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Rotation-induced superstructure in slow-light
waveguides with mode-degeneracy: optical

gyroscopes with exponential sensitivity
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We study wave propagation in a rotating slow-light structure with mode degeneracy. The rotation, in conjunc-
tion with the mode degeneracy, effectively induces superstructure that significantly modifies the structure’s
dispersion relation. It is shown that a rotation-dependent stop band is formed in the center of the slow-light
waveguide transmission curve. A light signal of frequency within this stop band that is excited in a finite-
length section of such a waveguide decays exponentially with the rotation speed and with the coupled resona-
tor optical waveguide’s total length or total number of degenerate microcavities. This effect can be used for
optical gyroscopes with exponential-type sensitivity to rotation. © 2007 Optical Society of America

OCIS codes: 120.5790, 230.5750.
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. INTRODUCTION
n electromagnetic wave propagating along a circular
ath in a rotating medium accumulates additional phase
hift that depends on the relation between the directions
f the wave propagation and the medium rotation. This
hase shift, known as the Sagnac effect, was recently
tudied in slow-wave structures consisting of a set of
oupled nondegenerate microcavities.1 This study reveals
novel manifestation of the Sagnac effect, expressed via a
ew (to the best of our knowledge), rotation-dependent
ispersion relation. In another work,2 the application of a
icroring based coupled resonator optical waveguide

CROW) for rotation sensing was studied, demonstrating
potential for significant sensitivity enhancement com-

ared to the conventional Sagnac loops. Unlike the photo-
ic crystal (PhC) cavities employed in Ref. 1, microrings
ossess mode degeneracy [clockwise (CW) and counter
lockwise (CCW) propagating modes with the same reso-
ant frequency]. Under rotation, this difference has far-
eaching ramifications on the underlying physics govern-
ng the entire CROW structure, a phenomenon that was
eft unexplored in Ref. 2. Here we study the impact of

ode degeneracy on the characteristics of rotating CROW
tructures. We reveal a novel effect: due to mode degen-
racy, a rotation-induced superstructure emerges in the
ROW, resulting in the appearance of an additional for-
idden gap in the center of the dispersion curve. In addi-
ion, our analysis is general and applies also to less trans-
arent cases of mode degeneracy such as those
ncountered in the PhC under rotation.3,4

A simple example of a resonator having degenerate
odes is the microring: two modes H0

± propagating in op-
osite directions possess the same resonance frequency
0. If a ring of radius R rotates at an angular velocity �
round an arbitrary axis normal to the ring plane, �0
plits into two frequencies �±=�0±��0R /nc due to the
lassical Sagnac effect5 (see Fig. 1). Although it seems to
0740-3224/07/051216-9/$15.00 © 2
e less transparent and intuitive, exactly the same phe-
omenon exists in any microcavity that supports mode
egeneracy, including Phc microcavities such as those re-
orted lately3,4 (but with more elaborate mathematics
hat provide the exact splitting formula). Next, consider a
ROW consisting of resonators with mode degeneracy, as

n Fig. 2. When stationary, the CCW mode H0
+ in even-

umbered resonators essentially couples to the CW mode

0
− in odd-numbered resonators (due to phase-matching

equirement in the area between the resonators), all hav-
ng the same resonance �0. However, when the entire
tructure is rotating, each microring undergoes a split of
ts resonant frequencies as shown in Fig. 1. Thus, the rel-
vant resonant frequency of the nth resonator shifts to
0+ �−1�n�����, so the rotation induces a periodic modu-

ation of the CROW properties. This rotation-dependent
ffective periodic modulation results in the emergence of
orbidden frequencies gap within the CROW’s transmis-
ion curve, as with any other wave phenomenon governed
y an equation with periodic coefficients. A similar super-
tructure may emerge in every CROW comprising resona-
ors with mode degeneracy.2–4

The purpose of the present work is to study this effect
nalytically and to demonstrate it numerically. Further-
ore, as shown in Section 3, the rotation induces a for-

