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Effective Resonance Representation of Propagators
in Complex Ducts—A Multiresolution and

Homogenization Approach
Vitaliy Lomakin and Ben Z. Steinberg, Senior Member, IEEE

Abstract—We use the multiresolution homogenization theory to
study the effective resonances representation of transient electro-
magnetic propagation in complex random multilayer ducts. The
theory permits explicit choice of the smoothing (homogenization)
scale, and can be applied to a wide range of micro-scale proper-
ties. The analytical study is based on a Wroskian equivalence re-
sult, which establishes the relation between the “true” Wronskian

and that of the homogenized problem (e�). Since the roots
of in the complex plane constitute the duct resonance, the
Wronskian equivalence theorem is used as a basic apparatus for
the effective resonance study. With this, the time-domain spectral
properties of the multiresolution homogenization formulation are
studied analytically and demonstrated numerically. Effective rep-
resentations of reflection from complex random multilayer ducts
are considered.

Index Terms—Multiresolution techniques, propagators,
wavelets.

I. INTRODUCTION

COMPLEXITY in the context of propagation and scat-
tering problems can be perceived as the analytical and

computational difficulties encountered when a wave-field
interacts with a heterogeneity that contains a wide range of
length-scales. Consider, for a moment, a time-harmonic field
in a homogeneous medium; it is characterized by a single
length scale—the wavelength. We use as a discriminator
of length scales; length scales on the order ofand above
are termed asmacro scales,and length scales much smaller
then are termed asmicro scales. We are concerned with a
complex heterogeneity,defined as micro (and macro) scale
variation of the medium properties (, ), occupying domains
of macro-scale dimensions. When a wave interacts with such a
medium, the field within and near the complex heterogeneity
“inherits” the medium complexity—it contains a wide range of
length scales, from micro to macro. However, in a variety of
applications, the fieldobservablesare determined only by the
macro-scale component,while the micro-scale component is
practically irrelevant.
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The role of homogenization theory is to developeffective
formulations that govern only the macro-scale component of the
field. These formulations provide new heterogeneity measures
of the medium that 1) comprise macro scales only (“effec-
tive heterogeneity”) and 2) describe the coupling between the
micro-scale heterogeneity and the macro-scale field. Traditional
homogenization theories apply only to periodic structures and
require a large gap between the micro scale and the macro
scale. The “bulk properties” are described on infinitely large
length-scale (that is, the effective properties are constants).
A comprehensive overview of these theories is provided by
several textbooks [1]–[3].

Recently, a new homogenization technique, based on the
theory of multiresolution and orthogonal wavelets, was de-
veloped [4]–[11]. Unlike traditional homogenization theories,
the new multiresolution homogenization theory can handle
nonperiodic micro structures, and formally does not require the
existence of a large gap between micro scale and macro scale.
The new theory permits a prior choice of the length scale on
which the medium is to be homogenized (“homogenization
scale”). Hence, in general the effective properties are not
constants. This last property is of fundamental importance.
By choosing the homogenization scale to be less than the
wavelength, one can achieve a simple effective medium and
still keep large-scale variation measures that play an important
role in the propagation-related phase accumulation. More
specifically, the studies in [10], [12], and [13] apply the new
homogenization formulation for a derivation of an effective
(homogenized) modal theory for propagation in complex ducts.
Several issues were discussed.

1) The relation between the boundary conditions (BCs) of
the original (“complete”) formulation, and those of the
homogenized one. Under certain conditions, the former
and the latter are identical.

2) The relation between the eigenvalues and eigenfunc-
tions of the complete formulation , and those of
the homogenized one , (effective eigenvalues and
modes). When appropriate BCs are employed,spectral
equivalenceis established: the lowest order are asymp-
totically identical to the corresponding , and are
identical to the macro-scale component of. These re-
sults play a role in establishing aneffective modal analysis,
as they pertain to preservation of phase accumulation
and modes shape of the effective field construction.

