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We study wave propagation in a rotating slow-light structure with mode degeneracy. The rotation, in conjunc-
tion with the mode degeneracy, effectively induces superstructure that significantly modifies the structure’s
dispersion relation. It is shown that a rotation-dependent stop band is formed in the center of the slow-light
waveguide transmission curve. A light signal of frequency within this stop band that is excited in a finite-
length section of such a waveguide decays exponentially with the rotation speed and with the coupled resona-
tor optical waveguide’s total length or total number of degenerate microcavities. This effect can be used for
optical gyroscopes with exponential-type sensitivity to rotation. © 2007 Optical Society of America
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1. INTRODUCTION

An electromagnetic wave propagating along a circular
path in a rotating medium accumulates additional phase
shift that depends on the relation between the directions
of the wave propagation and the medium rotation. This
phase shift, known as the Sagnac effect, was recently
studied in slow-wave structures consisting of a set of
coupled nondegenerate microcavities.! This study reveals
a novel manifestation of the Sagnac effect, expressed via a
new (to the best of our knowledge), rotation-dependent
dispersion relation. In another work,” the application of a
microring based coupled resonator optical waveguide
(CROW) for rotation sensing was studied, demonstrating
a potential for significant sensitivity enhancement com-
pared to the conventional Sagnac loops. Unlike the photo-
nic crystal (PhC) cavities employed in Ref. 1, microrings
possess mode degeneracy [clockwise (CW) and counter
clockwise (CCW) propagating modes with the same reso-
nant frequency]. Under rotation, this difference has far-
reaching ramifications on the underlying physics govern-
ing the entire CROW structure, a phenomenon that was
left unexplored in Ref. 2. Here we study the impact of
mode degeneracy on the characteristics of rotating CROW
structures. We reveal a novel effect: due to mode degen-
eracy, a rotation-induced superstructure emerges in the
CROW, resulting in the appearance of an additional for-
bidden gap in the center of the dispersion curve. In addi-
tion, our analysis is general and applies also to less trans-
parent cases of mode degeneracy such as those
encountered in the PhC under rotation.®*

A simple example of a resonator having degenerate
modes is the microring: two modes Hf propagating in op-
posite directions possess the same resonance frequency
wp. If a ring of radius R rotates at an angular velocity Q)
around an arbitrary axis normal to the ring plane, wg
splits into two frequencies w,=wyxQwyR/nc due to the
classical Sagnac effect® (see Fig. 1). Although it seems to
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be less transparent and intuitive, exactly the same phe-
nomenon exists in any microcavity that supports mode
degeneracy, including Phc microcavities such as those re-
ported lately®* (but with more elaborate mathematics
that provide the exact splitting formula). Next, consider a
CROW consisting of resonators with mode degeneracy, as
in Fig. 2. When stationary, the CCW mode Hf, in even-
numbered resonators essentially couples to the CW mode
H,, in odd-numbered resonators (due to phase-matching
requirement in the area between the resonators), all hav-
ing the same resonance wy;. However, when the entire
structure is rotating, each microring undergoes a split of
its resonant frequencies as shown in Fig. 1. Thus, the rel-
evant resonant frequency of the nth resonator shifts to
wo+(—=1)"6w(Q)), so the rotation induces a periodic modu-
lation of the CROW properties. This rotation-dependent
effective periodic modulation results in the emergence of
forbidden frequencies gap within the CROW’s transmis-
sion curve, as with any other wave phenomenon governed
by an equation with periodic coefficients. A similar super-
structure may emerge in every CROW comprising resona-
tors with mode degeneracy.Q_4

The purpose of the present work is to study this effect
analytically and to demonstrate it numerically. Further-
more, as shown in Section 3, the rotation induces a for-
bidden frequencies gap within the CROWs transmission
curve—a regime in which propagation possesses exponen-
tial decay behavior. Thus, we show that the novel effect
reported here can be used to design new devices with
exponential-type sensitivity to rotation and to the CROW
length. This may have important practical implications.
The study is carried out in the rotating CROW rest frame,
and our starting point is the set of Maxwell’s equation in
noninertial rotating media. After deriving the appropriate
wave equations, a mathematical solution procedure based
on a tight-binding approach is invoked. This approach is
chosen for several reasons. It is well suited for CROW
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Fig. 1. Splitting of the ring degenerate modes due to rotation.
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Fig. 2. Stationary and rotating CROW consisting of ring
resonators.

