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Photonic crystal microcavities, formed by local defects within an otherwise perfectly periodic structure, can be
used as narrowband optical resonators and filters. The coupled-cavity waveguide (CCW) is a linear array of
equally spaced identical microcavities. Tunneling of light between microcavities forms a guiding effect, with
a central frequency and bandwidth controlled by the local defects’ parameters and spacing, respectively. We
employ cavity perturbation theory to investigate the sensitivity of microcavities and CCWs to random struc-
ture inaccuracies. For the microcavity, we predict a frequency shift that is due to random changes in the
lattice structure and show an approximate linear dependence between the standard deviation of the structure
inaccuracy and that of the resonant frequency. The effect of structural inaccuracy on the CCW devices, how-
ever, is different; it has practically no effect on the CCW performance if it is below a certain threshold but may
destroy the CCW if this threshold is exceeded. © 2003 Optical Society of America
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1. INTRODUCTION
Photonic bandgap materials attracted much attention in
the context of designing optical and microwave devices.
Recently numerical experiments have shown that line de-
fects in photonic crystals can be used not only to guide but
also to multiplex and demultiplex optical signals.1 Most
researchers studying the waveguiding by line defects em-
ploy photonic waveguides obtained by removal of a con-
tiguous line of posts in the periodic structure. In such a
setting, the strong coupling between the adjacent defects
produces relatively wideband waveguides.

In this paper we perform a sensitivity analysis of pho-
tonic crystal waveguides and filters with a prescribed cen-
ter frequency and narrow bandwidth. Specifically, we
concentrate on microcavities and on the coupled-cavity
waveguide (CCW) configuration, proposed recently by a
few researchers in different independent studies and for
different applications2–6 (in Ref. 6 the CCW was termed
the microcavity array waveguide). In the CCW, a wave-
guide is formed by widely spaced periodic identical defects
in the photonic crystal. Each defect site with a resonant
frequency in the bandgap serves as a microcavity. Tun-
neling of radiation between the defect sites allows wave
propagation along the line of defects. Sections of such
waveguides can be employed as ultranarrow band filters
in optical routing devices. A schematic description of the
CCW is shown in Fig. 1.

In previous papers, these devices were studied by em-
ploying the weakly coupled cavity model. This approach
resembles the tight-binding perturbation theory of solid-
state physics.7 It has been shown that the center fre-
quency of the waveguide is determined mainly by the
resonant frequency of the single defect, say v0 . Weak
coupling between the periodic defects causes the discrete
spectral line at v0 to turn into a narrow band of guided
1084-7529/2003/010138-09$15.00 ©
frequencies only slightly shifted from the original fre-
quency of a single defect. The resulting waveguide dis-
persion relation v(b) is

v 2 v0 ' vs 1 Dv cos b. (1.1)

The perturbation theory facilitates an approximate calcu-
lation of both the frequency shift vs and the half-
frequency bandwidth of the periodic microcavity wave-
guide, Dv. These parameters are linked by an analytic
relationship to the distance vector between the defect
sites b (see Refs. 5 and 6). For example, it has been
shown that vs ! Dv and the bandwidth Dv decreases ex-
ponentially with b. Thus, by tuning the distance be-
tween the defect sites, one can achieve extremely narrow-
band filters and optical routers,6 and, by a proper design
and control of the local defect, one can obtained almost
any prescribed central frequency v0 .

As a result of the above-mentioned appealing proper-
ties, effort has been devoted to use these devices in optical
communication applications in which the operating wave-
lengths are in the 1.5-mm regime. Thus structural de-
tails of photonic crystal devices designed to operate in the
optical regime may have sizes in the deep submicrometer
scale, which evidently approaches the accuracy limits of
conventional fabrication technologies.

The purpose of this paper is to examine sensitivity as-
pects related to the microcavity resonance frequency v0
and their ramifications on the CCW filter design. More
specifically, three goals are addressed:

1. Extension of the cavity perturbation theory,8 tradi-
tionally employed for microwave cavity tuning analysis,
to study the shift of an isolated microcavity frequency v0
as a function of the local defects’ parameters.
2003 Optical Society of America
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Fig. 1. CCW (or array waveguide) and its components. (a) Schematic description of the CCW in an otherwise perfect 2D hexagonal
crystal. Solid circles, microcavities created by local defects. The intercavity distance is b. (b) Example of a local defect microcavity,
created by removing a single post. (c) Isolated microcavity modal field E0 .
2. Use of the above theory to investigate the influence
of random structure inaccuracies on the single cavity cen-
ter frequency, and comparison of its results to exact com-
putations.

