guiding or confine-
ment of the fields in directions parallel to the slab plane are
provided by a two-dimensional periodic structure, while the
total internal reflection phenomenon prevents scattering off
the slab plane, thus providing a confinement in the direction
normal to the slab. It has been shown that for the frequency
range that corresponds to the lowest guided mode in the slab,
the properties of such structures can be approximated by an
ideal 2D structure using the effective index approach �12�. In
principle, a similar strategy can be used in order to apply our
rotating-medium Green’s function to study realistic 3D rotat-
ing PhCs. The extension of the theory developed in this pa-
per to handle a full three-dimensional Green’s function con-
struction is currently under study.

The structure of the paper is as follows. In Sec. II we
develop the basic wave equation and introduce the TE-TM
decomposition. Section III deals with the exact spectral con-
struction of the rotating medium Green’s function via cylin-
drical Harmonics series, and its approximate expression.
Spectral analysis of a simple example of ring resonator, and
the interpretation of Sagnac effect as a special case, are dis-
cussed in Sec. IV. Physical interpretations of the mathemati-
cal results obtained here, and some important observations
pertaining to actual computational implementations, are pro-
vided in Sec. V. Concluding remarks are provided in Sec. VI.

II. GENERAL EQUATIONS

Let a homogeneous medium rotate at an angular velocity
� around the center of a coordinate system r=0. The me-

dium is at rest in the noninertial reference frame
R : �x� ,y� ,z��. Without loss of generality, we assume that the
rotation is around the z axis, so we have

� = ẑ� , �2.1a�

where � is a scalar measuring the angular velocity magni-
tude; it possesses positive or negative sign for counterclock-
wise or clockwise rotations, respectively. Thus

�x�

y�

z�
� = � cos��t� sin��t� 0

− sin��t� cos��t� 0

0 0 1
� �x

y

z
� .

�2.1b�

Our purpose now is to solve Maxwell’s equations in the
rotating system R. A few important points are observed: �i�
In R, the system properties do not vary in time. �ii� The
angular velocity � and the medium maximal dimension L
satisfy ��L � �c. Therefore no relativistic effects take place.
�iii� Consistent with the slow velocity assumption above, no
geometrical transformations or deformations take place.
Thus, for example, the � operator is conserved: �=��. For
the very same reason, time is invariant in both systems: t
= t�.

According to the formal structure of electrodynamics, the
basic physical laws are invariant under all space-time trans-
formations �including noninertial ones�. Therefore the
charge-free Maxwell’s equations in R are given by �8�

�� � E� = i�B� − JM�, �� · B� = 0, �2.2a�

�� � H� = − i�D� + J�, �� · D� = 0, �2.2b�

where we have added a fictitious magnetic current density
JM�. A time harmonic dependence e−i�t is assumed and sup-
pressed throughout. The transformation from the inertial sys-
tem I to the rotating one R is manifested via the local con-
stitutive relations. Let the material properties at rest be given
by � ,�. Then up to the first order in velocity the constitutive
relations in R take on the form �8�

D� = �E� − c−2� � r� � H�, �2.3a�

B� = �H� + c−2� � r� � E�, �2.3b�

where c is the “stationary vacuum” speed of light: the
vacuum light velocity as observed in the stationary system.
All subsequent derivations are performed in the rotating ref-
erence frame R : �x� ,y� ,z��, and all physical and geometrical
quantities refer to those measured in this frame. Thus for
simplicity we omit the prime. We rewrite the � operator as a
summation of two operators �=�t+ ẑ�z, where �t� x̂�x
+ ŷ�y refers to derivatives in the transverse �to ẑ� directions
only. Likewise, any vector quantity can be separated into
transverse and ẑ polarized quantities: E=Et+ ẑEz. Since the
rotation axis coincides with ẑ, it is convenient to use a cylin-
drical coordinate system r= �� ,� ,z� in which for any vector
field V we have �see Eq. �2.1a��
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� � r � V = ��Vz − ẑ��V�, �2.4�

where we use the notation �� �̂�. Maxwell equations can
now be written as

�t � Et + ẑ�z � Et + �t � ẑEz

= ẑi���Hz − �c−2�E�� + i���Ht + �c−2�Ez� − JM

�2.5a�

�t � Ht + ẑ�z � Ht + �t � ẑHz

= − ẑi���Ez + �c−2�H�� − i���Et − �c−2�Hz� + J .

