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An analytical model for propagation through and reflection from a discontinuity in coupled-cavity waveguides
(CCWs) (also known as coupled-resonator optical waveguides—CROW) is developed. The theory is based on a
modification of the tight-binding theory for propagation in nonuniform structures. Explicit analytic expres-
sions for the reflection and transmission coefficients are obtained. These expressions resemble in form and
structure the well-known Fresnel coefficients, with the traditional wave impedance parameter replaced by the
device bandwidth. Matching of two uniform CCWs with the use of an intermediate serial section is also dis-
cussed, and an analogy to the well-known quarter-wavelength plate is pointed out. © 2006 Optical Society of

America
OCIS codes: 130.2790, 230.5750.

1. INTRODUCTION

Much attention has been devoted recently to the theory
and applications of the coupled-cavity waveguide (CCW),
also known as the coupled-resonator optical waveguide, or
CROW. This device consists essentially of an array of
weakly coupled high-@ optical resonators, along which a
light signal can propagate.l_3 Schematic examples of this
device are shown in Fig. 1.

In one realization, the CCW is a linear array of equally
spaced local defects, situated within an otherwise perfect
photonic crystal (PhC). Each local defect serves as a mi-
crocavity possessing a local resonant mode (trapped
mode) with a resonant frequency within the bandgap of
the background PhC. Propagation along the CCW is
based on tunneling of radiation from one microcavity to
the next. When the microcavities are all identical, pos-
sessing the same resonant frequency wg, the resulting
CCW constitutes a narrowband low-group-velocity optical
transmission device, with central frequency w,. The
transmission bandwidth and group velocity decrease very
fast as the intercavities’ distance increases. These proper-
ties have been derived using tight-binding perturbation
theoryl’3 and verified both experimentallyz and against
numerical simulations.® The case of a CCW possessing
nonidentical microcavities and structural disorder has
been studied* using cavity perturbation theory in con-
junction with the tight-binding theory. Another realiza-
tion of the CCW that does not require the presence of a
PhC background environment has also been suggested.’®
Here, an array of weakly coupled microring optical reso-
nators is used. Although at first glance this structure
looks quite different from that realized in a PhC, and the
analysis is also based on the transfer-matrix approach,
the propagation physics is essentially the same as well as
the resulting dispersion relations.

Because of the appealing properties of the CCW (e.g.,
the ability to design a priori the transmission frequency,
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bandwidth, and group velocity), it has been proposed as a
potential candidate for various applications in optical
communication systems. This includes, for example, fil-
tering and routing and add-drop devices."3 As it con-
sists of a series of high-@ resonators it can be used in ap-
plications where a high field intensity is required such as
soliton optics® and higher harmonic generation.” Because
of the low group velocity, it has also been suggested as a
potential candidate for optical storage and optical delay
lines.> 1% On a different track of applications, the CCW
has been suggested also as a candidate for the design of
ultracompact optical gyroscopes.!

In view of this potential wealth of applications, it is an-
ticipated that assemblies of mutually connected CCWs
can become inherent in many optical systems. Then the
propagation through a variety of CCWs and the associ-
ated back reflection and multiple reflections may lead to
mismatch and insertion loss that obviously affects the
overall system performance. Thus, the purpose of the
present work is to study the propagation in a CCW that
consists of two semi-infinite, different uniform CCWs,
situated in series as shown schematically in Fig. 1. The
combined CCW can be viewed as a single CCW with prop-
erty discontinuity occurring at the passage from the mi-
crocavity numbered by £=0 to that numbered by £=1. It
is shown that relatively simple analytic expressions for
the reflected and transmitted optical signals can be de-
rived, and their structure resembles that of the well-
known Fresnel reflection and transmission coefficients.
Furthermore, our new results indicate an intimate rela-
tion between the conventional notion of wave impedance
and the bandwidth of a CCW. Hence, this structure serves
as a paradigm case—a basic building block from which
the behavior of more complicated networks can be in-
ferred. For example, we show that the theory developed
here can be used to match two serially connected CCWs
by inserting a finite-length intermediate section. In some
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Fig. 1. Two examples for a system of two different CCWs con-
nected in series. (a) Realization in photonic crystal. Local defects
are shown by solid circles. The CCWs may differ in the local de-
fect form and intercavity spacing, thus differing in both central
frequency and bandwidth. (b) Realization using an array of mi-
croring resonators.

simplified cases (when the two CCWs have the same cen-
tral frequency) perfect matching can be achieved using a
single-cavity intermediate section, and the corresponding
parameters resemble the well-known quarter-wavelength
plate condition.