3. Study of the CCW sensitivity to random structure
inaccuracies. This study is based on the fact that the mi-
crocavities are weakly coupled; hence the entire CCW can
be viewed as a linear array of microcavities having inde-
pendent random resonant frequencies.

Throughout this study the analytically derived theoret-
ical results are supported by numerical computations that
demonstrate their efficacy and range of validity. Our nu-
merical test problem is based on the hexagonal-lattice
structure studied in a previous publication of the
authors.6 The selected photonic bandgap structure pos-
sesses a bandgap for wavelengths between 7.5 and 10.5 in
arbitrary length units, yielding a relative bandwidth of
approximately 34%. This very large gap allows a study
of the validity of our structure perturbation theory over a
wider range of wavelengths and perturbation parameters.
2. EIGENVALUE VARIATION AND CAVITY
PERTURBATION THEORY
The propagation of a time-harmonic electromagnetic
wave in an inhomogeneous dielectric is governed by the
following wave equation for the vector magnetic field H 9:

QH~r ! 5 lH~r !, l 5 S v

c D 2

, (2.1)

where v is the frequency, c is the free-space speed of light,
and Q denotes a self-adjoint operator defined by

QH [ ¹ 3 F 1

er~r !
¹ 3 HG . (2.1a)

Here er(r) is the relative dielectric property of the me-
dium. When perfect or imperfect photonic crystal struc-
tures are considered, the above equation constitutes an
eigenvalue problem that governs the electromagnetic
modal field, where l is an eigenvalue that determines the
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structure resonances.9 Specifically, we consider here the
case in which er describes a photonic crystal with a single
localized defect creating a microcavity with localized
modal fields and corresponding eigenvalues.

A. Nondegenerate Case
Here we assume that to each eigenvalue (resonance) ln of
Eq. (2.1) corresponds only a single distinct modal field
Hn . The main concern of the present study is to explore
how the resonance changes as the dielectric structure is
varied. Thus let the sets $En(r)%n 5 0,1,... and
$Hn(r)%n 5 0,1,... be the electric and magnetic modal fields
of a given photonic crystal structure er(r), with the corre-
sponding set of eigenvalues $ln%. Similarly, let the sets
$Em* (r)%, $Hm* (r)%, and $lm* % be those associated with a
varied structure er* (r). We have

QHn~r ! 5 lnHn~r !, (2.2a)

Q* Hm* ~r ! 5 lm* Hm* ~r !, (2.2b)

where Q* is the operator defined in Eq. (2.1a) but associ-
ated with the varied structure er* (r). It should be em-
phasized that the modal fields are distinguished from the
actual physical fields by their normalization,

Hn [ HnS E uHnu2d3r D 21/2

, (2.3a)

En [ EnS E uHnu2d3r D 21/2

, (2.3b)

where En , Hn are the actual physical electric and mag-
netic modes in the photonic crystal microcavity [clearly,
they satisfy Eq. (2.2a)]. With this normalization, the
modal fields En and Hn possess the physical units of
ohm 3 meter23/2 and meter23/2, respectively. Similar
relations hold for the asterisked quantities. Since the
modes are nondegenerate, we assume the eigenvalues are
ordered such that

ln Þ lm* ;m Þ n. (2.4)

Since the operator Q (Q* ) is self-adjoint, the set $Hn(r)%
($Hm* (r)%) is complete and orthonormal in L2 . Note,
however, that the electric field modes $En(r)% ($Em* (r)%)
are orthonormal with respect to a weight function
er /h0

2 (er* /h0
2). Thus

^Hn , Hm& [ E Hn • Hmd3r 5 dmn , (2.5a)

