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Abstract

Multi-resolution approach is used to derive homogenized (large scale) formulation for propagation of waves in complex
laminates. Basic entities such as boundary conditions, spatial and temporal spectrum (eigenvalues and resonances), Wronskian,
modal expansions, and Green function representations associated with the homogenized formulation are discussed. The
relations between them and their generic (all-scales, or complete) counterparts are studied. The dependence of these relations
on parameters such as excitation frequency and heterogeneity length-scale are explored. © 2001 Elsevier Science B.V. All
rights reserved.

1. Introduction

The propagation of time-harmonic field of frequencyω in a homogeneous medium, remote from the source region,
can be characterized by a single length-scale — the wavelength λ. We shall use λ as a discriminator of the range of
length-scales pertaining to any propagation/scattering scenario embedded in that medium. Thus, length-scales on
the order of λ and above are termed macro-scales and length-scales much smaller then λ (say λ/10 and below) are
termed as micro-scales.

We are concerned with complex heterogeneity, defined as micro-scale variation of the medium properties (say ε

or µ or both), occupying space domains of macro-scale size, with the possible presence of macro-scale variation.
An example is shown in Fig. 1. When a wave interacts with such a medium, the field within and near the complex
heterogeneity may “inherit” the medium complexity — it contains a wide range of length-scales, from micro to
macro. The development of complete propagation/scattering formulations capable of coping with the articulated
complexity introduces significant challenges (“complete” means the incorporation of all length-scales). Traditional
high-frequency asymptotics cease to be valid when the heterogeneity length-scale becomes small relative to λ, and
traditional numerical procedures may become too large to handle.

However, in many problems of interest, the field observables — e.g. far field radiation pattern, field measured
by a detector with finite spatial resolution, and so on — are determined only by the macro-scale component of the
response, while the micro-scale component is practically irrelevant. This observation suggests a potential remedy —
the development of new propagation/scattering formulations tuned to govern only the macro-scale component of
the field, say us(r).
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Fig. 1. An example of complex heterogeneity.

The role of homogenization is to develop self-consistent effective or homogenized formulations governing us only.
In these formulations the complex heterogeneities ε(r), µ(r) are replaced by their effective measures εe(r), µe(r)—
simpler (smoother) functions or operators that comprise macro-scale only and can faithfully represent the footprint
of the micro-scale heterogeneity on the macro-scale field. Once the effective measures are obtained, a plethora of
analytical, asymptotic, and numerical techniques is available to solve the homogenized problem. For example, one
may hope to develop “effective modal analysis” and “effective ray/WKB theory” based on the effective measures.

Thus, our goal is not only to “homogenize” the relevant PDEs, but also to develop a practical effective wave
theory. We purposefully emphasize “theory” — a framework that can address the following “vertical” issues (how
can we use homogenization efficiently?) and “horizontal” issues (how its basic entities relate to those of the complete
formulation?), as schematized in Fig. 2:

1. Rules for anticipating the existence of a footprint. Is it possible to devise rules that predict a priori which types
of micro-scale heterogeneities carry a footprint on the macro-scale response, and which practically do not? The
effective measures of the latter are their macro-scale components, while those of the former are more difficult to
obtain.

2. Boundary conditions (BC) for the homogenized formulation. The generic BC, obtained from basic physical laws,
apply to the complete field. What are the appropriate BC for the macro-scale field? In particular, in what cases
the generic BC apply to the homogenized formulation as well?

3. Spectral equivalence. How the spectrum of the homogenized formulation relates to that of the complete one?
Denote the modes and eigenvalues of the former and the latter by (u∗

n, λ
∗
n) and (un, λn), respectively. Then, under

what conditions (e.g. mode order n, micro-structure length-scale �, frequency, etc.) u∗
n gives the macro-scale

component of un (us
n) and λ∗

n = λn (spectral equivalence), at least in some asymptotic sense? The same question
is raised about the resonance frequencies Ω∗

n and Ωn. The spectral equivalence is essential for equating the
field expansion in the homogenized formulation to that in the complete one, and for assigning the same physical
interpretation to corresponding building blocks.
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Fig. 2. The building blocks of effective wave theory and the associated inter-relations.

4. The fundamental source problem. Since homogenization is about large scale solutions, self-consistency requires
the homogenized formulation Green function to contain no micro-scale components, at least formally. Thus one
must establish a relation between the Green function of the complete formulation and that of the effective one in
terms of relations between the fundamental sources or in terms of relations between the corresponding spectral
representations.