�2.5b�

The first term on the left-hand side and the first two terms on
the right-hand side of the equations above are ẑ directed, and
the rest field terms are transversely directed.

A. TM and TE modes in homogeneous medium

Assume that �z�0. The last equations read

�t � Et + �t � ẑEz = ẑi���Hz − �c−2�E��

+ i���Ht + �c−2�Ez� − JM , �2.6a�

�t � Ht + �t � ẑHz = − ẑi���Ez + �c−2�H��

− i���Et − �c−2�Hz� + J . �2.6b�

It is seen now that Eqs. �2.6a� and �2.6b� can be satisfied
using two independent sets of fields:

�i� TM fields �or E polarization�. In this set we have
Et=0, Hz=0, Jz

M=0, while in general the field quantities
Ez , Ht and currents Jz , Jt

M are not necessarily zero. This
case can be completely characterized by the scalar Ez.

�ii� TE fields �or H polarization�. Here Ht=0, Ez=0,
Jz=0, while in general the field quantities Hz, Et and currents
Jz

M, Jt are not necessarily zero. This case can be completely
characterized by the scalar Hz.

Below we derive specific wave equations for each polar-
ization.

1. TM wave equation

For the TM case, Eqs. �2.6a� and �2.6b� reduce to

�t � ẑEz = i���Ht + �c−2�Ez� − Jt
M , �2.7a�

�t � Ht = − ẑi���Ez + �c−2�H�� + ẑJz. �2.7b�

From Eq. �2.7a�, we can express Ht in terms of the scalar
field Ez and the currents

i��Ht = Jt
M + �t � ẑEz − i��c−2�Ez. �2.8�

We substitute this expression back into Eq. �2.7b� and use the
identities �t��t� ẑEz=−ẑ�t

2Ez and H�= �̂ ·Ht. Up to first
order terms in �, the result is

− ẑ��t
2 + k0

2n2�Ez − i��c−2�t � ��Ez� + i��c−2

��� · ��t � ẑEz��ẑ

= ẑi��Jz − ẑi��c−2� · Jt
M − �t � Jt

M , �2.9�

where k0=� /c is the vacuum wave number, and n=	�r�r is
the medium refraction index, as measured for a stationay
medium ��=0�. By a straight forward application of the vec-
tor operations, it can be shown that

ẑ · �t � ��Ez� = − �� · ��t � ẑEz�� = �y�x − x�y�Ez = − ��Ez,

�2.10�

thus Eq. �2.9� is reduced to

��t
2 + k0

2n2�Ez − 2ik0
2�

�
�� Ez = STM, �2.11a�

where STM is the TM scalar source term given by

STM = − i��Jz + i��c−2� · Jt
M + ẑ · �t � Jt

M .

�2.11b�

2. TE wave equation

For the TE case, Eqs. �2.6a� and �2.6b� reduce to

�t � Et = ẑi���Hz − �c−2�E�� − ẑJz
M, �2.12a�

�t � ẑHz = − i���Et − �c−2�Hz� + Jt. �2.12b�

From Eq. �2.12b�, we can express Et in terms of the scalar
field Hz and the currents

i��Et = Jt − �t � ẑHz + i��c−2�Hz. �2.13�

The derivation now is completely symmetrical to the TM
case. The result is

��t
2 + k0

2n2�Hz − 2ik0
2�

�
�� Hz = STE, �2.14a�

where STE is the TE scalar source term given by

STE = − i��Jz
M − i��c−2� · Jt − ẑ · �t � Jt. �2.14b�

III. GREEN’S FUNCTION G AND ITS SPECTRAL
CONSTRUCTION

We are interested in deriving the Green’s function for the
wave operator in Eq. �2.11a� or Eq. �2.14a�. This Green’s
function GTM,TE satisfies the same wave equation with the
source term STM,TE replaced by a two-dimensional unit point
source located at ��= �x� ,y�� �or ��� ,��� in cylindrical coor-
dinate�. Such sources can be expressed as