^Ener /h0
2, Em& [ E ~er /h0

2!En • Emd3r 5 dmn ,

(2.5b)

where the overbar denotes the complex conjugate. The
corresponding norm in L2 is naturally defined via the in-
ner product in Eq. (2.5a), as iFi2 [ ^F, F&. It should be
emphasized that the normalization in Eqs. (2.3a) and
(2.3b) renders dimensionless the inner products in Eqs.
(2.5a) and (2.5b) and the corresponding norm. Similar
expressions hold for the asterisked quantities. Perform-
ing inner products of Eq. (2.2a) with Hm* (r) and Eq. (2.2b)
with Hn(r), subtracting the resulting equations, perform-
ing integration by parts, and using the fact that ¹ 3 Hn
5 2ivneEn , we get
vnvm* ^e* Em* , e0En& 2 vnvm* ^eEn , e0Em* &

5 ^Hn , Hm* &~ln 2 lm* !. (2.6)

By realness of the eigenvalues and eigenfunctions (Q is
self-adjoint), Eq. (2.6) can be rewritten as

lm* 2 ln

e0
2vnvm*

^Hn , Hm* & 5 ^En , derEm* & 5 ^derEn , Em* &,

(2.7)
where der 5 er 2 er* . From Eq. (2.7) we have

(
m,m Þ n

u^Hn , Hm* &u2

5 h0
24 (

m,m Þ n
U vnvm*

vm*
2 2 vn

2U2

u^~der /er* !En , er* Em* &u2

< an
2(

m
u^~der /er* !En , ~er* /h0

2!Em* &u2, (2.8)

where an 5 maxm,m Þ nuvnvm* /(vm*
2 2 vn

2)u is finite owing to
the fact that vm* increases with m. With the orthonor-
mality relation in Eq. (2.5b), applied to the asterisked
quantities, the squared elements within the rightmost
sum can be viewed as the coefficients of a generalized
Fourier expansion of (der /er* )En by the set $Em* %. Thus
the sum is bounded by h0

22i(der /Aer* )Eni2 (apply Parse-
val’s theorem with respect to a weighted inner product).
This implies the following inequality:

(
m,m Þ n

u^Hn , Hm* &u2 < an
2h0

22i~der /Aer* !Eni2

< an
2h0

22ider /Aer* i2 max
r

uEnu2,

(2.9)
which vanishes as der → 0. Note that both sides of this
inequality are dimensionless (see Eqs. (2.3a) and (2.3b)
and discussion thereafter).

It follows from inequality (2.9) that the eigenfunctions
Hm* dependence on der is continuous, as shown by the fol-
lowing result (the proof is provided in the Appendix):

Let $ gn
d % be an orthonormal basis that depends on the

parameter d. Let $ fn% be a sequence satisfying i fni
5 1. If (m,m Þ nu^ fn , gm

d &u2 → 0 as d → 0, then for any
fixed n, gn

d → fn as d → 0. Furthermore, if
(m,m Þ nu^ fn , gm

d &u2 < O(d) as d → 0, then for any fixed
n, i gn

d 2 fni < O(d) as d → 0.

Applying this result to Eq. (2.7) and relations (2.8) and
(2.9) (that is, Hm* ⇔gm

d , and d⇔ider /er* i) in the limit of
der → 0 and using hypothesis (2.4), we get for all m

Hm* 5 Hm 1 dHm ,

idHmi < O~ ider /er* i ! → 0 as ider /er* i → 0.
(2.10)

Thus, for small perturbations in er , one can replace
Em* , Hm* with Em , Hm in Eq. (2.7), since the contribution
of dE and dH is second order owing to the multiplication
with der . (Note that the requirement for small ider /er* i
does not impose small variations in er or low contrast;
rather, the volume integration of the relative changes in
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permittivity should be small.) Using this fact and apply-
ing Eq. (2.7) to the case m 5 n, we find @l 5 (v/c)2#:

vn*
2 2 vn

2

vn* vn
'

^En , derEn&

h0
2iHni2

. (2.11)

This last result describes the shift in the nth resonance
frequency that is due to material variation der . Finally,
note that for small variations in vn we can make the ap-
proximation vn*

2 2 vn
2 ' 2vn(vn* 2 vn). Thus

dvn '
vn

2

^En , derEn&

h0
2iHni2

, (2.12)

where dvn [ vn* 2 vn .