To study the combined structure, we start with the non-
uniform CCW model developed previously.4 The original
motivation of this work has been to study the effect of
structural disorder, which is essentially random. How-
ever, the general framework developed there holds also
for structures possessing variations that are determinis-
tic and limited to local regions. We emphasize that al-
though most of the specific figures and examples are in-
clined toward the PhC-based CCW, the mathematical
expressions for transmission and reflection coefficients, as
well as the general resemblance to well-known propaga-
tion phenomenology articulated above, are general and
hold for other CCW configurations such as the microring
system—see Fig. 1(b). The theory developed here applies
to CCWs in two-dimensional (2D) (e.g., a structure in the
x,y plane that is invariant in z, or alternatively the mi-
croring system) and three-dimensional (3D) configura-
tions. It should also be noted that the 2D realizations of
PhC structures and high-@ microcavities in dielectric
slabs, studied by several research groups,>'® offer an-
other practical realization of CCWs. Here, the microcavity
transverse confinement is provided by the periodic struc-
ture in the plane, while the vertical confinement is pro-
vided by the slab guiding (total internal reflection). It has
been shown that for the frequency range that corresponds
to the lowest guided mode in the slab, the properties of
such structures can be approximated by an ideal 2D
structure using the effective index approach.12 Since the
basic physical mechanism as well as the dispersion equa-
tion of a CCW in these structures are essentially the same
as those of the perfect 2D and 3D cases, the theory devel-
oped here applies to these cases as well.

The structure of the paper is as follows. In Section 2 we
present the basic formulation that applies to a nonuni-
form CCW and discuss some of its properties needed for
subsequent derivations. In Section 3 we develop the re-
flection and transmission coefficients due to the proper-
ties’ discontinuity occurring at a single location along the
CCW. In Section 4 we use these results to demonstrate
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matching between two CCWs using an intermediate CCW
section. The theory is checked against numerical ex-
amples in Section 5, and concluding comments are given
in Section 6.

2. FORMULATION

Let €,(r) be the relative permittivity of the PhC, including
possible random inaccuracies, but excluding the defect
sites. Thus, €,(r) describes a perfectly periodic PhC super-
imposed on which is some noisy structure that represents
the random inaccuracy. Let edn(r) and H,,(r) represent the
aforementioned inaccurate crystal including the nth mi-
crocavity only and the associated mode magnetic field, re-
spectively. Its resonant frequency is w,. For a perfectly
uniform CCW we have ¢, (r)=ed0(r—nb), where b is the

intercavity spacing vector.” We define

d,(r)=

1
-—(r), (2.1)
edn(r) €p

which represents the single defect corresponding to the
nth microcavity in its true position. Note that due to ran-
dom structure inaccuracies and/or structure variation,
the shift-invariance property d,(r)=d(r-nb) does not
hold. Let €.(r) be the relative permittivity of the entire
PhC structure, including the random inaccuracies and the
linear array of defects that forms our two CCWs. We have

1 1
= + D, d,(r). (2.2)
€(r) &(r) ;
In accordance with the traditional notations,16 we define
the operators
®=VX VX, 0=vVx vV X,
€.(r) &(r)
0,=VXd,(r)V X. (2.3)

The modal field of the nth microcavity when all other de-
fects are absent, H,(r), satisfies

® 2
C

The equation for the entire CCW is
®
c

2
OH(r) = (@b > ®n>H(r) =< ) Hr). (2.5

Under the weak coupling assumption, we express the to-
tal magnetic field H(r) as a sum of the isolated microcavi-
ties magnetic fields:

H(r)= > AH,(r), (2.6)

where {A,} is a set of unknown coefficients, and H,, satis-
fies Eq. (2.4). Following the variational procedure used in
previous work,* we obtain the difference equation for A,
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w,\? [w)?
EH({) _<;> ]Ink+T;L,k}An=0 Yk, (2.7)

where [from Egs. (2.4) and (2.5)]

L,=H,H,, T,, = <Hn > ®me>. (2.8)
JjFm

Note that the operator ®; in Egs. (2.3) vanishes identi-
cally Vr, except for the spatial location of the jth local de-
fect. Thus, as shown before,g’4 the dominant T, terms in
Eq. (2.8) are T},14 Tho1po Thpo and T} .o, with [T} ],
T sl <|Ths1pl- Also, I, =(H, ,H,)=~8,, (I,, is highly
dominant). Furthermore, wp=wo+dw, and w,= w(z)
+2wpdwy,. With these approximations, and keeping only

the dominant terms in I,,,,, 7, 1, Eq. (2.7) gets the form

QA + 22 wo0wpAp + Th_y jAp1 + Thy1 Ak =0 VE,
(2.9a)

where
0% = (02 - w?)/c?. (2.9b)

We shall use Eq. (2.92a) as the basic formulation that gov-
erns the propagation of optical signals in nonuniform
CCWs. It is important to note that this formulation, based
on a tight-binding approximation, holds for CCWs’s in
which long-range interaction effects can be neglected.
This is precisely the meaning of the inequality |T}, .|
<|T}4s1 used to obtain the formulation in Eq. (2.9a).
More T, j terms should be kept in the case when long-
range interactions are considered,'” which is not in the
scope of the present work.