Traditional homogenization techniques were developed for periodic structures. They are based on establishing a
weak asymptotic limit as the length-scale of the micro-structure becomes infinitely small compare to the macro-scale
[1]. The across-scales coupling phenomenology is not expressed explicitly as part of the mathematical procedure,
and the physical/mathematical mechanisms underlying it remain obscured. Most of the issues articulated above are
not treated.

The formulation developed in [2–9] is based on a different approach and is formally free from these limitations.
Multi-resolution analysis (MRA) [10] and wavelet transforms are applied to the integral operator equation rep-
resentation of the propagation/scattering scenario. This decomposes the latter into a hierarchy of scales, ranging
from micro to macro, and forms a convenient starting point for a study of the across-scales phenomenology and
for a new homogenization scheme, free from the classical limitations. A self-consistent formulation governing the
macro-scale response can then be derived by applying Schur’s complement procedure. The result is an effective
(homogenized) formulation, where the footprint of the micro-scale heterogeneity on the macro-scale response is
expressed via an effective material operator (EMO).

The main features of the EMO were studied in [2–7] for electromagnetic and acoustic scattering in several simple
canonical configurations. Refs. [4,6] reconstruct the classical result of homogenization of the equation (Qu′)′ = f ,
but free from the classical limitations. A study of the MRA homogenization within the framework of Sturm–Liouville
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equations on a closed domain has been carried out in [8,9]. It has been shown that for Neumann, Dirichlet, and
certain types of impedance BC, the generic BC applies to the homogenized formulation as well. This work has
also explored the relationship between the eigenvalues and eigenfunctions of the complete and of the homogenized
(effective) Sturm–Liouville problems, and in particular has established the conditions for spectral equivalence.
These fundamental spectral results have been later applied in [11,12] to formulate effective modal propagation
schemes in complex layered ducts and an “effective vertical-modes/horizontal-rays” scheme for slowly varying
complex stratifications.

We note that MRA and wavelets have been used recently by Brewster and Beylkin [13] for numerical homo-
genization. The basic ideas are similar to those developed in [2,3]. The work in [13] is devoted mainly to a
sophisticated “decimation” process in which an efficient numerical algorithm for estimating the large scale response
component is developed. It does not address directly the questions articulated above. Using the multi-resolution
approach, the classical result was re-derived later by Gilbert [14], together with a correction term. In [15], the
algorithm developed in [13] is used to investigate the numerical homogenization of boundary value problems. Their
work, however, does not provide analytic expression for the effective properties, and does not address the issue of
the appropriate boundary conditions for the homogenized problem.

The purpose of the present work is to use the multi-resolution homogenization scheme to derive a systematic
effective modal analysis for electro-magnetic propagation in complex ducts. This will be based on the extension
of the results reported in [8,9] to the relevant propagation problems. Thus, effective properties, BC, and spectral
equivalence will be examined for a Sturm–Liouvile equation that is more general than that treated in [8,9] and
better suited to electromagnetic wave propagation. For convenience we start with a summary of the main results
derived before. Based on this, three new inequalities (2.13), (2.17) and (2.18), are obtained. These inequalities
are used here for: (a) Extending the spectral equivalence theorem of Steinberg et al. [8] for cases including two
heterogeneity functions (this was discussed in [9], but not derived or proved). (b) Demonstrating a new relation
between the Wronskians of the generic and homogenized formulations. This result is important for generalizing
the spectral equivalence theorem also for resonance frequencies. (c) Developing modal expansion schemes for the
Green functions and for source-free propagation fields.

2. The multi-resolution approach to homogenization

2.1. Wavelets, scaling functions, and smoothing

Let {Vj }j∈Z be a nested sequence of linear spaces that constitutes a multi-resolution decomposition (MRD)
of L2(R) (Z is the set of all integers). Let φ(x) and ψ(x) be the corresponding scaling function and wavelet,
respectively. The function φjn(x) is defined via φ(x) as φjn(x) = 2j/2φ(2j x − n), and a similar definition holds
for ψmn(x). Then, {φjn}n∈Z is an orthogonal basis of Vj , and {ψjn}n∈Z is an orthogonal basis of Oj , the orthogonal
complement of Vj in Vj+1. The spectrum of φjn(x) is centered in the low frequency regime |ξ | ≤ 2j , while that
of ψjn(x) is centered in the band-pass regime 2j ≤ |ξ | ≤ 2j+1. Examples are shown in Fig. 3. An approximation
of a field u(x) at a resolution k can be written as the sum of two mutually orthogonal fields, namely a smooth (us,
macro-scale) and a detail (ud, micro-scale) components. We have u(x) = us(x) + ud(x), where

us(x) = Pj u(x) =
∑
n

snφjn(x), sn = 〈u, φjn〉, (2.1a)

ud(x) = Dk
ju(x) =

k−1∑
m=j

∑
n

dmnψmn(x), dmn = 〈u,ψmn〉. (2.1b)