B. Degenerate Case
Owing to the highly symmetrical structure of photonic
crystal microcavities, it often happens that for a perfect
structure (i.e., in the absence of random structure innacu-
racies), an eigenvalue ln is associated with N linearly in-
dependent modes Hn

(i) , i 5 1,..., N—a situation referred
as N-fold degeneracy. In these cases, Eq. (2.2a) can take
on a more general form,

Q(
i51

N

aiHn
~i !~r ! 5 ln(

i51

N

aiHn
~i !~r !, (2.13)

where the coefficients $ai% i 5 1,... N can be chosen arbi-
trarily. From the structure of Eq. (2.13), it is clear that
any linear combination of degenerate modes is a degener-
ate mode, too. Specifically, one can exploit this fact and
the linear independence of these modes to rebuild the set
Hn

(i) , i 5 1,..., N as an orthonormal set (say, via a Gram–
Schmidt orthogonalization):

^Hn
~i ! , Hn

~ j !& 5 d ij , i, j 5 1 ... N. (2.13a)

Using Eq. (2.13) in conjunction with Eq. (2.2b) [instead
of Eq. (2.2a)] and following the same steps that led to Eq.
(2.7), we get

(
i51

N

ai^derEm* , En
~i !& 5

ln 2 lm*

e0
2vnvm*

(
i51

N

ai^Hn
~i ! , Hm* &.

(2.14)

We concentrate now on the new modes Em* , Hm* that re-
sult from the structure perturbation of the degenerate
modal fields. Since those are expected to be close to each
other, we assume that Em* can be approximated by a sum
of the degenerate modes and choose ai to be the summa-
tion coefficients. Thus we have

Em* 5 (
j51

N

ajEn
~ j ! . (2.15)

Substituting this expansion into Eq. (2.14), we get

ln 2 lm*

e0
2wnvm*

5
( i( jaiā j^derEn

~ j ! , En
~i !&

( i( jaiā j^Hn
~i ! , Hn

~ j !&
. (2.16)

The last result is an eigenvalue equation for the new lm* ,
which possesses exactly the same structure as the eigen-
value problem studied in Ref. 6. It can be solved by look-
ing for the stationary point of lm* with respect to the co-
efficients ai , using the very same procedure outlined in
Ref. 6. Performing these steps and also using the ortho-
normality relation in Eq. (2.13a), we obtain the following
matrix eigenvalue problem:

@A#@a# 5
ln 2 lm*

e0
2vnvm*

@a#, (2.17)

which is written for the eigenvectors [a] (with elements
ai), and the eigenvalues lm* , for a given degenerate state
(ln , En

(i)) i 5 1 ,... N . Here A is an N 3 N matrix with el-
ements

Ai,k 5 ^derEn
~k ! , En

~i !&. (2.18)

This eigenvalue problem generally can have N different
solutions; the degenerate mode (with degeneracy N), in
general, splits into N different resonances owing to the
structure perturbation.

C. Example
The analysis presented in Subsections 2.A and 2.B applies
to a general two-dimensional (2D) or three-dimensional
photonic crystal structure. However, to demonstrate its
efficacy, we concentrate on photonic crystals formed by 2D
hexagonal arrays of dielectric posts, studied previously by
the authors.6 A defect is formed by deleting the post se-
lected as the defect site, conveniently centered at the
origin—see Fig. 1(b). The resulting microcavity pos-
sesses resonant frequency v0 . This resonance frequency
can be tuned by slightly varying the radius of the deleted
post ith’s nearest neighbors [marked by arrows in Fig.
1(b)] from a to a 1 dai . Thus we use expression (2.12)
with n 5 0 and with de 5 (er 2 1)e0 sgn(da) only within
the thin annulus 0 < f i , 2p, a < ri < a 1 dai around
each nearest neighbor. For small da, it can be approxi-
mated as

dv0 ' v0~h0iH0i !22pa~er 2 1 !(
i51

6

daiuE0ui
2,

(2.19)

where uE0ui
2 [ (2p)21*0

2puE0(ri 5 a)u2df i is the average
of uE0u2 along the ith post circumference. Note that in
expression (2.19) er is constant. Expression (2.19) de-
picts a linear relationship between the resonance fre-
quency variation dv0 and the post radii variations dai .
A relation that links dv0 to small variations in post loca-
tions can be derived by a similar procedure.