A. Symmetry Property of T,’l’m
Note that for a lossless medium, the ©; operators are real

and self-adjoint, and the H,, fields are real. Thus, 7}, ,, in
Eqgs. (2.8) can be rewritten as

Tr/L,m = 2 <®an’Hm> = E <®an’Hm> + <®an’Hm>

Jj#Fm Jj#Fm,n

= E <®]HmHm> + <®nHmHm> - <®mHn,Hm>

Jj#n
= Ty,n,n + <®an;Hm> - <®mHm’Hn>
(H,,,0; real and self-adjoint). (2.10)
Therefore

T,,+©,H,H,)=T, , +(©,H,H,). (211

Thus, as long as the mth and nth cavities belong to the
same uniform waveguide, we have

T =Th- (2.12)

This property is used in the subsequent derivations.

B. Special Case: the Limit of the Uniform Coupled-Cavity
Waveguide

For all £ we have dw,=0 and T} ,,=T},;,=7 so Eq.
(2.9a) reduces to
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QA +7A,_1+A;,1)=0 VEk. (2.13)
Substituting a solution of the form
Ay=eP, (2.14)
Eq. (2.13) produces the known dispersion relation
02%=—27cos B. (2.15)
Approximating
2w,
%= C—2(w0 - 0)(wy + w) = c_2(w0 - w), (2.16)

we obtain from Eq. (2.15)
® - wy = (Aw/2)cos B, (2.17)

where the CCW transmission bandwidth Aw and 7 are re-
lated via

woAw

- (2.18)

T=

3. PROPAGATION IN NONUNIFORM
COUPLED-CAVITY WAVEGUIDES

Here we study the case of a nonuniform CCW consisting
of two uniform CCWs connected in series, as shown sche-
matically in Fig. 1. For convenience, we start in Subsec-
tion 3.A with the simplest case where both have the same
central frequency and they differ in their bandwidth. Af-
ter establishing this case in Subsection 3.B we generalize
it to the case of CCWs having a different central fre-
quency and different bandwidth.

A. Two Coupled-Cavity Waveguides with the Same
Central Frequency
Here we study the case of a nonuniform CCW that con-
sists of two uniform CCWs, both having identical micro-
cavities. Thus they possess the same central frequency,
but differ in their frequency bandwidths due to different
intercavity spacings. We have Aw; obtained with intercav-
ity spacing b; for the left waveguide (£<0) and Awy ob-
tained with intercavity spacing b, for the right waveguide
(k> 0). Referring to the configuration in Fig. 1, this case is
characterized by solid circles [Fig. 1(a)] or rings [Fig. 1(b)]
with k-independent radii.

From the problem geometry, and from the fact that Eq.
(2.12) holds separately within each waveguide, it follows
that

Sw,=0 VEk, (3.1a)
, ’T]_ Vk = O
Thorp= n VE=1 " (3.1b)

Furthermore, because of the results in Subsection 2.A, we
have

Thn=Thm VYmn<0 orm,n=0, (3.1¢)

, , Gt ng—l
Thp1p=Thirp= Y VE=2 (3.1d)
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Equation (2.9a) still governs the modal propagation
along the combined CCW. Because of the property jump
between £=0 and £=1, we write a solution of the form:

etbik 4 Te ik YL <0
Ak =

T eihek Vk=1 (3.2)

Substituting this into Eq. (2.9a), and using Eqs. (3.1a),
(3.1b), and (3.1c), we obtain, respectively, for £<-1 and
for k=2

Q2 (e'Prk + T e7P1h) + 27 cos By (e'P1* + T e7Pik) = 0,

Vk<-1, (3.3a)

Q2T e'P2k 4 27,T cos By eP2k = 0, VE=2, (3.3b)

from which we obtain the two perfect CCW conventional
dispersion relations, similar in form to Eq. (2.15):

0%2=—-27cos By, 0O%=-27,cos Bs. (3.4)

Note that 71,75 are related to the respective bandwidths
Aw;, Awy of the two uniform sections, in a manner similar
to Eq. (2.18). Therefore, for the waves in the two sections,
we have