J = ẑIz	�x − x��	�y − y�� and JM = 0, for TM,

�3.1a�

JM = ẑIz
M	�x − x��	�y − y�� and J = 0, for TE,

�3.1b�

where Iz , Iz
M are unit currents. Thus we seek a solution of the

canonical problem
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1

�
������G� +

1

�2��
2G + k0

2n2G − 2ik0
2�

�
��G

= −
1

��
	�� − ���	�� − ��� , �3.2�

where for the TM or TE wave excitation, we have

GTM = i��IzG, GTE = i��Iz
MG . �3.3�

Note that the medium is homogeneous in � �i.e., the co-
efficients of this equation are � independent�. We therefore
suggest the following transformation pair:

G��,�;��,��� =
1

2




m=−�

�

g̃m��,��;���eim�, �3.4�

g̃m��,��;��� = �
0

2


G��,�;��,���e−im�d� . �3.5�

Applying this to Eq. �3.2�, we get an ordinary differential
equation for g̃m:

1

�

d

d�
��

d

d�
g̃m
 −

m2

�2 g̃m + k0
2n2�m

2 g̃m = −
1

��
	�� − ���e−im��,

�3.6�

where we have defined

�m
2 = 1 + 2m

�

�n2 . �3.7�

The structure of Eq. �3.6� means that we can express
g̃m�� ,�� ;��� as a multiplication of a 1D Green’s function in

�, with e−im��,

g̃m��,��;��� = g̃�,m��,���e−im��, �3.8�

where g̃�,m�� ,��� satisfies

1

�

d

d�
��

d

d�
g̃�,m
 −

m2

�2 g̃�,m + k0
2n2�m

2 g̃�,m = −
1

��
	�� − ��� .

�3.9�

This equation possesses a structure amenable to an exact
solution procedure based on the standard resolvent theory—
see, for example, Chap. 3.4c in Ref. �16�. It is given by

g̃�,m��,��� =

i

2
Jm�k0n�m�
�Hm

�1��k0n�m��� ,

�3.10a�

where

�
 � min��,���, �� � max��,��� �3.10b�

and where the branch cut for �m in the �m
2 plane �see Eq.

�3.7�� extends from the branch point at the origin, running
along and just below the negative real axes to −�. This
choice of cut ensures that

Re �m � 0, Im �m � 0. �3.10c�

The first requirement above is needed to ensure smooth ana-
lytic continuation of the �=0 case. The second requirement
stems from the properties of the Hankel and Bessel functions
of complex argument, and is formally needed in order to
ensure convergence at infinity of the �extremely� high order
negative �for ��0� or positive �for �
0� harmonics, for
which m�
−�n2 /2. Note that in practice this formal re-
quirement is hardly needed.

Collecting Eqs. �3.4� and �3.8� together and using Eq.
�3.10a�, we get a simple expression for the full 2D Green’s
function,

G��,�;��,��� =
1

2




m=−�

�

g̃�,m��,���eim��−��� �3.11�

or

G =
i

4 

m=−�

�

Jm�k0n�m�
�Hm
�1��k0n�m���eim��−���.

�3.12�

This equation constitutes a spectral representation of the
Green’s function of rotating medium, in its rest frame. It is
exact under the assumption of slow rotation, detailed in item
�ii� in the beginning of Sec. II. Note that the information
regarding the medium rotation is manifested only via the role
of �m. Note its dependence on the small parameter � /�.
Depending on the magnitude and direction of rotation, �m
increases or decreases the effective wavelength. The effect of
rotation is demonstrated graphically in Sec. III B.

A. Efficient computation for small � /�

Let the Green function of a stationary �nonrotating� me-
dium be denoted by Gst. It is obtained from the formulation
of the previous subsections by setting �m=1 "m, and can be
expressed as

Gst =
i

4 

m=−�

�

Jm�k0n�
�Hm
�1��k0n���eim��−���

=
i

4
H0

�1��k0n�� − ���� . �3.13�

For slow rotation rates, we can approximate

�m � 1 + m
�

n2�
Þ k0n�m� � k0n� + m

�

n�
k0�

�3.14a�

provided that the harmonics index m does not get too large.
That is,

�m��
�

� n2. �3.14b�

It should be emphasized that in practice � is smaller than �
by many orders of magnitude, while for sufficient accuracy
the range of summation over m is of the order of a few
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hundreds, at most. Therefore it is not difficult to satisfy con-
dition �3.14b�. Then, we can expand the Bessel and Hankel
functions around � /�=0 to first order in �� /��k0�,

Jm�k0n�m�
� � Jm�k0n�
� + m
�

n�
k0�
Jm� �k0n�
� ,

�3.15a�

Hm
�1��k0n�m��� � Hm

�1��k0n��� + m
�

n�
k0��Hm

�1���k0n��� .