As an example that demonstrates the accuracy of the
above formulas, we use the cavity of Fig. 1(b), within the
hexagonal structure studied previously by the authors.6

The posts are made of a dielectric material with er
5 8.41, radii of 0.6, and post spacing of 4 (arbitrary
units). The resulting bandgap covers the range 7.5 < l
< 10.5 in arbitrary length units. The reference cavity ob-
tained by a removal of a single post has a resonance wave-
length l0 5 9.06. The corresponding electric field mode
E0 is shown in Fig. 1(c). We have used expression (2.19)
to study the resonant wavelength l0 when the radii of the
six nearest posts are varied identically: dai
5 da, i 5 1 ... 6 (see Fig. 2). In Fig. 3 the results are
compared with the exact resonant wavelength obtained
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by full-wave numerical computations.6 It is seen that
the results agree very well for a wide range of radii varia-
tions.

Finally, we note that the structure and its resonance
can be adjusted to match the optical communication
wavelength l 5 1.55 mm by scaling the structure by a
factor of 1.55 mm/9.06. The resulting post radius is 0.103
mm, and the post distance is 0.684 mm. The correspond-
ing bandgap covers the range 1.28 mm < l < 1.8 mm.

3. RANDOM STRUCTURE INACCURACIES
Assume that an isolated defect is created within an oth-
erwise perfect photonic crystal. The resulting microcav-
ity, termed here the perfect microcavity, possesses the
normalized modal field E0 and resonance frequency v0 .
The resonant frequency of a microcavity located within an
imperfect photonic crystal (i.e., a photonic crystal with
structure inaccuracies such as random variations of the
post radii) can now be obtained by applying the formula-
tion of expressions (2.12) and (2.19) and Eqs. (2.13)–(2.18)

Fig. 2. Nearest neighbors radii variation.

Fig. 3. Resonance wavelength versus radii. The reference
point is the point for which der 5 0 and for which the mode E0 is
computed.
to the perfect microcavity structure and allowing da to
vary randomly from post to post. The result is identical
to expression (2.19), except for the summation that is for-
mally performed now over all posts in the crystal and
where dai is the random change in the radius of the ith
post. Since the modal field E0 of a perfect microcavity is
well localized [see the example in Fig. 1(b)], it is clear that
only the microcavity’s closest neighbors contribute signifi-
cantly to the above sum. Thus, for symmetric cavity and
modes, one needs to include only N elements in the above
sum (N 5 6 and N 5 4 for triangular and square lat-
tices, respectively), where all have the same uE0u2

i . In
this case, we obtain

dv0 ' v0~h0iH0i !22pa~er 2 1 !uE0u2(
i51

N

dai . (3.1)

Note that all quantities in the right-hand side in expres-
sion (3.1) are deterministic except for the dai , which are
zero-mean independent random variables. Therefore the
average ^dv0& vanishes, and the frequency-shift variance
is given by (assuming dai has the same statistics for all i)

^~dv0!2& ' @v0~h0iH0i !22pa~er 2 1 !uE0u2#2

3 N^~da !2&. (3.2)

Thus the variance increases with the number of closest
neighbors N and with the average post radii a.

As an example, we have introduced random inaccura-
cies into the entire 2D structure depicted in Fig. 1 (see the
numerical example in Section 2 for a detailed description
of the structure). Each realization consists of indepen-
dent random perturbations of all the post radii, uniformly
distributed between 7damax (i.e., in a single realization,
different posts in the structure have different radii). The
exact shift in the resonance wavelength was computed
numerically for each realization, and its standard devia-
tion was estimated on the basis of 40 realizations. This
numerical experiment was repeated for five different val-
ues of damax , namely, 2%, 5%, 8%, 10%, and 12%. In Fig.
4 we compare the estimated standard deviation, (shown
by circles) to that predicted by expression (3.2) using only

Fig. 4. Resonance wavelength standard deviation versus maxi-
mal magnitude of radii perturbations.
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the six closest neighboring posts. It is seen that expres-
sion (3.2) provides a good qualitative estimate of the reso-
nant wavelength deviation.