- wy = (Aw/2)cos By, (3.5a)
W= wWy= (A(L)2/2)COS ,82, (35b)

where
Awl)z = 2C27'1’2/w0. (36)

The interesting physics takes place at =0 and £=1:
O%A, + T A1+ T10A1=0 (k=0), (3.7a)

Q%A+ Th Ag+ Ty Ay =0 (k=1).  (3.7b)

Substituting Eq. (3.2) for A; and A, and solving for I' and
T using Eqgs. (3.1a), (3.1b), (3.19), and (3:1d) [note that
with Eqgs. (3.4) we have Q%+ 17, e/fr=—1,e7Fn n=1,2], we
obtain
71 e_ﬁl— Tge_iﬁz T1 eiBI—T2 ei'BQ
T=1+T, TINw)=- - =
T1 elﬁl — Ty e_‘ﬁz

T1 e‘iﬂl — Ty eiﬁz ’
(3.8)

The expression for I' can be further simplified by using
the exact dispersion relations in Egs. (3.4) and the band-
widths’ expression in Eq. (3.6). The result is

w — Wo w — Wo
- A(L)l

Aw2/2 Aw1/2

w — Wo w — Wo
+ Awl 1-

Aw2/2 Awl/Z

(3.9)

Equation (3.9) gives the transmission and reflection coef-
ficients as functions of frequency, within the entire fre-
quency bands of both CCWs. Its structure has the same
form as that of the well-known Fresnel reflection coeffi-
cient. At the central frequency (w=w,), we have
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T(wp) = ——. (3.10)

This last result is identical with the Fresnel reflection co-
efficient, with Aw replacing the traditional wave imped-
ance. Furthermore, it is seen from Eq. (3.9) that if the fre-
quency o exits the transmission band of one of the CCWs,
the reflection coefficient becomes a complex number with
unity magnitude (Aw; is the total bandwidth of the ith
CCW), similar to the total internal reflections phenom-
enon.

B. Two Uniform Cavity-Coupled Waveguides with

Different Central Frequencies and Different Bandwidths
This case is identical to the previous one, except that the
first CCW (occupying indices £ <0) central frequency is
wp1=wo, whereas the second CCW (occupying indices k&
=1) central frequency is wpe=wy+ Swy, for all k=1. The
system is described in Fig. 1. Thus Eq. (3.1a) is replaced

by
5 0 V=0 3.11
= Swp = AgcH2wp, VE=1 (3.11)

where the parameter A, here represents the central fre-
quency difference between the left and right CCWs, de-
fined for convenience in the subsequent derivations. Also,
the second equality in Eq. (3.1b) holds now for £=2, and
Eq. (38.1¢) still holds with the domains of m,n changed to
Vm,n<0, or m,n=1. Thus, in this more general configu-
ration,

Toq# T1# 7o (3.12)

This inequality is important in subsequent derivations.
Finally, Eq. (3.1d) is unchanged.

We can now follow exactly the same procedure of the
previous case in Subsection 3.A. The modal amplitudes
form in Eq. (3.2) still holds, and Egs. (3.3a) and (3.3b) now
read as

Q2(e"P* + T e71h) 4 27 cos By(ePF + T e F1F) = 0,

Vk=<-1, (3.13a)

(Q2+ Ag)T P2k + 21, T cos By e =0, VE=2, (3.13b)

from which we obtain the two perfect CCW conventional
dispersion relations:

0%2=—-271cos B, O%+Aj=-2mcosBy. (3.14)

The parameters 7;, 79 are related to the respective CCWs
bandwidths via the same expressions as before, Eq. (3.6).
Using the same procedure that we wused in Egs.
(3.4)—(3.6), we obtain

o — w1 = (Awy/2)cos By, (3.15a)

W — Wy = (Aw2/2)cos ﬁz, ((1)02 = wo1 + 5(1)0), (315b)

where Eq. (3.6) connecting bandwidths to 7 5 holds. Like-
wise, Eq. (3.7a) still holds, and a corresponding slight
modification applies to Eq. (3.7b): The Q2 term is replaced
by Q2+A,. Continuing along the same lines, we obtain for
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the transmission and reflection coefficients [Eq. (3.12)
should be considered]

’

T To’l(l I, TN
= - + 5 w)=-— —,
Ty 117 PL— a7y eiP2

(3.16a)

e - arn,efz

where « is a factor indicating the degree to which the
T} ,To,, mismatch 7,:

T1,0T0,
z
This last result can be rewritten in terms of the fre-

quency w:

(3.16b)

a=

@o2
2a(wpy — w) — 2(wg1 — W) + i|:Awlsl - Aw2a—32:|
o1

INw)=-

w2 |
26(((.002 - w) - 2((,001 - LL)) - i|:A(U181 + sza_82:|
@o1

(3.17a)

where Aw;,Awy are the bandwidths of the first and second
CCWs, wg1,woy are their respective central frequencies
[see Egs. (3.15a) and (3.15b) and discussion before Eq.
(3.11)], and sq,s9 are given by

1 W= Wg1,2 z
S19=\/1-|\—7| .
12 Aw12/2

Note that if the central frequencies of the first and sec-
ond CCWs are identical, then a=1, wg;=wyg, so the ex-
pression for I' and T reduce to the simpler ones developed
in Subsection 3.A.

(3.17b)

C. Comment on the Symmetry Properties of I' and T
and an Analogy

Let T (f) be the reflection coefficient that applies for a
wave propagating rightward (leftward) and hitting the
discontinuity from the left (right). Likewise, let T (T) be
the corresponding transmission coefficients. From the re-
sults of Subsection 3.A it follows that for the case of two
CCWs with identical central frequencies, one obtains
I'=-T" and T+T=2. However, if the central frequencies
are different (see Subsection 3.B), this symmetry is lost.
Therefore, the configuration of two CCWs with identical
central frequencies is analogous to the interface between
two conventional waveguides that possess the same cross-
section geometries (and free space can be seen as a special
case). This analogy is further motivated by noting the
identity T'=1+1" [see Eqgs. (3.8)] that holds in general for
uniform geometry connections. The configuration of two
CCWs with different central frequencies can be seen as
an analog of waveguides with different cross-section ge-
ometries.

D. Effect of Loss

Since the basic building block of the CCWs is a high-@
resonator, loss can be an important factor affecting the
CCW performance. There are two main types of losses:
material (dielectric) losses resulting either from ohmic
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dissipation (conduction) or from dissipative polarization
processes of the dielectric material, and scattering losses
that are caused mainly by unavoidable geometric imper-
fections. The former can be rigorously represented by
adding an imaginary component to the dielectric property
:sr(r)=e;(r)+i€'r’(r).18 The latter are more difficult to
model, but they can heuristically be represented by a
modification of €’. The complex € can now be inserted into
the wave operator @, and the analysis in this paper can in
principle be repeated. Note, however, that there are sev-
eral subtle issues in this approach. With complex e the
wave operator O is no longer self-adjoint, so the varia-
tional procedure leading from the wave Eq. (2.5) to the
difference Eq. (2.9a) does not hold. Nevertheless, it has
been shown!! that by applying a Galerkin projection pro-
cedure, one can obtain a difference equation for a CCW in
non-self-adjoint conditions. Furthermore, performing
such an analysis one can see that the difference equation
has exactly the same form as Eq. (2.9a) with dominant
terms as before, except for the addition of complex compo-
nents to the coefficients T},,, [as evidenced from Egs.
(2.8)], and at the expense of losing some of their symme-
try properties (see Subsection 2.A). It is anticipated,
therefore, that the case of lossy CCW is analytically iden-
tical to the lossless one, with the replacement of 7 4 in
Egs. (3.8) or Egs. (3.16) by their complex counterparts
(note that 7=T},,, for k<0 and 7=T},;, for k>1).
Thus, for example, the equality T=1+1I" discussed above
still holds, but it should be emphasized that it does not
necessarily mean an energy conservation; rather, in light
of the analogies discussed above, it conveys continuity
conditions for the fields. A detailed investigation of the
ramifications of such results is beyond the scope of the
present paper.

4. MATCHING TWO COUPLED-CAVITY
WAVEGUIDES BY AN INTERMEDIATE
SECTION

A. General Expressions
We wish to connect two different CCWs and reduce the
discontinuity backreflections to a minimum for a pre-
scribed frequency. One possible way to achieve this goal is
to insert in series a finite-length intermediate section be-
tween the two CCWs, as shown schematically in Fig. 2.
The leftmost and rightmost CCWs have infinite length
and they occupy microcavity indices k<0 and k=M +1,
respectively, while the intermediate section consists of M

COO0O Q000000000000 0O0O0
OO0 O0O0O000O00CO0OCO0O000COO0
CO OO0 O0OO0CO0OO0O0OO0OOO0OLOO0
0000 OOXOXOX0O0O®O0O e
COO0OOCO0CpPpOOOOOPOOOOOO
[ONIGOIONG RONIOIOIOIOING FORO IO IO RO RG]
coocooboooooboooooo
1 1
CCW1 CCW2 CCW3
M Microcavities
M=3
Fig. 2. Two different CCWs connected in series, matched by an
intermediate section with M microcavities.
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microcavities. Counting from left to right, the ith CCW is
termed here by CCW; (i=1,2,3), and it possesses a cen-
tral frequency, bandwidth, and propagation constant wy;,
Aw;, and B;(w), respectively. Assume now that the system
is excited by an optical signal that propagates in CCW;
from left to right. The incident and reflected modal ampli-
tudes are given, respectively, by