�3.15b�

Here the prime denotes a derivative with respect to the argu-
ment. This approximation puts an additional constraint:

�m��
�

k0max��,��� � n . �3.15c�

Considering the condition in Eq. �3.14b� and the discussion
thereafter, the last inequality actually states that � and �� can
be of the order of few wavelengths or even tens of wave-
lengths. Substituting this result back into the expansion for G
in Eq. �3.12�, using Eq. �3.13�, and keeping terms up to the
first order in � /�, we obtain

G = Gst +
i

4
m

m�

n�
k0�
Jm� �k0n�
�Hm

�1��k0n���eim��−���

+
i

4
m

m�

n�
k0��Jm�k0n�
�Hm

�1���k0n���eim��−���.

�3.16�

Owing to the structure of the expressions above, we can
replace m by −i�� and replace k0Jm� �k0n�
� by
n−1��


Jm�k0n�
�. Using these identities and Eq. �3.13�, we
finally obtain an approximate expression,

Gapp = Gst − i
�

n2�
������ + ������G

st, �3.17�

that can be readily evaluated from the stationary medium
Green’s function Gst, with no series summation. The result is

Gapp = Gst�1 + i
�

�
k0

2���sin�� − ���
 + O���/��2�

= Gst�1 + i
�

�
k0

2�yx� − xy��
 + O���/��2� , �3.18�

where k0=� /c, with c being the stationary vacuum speed of
light. Continuing along these lines, the term in the square
brackets can be viewed as a Taylor series expansion of an
exponential. Thus it leads to

Gapp � Gstei��/��k0
2���sin��−���

= Gstei��/��k0
2�yx�−xy�� = Gstei��/��k0

2 ẑ·������. �3.19�

These expressions are tested in Sec. III B against the spectral
summation of Eq. �3.12� which is exact under the slow rota-
tion approximation.

B. Computation of G

We turn now to compute G exactly via the summation in
Eq. �3.12� in order to demonstrate the effect of rotation, and
to compare this exact calculation to the approximate one in
Eqs. �3.18� and �3.19�. Figure 1 shows an example of G in
the x ,y plane for �x� ,y��= �5,0��, where � is the wavelength
in the corresponding stationary problem. In order to notice
the effect on the plot, the rotation speed � has been exag-
gerated; the computation is performed for � /�=5�10−3.
The exact summation formula in Eq. �3.12� has been used,
with the summation range �m � �80. The axes dimensions are
normalized to �. Due to rotation, the radiation wavelength
for y�0 �y
0� in the source vicinity is slightly smaller
�larger� than that of the stationary system wavelength. Note
that the entire system �source, medium, and observer� rotates
in a counterclockwise direction around the origin of this plot.
Therefore the variations of wavelength can be interpreted as
a local Doppler-like shifts, as seen in the rotating system rest
frame. This is consistent with the observation made in Sec.
V A.

Figure 2 shows the radial dependence of G for sources at
the same location ��x� ,y��= �5,0���—along the line �
=
 /10 radian. Rotation rate here is � /�=10−3. The summa-
tion range for the exact G here is �m � �200. The effect of
rotation along this line is clearly seen; the wavelength is
slightly increased �decreased� for �
�� ������. The lines
designated by approximation 1 and approximation 2 show
the approximate expressions in Eqs. �3.18� and �3.19�, re-
spectively. For the rotation speed and radial line shown both
approximate expressions reconstruct the features of G quite
well, but the accuracy of Eq. �3.19� is superior: within the
graphical resolution it is indistinguishable from the exact
spectral expansion.