3) The relation between theWronskianof the complete for-
mulation and that of the effective one. The importance
is twofold. a) It provides an alternative approach to the
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TABLE I
COMPLETE AND EFFECTIVE BOUNDARY CONDITIONS. HEREv = (d=dx)u.

� IS AN ARBITRARY CONSTANT AND p IS DEFINED AFTER (2.2)

(a)

(b)

Fig. 1. Complex ducts with random multilayer microstructures. (a)� (x),
with a microscale of1=� = 1=20. (b) � (x) with a microscale of 1/50.

spectral equivalence issue above. b) More important, it
establishes a relation between the—the poles in the
complex frequency plane associated with the complete
problem—and —the poles associated with the homog-
enized one. When spectral equivalence holds, we have

.
We note that multiresolution analysis and wavelets have been

used recently by Brewster and Beylkin in [15] for numerical ho-
mogenization. The basic ideas are similar to those developed
in [4] and [5]. The work in [15] is devoted mainly for a so-

(a)

(b)

Fig. 2. Effective properties of the random multilayers for HS= 0:1 and Haar
multiresolution system. (a)� (x). (b) � (x).

phisticated “decimation” process in which efficient numerical
algorithm for estimating the large-scale response component
is developed. It does not address directly the questions artic-
ulated above. Using the multiresolution approach, the work in
[6] and [8] reconstructs the classical result of homogenization of
the equation , in the context of acoustic scattering.
Using the multiresolution approach, the classical result was de-
rived again later by Gilbert [16], together with a correction term.
In [17], Beylkin and Coult used the algorithm developed in [15]
to investigate the numerical homogenization of boundary value
problems. Their work, however, does not address the issues ar-
ticulated above.

In this paper, we use the Wronskian equivalence reported in
[13] and [14], for aspectral plane-wavestudy of the effective
resonance representation of reflection of a transient plane wave
from a complex duct. Specifically, we examine, for the first time,
how well the effective poles/resonances reconstruct the true
(full-scale) resonances under various heterogeneity parameters,
and the effects of the approximate effective representation on the
transient signal reflected from a complex multiscale laminate.
The basicspectral effective building blocksstudied here can
then be used for a representation of two- and three-dimensional
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(a) (b)

(c) (d)

Fig. 3. The “true” (complete) poles! and effective poles! . (a) In the complex! plane, for� (x) and its effective measures and TM excitation. (b) The
relative differences between! and! for � (x) and two values of HS. (c) The same as (b) but for� (x). (d) The relative difference between! and! for both
polarization and heterogeneities, for HS= 0:1.

fields via spectral summation. This is done in a subsequent
study [19].

II. HOMOGENIZED FORMULATION

A. Wavelets, Scaling Functions, and Spatial Smoothing

Let and be the scaling function and wavelet associ-
ated with a multiresolution decomposition of . The func-
tion is defined via as ,
and a similar definition holds for . The spectrum of

is centered in the low-frequency regime , while
that of is centered in the bandpass regime

. An approximation of a field at a resolution can be
written as the sum of two mutually orthogonal fields, namely,
smooth ( , macro scale) and detail (, micro scale) compo-
nents. We have , where

(2.1a)

(2.1b)

Here, denotes the inner product of and is
the reference smoothing resolution. Recalling the spectral prop-
erties of and , can be interpreted as the spatial average
of , with the averages’ being taken over intervals of the
size 2 . contains the remaining fine details; hence the
terms macro- and micro-scale components. The resolution level

should be chosen such that faithfully describes field com-
ponents possessing spatial length scales on the order of a wave-
length and larger. Thus, for a normalized wavelength ,
we choose .