idden frequencies gap within the CROWs transmission
urve—a regime in which propagation possesses exponen-
ial decay behavior. Thus, we show that the novel effect
eported here can be used to design new devices with
xponential-type sensitivity to rotation and to the CROW
ength. This may have important practical implications.
he study is carried out in the rotating CROW rest frame,
nd our starting point is the set of Maxwell’s equation in
oninertial rotating media. After deriving the appropriate
ave equations, a mathematical solution procedure based
n a tight-binding approach is invoked. This approach is
hosen for several reasons. It is well suited for CROW
007 Optical Society of America
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tructures consisting of weakly coupled resonators, which
s the case of interest here. It simplifies the analysis by
xpressing many of the important quantities involved in
erms of the system’s basic building block: the single iso-
ated and stationary microcavity. This simplification is
lso helpful in conveying clear physical interpretations.
s the tight binding is based on the properties of the
ingle microcavity, and since in our case this microcavity
ossesses mode degeneracy and is rotating, our analysis
ere uses extensively some previously developed results
n the subject.3,4 A short summary of the important points
s provided here where needed, and the reader is referred
o our previous works3,4 for their derivations. It is recog-
ized that other mathematical approaches, such as the
ransfer matrix method,2 may provide solutions that are
alid beyond the tight-binding regime. However, we be-
ieve that the basic properties of the novel effect reported
ere, as well as many of the computational results per-
aining to the new dispersion relations, are, in principle,
alid beyond the tight-binding approximation. Further-
ore, the tight-binding approach can be used in a more

eneral context where the microcavities modes cannot be
escribed by a simple local plane wave, as done in the
ransfer matrix approach.

Finally, a short comment regarding terminology is in
rder. In previous publications pertaining to propagation
n stationary or rotating sets of microcavities, and espe-
ially in a previous work related to rotating PhCs,1 the
uthors used the term “coupled cavity waveguide”—CCW.
his is quite unfortunate due to the ambiguity with the
erm “counterclockwise” (CCW) used to define a direction
f rotation. Thus, in this work we use the term CROW to
esignate the system consisting of a set of microcavities,
nd we use the terms CW and CCW to designate rotation
irections.
The structure of the paper is as follows. In Section 2,

e provide a brief overview of the mathematical and
hysical properties of a single rotating microcavity. This
verview summarizes the results of a previous study by
he authors3,4 that are needed here in order to construct
he appropriate tight-binding solution procedure. In Sec-

Fig. 1. Splitting of the ring degenerate modes due to rotation.

ig. 2. Stationary and rotating CROW consisting of ring
esonators.
ion 3, we derive the basic wave equations governing the
otating CROW, as seen in the CROW rest frame, and
olve the equations using an appropriate extension of
ight-binding theory. The general form of the dispersion
elation is exposed and discussed. In Section 4, we pro-
ide numerical examples that demonstrate the properties
eveloped analytically. Concluding remarks are provided
n Section 5.

. DEGENERATE MODES IN A SINGLE
TATIONARY OR ROTATING
ICROCAVITY: AN OVERVIEW

efore analyzing the effect of rotation on the entire struc-
ure of a CROW made of degenerate modes microcavities,
t is instructive to discuss in more detail the effect of ro-
ation on a single microcavity that supports degenerate
odes. We summarize here the main results of one of our

revious studies,3,4 with emphasis on the points that are
f most relevance to the present study. We consider first
he stationary case, and start with the wave equation for
he magnetic field modes of a general resonator support-
ng M degenerate modes that resonate at frequency �0.
enote the degenerate modes by H0

�m��r�, m=1,2, . . . ,M.
hen the system is at rest, these modes satisfy

�dH0
�m��r� = k0

2H0
�m��r�, k0 = �0/c, m = 1,2, . . . ,M,

�2.1�

here �d is the wave operator:

�d � � �
1

�d�r�
� � . �2.2�

ere k0=�0 /c where c is the vacuum speed of light, and
d�r� is the relative dielectric structure of the single reso-
ator. As pointed out in Section 1, for the specific case of a
ing resonator we have only two degenerate modes, so

=2. These two degenerate modes can be cast in many
ifferent ways. Denoting the arc length along the ring pe-
iphery and the corresponding propagation constant
wavenumber) by s and �, respectively, the modes can be
efined as the two standing waves cos��s� and sin��s�. Al-
ernatively they can be rewritten as the two propagating
aves ei�s and e−i�s. Since any linear combination of de-
enerate modes is by itself a degenerate mode, these two
epresentations are formally equally legitimate, as well
s infinitely many other linear combinations. However,
ith respect to rotation problems, what signifies the
ropagating waves representation �e±i�s� is the fact that
heir spatial form is unchanged under rotation. Only their
esonances are changed (to �±=�0±��0R /nc, the Sagnac
ffect). Thus, for the ring structure, the specific form
±i�sconstitutes the rotation eigenmodes. We denote them
ere by H�

± . Note that these modes are orthogonal.
It turns out that a similar situation exists in any rotat-

ng cavities that support mode degeneracy, even if the cor-
esponding modal shapes are not as transparent and ob-
ious as those of the ring.3,4 This includes, as a special
ase, degenerate modes microcavities formed by local de-
ects in PhCs.6,7 Suppose the stationary cavity possesses
wo degenerate modes H�1,2�. Without loss of generality,
0
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hey can be assumed mutually orthonormal (every linear
ombination of degenerate modes is a degenerate mode;
hus, if one starts with fields that are not orthonormal,
ram–Schmidt orthogonalization can be applied, and the
nd result would be an orthonormal pair of degenerate
odes). Then the two unique linear combinations,

H�
± = �

m=1

2

am
± H0

�m�, a2
± = ± ia1

±, �2.3�

esult in fields H�
± that constitute the rotation eigen-

odes. These modes possess the following important
roperties pertaining to both the stationary and the rotat-
ng cavity3,4:

(i) They are orthonormal �H�
+ ,H�

− �=0 [see Eq. (3.12)
or the definition of the inner product].

(ii) Since they are given by linear combinations of de-
enerate modes of the stationary system Eq. (2.1), they as
ell constitute degenerate modes of the stationary sys-

em, satisfying

�dH�
± �r� = k0

2H�
± �r�, �2.4�

(iii) These rotation eigenmodes H�
± are themselves ro-

ating fields, just like their celebrated cousins e±i�s [note
he � /2 phase difference between the summation ampli-
udes in Eq. (2.3), and the fact that the summed fields

0
�1,2� are orthonormal].
(iv) Their spatial form stays unchanged under physical

otation of the system (as seen in the rotating system rest
rame).

(v) Under rotation, their corresponding resonance fre-
uencies as measured in the rotating system rest frame
re obtained by the splitting formula

�± = �0 ± �����, ����� = �0��. �2.5�

ere � is the rotation angular velocity, and � is the ei-
envalue of an appropriately defined rotation operator.

(vi) H�
± constitute the eigenmodes of the wave equation

overning the fields in the rotating system rest frame,
ith eigenvalues given by the splitting formula above. In

act, properties (iv) and (v) are nothing but a manifesta-
ion of this general fact.3,4 Furthermore, for slow rotations
hese results are independent of the location of the rota-
ion axis.

It has been shown4 that the above properties are gen-
ral and hold for any microcavity with mode degeneracy.
or the case of a simple closed-loop resonator, they boil
own to the classical Sagnac effect.
Before concluding this section, it is instructive to show
specific example. Consider a two-dimensional PhC that

onsists of dielectric cylinders of radius 0.6 	m and �r
8.41, situated on a hexagonal lattice with lattice con-
tant of a=4 	m. For TM polarization, a microcavity with
wo degenerate modes at a resonant wavelength of 
0
2�c /�0=8.79941 	m is created by increasing the radius
f a cylinder to 1.1 	m. Two possible sets of the degener-
te modes electric field magnitude is shown in a logarith-
ic scale in Fig. 3. The rotation eigenmodes for this sys-

em are obtained by substituting the orthogonal version
f the set [shown in Figs. 3(c) and 3(d)] into the summa-
ion in Eq. (2.3). The resulting eigenmodes shapes evolve
radually from the shape shown in Fig. 3(c) at, say, t=0 to
he shape shown in Fig. 3(d) at �t=� /2 and back, per-
etually. The results are two modes of identical spatial
orms shown in Fig. 4, rotating around the cavity center
n mutually opposite directions. Clearly, if two neighbor-
ng microcavities of this type (i.e., each of them supports

ig. 3. (Color online) Electric field magnitudes in decibel scale
f a doubly degenerate TM microcavity �M=2�, in a 2D hexagonal
hC. The crystal is made of dielectric cylinders, outlined by the
lack circles. (a) E0

�1�. (b) E0
�2�. These modes are nonorthogonal,

nd E0
�2� is a � /3-rotated replica of E0

�1�. (c) The linear combina-
ion E0

�1��E0
�1�+E0

�2�. (d) The linear combination E0
�2��E0

�1�−E0
�2�.

hese modes are orthogonal.

ig. 4. (Color online) Electric field of the rotation eigenmodes
ssociated with the PhC microcavity of Fig. 3. The two modes
ave exactly the same spatial form shown here. E�

+ , H�
+ rotate

W and E�
− , H�

− rotate CCW. They are obtained by the linear
ombination in Eq. (2.3), using the orthogonal pair shown in
igs. 3(c) and 3(d). All quantities are shown on linear scale. (a)
he instantaneous field �Re�E�

− ei�t�� for �t=� /4. (b) The same as
a), but for E�

+ . (c) �E�
− �. The rotating field forms a ring along

hich the field power propagates. (d) �E+ �.
�
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wo degenerate modes) are created in a PhC, the CW ro-
ating mode in one cavity couples best to the CCW rotat-
ng mode of its neighbor. Hence, a PhC based analogy of
he ring-CROW structure shown in Fig. 2, can be con-
tructed by a set of equally spaced microcavities, each
upporting two degenerate modes as discussed above.
his system is shown in Fig. 5.