Figure 3 shows the same G as of the previous figure, but
as observed along an azimuthal track �=5.1�. Again, the
effect of rotation slightly decreases �increases� the wave-
length for �

 ���
�. For the rotation speeds shown, the
approximate expression of Eq. �3.18� reconstructs the field
phase quite accurately, but field amplitude decreases in accu-

FIG. 1. �Color online� Real part of the rotating system Green’s
function in the x ,y plane, for �x� ,y��= �5,0��.
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racy as � approaches 
 /2 and 3
 /2. It is seen again that the
approximation of Eq. �3.19� is superior, and it cannot be
distinguished from the exact G within the graphical resolu-
tion of the figure.

The global features of G and its approximation are dem-
onstrated in Figs. 4 and 5. In both figures, the source is
located at �x� ,y��= �5,0��, the normalized rotation rate is
� /�=10−4, and the summation range for the exact G is
�m � �300. A logarithmic scale is used in order to increase the
dynamic range. Figure 4 compares the rotating medium
Green’s function to that of the stationary one, in the �x ,y�
plane. It is seen that in a direction perpendicular to the source
movement vector, the field is practically identical to the field
of a stationary system. The effect of rotation is maximal
along the lines that are tangent to the source velocity vector.
Recalling the results shown in Figs. 2 and 3, we conclude
that this effect is essentially due to phase differences. Finally,
Fig. 4 shows the error associated with approximation 2 of G

discussed in Sec. III A �see Eq. �3.19��. Note that in order to
expand correctly the field around �=�� and especially the
singularity at r=r�, a very large number of harmonics is
needed. Furthermore, it is well known that the Green’s func-
tion structure near the source �at r=r�� depends solely on the
differential equation order and dimensions �number of inde-
pendent variables�, while it is independent of the equation
coefficients. Thus, at this neighborhood, the expression for
Gapp in Eq. �3.19�, that is based on the analytically known
stationary medium G and does not require a summation over
cylindrical harmonics, is considered to be more accurate.

IV. EXAMPLE: ROTATING RING RESONATOR AND
SAGNAC EFFECT

In this section we demonstrate the efficacy of our previ-
ous results in determining some of the fundamental electro-

FIG. 2. �Color online� The Green’s function versus radius for
�=
 /10 and for source point at the same location as in Fig. 1
��� ,���= �5� ,0�.

FIG. 3. �Color online� G along an angular line.

FIG. 4. �Color online� Normalized difference between the sta-
tionary and rotating medium Green’s function, ��G−Gst� /G� in dB,
showing the effect of rotation in the �x ,y� plane.

FIG. 5. �Color online� Normalized error of Green’s function
evaluation, ��G−Gapp� /G� in dB, showing the quality of the ap-
proximation discussed in Sec. III A.
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magnetic properties of a rotating system; namely, its resonant
frequencies and their relation to those of the stationary �non-
rotating� system. To allow for analytic derivations that will
make the physical interpretations as transparent as possible,
we consider a relatively simple geometry shown in Fig. 6. A
ring with the inner and outer radii denoted a and b, respec-
tively, is filled with a dielectric material. The ring surfaces
are perfect electric conductors. A scalar integral equation for-
mulation that governs the TM eigenmodes �i.e., the source-
free solution� supported by the structure is given by

�
�

G��,�;��,���Jz���,���ds� = 0 " ��,�� � � ,

�4.1a�

where � denotes the electrically conducting surfaces of the
ring, and Jz is the z-directed electric current on the ring sur-
faces. Due to the eim� dependence of the Green’s function
mth harmonic, we anticipate the following form for the

eigenmodes current Jz
�m��:

Jz
�m�� = eim��� c1

a
	�� − a� +

c2

b
	�� − b�
 ,

m� = 0, ± 1, ± 2, . . . , �4.1b�

where c1, c2 are the inner and outer current excitation ampli-
tudes, respectively. Note that the same scalar formulation
governs the TE modes of a structure with perfect magnetic
conductor walls and z-directed magnetic current. We substi-
tute now the Green’s function expansion of Eq. �3.12� into
Eq. �4.1a� and perform the integration, utilizing the orthogo-
nality of the exponential function. The result is the following
matrix equation for the current excitation amplitudes c1 ,c2

�Hm
�1��k0n�ma� Hm

�1��k0n�mb�
Jm�k0n�ma� Jm�k0n�mb�

� �c1

c2
� = �0

0
� .