B. Homogenization of the Wave Equation in Layered Media

Electromagnetic wave propagation in an isotropic plane strat-
ified medium is governed by

(2.2)

with boundary conditions at , . is the frequency,
and represent the medium heterogeneity, andis the iden-
tity matrix. For TE or TM wave, is the -directed electric or
magnetic field and , or ,

, respectively. and vary rapidly in . Equation
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(a) (b)

(c) (d)

Fig. 4. Four different manifestations of complex multilayer ducts, with micro-scale of 1/32 (a), 1/64 (b), 1/128 (c), and 1/256 (d).

(2.2) can be reduced to a (1-D) Sturm–Liouville problem by a
Fourier transform along thecoordinate. The result is

(2.3)

subjected to the same BC as (2.2) in thedirection. Here is
the spectral variable associated with thedirection. This for-
mulation is now amenable for a direct application of the theory
in [10]–[13]. The field is expressed as the sum of two mu-
tually orthogonal fields: the smooth (, macro scale) and the
detail ( , micro scale) components. We have

, as defined in (2.1a) and (2.1b). It can be shown that if
the complete field is subject to Neumann, Dirichlet, or natural
impedance BC, the macro-scale field satisfies the BC sum-
marized in Table I (see [10], [12], and [13]) and is governed by

(2.4)

Here denotes the macro-scale component of, as defined by
the projection operation in (2.1a). Applying an inverse Fourier
transform, we obtain the effective wave equation governing

. It is identical in form to the complete formulation
(2.2), except that and are replaced by their effective mea-
sures , . We have , while

is a diagonal matrix with elements , ,
. In general, . This introduces an

effective anisotropy into the macro-scale formulation.

III. SPECTRALEQUIVALENCE AND EFFECTIVEWRONSKIAN

Let be an eigenvalue of the complete problem (2.3)
and the corresponding mode. , are the corresponding
effectivequantities associated with (2.4). Letbe the micro scale
and be the length scale associated with the effective mode

(since the latter is an eigenfunction of an equation with co-
efficients that vary on the macro scale, one has approximately

). Then [10], [12], [13]

(3.1a)

(3.1b)

Hence a “spectral equivalence”: if the micro scale is small
compare to the length scale of the effective mode, the ef-
fective eigenvalue approximates the true eigenvalue and
the effective mode approximates theth mode macro-scale
component .



2758 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 10, OCTOBER 2003

Fig. 5. The same as Fig. 3(d) but for the eight and 128 random micro layers
of the second set.

Fig. 6. The incident field.

The Wronskian of the complete problem is given by

(3.2)

where , are solutions of the source free problem satisfying
BC on the left and on the right boundary, respectively. It is well
known that is independent of . This quantity, however,
depends in general on the two parameters, . Thus, we write

(3.3)

As , each of the two independent solutions, sat-
isfies (see [10], [12], and [13])

(3.4)

and

(3.5)

where both the error of (3.4) and the ratio in (3.5) are bounded
from above by , where is the outer duct dimension and

. Applying the smoothing operator (2.1a) on (3.3) and
using (3.4) and (3.5), we find

(3.6)

However, the quantity on the left is nothing but theeffective
Wronskian ; the Wronskian associated with the effective
formulation (2.4). Equations (3.3) and (3.6) imply the “Wron-
skian equivalence”

(3.7)

Thus, as , the dependence of on , approaches
that of . It is well known that for a fixed , the roots of
and in the complex plane are and . Thus,
this result reestablishes the spectral equivalence (3.1b). More
important, the relation between and yields a spectral
equivalence result in the complexplane too. Let and

be the roots of and in the complex plane, for
a fixed . Then, the last results yield

(3.8)

Thus, spectral equivalence exists in both the spatial wavenumber
plane and the temporal frequency plane. These results are im-
portant for establishing effective modal representations, as well
as foreffective resonance frequencyanalysis (effective SEM).