. STUDY OF THE ROTATING CROW IN ITS
EST FRAME OF REFERENCE

n this section, we develop the general wave equations
overning the fields of rotating system (i.e., the entire
ROW, made of ring resonators or PhC microcavities), as
een in the rotating medium rest frame, which is noniner-
ial. Then, the tight-binding approach is employed to
olve the equation and study the propagation in the rotat-
ng CROW. Let �r�r� be the (time-invariant) relative di-
lectric property of a stationary medium, as measured in
ts (inertial) rest frame. We assume now that the medium
otates slowly around the z axis at an angular radian ve-
ocity �:

� = ẑ�. �3.1�

he assumption of slow rotation implies that

(i) The angular velocity � and the PhC maximal di-
ension L satisfy ��L � �c. Therefore no relativistic ef-

ects take place.
(ii) Consistent with the slow velocity assumption, no

eometrical transformations or deformations take place.
hus, for example, the � operator is conserved: �=��. For

he very same reason, time is invariant in both systems:
= t�.

According to a formal structure of electrodynamics,
ostulated in fundamental studies,8,9 the basic physical
aws governing the electromagnetic fields are invariant
nder any coordinate transformation, including a nonin-
rtial one. The transformation to a rotating system is
anifested only by an appropriate change of the constitu-

ive relations. Therefore under the slow rotation assump-
ion discussed above, the source-free Maxwell’s equations
n the rotating frame R are given by8,9

� � E = i�B, � · B = 0, �3.2a�

� � H = − i�D, � · D = 0. �3.2b�

ig. 5. (Color online) Instantaneous field of a degenerate modes
ne discussed in Figs. 3 and 4. Counting from left, the modes in th
rigid mechanical rotation of the entire structure in the CW di

inearly on the rotation rate as shown in Eq. (2.5). Thus, rotation
henomenon described in Fig. 2.
et the material properties at rest be given by ��r�
�0�r�r�, 	=	0. Then up to the first order in velocity the
onstitutive relations in R take on the form8

D = �E − c−2� � r � H, �3.3a�

B = 	H + c−2� � r � E. �3.3b�

n the above, c is the speed of light in vacuum, � is the
requency, and a time-dependence e−i�t is assumed and
uppressed. This set of Maxwell’s equations has been
sed in the past as the starting point for studies of the Sa-
nac effect in classic works on optical gyroscopes by nu-
erous authors.10 We now follow the procedure outlined

n a previous work by one of the authors1 to derive a wave
quation governing the magnetic field. Substitute the
bove constitutive relations into Maxwell’s equations
3.2a) and (3.2b). The result is

D � E = i�	H, �3.4a�

D � H = − i��E, �3.4b�

here D is the operator:

D � � − ik��r�, k = �/c, ��r� = c−1� � r. �3.5�

ow follow the standard procedure of deriving the wave
quation for H, with D replacing �. The resulting equa-
ion is D� �1/�r�D�H=k2H. Collecting terms that are
rst order only (with respect to velocity,) and rearranging,
e end up with the new wave equation in the rotating me-
ium rest frame, governing the magnetic field H��r�1:

�H��r� = k2H��r� + ikL�H��r�. �3.6a�

ere, � is the wave operator associated with the entire
tructure,

� � � �
1

�r�r�
� � , �3.6b�

nd L� is the rotation-induced operator,

L�H = � �
��r�

�r�r�
� H +

��r�

�r�r�
� � � H, ��r� = � � r/c.

�3.6c�

n developing Eqs. (3.6a), (3.6b), and (3.6c), only terms up
o first order in � were kept.1,8 Note that when no rotation
akes place, L� vanishes and Eq. (3.6a) reduces to the
ell-known stationary medium wave equation.
We now wish to solve Eq. (3.6a) for the entire CROW

nder slow rotation rates (say, typical to those relevant

, made of a set of equally spaced PhC microcavities such as the
(even-) numbered cavities are rotating in a CCW (CW) direction.
causes the alternating of the resonance shift �� that depends

ces a modulation of the local resonance frequency, similar to the
CROW
e odd-
rection

indu
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or optical gyroscopes; ��1 rad/s). Since the CROW con-
ists of weakly coupled resonators, the tight-binding ap-
roach can provide a convenient solution technique. Thus,
e follow the rotating-CROW solution technique devel-
ped previously1 with the modifications needed to handle
roperly the microcavities mode degeneracy. Considering
he general observations made in properties (iii) and (iv)
n Section 2, and the fact that a CW rotating mode in a
iven resonator couples only to the CCW rotating mode of
ts neighbor, we expand the total field of the rotating sys-
em with the modes H�

± ,

H� = �
m

AmHm�r�, Hm�r� = �H�
+ �r − rm� m even

H�
− �r − rm� m odd

,

�3.7�

here rm is the location of the mth resonator center. In
his representation of the solution, the modal fields H�

±

re used as mere building blocks, and the fact that they
atisfy Eq. (2.4) will be exploited. The intercavity (weak)
oupling, as well as the effect of rotation, will be mani-
ested via the (yet unknown) expansion coefficients Am.

We decompose now the relative dielectric property of
he entire structure �r�r� to that of the background struc-
ure �b�r� (without the resonators or local defects, but
ith the perfect PhC, if the CROW is realized by array of

ocal defects in a photonic crystal), and a series of defect
ontributions. Thus, 1/�r�r� in Eq. (3.6b) can be expressed
s

1

�r�r�
=

1

�b�r�
+ �

k
d�r,rk�, �3.8a�

here d�r ,rk� is the variation in 1/�r introduced by the
th resonator or local defect:

d�r,rk� =
1

�d�r − rk�
−

1

�b�r�
. �3.8b�

ere �d�r� represents the perfect background with a
ingle resonator or a local defect, located at the origin.
ith this decomposition the operator � is decomposed

nto a series of operators representing the contribution of
he background structure and of each of the resonators (or
ocal defects) separately,

� = �b + �
k

�k, �3.9a�

here

�b = � �
1

�b�r�
� � , �k = � � d�r,rk�� � . �3.9b�

ue to the property (ii) in Section 2, and Eq. (2.4), each of
he summed modes Hm in Eq. (3.7) satisfies

��b + �m�Hm = 	�0

c 

2

Hm. �3.10�

his decomposition will be used in subsequent deriva-
ions.

We now wish to obtain the rotating CROW solution by
olving for the expansion coefficients A in Eq. (3.7). Note
m
hat Eq. (3.6a) is not self-adjoint, thus the standard varia-
ional procedure for determining the set of Am does not
old here. Instead, we adopt the projection approach.1 We
rst substitute the expansion in Eq. (3.7) into the wave
quation (3.6a) and perform an inner product of the re-
ulting equation with Hn, with n roaming over all the
esonators involved (this amounts to the requirement
hat the residual error associated with the solution be or-
hogonal to the solution building blocks). The result is the
ollowing algebraic set of equations for the coefficients Am:

�
m

Am��Hm,Hn� = k2�
m

Am�Hm,Hn� + ik�
m

Am�L�Hm,Hn�.

�3.11�

ere �F ,G� is the inner product

�F,G� �� F · Ḡd3r, �F,F� = �F�2, �3.12�

here the overbar denotes the complex conjugate, and
·G is the standard scalar product between the two vec-

ors F and G. Note that since the indices m, n indicate
esonator locations, and since the modal fields in each
esonator are tightly confined, we can approximate the
rst inner product in the right-hand side of Eq. (3.11) by
mn �H�

+ �2. Using this approximation, substituting the op-
rator decomposition in Eqs. (3.9a) and (3.9b) into Eq.
3.11), and using Eq. (3.10), we obtain

�k0
2 − k2��H�

+ �2An + �
m

�m−nAm − ik�
m

�L�Hm,Hn�Am = 0.

�3.13�

ere �m−n, obtained and used in numerous other studies
ertaining to tight-binding analysis of CROWs1,11,12 is
iven by

�m−n = 
 �
k�m

�kHm,Hn� . �3.14�

t has been shown11 that for m−n� ±1, these elements
re exponentially small compared to the dominant ele-
ents �1=�−1.
Finally, the inner products in the rightmost summation

n Eq. (3.13) can be simplified considerably. Following the
ame steps used in a previous work on the subject,1 with
he slight generalization needed here (in Ref. 1 the modes
re assumed to be real), we obtain (see Appendix A for
erivation):

�L�Hm,Hn� = ic−1��0�0�
�̂,H̄m � En + Hn � Ēm�.