structures consisting of weakly coupled resonators, which
is the case of interest here. It simplifies the analysis by
expressing many of the important quantities involved in
terms of the system’s basic building block: the single iso-
lated and stationary microcavity. This simplification is
also helpful in conveying clear physical interpretations.
As the tight binding is based on the properties of the
single microcavity, and since in our case this microcavity
possesses mode degeneracy and is rotating, our analysis
here uses extensively some previously developed results
on the subject.?”4 A short summary of the important points
is provided here where needed, and the reader is referred
to our previous works®* for their derivations. It is recog-
nized that other mathematical approaches, such as the
transfer matrix method,? may provide solutions that are
valid beyond the tight-binding regime. However, we be-
lieve that the basic properties of the novel effect reported
here, as well as many of the computational results per-
taining to the new dispersion relations, are, in principle,
valid beyond the tight-binding approximation. Further-
more, the tight-binding approach can be used in a more
general context where the microcavities modes cannot be
described by a simple local plane wave, as done in the
transfer matrix approach.

Finally, a short comment regarding terminology is in
order. In previous publications pertaining to propagation
in stationary or rotating sets of microcavities, and espe-
cially in a previous work related to rotating PhCs,' the
authors used the term “coupled cavity waveguide”—CCW.
This is quite unfortunate due to the ambiguity with the
term “counterclockwise” (CCW) used to define a direction
of rotation. Thus, in this work we use the term CROW to
designate the system consisting of a set of microcavities,
and we use the terms CW and CCW to designate rotation
directions.

The structure of the paper is as follows. In Section 2,
we provide a brief overview of the mathematical and
physical properties of a single rotating microcavity. This
overview summarizes the results of a previous study by
the authors®* that are needed here in order to construct
the appropriate tight-binding solution procedure. In Sec-
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tion 3, we derive the basic wave equations governing the
rotating CROW, as seen in the CROW rest frame, and
solve the equations using an appropriate extension of
tight-binding theory. The general form of the dispersion
relation is exposed and discussed. In Section 4, we pro-
vide numerical examples that demonstrate the properties
developed analytically. Concluding remarks are provided
in Section 5.

2. DEGENERATE MODES IN A SINGLE
STATIONARY OR ROTATING
MICROCAVITY: AN OVERVIEW

Before analyzing the effect of rotation on the entire struc-
ture of a CROW made of degenerate modes microcavities,
it is instructive to discuss in more detail the effect of ro-
tation on a single microcavity that supports degenerate
modes. We summarize here the main results of one of our
previous studies,>* with emphasis on the points that are
of most relevance to the present study. We consider first
the stationary case, and start with the wave equation for
the magnetic field modes of a general resonator support-
ing M degenerate modes that resonate at frequency w.
Denote the degenerate modes by Hg")(r), m=1,2,...,M.
When the system is at rest, these modes satisfy

O M (r) = KZH(xr), ko=wyc, m=1,2,...,M,
(2.1)
where 0, is the wave operator:
0,=VX VX. (2.2)

€4\

Here ky=wy/c where ¢ is the vacuum speed of light, and
€,(r) is the relative dielectric structure of the single reso-
nator. As pointed out in Section 1, for the specific case of a
ring resonator we have only two degenerate modes, so
M=2. These two degenerate modes can be cast in many
different ways. Denoting the arc length along the ring pe-
riphery and the corresponding propagation constant
(wavenumber) by s and B, respectively, the modes can be
defined as the two standing waves cos(Bs) and sin(Bs). Al-
ternatively they can be rewritten as the two propagating
waves e'? and e, Since any linear combination of de-
generate modes is by itself a degenerate mode, these two
representations are formally equally legitimate, as well
as infinitely many other linear combinations. However,
with respect to rotation problems, what signifies the
propagating waves representation (e*’#) is the fact that
their spatial form is unchanged under rotation. Only their
resonances are changed (to w,=wy+QwoR/nc, the Sagnac
effect). Thus, for the ring structure, the specific form
e*'Fsconstitutes the rotation eigenmodes. We denote them
here by H{,. Note that these modes are orthogonal.