A;e :eiﬂlk, Az =R e_i’Blk, k = O, (41)

where R represents the reflection from the combined
CCWs’ system, as seen from within CCW;, and as mea-
sured with respect to the reference microcavity %£=0.
Summing up all contributions for the field at £=0, due to
the multiple reflections that take place within CCW,, we
get for R

©

R=T15+T15To11's3 ezszE [e2AMTyoloi 1", (4.2)

n=0

Here I';; is the local Fresnel-like reflection coefficient for
the modal amplitudes of a wave propagating in CCW; and
hitting the interface with CCW;. Likewise, T}; is the local
transmission coefficient for a wave passing from CCW; to
CCW;,. Both I';; and T);; were developed in Section 3.

Summing the geometric series in Eq. (4.2), we obtain
the CCW analog of a classical result:

R T1p = Pog[T1olg1 — ThoToyJe* P2 4.3)
- 1 - F23F21 eQiBZM ' ’

From this last result it is seen that perfect matching
between CCW; and CCWj3;, corresponding to R=0, is ob-
tained when the CCWs’ parameters satisfy

o= TgglT 19l g1 — Ty Ty A2 (4.4)

We now demonstrate a simple and illuminating case for
which the above condition can be satisfied.

B. \/4 Plate Analog

Consider the simplified configuration of two CCWs
(namely, CCW; and CCWj3) with the same central fre-
quency and different bandwidths. Thus g =wy3 and
Aw; # Aws. We would like to match these CCWs at their
central frequency. Referring back to the discussion in
Subsection 3.C, an analogy with the problem of matching
two waveguides with an identical cross-section geometry
is suggested. Thus, we anticipate that an intermediate
matching section CCW, with the same central frequency
wo1=wo1=wp3 can be used to satisfy the condition set by
Eq. (4.4), provided that the appropriate section length (M)
and bandwidth (Awy) are chosen. Using the ensuing sym-
metry properties I';;=—I';; and T;;=2-T); (see Subsection
3.0), Eq. (4.4) reduces to

rlz =- F23 e2iﬂ2M. (4.5)
However, at the central frequency we have B;=w/2, and

by using Eq. (3.10) it is easily seen that matching at the
central frequency is obtained for
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M=2n+1withn=0,1,2,..., Awy=\Aw;Aws.
(4.6)

Thus, perfect matching can be obtained by inserting an
intermediate section with an equivalent optical length of
N4 (as implied by the fact that 8=#/2) and with a band-
width given by the geometric mean. The perfect analogy
with the well-known quarter-wavelength plate matching,
obtained by replacing the wave impedance with the
CCWs bandwidths, is apparent (see also discussion at the
end of Subsections 3.A and 3.C). Note that the case of M
=1, corresponding to a single microcavity matching sec-
tion, is a legitimate solution. Here the corresponding
bandwidth is achieved by choosing the correct intercavity
distances. The efficacy of this result will be demonstrated
in Section 5.

5. NUMERICAL EXAMPLES

Here we shall solve numerically several configurations
consisting of uniform CCWs connected in series as sche-
matized in Figs. 1 and 2, calculate the respective reflec-
tion and transmission coefficients, and check the results
against the analytic predictions of the previous sections.
The theory developed in previous sections holds for CCWs
in 2D and 3D crystals as well. However, since each CCW
should consist of several microcavities (say, four or five),
and the intercavity distance must be two PhC unit cells or
more, the numerical size of the problem becomes exces-
sively large for full 3D simulations. Thus, we shall limit
this section to examples of 2D geometries only. Specifi-
cally, we shall use the hexagonal PhC lattice that is used,
for example, in Refs. 3 and 4. The PhC is made of dielec-
tric cylinders with €,=8.41, radii of 0.6, and cylinder spac-
ing of 4 (all in arbitrary length units). The resulting PhC
possesses a bandgap in the range of 7.5<\<10.5 in arbi-
trary length units. A microcavity created by removing a
single post resonates at \y=9.058. By slightly changing
the radii of the microcavity’s six closest neighboring cyl-
inders, the resonant wavelength can be tuned to any de-
sired value between 8.4 and 9.8 in arbitrary length units
(see examples in Ref. 4).