�3.15�

his quantity is independent of the origin location (and
otation axis) with respect to the cavity location. Note
hat the modal fields Em, Hm are tightly localized within
he mth cavity, and they decay exponentially away from
t. Thus, under the tight-binding approximation the last
quation yields
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�L�Hm,Hn� →�0 m � n

− i2�k0�0�
�̂,ReSm� m = n
,

�3.16�

here Sm is the Poynting vector carried by the rotation
igenmode in the mth cavity,

Sm � Em � H̄m = − Sm−1 = �− 1�mS0. �3.17�

he alternating behavior follows from the definition of
m, Hm in Eq. (3.7) and from the fact that the modal fields

E�
+ ,H�

+ � rotate in opposite direction to the modal fields
E�

− ,H�
− �. The m=n elements of Eq. (3.16) can now be re-

ritten as

�L�Hm,Hm� = 2ic−1�H�
+ �2�− 1�m�����,

����� = − ��0�0�
�̂,ReS0�, �3.18�

here, surprisingly, the quantity ����� is identical to the
e
t
i

F
a
�
c

requency splitting of doubly degenerate modes in a single
completely isolated) rotating microcavity4 (and it has
lso been shown that this expression reduces to the clas-
ical Sagnac effect if the microcavity consists of a simple
losed loop).

Collecting and substituting the last results into the ma-
rix in Eq. (3.13) we obtain [assume that the operating
requency � is very close to the stationary cavity reso-
ance ���0, so �0

2−�2�2�0��0−��],

��

2
�An−1 + An+1� + �− 1�n�����An = �� − �0�An,

�3.19a�

here �� is the stationary CROW bandwidth given by

�� =
c2�1

�0�H�
+�2 . �3.19b�

he last result can be rewritten as a matrix equation:
�
� � � � � � �

¯ 0 0.5
�����

��
0.5 0 ¯

¯ 0 0.5 −
�����

��
0.5 0 ¯

¯ 0 0.5
�����

��
0.5 0 ¯

¯ 0 0.5 −
�����

��
0.5 0 ¯

� � � � � � �

�A =
� − �0

��
A. �3.20�
This equation is nothing but an eigenvector and eigen-
alue problem for the vector of coefficients An, and for the
igenfrequency � of the entire CROW (more precisely, the
ormalized distance of � from the stationary single-cavity
esonance �0). For stationary CROWs ��=0�, we have
rom Eq. (3.18) �����=0, and the equation above reduces
o the well-known eigenvalue problem treated in many
ther works11 and books (Chapter 4 in Ref. 13). Express-
ng the eigenvector elements An as

An = A0ei�n, �3.21�

ne obtains the celebrated stationary CROW dispersion
elation:

� = �0 + �� cos���. �3.22�

For the rotating CROW, it is seen from Eq. (3.19a) that
he mode degeneracy causes a rotation-induced modula-
ion �−1�n����� of the matrix coefficients. That is, one en-
ounters now an equation with periodic coefficients, the
agnitude of which is linearly dependent on the rotation

ngular speed �, with a proportionality factor that de-
ends on the properties of the individual (doubly degen-
rate) microcavity. This is the mathematical manifesta-
ion of the effects discussed qualitatively in Section 1 and
n Section 2 (see also Figs. 2 and 5). As we show in Section

ig. 6. (Color online) Normalized dispersion relation for station-
ry and rotating CROWs. For the rotating CROW we used
����=0.1��. This value is chosen in order to get a good graphi-
al resolution of the effect.
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, this periodic modulation opens a rotation-dependent
ap in the center of the CROW transmission curve (see
ig. 6). By solving Eq. (3.20) for the eigenvalues, it is veri-
ed that the bandwidth ��r of the rotation-dependent gap
pened in the center of the CROW transmission line is ex-
ctly the rotation-dependent splitting

��r = �����. �3.23�

Furthermore, as the range above signifies the structure
top band, it is clear that an excitation of the structure by
light with frequency within this stop band, will result in
n exponentially decreasing (with distance) signal. The
ate of exponential decay depends on the distance of the
xcitation frequency from the stop-band ends, thus it in-
reases as the rotation frequency � increases. This is
emonstrated numerically in Section 4.

. EXAMPLES
s pointed out before, the eigenvalues of the matrix in Eq.