It turns out that a similar situation exists in any rotat-
ing cavities that support mode degeneracy, even if the cor-
responding modal shapes are not as transparent and ob-
vious as those of the ring.®* This includes, as a special
case, degenerate modes microcavities formed by local de-
fects in PhCs.%7 Suppose the stationary cavity possesses
two degenerate modes Hgl’z). Without loss of generality,
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they can be assumed mutually orthonormal (every linear
combination of degenerate modes is a degenerate mode;
thus, if one starts with fields that are not orthonormal,
Gram—Schmidt orthogonalization can be applied, and the
end result would be an orthonormal pair of degenerate
modes). Then the two unique linear combinations,

2
Hi= D ofH, ai= +ia, (2.3)

m=1

result in fields H{ that constitute the rotation eigen-
modes. These modes possess the following important
properties pertaining to both the stationary and the rotat-
ing cavity®*:

(i) They are orthonormal (H{,Hg;)=0 [see Eq. (3.12)
for the definition of the inner product].

(i1) Since they are given by linear combinations of de-
generate modes of the stationary system Eq. (2.1), they as
well constitute degenerate modes of the stationary sys-
tem, satisfying

OHE(r) = k2HE(r), (2.4)

(iii) These rotation eigenmodes Hf, are themselves ro-
tating fields, just like their celebrated cousins e*#* [note
the 7/2 phase difference between the summation ampli-
tudes in Eq. (2.3), and the fact that the summed fields
ng) are orthonormal].

(iv) Their spatial form stays unchanged under physical
rotation of the system (as seen in the rotating system rest
frame).

(v) Under rotation, their corresponding resonance fre-
quencies as measured in the rotating system rest frame
are obtained by the splitting formula

W, =wyx dw(Q), Sw(Q))=wQA. (2.5)

Here () is the rotation angular velocity, and A is the ei-
genvalue of an appropriately defined rotation operator.

(vi) HG constitute the eigenmodes of the wave equation
governing the fields in the rotating system rest frame,
with eigenvalues given by the splitting formula above. In
fact, properties (iv) and (v) are nothing but a manifesta-
tion of this general fact.>* Furthermore, for slow rotations
these results are independent of the location of the rota-
tion axis.

It has been shown? that the above properties are gen-
eral and hold for any microcavity with mode degeneracy.
For the case of a simple closed-loop resonator, they boil
down to the classical Sagnac effect.

Before concluding this section, it is instructive to show
a specific example. Consider a two-dimensional PhC that
consists of dielectric cylinders of radius 0.6 um and e,
=8.41, situated on a hexagonal lattice with lattice con-
stant of a=4 um. For TM polarization, a microcavity with
two degenerate modes at a resonant wavelength of X\
=27/ wy=8.79941 um is created by increasing the radius
of a cylinder to 1.1 um. Two possible sets of the degener-
ate modes electric field magnitude is shown in a logarith-
mic scale in Fig. 3. The rotation eigenmodes for this sys-
tem are obtained by substituting the orthogonal version
of the set [shown in Figs. 3(c) and 3(d)] into the summa-
tion in Eq. (2.3). The resulting eigenmodes shapes evolve
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gradually from the shape shown in Fig. 3(c) at, say, t=0 to
the shape shown in Fig. 3(d) at wt=7/2 and back, per-
petually. The results are two modes of identical spatial
forms shown in Fig. 4, rotating around the cavity center
in mutually opposite directions. Clearly, if two neighbor-
ing microcavities of this type (i.e., each of them supports
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Fig. 3. (Color online) Electric field magnitudes in decibel scale
of a doubly degenerate TM microcavity (M =2), in a 2D hexagonal
PhC. The crystal is made of dielectric cylinders, outlined by the

black circles. (a) Ef)l). (b) EE)Z). These modes are nonorthogonal,
and E{ is a w/3-rotated replica of E{. (c) The linear combina-
tion EBI)HEBIHEBZ). (d) The linear combination EgZ)HEE)I)—Eg).
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Fig. 4. (Color online) Electric field of the rotation eigenmodes
associated with the PhC microcavity of Fig. 3. The two modes
have exactly the same spatial form shown here. Ej, Hf, rotate
CW and E;, H, rotate CCW. They are obtained by the linear
combination in Eq. (2.3), using the orthogonal pair shown in
Figs. 3(c) and 3(d). All quantities are shown on linear scale. (a)
The instantaneous field [Re(Eqe’?)| for wt=m/4. (b) The same as
(a), but for Ej. (¢c) [Ey|. The rotating field forms a ring along
which the field power propagates. (d) |[Eg|.
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Fig. 5. (Color online) Instantaneous field of a degenerate modes CROW, made of a set of equally spaced PhC microcavities such as the
one discussed in Figs. 3 and 4. Counting from left, the modes in the odd- (even-) numbered cavities are rotating in a CCW (CW) direction.
A rigid mechanical rotation of the entire structure in the CW direction causes the alternating of the resonance shift sw that depends

linearly on the rotation rate as shown in Eq. (2.5). Thus, rotation induces a modulation of the local resonance frequency, similar to the

phenomenon described in Fig. 2.