We start by comparing the results of Subsection 3.A
with numerical simulations. The combined CCWs consist-
ing of uniform sections built of microcavities with identi-
cal resonant wavelengths are shown in Fig. 3. The inter-
cavity spacing in the left and right CCWs is three and two
unit cells, respectively, yielding transmission bandwidths
of AN=0.118 and 0.5, both centered around \;=9.058.
The system is excited by an incident TM plane wave,
propagating from left to right. The rightmost section of
the combined CCW (the uniform CCW that occupies indi-
ces k=1) is matched to the free space at the right end of
the crystal by using a matching dielectric post as de-
scribed in previous works concerning matching to free
space.19’20 This matching reduces the backreflections in
the rightmost output terminal of the CCW to a few per-
cent, so one can assume that the modal propagation in
this section (k=1) consists of essentially a right-
propagating wave. Thus the left-propagating mode in the
left section (£<0) results only from the reflections that
take place across the CCW discontinuity at £=0. We have
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Fig. 3. Two sections with identical central frequencies and dif-
ferent bandwidths. All the dielectric cylinders in the crystal are
of radius 0.6 and €,=8.41. The crystal spacing is a =4. The dielec-
tric cylinder used to match the system output to free space is
seen on the right, external to the structure. Its material is iden-
tical to that of the PhC. Its radius is 0.4 and its x coordinate is
3.3 to the right of the rightmost cylinder in the crystal.19
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Fig. 4. Reflection coefficient obtained for the configuration de-
scribed in Fig. 3.

used the method described in Appendix A to compute the
amplitudes of the left- and right-propagating waves in
this section. Their ratio is the reflection coefficient I'. Fig-
ure 4 compares this numerically computed I" with the one
predicted by Eq. (3.9). Quite a good agreement is seen
(note the vertical scale). The deviations between the two
lines at the left side of the graph are attributed to numeri-
cal inaccuracy due to the relatively small number of mi-
crocavities used.

Figure 5 shows a combined system of two CCWs differ-
ing in both the central frequency and the bandwidth. It is
essentially the same configuration as that of the previous
example, except that the resonant wavelength of the left
CCWs is increased to A1 =9.15. This is obtained by slightly
increasing the radius of the six closest neighbors of the
corresponding cavities from r=0.6 to r=0.64.* The result-
ing reflection coefficient has been computed numerically
and in Fig. 6 it is compared with the analytic prediction of
Egs. (3.17). Again, quite a good agreement is seen (note
the vertical scale).

The quarter-wavelength analog prediction of Subsec-
tion 4.B is now examined. The combined system is shown
in Fig. 7. We use the same PhC background structure as
in the previous examples. Also, for CCW, and CCW3 we
use the same cavity structure and intercavity spacing as
used in the example of Fig. 3, namely, bandwidths Ak,
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=0.118 and AA3=0.5, respectively, and a resonant wave-
length A;=9.058 for both. We use CCW, as an intermedi-
ate matching section, with M=1. CCW consists of micro-
cavities created again by a removal of a dielectric
cylinder, with an intercavity spacing of four unit cells.
This yields an extremely narrow bandwidth. By increas-
ing the radius of the cylinders in the second ring around
each microcavity to r=0.66, we have increased the cavi-
ties’ mutual coupling, thus achieving a larger bandwidth
of AN1=0.025. This addition of dielectric material, how-
ever, caused an upward shift of the resonant wavelength
to beyond 9.07. Thus, we have slightly decreased the ra-
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Fig. 5. (Color online) Two sections with different central fre-
quencies and bandwidths. The parameters are the same as in the
previous example, except for the shaded circles representing di-
electric cylinders of the same material but of radius 0.64. The di-
electric cylinder used to match the system output to free space is
seen on the right. It has the same parameters as in the previous
example.
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Fig. 6. Reflection coefficient obtained for the configuration de-
scribed in Fig. 5.
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Fig. 7. (Color online) Quarter-wavelength plate analog of two
different CCWs connected in series, matched by an intermediate
section of a single microcavity. The crystal parameters are the
same as in the previous examples, except for the solid large circle
and shaded small circles, representing dielectric cylinders of the
same material but of radius 0.66 and 0.587, respectively.
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dius of each cavity’s six closest cylinders from r=0.6 to r
=0.587.* The final result is that CCW/’s central wave-
length \; is returned to 9.058, and its bandwidth A\ is
tuned to 0.025. The three bandwidths and the intermedi-
ate section length now approximately satisfy the condi-
tions set by the geometric mean in Eqgs. (4.6), with n=0.
Note that since the rightmost cavity of CCW; has larger
dielectric cylinders of radius 0.66 only on its left side, the
corresponding resonant tuning is achieved by a radius de-
crease of only three neighbors instead of six. The system
was excited by an incident plane wave from its left side.
The reflection coefficient of the combined system of CCW,
and CCWj3;, as seen from within CCW;, has been com-
puted using the method outlined in Appendix A. The re-
sult is shown in Fig. 8. It is seen that the reflection coef-
ficient is ~0.1 near the resonant wavelength, and thus a
good matching is achieved. Figure 9 shows the phase of
the transmitted field in CCWj right after the matching
section (cavity 9 from the left) relative to the phase of the
incident field in CCW/ far from the matching section (cav-
ity 4 from the left). It is seen that the transmission coef-
ficient across the matching section consists essentially of
a group delay; the phase is quite linear within the trans-
mission band, with the slope indicating a group delay due
to the propagation from cavity 4 to cavity 9.