�4.2�

A nontrivial solution is allowed by equating the determinant
to zero,

Hm
�1��k0n�ma�Jm�k0n�mb� − Hm

�1��k0n�mb�Jm�k0n�ma� = 0.

�4.3�

The roots of this equation k0=k0�� ,m�=��� ,m� /c con-
stitute the mth resonance of the system and determine its
dependence on the rotation rate �. Note, however, that for
the stationary system �m=1. Since �m is the only parameter
that depends on �, and it appears as a multiplicative factor in
each of the Hm

�1� ,Jm arguments, we can relate the rotating
system resonant frequency ��� ,m� to that of the stationary
system ��0,m� via

���,m��m = ��0,m�, �m
2 = 1 + 2m�/„���,m�n2

… .

�4.4�

Solving for ��� ,m� and keeping terms up to the first order
in �, we obtain

���,m� = ��0,m� − m�/n2 + O��m�/n2�2/��0,m�� .

�4.5�

Thus rotation causes a shift of the resonance frequencies. For
spatial harmonics that propagate in a direction that coincides
with rotation, m� is positive and thus the resonant frequency
decreases. For spatial harmonics that propagate in a direction
counter to rotation, m� is negative, thus increasing the cor-
responding resonance frequency. It is interesting to note that
from Eq. �4.5�, the spectral shifts do not depend on the loop
geometry �namely radius and width�. This result is seemingly
contradictive to the well known and classical Sagnac effect
�4�. We unfold this apparent inconsistency in the next sub-
section.

Sagnac effect

The phase accumulated by a light beam that propagates
along a slowly rotating circular path, depends linearly on the
path angular velocity �, and on the area enclosed by the
path. This phenomenon is known as the Sagnac effect �4�.
When the circular path forms a complete loop resonator, the
aforementioned phase shift causes an � dependent shift in
the resonance frequencies. The difference between the co-
rotation resonance and counter-rotation resonance is used in
optical gyroscopes to determine the system rotation rate �15�.

The Green’s function theory and the ensuing analysis of
the complete spectral properties of a closed ring structure,
reported in the present work, constitute a formal mathemati-
cal tool from which the classical Sagnac effect can be de-
rived as a special case. This special case pertains to a limited
portion of the system spectrum. To demonstrate this, let us
examine the spectral shifts effect shown in Eq. �4.5� on the
spatial harmonics for which m= ±2
Rn /�, where R= �a
+b� /2 is the average ring radius, and � is the corresponding

FIG. 6. The circular resonator.
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stationary vacuum wavelength. For a ring with a�� and b
−a�a, these harmonics represent azimuthal propagation;
they constitute propagation modes whose spatial wave num-
ber is locally tangent to the ring center line �=R. For these
modes we have the resonant frequencies �±,

�± = ��0,m� �
2
R

�n
� , �4.6�

which is exactly the classical co-rotation and counter-
rotation resonances resulting from the classical Sagnac effect
�4�.

V. PHYSICAL INTERPRETATIONS AND NUMERICAL
IMPLEMENTATION

A. Physical interpretation

In Sec. III B, we have shown that the simple expression in
Eq. �3.19� approximates G to a very high precision �better
than the expression in Eq. �3.18��. Therefore it can be used to
observe the dominant effects due to rotation. It is seen from
this simple expression that rotation has practically no effect
on the field magnitude. It essentially affects the phase by
inducing a Doppler-like local shift of the field wavelength.
This effect is maximal along the line tangential to its motion
�e.g., the line x=x�=5� in Fig. 1�, and is vanishingly small
along a line that is normal to the source motion �e.g., the line
y=0 in Fig. 1�. The latter is seen very clearly also in Fig. 4,
as the difference between the stationary and rotating cases
vanishes along the line y=0. It should be emphasized, how-
ever, that this wavelength shift is not the frequency shift
usually seen in classical Doppler effect: in the rotating refer-
ence frame, the field oscillates at the single frequency �,
independently of the source and observation points �r ,r��
which move together with the medium. The effect is ob-
served only on the field wavelength, and not on its frequency.