two degenerate modes) are created in a PhC, the CW ro-
tating mode in one cavity couples best to the CCW rotat-
ing mode of its neighbor. Hence, a PhC based analogy of
the ring-CROW structure shown in Fig. 2, can be con-
structed by a set of equally spaced microcavities, each
supporting two degenerate modes as discussed above.
This system is shown in Fig. 5.

3. STUDY OF THE ROTATING CROW IN ITS
REST FRAME OF REFERENCE

In this section, we develop the general wave equations
governing the fields of rotating system (i.e., the entire
CROW, made of ring resonators or PhC microcavities), as
seen in the rotating medium rest frame, which is noniner-
tial. Then, the tight-binding approach is employed to
solve the equation and study the propagation in the rotat-
ing CROW. Let €.(r) be the (time-invariant) relative di-
electric property of a stationary medium, as measured in
its (inertial) rest frame. We assume now that the medium
rotates slowly around the z axis at an angular radian ve-
locity Q:

Q=20. (3.1)
The assumption of slow rotation implies that

(1) The angular velocity () and the PhC maximal di-
mension L satisfy |QL|<c. Therefore no relativistic ef-
fects take place.

(i1) Consistent with the slow velocity assumption, no
geometrical transformations or deformations take place.
Thus, for example, the V operator is conserved: V=V'. For
the very same reason, time is invariant in both systems:
t=t'.

According to a formal structure of electrodynamics,
postulated in fundamental studies,®® the basic physical
laws governing the electromagnetic fields are invariant
under any coordinate transformation, including a nonin-
ertial one. The transformation to a rotating system is
manifested only by an appropriate change of the constitu-
tive relations. Therefore under the slow rotation assump-
tion discussed above, the source-free Maxwell’s equations
in the rotating frame R are given by®’

VXE=iwB, V-B=0, (3.2a)

VXH=-ioD, V-D=0. (3.2b)

Let the material properties at rest be given by e(r)
= €€ (r), u=po. Then up to the first order in velocity the
constitutive relations in R take on the form®

D=cE-c2Q0xrxH, (3.3a)

B=yH+c2Q XrXE. (3.3b)

In the above, ¢ is the speed of light in vacuum, w is the
frequency, and a time-dependence e“* is assumed and
suppressed. This set of Maxwell’s equations has been
used in the past as the starting point for studies of the Sa-
gnac effect in classic works on optical gyroscopes by nu-
merous authors.’® We now follow the procedure outlined
in a previous work by one of the authors’ to derive a wave
equation governing the magnetic field. Substitute the
above constitutive relations into Maxwell’s equations
(3.2a) and (3.2b). The result is

DXE=iouH, (3.4a)

DXH=-iweE, (3.4b)

where D is the operator:
D=V -ikBr), k=wlk, Brx)=c'Qxr. (3.5

Now follow the standard procedure of deriving the wave
equation for H, with D replacing V. The resulting equa-
tion is DX (1/€)DxH=k?H. Collecting terms that are
first order only (with respect to velocity,) and rearranging,
we end up with the new wave equation in the rotating me-
dium rest frame, governing the magnetic field Hq(r)!:

OH,(r) = k2H(r) + ikLoH, (r). (3.6a)

Here, O is the wave operator associated with the entire
structure,

1
0O=VX

e V X, (3.6b)

and L, is the rotation-induced operator,

B(r) B(r)
X H +

LoH=V X
€.(r) €.(r)

XVXH, Br)=QXr/c.

(3.6¢)

In developing Egs. (3.6a), (3.6b), and (3.6¢), only terms up
to first order in B were kept.® Note that when no rotation
takes place, L vanishes and Eq. (3.6a) reduces to the
well-known stationary medium wave equation.