IV. A PPLICATION AND NUMERICAL EXAMPLE

Consider a complex duct with and with that pos-
sesses a random microstructure. Typical examples are shown in
Fig. 1. The 1-D Green function of (2.3) associated with such
1-D heterogeneities is given by [18]

(4.1)

The poles of in the complex plane are the duct reso-
nances, formally given by the roots of the Wronskian. We
demonstrate the implications of the Wronskian equivalence
on the poles’ effective representations. Effective resonances
representation of the reflected transient field, due to a transient
excitation, is also considered. Using the results of the previous
sections, we have , and

(4.2)
where the superscript denotes local smoothing operation as
defined in (2.1a).

We have used a random number generator to synthesize
random multilayer ducts. Two manifestations ,
are shown in Fig. 1. The number of random micro layers is
2 , and the width of each micro layer is 1/2—the micro
scale. for , respectively. The value of for
the micro layers is chosen at random, uniformly distributed
between two and six, yielding an average contrast of four with
the surrounding vacuum. We have computed the effective prop-
erties of via (4.2), using Haar multiresolution system.
This was performed for two choices of the homogenization
scale (HS): and (the scale on which the smoothing
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(a) (b)

(c) (d)

Fig. 7. The reflected field for� = 0:5 and TM polarization. (a)–(d) show the response of the 8, 32, 64, and 256 random micro-layer ducts, respectively.

is performed—see (4.2) or (2.1a). For HS, is constant;
diag , diag , respectively. For

HS , the resulting effective properties are depicted in
Fig. 2. We have used standard transfer matrix method, in
conjunction with a numerical root-finder, to compute the poles
of (4.1) in the complex plane, for the complete (all scales)

and for the . Fig. 3(a) shows
for and that correspond to HS and . TM
polarization and (incident plane wave, at 48.5
relative to the -axes). To get a better quantitative measure of
the approximation of by , Fig. 3(b) plots the relative
difference versus for with HS
and . Fig. 3(c) shows the same but for . It is seen that, in
general, smaller HS gives a better approximation , and
this effect is more evident in the lower resonances, say, .
Fig. 3(d) shows the relative difference for both polarizations
and for with the “better” choice of HS . It is seen
that is an order of magnitude smaller for the smaller
micro-scale , as predicted in the previous sections.

To study the implications of the effective resonances repre-
sentations on the computation of the total reflected field, we
have synthesized a second set of random multilayer ducts with
a unit total width, and with a number of micro layers ranging

from eight (micro scale ) to 256 (micro scale ).
The values of in the micro layers are uniformly distributed
between eight and 24, yielding an averagecontrast of 16 with
the surrounding vacuum. Four manifestations are shown in
Fig. (4a)–(d). Fig. 5 shows the same as Fig. 3(d), but for the
eight and 128 random layers cases, and (plane-wave
incidence at 30). Again it is evident that the relative difference
decreases with the micro scale, as predicted by (3.8). This set
of random ducts was excited by an incident field

(4.3)

This excitation signal is shown in Fig. 6. Note that inside the
laminated ducts the pulse typical width is(1/2)—narrower
than the total width of the ducts but larger than the micro scale.
Fig. (7a)–(d) shows the transient reflected fields for four typ-
ical manifestations of the random multilayer ducts, computed
exactly (solid line) and computed using the corresponding ef-
fective resonances (dashed lines). It is seen that the effective
representations reconstruct the large-scale components of the
complete responses. Furthermore, it is seen that the magnitude
of the micro-scale component of the response is decreasing as
the micro scale of the heterogeneity decreases, as predicted by
(3.5).
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V. CONCLUSION

A multiresolution homogenization theory provides formula-
tions governing large-scale solution components for problems
of wave propagation and scattering in complex multilayer duct
environments. With the relations between the true and effective
Wronskians, given in (3.7) (the “Wronskian equivalence”), a
space-time spectral equivalenceis established; the homoge-
nized formulationeffective modes, eigenvalues, and resonances
provide reliable estimates of the corresponding fundamental
constituents associated with the complete formulation. These
results are used here foreffective resonance frequencyanalysis
(effective SEM) of random multilayer ducts.
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