3.22) can be evaluated analytically for �����=0. For the
�N matrix, the result is13 
k=−cos�k� / �N+1��, k
1,2, . . . ,N. This is nothing but a finite-length version of

he dispersion relation in Eq. (3.22) that pertains to infi-
itely long CROWs. Interestingly, the presence of the al-
ernating term �−1�n����� on the diagonal, “clears out”
he eigenvalues from the interval �−����� ,������, and
hus it opens a gap of forbidden frequencies: ��r in Eq.
3.23). An example is shown in Fig. 6, where the above
quation has been solved for 100 resonators, and for
���� /��=0.1. We have repeated this simulation for
ther values of ����� /��, ranging from 10−5 to 0.5, and
or N ranging from 30 to 1000, and the opening of a for-
idden frequency gap with the width given by Eq. (3.23)
as consistently observed.
These (normalized) results hold for any CROW with
ode degeneracy. The parameter that characterizes a

pecific CROW is the sensitivity of splitting with respect
o rotation, that is the function �����=��. It is impor-
ant to emphasize that this function is an intrinsic prop-
rty of the individual microcavity.4 For the PhC based de-
enerate CROW discussed in Section 2, this function has
een fully characterized previously,4 and is given by
����=0.23 �. The stationary CROW bandwidth �� is
etermined solely by the intercavity spacing (under-tight-
inding approximation), and in principle, it can be made
rbitrarily small. Values of ��=10−5�0 can be achieved by
etting the intercavity spacing to about four crystal
eriods.12

Next we examine the transmission curve of a finite
ength degenerate CROW as a function of frequency, and
or various values of the rotation velocity �. Consider a
ine as shown in Fig. 2, consisting of 29 ring resonators
ith a radius of 25 	m each, made of a dielectric material
ith �=2.25. The rings are situated along a straight path,
ith an intercavity coupling coefficient of �=0.01 (power).
he CROW input and output terminals consist of dielec-
ric waveguides coupled, respectively, to the first ring on
he left and to the last (rightmost) ring, both with cou-
ling coefficient of 0.2 (power). The rings resonate at �0
12.16�1014, which corresponds to the angular mode 152
ith a vacuum wavelength of 1.55 	m. The splitting of
ach individual ring due to rotation is obtained here via
he classical Sagnac effect, and is given by �����
67.5 �. A numerical simulation of the rotating structure
sing the transfer matrix approach,2 was carried out. The
ROW transmission as a function of � is shown in Fig. 7

or various values of �. As predicted above, the rotation
nduces a stop band in the center of the transmission
urve. The width of this band increases with � [see Eq.
3.23)] and one can readily verify that it matches the re-
ation ��r������=67.5 �. It is also seen in the figure
hat the transmission values for frequencies within this
top band decrease rapidly as � is increased. In Fig. 8, we
how the value of the transmission at the center of the ro-
ating CROW stop band, as a function of �, for different
ROW lengths. It is seen that the transmission decreases
xponentially with �. The exponential decay rate, that is
anifested by the slope of the straight line on a logarith-
ic scale, increases as the length of the CROW increases.
wing to the nature of the stop-band exponential decay,

ig. 7. (Color online) Normalized transmission for a ring reso-
ator CROW. The rotation induces a stop band in the center of
he CROW transmission curve.

ig. 8. (Color online) Transmission in decibels at the center of
he rotating CROW stop band (i.e., at �=12.16�1014 in Fig. 7),
s a function of rotation speed, and for different CROW lengths.
xponential dependence of the transmission value on � is
vident.



t
c

w
C
t
r
p
b
l
t
d
C
p
s
a

t
c
p
c
i
c
t
w
2
m
i
e
C
s
q
r
c
e
C
c
r
b
v
t
i

t
t
b
t
t
c

5
U
f
t
t
e
b
a
k
t
t
f
p
c
C
d
i
d
t
s
b

A
E
W
�

T
i
u
t

T
i
l

F
f

Steinberg et al. Vol. 24, No. 5 /May 2007/J. Opt. Soc. Am. B 1223
he transmission of a finite-length CROW section, at the
enter of the stop band, can be expressed as

T�� = �0,�� = e−���/�0�N, �4.1�

here � is a proportionality constant that depends of the
ROW generic properties (microresonator properties, in-

erresonator coupling, etc.). and N is the total number of
esonators. The exponential sensitivity dT /d�� /�0� /T is
lotted in Fig. 9. As can be predicted from the exponential
ehavior in Eq. (4.1), the exponential sensitivity is indeed
inear with the number of resonators. It should be noted
hat the performances predicted and verified above are in-
ependent of the general trace formed by the entire
ROW; the important factors are the single microcavity
roperties and the total number of microcavities. This ob-
ervation can be exploited for a better use of the chip
rea.
The results of the analysis of the rotating CROW struc-

ure sheds new light on the underlying physics of the cir-
ular gyroscope configuration studied in a previous
ublication.2 Note that the number of microrings in this
onfiguration must be odd (there is a typographical error
n Fig. 3a of Ref. 2: the signal intensities for 6 and 16 mi-
roring long CROWs are actually for 5 and 15, respec-
ively). When stationary, the index structure through
hich the, initially, CW mode (gray arrow in Fig. 1 of Ref.
) propagates is identical to that encountered by the CCW
ode (white arrow). However, when the CROW structure

s rotating, this symmetry is broken and the two modes
xperience different effective structures. Assuming the
ROW rotates CCW ���0�, the CW mode experiences a
equence of microrings with alternating resonance fre-
uencies �0