We now wish to solve Eq. (3.6a) for the entire CROW
under slow rotation rates (say, typical to those relevant
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for optical gyroscopes; (=1 rad/s). Since the CROW con-
sists of weakly coupled resonators, the tight-binding ap-
proach can provide a convenient solution technique. Thus,
we follow the rotating-CROW solution technique devel-
oped previously1 with the modifications needed to handle
properly the microcavities mode degeneracy. Considering
the general observations made in properties (iii) and (iv)
in Section 2, and the fact that a CW rotating mode in a
given resonator couples only to the CCW rotating mode of
its neighbor, we expand the total field of the rotating sys-
tem with the modes H,,

- EA - - H{(r-r,) meven
a- i m(®), m(r) = Hy(r-r,) modd’
(3.7)

where r,, is the location of the mth resonator center. In
this representation of the solution, the modal fields H§
are used as mere building blocks, and the fact that they
satisfy Eq. (2.4) will be exploited. The intercavity (weak)
coupling, as well as the effect of rotation, will be mani-
fested via the (yet unknown) expansion coefficients A,,.

We decompose now the relative dielectric property of
the entire structure €.(r) to that of the background struc-
ture €,(r) (without the resonators or local defects, but
with the perfect PhC, if the CROW is realized by array of
local defects in a photonic crystal), and a series of defect
contributions. Thus, 1/¢,.(r) in Eq. (3.6b) can be expressed
as

1
+ > d(r,ry),

6r) &) 4

(3.8a)

where d(r,r;) is the variation in 1/¢, introduced by the
kth resonator or local defect:

1 1
d(r,ry) =

_ . 3.8b
er-ry) &) ( )

Here e€4(r) represents the perfect background with a
single resonator or a local defect, located at the origin.
With this decomposition the operator ® is decomposed
into a series of operators representing the contribution of
the background structure and of each of the resonators (or
local defects) separately,

0=0"+> 0, (3.9a)
k
where

Ob=V x

VX, 0,=VXd,r,)VX. (3.9b)
(1)

Due to the property (ii) in Section 2, and Eq. (2.4), each of
the summed modes H,, in Eq. (3.7) satisfies

wq 2
(©°+0,)H,, = <7> H,. (3.10)
This decomposition will be used in subsequent deriva-
tions.
We now wish to obtain the rotating CROW solution by
solving for the expansion coefficients A,, in Eq. (3.7). Note

Steinberg et al.

that Eq. (3.6a) is not self-adjoint, thus the standard varia-
tional procedure for determining the set of A,, does not
hold here. Instead, we adopt the projection approach.1 We
first substitute the expansion in Eq. (3.7) into the wave
equation (3.6a) and perform an inner product of the re-
sulting equation with H,,, with n roaming over all the
resonators involved (this amounts to the requirement
that the residual error associated with the solution be or-
thogonal to the solution building blocks). The result is the
following algebraic set of equations for the coefficients A,,:

> A,(0H,, H,)=k2> A, H, H,)+ik> A, (LH, H,).
(3.11)

Here (F,G) is the inner product

F.G) = f F-Gd'r, FF)-|FP, (312

where the overbar denotes the complex conjugate, and
F-G is the standard scalar product between the two vec-
tors F and G. Note that since the indices m, n indicate
resonator locations, and since the modal fields in each
resonator are tightly confined, we can approximate the
first inner product in the right-hand side of Eq. (3.11) by
Smn||HE|?. Using this approximation, substituting the op-
erator decomposition in Egs. (3.9a) and (3.9b) into Eq.
(3.11), and using Eq. (3.10), we obtain

(k3 - B2)[HYPA, + ) 7y pAp — ik, (LoH,,, H)A,, = 0.
(3.13)

Here 7,,_,, obtained and used in numerous other studies
pertaining to tight-binding analysis of CROWs 12 ig
given by

(3.14)

Tm-n = < E ®ka’Hn> .

k#m

It has been shown'' that for m-n# +1, these elements
are exponentially small compared to the dominant ele-
ments 71=7_1.

Finally, the inner products in the rightmost summation
in Eq. (8.13) can be simplified considerably. Following the
same steps used in a previous work on the subject,1 with
the slight generalization needed here (in Ref. 1 the modes
are assumed to be real), we obtain (see Appendix A for
derivation):

<LQHm7Hn> = ic‘lﬂwoe()(p(?),ﬁm X En + Hn X Em)
(3.15)

This quantity is independent of the origin location (and
rotation axis) with respect to the cavity location. Note
that the modal fields E,,, H,, are tightly localized within
the mth cavity, and they decay exponentially away from
it. Thus, under the tight-binding approximation the last
equation yields
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0 m+*n

<LQHm7 Hn> - . A
- lZQk()E()(pQS, meSm>

m=n’
(3.16)

where S, is the Poynting vector carried by the rotation
eigenmode in the mth cavity,