4. COUPLED-CAVITY WAVEGUIDE
The procedure outlined in the previous sections can be
used to build a model for a CCW in the presence of ran-
dom structure inaccuracies. The mathematical model is
based on the following physical observations:

1. The CCW microcavities are weakly coupled.
2. The lowest resonant frequency of the ith microcav-

ity (i roam over all integers) is v i 5 v0 1 dv i , where dv i
is a random variable whose properties can be predicted by
expressions (3.1) and (3.2) with dv0°dv i .

3. Since, for sufficiently separated cavities, v i de-
pends essentially on the e variations of the ith microcavi-
ty’s closest neighbors, the random variables dv i are ren-
dered independent.

Thus one can treat the entire waveguide as a linear ar-
ray of weakly coupled independent cavities, each having a
resonant frequency that slightly differs from v0 . Accord-
ing to the discussion in Section 2, the spatial form of the
resonant mode is almost the same for each of the micro-
cavities. Therefore our analysis is based essentially on
the approach outlined in Ref. 6, with the modifications re-
quired to account for observations 1–3 above.

Let eb(r) be the relative permittivity of the photonic
crystal, including the random inaccuracies but excluding
the defect sites. Thus eb(r) describes a perfectly periodic
photonic crystal, superimposed on which is some noisy
structure that represents the random inaccuracy. Let
edn

(r) and Hn(r) represent the aforementioned inaccu-
rate crystal including the nth microcavity only and the as-
sociated mode, respectively. The corresponding resonant
frequency is vn . Note, that in the absence of random
structure innaccuracy, we have edn

(r) 5 ed0
(r

2 nb), where b is the intercavity spacing vector.6 We
define dn as

dn~r ! 5
1

edn
~r !

2
1

eb~r !
, (4.1)

which represents the single defect corresponding to the
nth microcavity, in its true position. Note that owing to
the random structure inaccuracies the shift-invariance
property dn(r) 5 d(r 2 nb) does not hold. Let er(r) be
the relative permittivity of the entire photonic crystal
structure, including the random inaccuracies and the lin-
ear array of defects that forms our CCW. We have

1

er~r !
5

1

eb~r !
1 (

n
dn~r !. (4.2)

In accordance with Eq. (2.1a), we define the operators

Q [ ¹ 3
1

er~r !
¹ 3 , Qb [ ¹ 3

1

eb~r !
¹ 3 ,

(4.3)
Qn [ ¹ 3 dn~r !¹ 3 .
The modal field of the nth microcavity when all other de-
fects are absent, Hn(r), satisfies

~Qb 1 Qn!Hn~r ! 5 S vn

c D 2

Hn~r !, (4.4)

where vn is the resonant frequency of this microcavity
[see item 2. above]. Likewise, the equation governing the
field of the entire CCW structure can be written as

QH~r ! 5 S Qb 1 (
n

QnDH~r ! 5 S v

c D 2

H~r !. (4.5)

Under the weak-coupling assumption, we can now ex-
press the total field H(r) as a sum over the modal fields of
the isolated microcavities:

H~r ! 5 (
m

AmHm~r !, (4.6)

where Am is a set of unknown coefficients. Here Hm sat-
isfies Eq. (4.4), with n°m. By use of a variational for-
mulation, the operating frequency v of the entire CCW
structure, and the corresponding field H(r), is the ex-
tremal point of the functional

S v

c D 2

5
^H, QH&

^H, H&
. (4.7)

With the expansion in Eq. (4.6), Eq. (4.7) gets the form

S v

c D 2

5
(m(nAnAmTnm

(m(nAnAmInm

, (4.8)

where [by use of Eqs. (4.4) and (4.5)]

Tnm [ ^Hn , QHm& 5 S vm

c D 2

Inm 1 Tnm8 , (4.9a)

Inm [ ^Hn , Hm&, (4.9b)

Tnm8 [ K Hn , (
jÞm

QjHmL . (4.9c)

A difference equation that governs the An’s can now be ob-
tained by finding the extremum of Eq. (4.8) with respect
to the coefficients. This standard procedure has been ap-
plied in Ref. 6, and its derivation in the present case is
completely identical. The result is the difference equa-
tion

(
n

H F S vk

c D 2

2 S v

c D 2GInk 1 Tnk8 J An 5 0, ;k.