+, �0
−, �0

+, �0
−, �0

+, . . . while the CCW mode expe-
iences the opposite sequence −�0

− �0
+, �0

−, �0
+,�0

−, . . . . As a
onsequence, the CW and CCW modes accumulate differ-
nt phase shifts when propagating through the circular
ROW, which in turn, changes the power level in the 3 dB
oupler outputs. For an even number of rings, the phase
esponses of the effective CROW structures encountered
y the CW and CCW are identical and the output signal
anishes. This argument provides an intuitive explana-
ion to the behavior of the circular CROW gyroscope stud-
ed in Ref. 2. In particular, the phase difference between

ig. 9. Exponential sensitivity of the CROW to rotation, as a
unction of the CROW length (number of resonators).
he CW and CCW propagating waves, and hence the in-
ensity output signal, is determined directly by the num-
er of the microrings and their radii or, equivalently, by
he effective length of the CROW. This is in contrast to
he conventional Sagnac effect that depends on the area
ircumvented by the loop.

. CONCLUSIONS
sing the tight-binding approach, we have studied the ef-

ect of rotation on the CROW made of a set of microcavi-
ies with mode degeneracy. The study is carried in the ro-
ating CROW rest frame of reference, and the results are
xpressed generally in terms of entities pertaining to the
asic microcavity used to form the CROW, under station-
ry conditions. Our analysis is general and holds for any
ind of microcavity with mode degeneracy: ring resona-
ors, PhC microcavities, or disk resonators. It is shown
hat under rotation a superstructure emerges: rotation ef-
ectively induces a periodic modulation of the CROW
roperties. This fact has far reaching ramifications, as it
auses the emergence of a stop band in the center of the
ROW transmission band. This new effect can be used to
esign optical gyroscopes with exponential-type sensitiv-
ty to rotation and to the CROW’s length. The sensitivity
epends essentially on the number of microcavities and
heir geometrical properties, and is independent on the
pecific trace formed by the entire CROW—a fact that can
e used to optimize the chip area deployment.

PPENDIX A: SIMPLIFICATION OF THE
LEMENTS ŠL�HM ,HN‹

e have the following identities [use ���A� ·B=� · �A
B�+A · ���B�, and A · �B�C�= �A�B� ·C]:

�� �
�

�r
� Hm� · H̄n = � · �	�

�r
� Hm
 � H̄n�

+ 	�

�r
� Hm
 · �� � H̄n�,

�A1a�

��

�r
� � � Hm� · H̄n = − 	�

�r
� H̄n
 · �� � Hm�.

�A1b�

he inner products in Eq. (3.11) are nothing but volume
ntegrations of the terms above, over arbitrarily large vol-
me V. Using the Gauss theorem, we get for the contribu-
ion of the first term on the right-hand side of Eq. (A1a):

�
V

� · �	�

�r
� Hm
 � H̄n�d3x =�

S=�V
�	�

�r
� Hm
 � H̄n�

· ds → 0. �A2�

his is because the flux through the surface S=�V van-
shes as V becomes very large (the function Hm is highly
ocalized within the neighborhood of the mth resonator
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nd is exponentially decreasing away from it). Therefore,
he inner product terms eventually comprises

�L�Hm,Hn� =
 �

�r
� Hm,� � Hn� −
� � Hm,

�

�r
� Hn� .

�A3�

sing again �A�B� ·C=A · �B�C�,

�L�Hm,Hn� =
 �

�r
,H̄m � � � Hn� −
 �

�r
,Hn � � � H̄m� .

�A4�

ince �=��r�=��r /c, and �=�ẑ, the above result
ields �ẑ�r=
�̂�:

�L�Hm,Hn� = c−1�
 


�r
�̂,H̄m � � � Hn − Hn � � � H̄m� .

�A5�

ote, however, that ��Hn=−i�0�0�dnEn, where �dn
�d�r−rn� is the relative dielectric property of the nth
esonator. In the vicinity of the nth resonator, it is identi-
al to the dielectric property �r of the entire structure.
hus, since En is significant only in this neighborhood, we
btain

�L�Hm,Hn� = ic−1��0�0�
�̂,H̄m � En + Hn � Ēm�.

�A6�
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