Another point worth examining is the source-free struc-
ture of the fields. From the constitutive relations in Eqs.
�2.3a�, �2.3b�, �2.4�, and �2.8�, we get for the TM polarization

D = ẑ��Ez + c−2��H�� , �5.1a�

B = �Ht + c−2��Ez =
− i

�
�Jt

M + �t � ẑEz� , �5.1b�

and for the TE polarization

D = �Et − c−2��Hz =
i

�
�Jt + �t � ẑHz� , �5.2a�

B = ẑ��Hz − c−2��E�� . �5.2b�

Substituting our Green’s function fields, and noting that �z
�0 �two-dimensional problem�, it is readily verified that the
source free conditions � ·D=0, � ·B=0 are automatically
satisfied whenever J, Jt

M =0 and r�r�. Furthermore, it is
seen that under rotation the local transverse plane wave
structure of the field Ez in TM �and Hz in TE�, is the same as
that of stationary system: direction of propagation is normal
to polarization �since � · ẑEz=0 in the former, and � · ẑHz

=0 in the latter�. However, under rotation this property is
generally not preserved for the field Ht in TM �since now
� ·Ht�0 - it depends on �� and for the field Etin TE �since
� ·Et�0�.

B. Numerical implementations

As discussed in the introduction section, a well-suited so-
lution procedure for scattering of time-harmonic electromag-
netic signal from a dielectric structure is the method of mo-
ments �9�. A vital tool here is the Green’s function of an
appropriately defined background medium, describing the
field at r due to a unit point source at r�. For scattering from
a stationary structure, the background is most conveniently
defined as a homogeneous medium, and the corresponding G
is well known. For the analysis of scattering from a rotating
structure as seen in the rotating medium rest frame, the back-
ground problem Green’s function is the field in a rotating
homogeneous medium where both the source point at r� and
the observer at r rotate together with the medium. This is
exactly the solution derived in this work. In the general so-
lution scheme, G is used to expand the field in each homo-
geneous subdomain of the dielectric structure, and the re-
quirement for satisfying boundary conditions is then imposed
�see, for example, Refs. �9–11��. Fortunately, in 2D geom-
etries rotation does not affect boundary conditions at the di-
electric interface; this can be seen directly from Eqs. �2.2a�,
�2.2b�, �2.3a�, and �2.3b� and Eqs. �5.1a�, �5.1b�, �5.2a�, and
�5.2b� by applying to it the fact that the structure dielectric
surfaces are invariant along the rotation axes ẑ. With this
observation at hand, well tested legacy codes dealing tradi-
tionally with stationary scatterers can be extended to hold
also for rotating scatterers �at their rest frame�, simply by
replacing the stationary medium Green’s function Gst by the
Green’s function G derived in this work and at no additional
cost of algorithm complexity or programming. With this ap-
proach, we have extended the method in Refs. �10,11� used
successfully by us for stationary PhC problems, to apply for
rotating crystals as well �17�.

Finally, we note that the numerical implementation of
MOM requires us to evaluate G�r ,r�� at a very large number
of different points in r and r�. If the exact G is used, each
pair of values for r and r� requires a new spectral series
summation of Eq. �3.12�, over hundreds of cylindrical har-
monics. This fact renders the use of the exact spectral repre-
sentation of G completely impractical for many problems of
interest. On the other hand, the computation of the stationary
medium Green’s function is relatively simple; it requires the
evaluation of a single Hankel function and highly efficient
commercial numerical libraries are available for this. Hence
the importance of the high-quality approximate solution
given in Eq. �3.19�; it is expressed in terms of the stationary
medium Green’s function, multiplied by an exponential.

VI. CONCLUSIONS

We presented a general Green’s function theory for a
slowly rotating homogeneous two-dimensional medium. The
theory is derived in the medium rest frame, and it provides a
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systematic tool for a general study of the spectral properties
of rotating systems. The classical results of the Sagnac effect
can be obtained as special case or approximation, that per-
tains to a limited portion of the problem �full� spectra. The
new Green’s function can be used for a method of moment

based numerical study of various electromagnetic aspects of
rotating systems. It is especially needed in rotating optical
systems that consist of intricate scattering effects, such as the
photonic crystal optical gyroscope �3�. This use will be dem-
onstrated in future studies.
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