S,=E, xH, =-8, ;=(-1)"S,. (3.17)

The alternating behavior follows from the definition of
E,,, H, in Eq. (3.7) and from the fact that the modal fields
(Ef,Hy) rotate in opposite direction to the modal fields
(Ep,,Hy). The m=n elements of Eq. (3.16) can now be re-
written as

(LoH,,, H,,) = 2ic™![H{|2(- 1) dw(0),
S(Q) = - Quyeg(pd,ReSp),  (3.18)

where, surprisingly, the quantity dw(Q) is identical to the

This equation is nothing but an eigenvector and eigen-
value problem for the vector of coefficients A, and for the
eigenfrequency w of the entire CROW (more precisely, the
normalized distance of o from the stationary single-cavity
resonance wg). For stationary CROWs (2=0), we have
from Eq. (3.18) dw(Q)=0, and the equation above reduces
to the well-known eigenvalue problem treated in many
other works™ and books (Chapter 4 in Ref. 13). Express-
ing the eigenvector elements A, as

A, =Ay e, (3.21)
one obtains the celebrated stationary CROW dispersion
relation:

(3.22)

For the rotating CROW, it is seen from Eq. (3.19a) that
the mode degeneracy causes a rotation-induced modula-
tion (-1)"Sw(Q)) of the matrix coefficients. That is, one en-
counters now an equation with periodic coefficients, the
magnitude of which is linearly dependent on the rotation
angular speed (), with a proportionality factor that de-
pends on the properties of the individual (doubly degen-

w=wy+Awcos(f).

0.5

Sw(Q)
Aw

Sw(Q))
0 0.5 0.5
Aw
Sw(£))
0 0.5 -

Aw

0 0.5
0 0.5
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frequency splitting of doubly degenerate modes in a single
(completely isolated) rotating microcavity4 (and it has
also been shown that this expression reduces to the clas-
sical Sagnac effect if the microcavity consists of a simple
closed loop).

Collecting and substituting the last results into the ma-
trix in Eq. (3.13) we obtain [assume that the operating
frequency o is very close to the stationary cavity reso-

nance o= wg, SO w%— w?=2wo(wy— )],
Aw
?(An—l +An+1) + (_ 1)”50)(Q)An = ((1) - wO)Ana

(3.19a)

where Aw is the stationary CROW bandwidth given by

C2’7'1

Aw=—"—5.
o[ Ho "

(3.19b)

The last result can be rewritten as a matrix equation:

0
W — W
A= A. (3.20)
Aw
0.5 0
Sw(£)
- “ 0.5 0
Aw

[
erate) microcavity. This is the mathematical manifesta-
tion of the effects discussed qualitatively in Section 1 and
in Section 2 (see also Figs. 2 and 5). As we show in Section

Stationary| |
» Rotating

f

-0.5]  Rotation induced gap

0 0.2 0.4 0.6 0.8 1
B/

Fig. 6. (Color online) Normalized dispersion relation for station-
ary and rotating CROWSs. For the rotating CROW we used
Sw(Q)=0.1Aw. This value is chosen in order to get a good graphi-
cal resolution of the effect.
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4, this periodic modulation opens a rotation-dependent
gap in the center of the CROW transmission curve (see
Fig. 6). By solving Eq. (3.20) for the eigenvalues, it is veri-
fied that the bandwidth Aw, of the rotation-dependent gap
opened in the center of the CROW transmission line is ex-
actly the rotation-dependent splitting

Aw, = Sw(Q)). (3.23)

Furthermore, as the range above signifies the structure
stop band, it is clear that an excitation of the structure by
a light with frequency within this stop band, will result in
an exponentially decreasing (with distance) signal. The
rate of exponential decay depends on the distance of the
excitation frequency from the stop-band ends, thus it in-
creases as the rotation frequency () increases. This is
demonstrated numerically in Section 4.

4. EXAMPLES

As pointed out before, the eigenvalues of the matrix in Eq.
(3.22) can be evaluated analytically for dw({2)=0. For the
NXN matrix, the result is'® Np=—cos[kw/(N+1)], &
=1,2,...,N. This is nothing but a finite-length version of
the dispersion relation in Eq. (3.22) that pertains to infi-
nitely long CROWs. Interestingly, the presence of the al-
ternating term (-1)"dw(Q)) on the diagonal, “clears out”
the eigenvalues from the interval [-dw(Q)),dw(Q)], and
thus it opens a gap of forbidden frequencies: Aw, in Eq.
(3.23). An example is shown in Fig. 6, where the above
equation has been solved for 100 resonators, and for
Sw(Q))/Aw=0.1. We have repeated this simulation for
other values of dw(Q)/Aw, ranging from 1075 to 0.5, and
for N ranging from 30 to 1000, and the opening of a for-
bidden frequency gap with the width given by Eq. (3.23)
was consistently observed.