(4.10)

This equation differs from the parallel one obtained in
Ref. 6 in two aspects. First, here we have a k dependence
of the leftmost frequency term (replace vk with the deter-
ministic microcavity resonance v0 to obtained the previ-
ous equation). Second, the double-indexed terms have
formally lost their shift-invariance property. However,
consistent with relation (2.10), the approximate equality
for the modal shapes holds:
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Hn~r ! ' H0~r 2 nb!. (4.11)

Specifically, the random structure inaccuracy affects es-
sentially the local resonant frequencies vk associated
with each microcavity and has a negligible effect on the
modal shapes. This effect is reduced even further by the
inner products [Eqs. (4.9b) and (4.9c)] that average out
small spatial perturbations. Thus we can approximate
tI 1 DO 5

] ] ] ] ] ] ]

¯ 0 t1 t0 1 Dk21 t1 0 ¯

¯ 0 t1 t0 1 Dk t1 0 ¯

¯ 0 t1 t0 1 Dk11 t1 0 ¯

¯ 0 t1 t0 1 Dk12 t1 0 ¯

] ] ] ] ] ] ]

. (4.16)
Ink ' I0n2k 5 În2k ,

(4.12a)
Îm [ ^H0~r !, H0~r 2 mb!&,

Tnk8 ' T0n2k8 5 tn2k ,
(4.12b)

tm [ K H0~r 2 mb!, (
jÞ0

QjH0~r !L .

Note that Î and t are obtained from Eqs. (4.9b) and (4.9c)
by the mere replacement of Hm(r) with H0(r 2 mb), as
stated in expression (4.11). To simplify further, we ex-
press the frequency vk as

vk 5 v0 1 dvk , vk
2 ' v0

2 1 2v0dvk . (4.13)

With these expressions, Eq. (4.10) becomes

(
n

~V2În2k 1 2c22v0dvkÎn2k 1 tn2k!An 5 0, ;k,

(4.14)

where

V2 [ c22~v0
2 2 v2!. (4.14a)

In the absence of structural noise, one has dvk [ 0;k.
It is easily verified that in this case Eq. (4.14) reduces to
the shift-invariant equation representing the perfect
CCW case.6 In the latter, we have exploited the perfect
shift-invariance property to obtain a solution of the form
An 5 exp(ibn), which subsequently leads to the disper-
sion equation (1.1)—after neglecting subdominant terms
among the Tnm8 . Here we find it beneficial to rewrite Eq.
(4.14a) in the form of an infinite matrix eigenvalue prob-
lem. Note that, since the local modes decay exponen-
tially away from the microcavities, their inner products
[expression (4.12a)] decay exponentially with un
2 ku. The dominant term among the Îm is Î0 , which is
nothing but the square of the H0 norm. Thus we can re-
write Eq. (4.14) in the matrix eigenvalue form

@tI 1 DO #A 5 2V2iH0i2A, (4.15)

where A is a vector of the unknown coefficients An , DO is a
diagonal matrix whose kth diagonal element is given by
Dk 5 2c22iH0i2v0dvk , (4.15a)

and tI is a matrix whose m, nth entry is given by

tI mn 5 tm2n . (4.15b)

Note that tk , k Þ 61 is exponentially weak compared
with t61 @Q0 is excluded in expression (4.12b)]. Further-
more, for symmetric modes we have tm 5 t2m . Thus the
matrix in Eq. (4.15) is essentially of the form
Matrices of this structure appear widely in many areas of
theory and applications. For a noiseless system, Dk
5 0, and the resulting form is sufficiently simple to allow
analytic solution for its eigenvalues (see, for example, Ref.
10, Chap. 4). For a noiseless N 3 N matrix we have

Vn
2 udvk50 5 iH0i22$t0 2 2t1 cos@np/~N 1 1 !#%,

(4.17)
n 5 1 ... N.