Finally, a comment about the numerical accuracy is in
order. Each example in this section consists of essentially
two computational steps. First, we obtain the total fields
in the PhC system by a full-wave solution of Maxwell’s
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Fig. 8. Reflection coefficient obtained by using a single-cavity
intermediate matching section.
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Fig. 9. Phase of the transmitted field in CCWj relative to the
phase of the incident field in CCW;.
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equations (using the moment-method-based multifila-
ment code®?!). Then, the method outlined in Appendix A
is used to predict the reflection coefficient. In the former
step, a systematic check of the error in satisfying the
boundary conditions is invoked. The maximal relative er-
ror is a fraction of a percent for E and is of the order of 1%
for H. Thus, we surmise that the field solutions are accu-
rate of the order of a percent. Then the error in predicting
I" is essentially correlated to the residual error obtained
in the procedure discussed in Appendix A. This error was
a fraction of a percent in the examples shown in Figs. 4
and 6 and of the order of 20% in the example shown in
Figs. 8 and 9. A larger number of cavities and a better
cavity isolation from the free space (i.e., reduction of the
radiation loss from each cavity) can improve this accu-
racy. The latter requires an increase of the number of the
PhC rows above and below the CCWs. Note, however, that
the total number of dielectric cylinders in this problem is
631, yielding a moment-method matrix with more then
15,000 unknowns (24 unknown current filaments are
needed for each cylinder21). Thus, the numerical size of
the problem is already excessively large, and increasing it
further may cause numerical errors and instabilities to
take over.

6. CONCLUSIONS

Using a formulation developed from the tight-binding
theory, an equation governing the propagation in nonuni-
form CCWs has been developed. It is shown that analytic
expressions for reflection by and transmission through
discontinuity in the properties of a CCW can be derived
from the new theory. These expressions resemble in many
ways celebrated results that apply to propagation in
waveguides and TEM transmission lines, with the re-
placement of the wave impedances by the corresponding
CCWs’ bandwidth. These new results can serve as the ba-
sis for developing network theory for CCWs’ assemblies. A
simple example of matching two CCWs with the use of an
intermediate CCW section is demonstrated, and an anal-
ogy to the well-known quarter-wavelength plate is
pointed out. The analytic results are checked against nu-
merical simulations, showing quite a good agreement be-
tween them. It is anticipated that the present results can
be of help in analyzing systems where multiply connected
CCWs are used.

APPENDIX A: COMPUTING THE
REFLECTION COEFFICIENT FROM
NUMERICAL DATA

Consider a CCW comprising N+1 microcavities. Let
{E,}n=0, . N be a given set of numerical measurements of
the electric field data in the microcavities. These are
given generally by E,=E(r,+nb) where r, is a reference
point chosen within the first cavity, at a location where
the amplitude of the cavity excitation can be conveniently
measured (for symmetric cavity modes it is the cavity cen-
ter), and b is the intercavity spacing vector. We assume
that the field in the nth cavity is given by a*e’”* +a-e~F,
where g is the propagation constant and a* and a~ denote
the amplitudes of the propagating and reflected waves,
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respectively. Generally, these amplitudes depend on pB.
The relation among the electric field, the amplitudes, and
B can be expressed via

1 1 B

el 7B 0

. . a*(pB) E

0i2B  o=i2B [a_(ﬂ)] _ .1 . (A1)
oiNB  o-iNB Ey

The procedure for computing B8 and the amplitudes
a*(B) is the following one-dimensional minimization pro-
cedure. Numerically search for B, for which the solution of
Eq. (A1) in the least-squares sense, possesses the minimal
residual error. The corresponding a*(8) are the ones we
look for. Naturally, the reflection coefficient is determined
as '=a™/a*.
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