These (normalized) results hold for any CROW with
mode degeneracy. The parameter that characterizes a
specific CROW is the sensitivity of splitting with respect
to rotation, that is the function Sw(Q2)=AQ. It is impor-
tant to emphasize that this function is an intrinsic prop-
erty of the individual microcavity.* For the PhC based de-
generate CROW discussed in Section 2, this function has
been fully characterized previously,’ and is given by
ow(Q)=0.23 (). The stationary CROW bandwidth Aw is
determined solely by the intercavity spacing (under-tight-
binding approximation), and in principle, it can be made
arbitrarily small. Values of Aw=10"%w, can be achieved by
setting the intercavity spacing to about four crystal
periods.12

Next we examine the transmission curve of a finite
length degenerate CROW as a function of frequency, and
for various values of the rotation velocity (). Consider a
line as shown in Fig. 2, consisting of 29 ring resonators
with a radius of 25 um each, made of a dielectric material
with €=2.25. The rings are situated along a straight path,
with an intercavity coupling coefficient of k=0.01 (power).
The CROW input and output terminals consist of dielec-
tric waveguides coupled, respectively, to the first ring on
the left and to the last (rightmost) ring, both with cou-
pling coefficient of 0.2 (power). The rings resonate at
=12.16 X 104, which corresponds to the angular mode 152
with a vacuum wavelength of 1.55 um. The splitting of
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Fig. 7. (Color online) Normalized transmission for a ring reso-

nator CROW. The rotation induces a stop band in the center of

the CROW transmission curve.

Transmission [dB]

Fig. 8. (Color online) Transmission in decibels at the center of
the rotating CROW stop band (i.e., at ®=12.16x 10 in Fig. 7),
as a function of rotation speed, and for different CROW lengths.
Exponential dependence of the transmission value on Q is
evident.

each individual ring due to rotation is obtained here via
the classical Sagnac effect, and is given by Jw(Q)
=67.5 Q. A numerical simulation of the rotating structure
using the transfer matrix approach,? was carried out. The
CROW transmission as a function of w is shown in Fig. 7
for various values of (). As predicted above, the rotation
induces a stop band in the center of the transmission
curve. The width of this band increases with () [see Eq.
(3.23)] and one can readily verify that it matches the re-
lation Aw,~ dw(Q)=67.5Q. It is also seen in the figure
that the transmission values for frequencies within this
stop band decrease rapidly as () is increased. In Fig. 8, we
show the value of the transmission at the center of the ro-
tating CROW stop band, as a function of ), for different
CROW lengths. It is seen that the transmission decreases
exponentially with (). The exponential decay rate, that is
manifested by the slope of the straight line on a logarith-
mic scale, increases as the length of the CROW increases.
Owing to the nature of the stop-band exponential decay,
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the transmission of a finite-length CROW section, at the
center of the stop band, can be expressed as

T(w = wy, Q) = e YN (4.1)

where « is a proportionality constant that depends of the
CROW generic properties (microresonator properties, in-
terresonator coupling, etc.). and N is the total number of
resonators. The exponential sensitivity d7/d(Q/wg)/T is
plotted in Fig. 9. As can be predicted from the exponential
behavior in Eq. (4.1), the exponential sensitivity is indeed
linear with the number of resonators. It should be noted
that the performances predicted and verified above are in-
dependent of the general trace formed by the entire
CROW; the important factors are the single microcavity
properties and the total number of microcavities. This ob-
servation can be exploited for a better use of the chip
area.