The perfect microcavity array waveguide corresponds to
N → `. In this case, the discrete set approaches a con-
tinuum, uniformly covering the interval

iH0i22@t0 2 2t1 , t0 1 2t1#, (4.18)

and this last result reconstructs the bandwidth prediction
of Ref. 6:

Dv

v0
5 2S c

v0iH0i D
2

t1 . (4.19)

The introduction of structural inaccuracy is manifested
by the presence of Dk Þ 0 on the matrix diagonal. Since
only the diagonal is affected, the structural noise results
in random shifts of the corresponding eigenvalues:

Vn
2 5 iH0i22$t0 2 2t1 cos@np/~N 1 1 !# 1 Dn%,

n 5 1 ... N. (4.20)

Evidently, these random shifts perturb the uniform cover-
ing of the interval in term (4.18). This perturbation be-
comes significant and opens holes in this interval only
when Dn approaches 2t1 for some n. In other words,
when [by use of Eqs. (4.15a) and (4.19)]

dvn 5 O~Dvuperfect waveguide! for some n.
(4.21)

This result presents a qualitative, canonical, threshold
condition for the structural noise level: If the structural
inaccuracy variations render the deviation of the micro-
cavities’ resonance to exceed the bandwidth of the corre-
sponding perfect CCW, the transmission properties of the
perturbed CCW will degrade significantly. As long as the
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structural inaccuracy renders dvk below that threshold
level, it is expected that the CCW properties will not de-
grade significantly.

To demonstrate the threshold effect, we have simulated
the transmission of a CCW in a photonic crystal consist-

Fig. 5. Transmission of the perfect CCW (dashed–dotted curve)
and the randomly perturbed CCW (solid curve) for post radii ran-
dom inaccuracy of (a) 2%, (b) 5%, (c) 10%.
ing of a 2D hexagonal lattice of dielectric posts, whose pa-
rameters are identical to those used in the previous ex-
amples. The microcavities are obtained by a removal of a
dielectric post, as shown in Fig. 1(b). The intercavity
spacing is three periods in the horizontal direction, and
the simulated CCW section consists of seven microcavi-
ties. The transmission of the perfect CCW is depicted in
Fig. 5 by a dashed–dotted curve. In comparison, we
show by a solid curve the transmission corresponding to
the same CCW but with random radii perturbation, uni-
formly distributed between 7damax , with damax /a 5 2%,
5%, and 10%. The solid vertical lines show dvk—the in-
dividual resonant wavelengths of each of the microcavi-
ties. It is seen that the CCW transmission degrades sig-
nificantly if the variation exceeds the unperturbed CCW
bandwidth, as predicted by the threshold relation in Eq.
(4.21). We have performed several different realizations
of this numerical experiment. All results were consistent
with this prediction.

5. CONCLUSIONS
Cavity perturbation theory is used here as a mathemati-
cal model to estimate the performance degradation of mi-
crocavity filters and CCW devices under structure inaccu-
racies. For the microcavity, the theory predicts a
frequency shift that is due to deterministic as well as ran-
dom changes in the lattice structure and shows an ap-
proximate linear dependence between the variance of the
structure parameters and that of the resonant frequency.
The effect of structural noise on the CCW devices, how-
ever, is different in its nature: Random structure varia-
tions have practically no effect on the CCW performance
if they are below the threshold level predicted by Eq.
(4.21), and they may completely destroy the CCW behav-
ior if this threshold level is exceeded. These theoretical
results were verified by numerical computations. Our
sensitivity analysis is important for applications in the
optical and infrared regime, as the typical sizes of various
components in the photonic crystal device may approach
the limits of fabrication accuracy.

APPENDIX A
Expand fn in terms of the set $ gm

d %:

fn 5 (
m

am
n ~d!gm

d , am
n ~d! 5 ^ fn , gm

d &. (A1)

Moving the nth term to the left and using orthogonality of
the gm

d , we get

i fn 2 an
n~d!gn

d i2 5 (
m,mÞn

u^ fn , gm
d &u2. (A2)

Since $ gm
d % is a basis for any d, the sequence (in m)

$am
n (d)% is square summable. Also, by hypothesis

(m,mÞnu^ fn , gm
d &u2 → 0 as d→0. Therefore the sum in

the right-hand side of Eq. (A2) above must vanish with d.
In other words,

i fn 2 an
n~d!gn

d i → 0 as d → 0. (A3)
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In the case that the sum on the right-hand side of Eq. (A2)
is bounded by O(d), the same bound holds for the left-
hand side of expression (A3),

i fn 2 an
n~d!gn

d i < O~d! as d → 0, (A4)

which proves the theorem. h

B. Z. Steinberg can be reached by e-mail at
steinber@eng.tau.ac.il, and A. Boag can be reached by
e-mail at boag@eng.tau.ac.il.
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