The results of the analysis of the rotating CROW struc-
ture sheds new light on the underlying physics of the cir-
cular gyroscope configuration studied in a previous
publication.? Note that the number of microrings in this
configuration must be odd (there is a typographical error
in Fig. 3a of Ref. 2: the signal intensities for 6 and 16 mi-
croring long CROWSs are actually for 5 and 15, respec-
tively). When stationary, the index structure through
which the, initially, CW mode (gray arrow in Fig. 1 of Ref.
2) propagates is identical to that encountered by the CCW
mode (white arrow). However, when the CROW structure
is rotating, this symmetry is broken and the two modes
experience different effective structures. Assuming the
CROW rotates CCW (Q2>0), the CW mode experiences a
sequence of microrings with alternating resonance fre-
quencies ), vy, 0}, Wy, ®,... while the CCW mode expe-
riences the opposite sequence -w; g, vy, wg,wg, ... - As a
consequence, the CW and CCW modes accumulate differ-
ent phase shifts when propagating through the circular
CROW, which in turn, changes the power level in the 3 dB
coupler outputs. For an even number of rings, the phase
responses of the effective CROW structures encountered
by the CW and CCW are identical and the output signal
vanishes. This argument provides an intuitive explana-
tion to the behavior of the circular CROW gyroscope stud-
ied in Ref. 2. In particular, the phase difference between

10
1.8X T T !

Sensitivity [-dT/d(Q/e,)/T]

20 22 24 26 28
Number of rings

Fig. 9. Exponential sensitivity of the CROW to rotation, as a
function of the CROW length (number of resonators).
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the CW and CCW propagating waves, and hence the in-
tensity output signal, is determined directly by the num-
ber of the microrings and their radii or, equivalently, by
the effective length of the CROW. This is in contrast to
the conventional Sagnac effect that depends on the area
circumvented by the loop.

5. CONCLUSIONS

Using the tight-binding approach, we have studied the ef-
fect of rotation on the CROW made of a set of microcavi-
ties with mode degeneracy. The study is carried in the ro-
tating CROW rest frame of reference, and the results are
expressed generally in terms of entities pertaining to the
basic microcavity used to form the CROW, under station-
ary conditions. Our analysis is general and holds for any
kind of microcavity with mode degeneracy: ring resona-
tors, PhC microcavities, or disk resonators. It is shown
that under rotation a superstructure emerges: rotation ef-
fectively induces a periodic modulation of the CROW
properties. This fact has far reaching ramifications, as it
causes the emergence of a stop band in the center of the
CROW transmission band. This new effect can be used to
design optical gyroscopes with exponential-type sensitiv-
ity to rotation and to the CROW’s length. The sensitivity
depends essentially on the number of microcavities and
their geometrical properties, and is independent on the
specific trace formed by the entire CROW—a fact that can
be used to optimize the chip area deployment.

APPENDIX A: SIMPLIFICATION OF THE
ELEMENTS (LH,;, Hy)

We have the following identities [use (VXA)-B=V-(A
XB)+A-(VXB), and A-(BXC)=(AXB)-Cl:

R R S (R
VX —xH,|-H=V-||—xH,|xH,
€, €,

(27m) o xh
+|—X%xH, | (VXH,),

EI‘
(Ala)
[2xvm] (L)
—XVxH, |-H,=-|—xH, |- (VXH,).
€, €,
(Alb)

The inner products in Eq. (3.11) are nothing but volume
integrations of the terms above, over arbitrarily large vol-
ume V. Using the Gauss theorem, we get for the contribu-
tion of the first term on the right-hand side of Eq. (Ala):

oo (Zem ) [(Zm)
V-[|—XH, | xXH, |d°x= —xH, | xH,
v & s=av L\ €

-ds — 0. (A2)

This is because the flux through the surface S=4dV van-
ishes as V becomes very large (the function H,, is highly
localized within the neighborhood of the mth resonator
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and is exponentially decreasing away from it). Therefore,
the inner product terms eventually comprises

B B
(LoH,,,H,)=\ —xXH,,VXH, )-{ VXH,,—xH,
€ €

r r

(A3)

Using again (AXB)-C=A-(BXC),

B _ B —
LoH,,H)=\ —H,XVxH,)-\ —H,xXVxXH,
€

r El‘
(A4)

Since B=B(r)=Q Xr/c, and Q=0Z, the above result
yields (¢ Xr=pd):

p. _ _
(LoH, H)=c10( —¢,H,, X VXH,-H,xXVxH,
€,

r

(A5)

Note, however, that VXH,=-iwgeyes,E,, where ey,
=¢4(r-r,) is the relative dielectric property of the nth
resonator. In the vicinity of the nth resonator, it is identi-
cal to the dielectric property e, of the entire structure.
Thus, since E,, is significant only in this neighborhood, we
obtain

(LoH,,, H,) =i Qwoer(pd, H, X E, + H, X E,,).
(A6)
B. Z. Steinberg, J. Scheuer, and A. Boag can be reached
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