Here, 〈·, ·〉 denotes the inner product of L2(R), and j < k is the reference smoothing resolution. us(x) can
be interpreted as the spatial average of u(x), with the averages being taken over intervals of the size 2−j . The
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Fig. 3. The cubic spline Battle–Lemarie: (a) scaling function φ, (b) wavelet ψ .

field component ud(x) contains the remaining fine details. The resolution level j should be chosen such that us

faithfully describes field components possessing spatial length-scales in the order of a wavelength λ and larger. For
a normalized wavelength λ = 1, we choose j = 3.

2.2. Construction of the homogenized formulation — the basic apparatus

One may address the difficulty of boundary conditions (see issue (2) in Section 1) by rewriting the boundary value
problem in terms of a second kind Fredholm integral equation (known also as a Lippman–Schwinger equation).
In the latter the boundary conditions are incorporated in the structure of the integral kernel, and are not specified
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explicitly “at a point”. Thus, the incorporation of new “effective” boundary conditions in homogenized formulation
comes out naturally as a mapping of the integral kernel function. As shown in [8] this indeed is the case, although
some exceptions may occur. Thus, we first cast the propagation/scattering problem in integral equation form and
then apply the homogenization procedure.

A general form of the integral equation is given by

u(x) = u0(x) + Lu, (2.2a)

where u is the response field to be determined, L is a linear operator

Lu =
∫ b

a

k(x, y)q(y)u(y) dy = Lb(qu), (2.2b)

q(x) is the heterogeneity function, and k(x, y) is a known kernel, related (but not always identical) to the Green
function of a properly defined homogeneous background problem. u0(x) is a known forcing term interpreted as
the system response in the absence of the heterogeneity (q = 0). Projecting this operator equation onto the nested
sequence of linear spaces {Vj }j∈Z, via a Galerkin procedure with Eqs. (2.1a) and (2.1b), we get the set of equations

(
I − � −C
−C̄ I − �

) ( �s
�d
)

=
( �s0

0

)
, (2.3)

where the coefficients of the macro-scale field us and the micro-scale field ud are collected in �s and �d, respectively.
The same interpretation holds for the known scaling functions coefficients vector �s0 — it is associated with the
forcing u0(x) large scale component. Since this forcing is nothing but the system response in the absence of the
heterogeneity (when q = 0), it contains no micro-scale component. Hence, the null vector in the lower part of the
r.h.s. in Eq. (2.3). I is the identity matrix and �,C, C̄ and � are matrix operators with elementsΦn′,n = 〈Lφjn, φjn′ 〉,
Cn′,mn = 〈Lψmn, φjn′ 〉, C̄m′n′,n = 〈Lφjn, ψm′n′ 〉,Ψm′n′,mn = 〈Lψmn, ψm′n′ 〉. The set in Eq. (2.3) provides the starting
point for a multi-resolution study of the propagation/scattering problem. From the lower half of Eq. (2.3) the response
detail component �d can be expressed in terms of the response large scale component �s. When the result is substituted
into the upper half of Eq. (2.3), we get a formulation governing �s

[I − � − C(I − �)−1C̄]�s = �s0. (2.4)

This formulation is the basic MRA homogenization scheme. The information of the small scale heterogeneity qd(x)

appears essentially in C(I−�)−1C̄. Thus, it is the EMO, which describes how the micro-scale heterogeneity qd(x)

affects the macro-scale response. A general measure of the potential degree of this effect is the EMO norm. If
‖EMO‖ � ‖�‖ then the small scale heterogeneity has practically no effect on the large scale response. If these
norms are comparable then a small scale heterogeneity can have a significant effect on the large scale response.
Thus, an estimate of the EMO norm can provide the rule discussed in (1) in Section 1. The integral kernel k(x, y) is
closely related to the background problem Green function Gb(x, y) (see Section 3). The latter is singular at x = y.
Similarly, one may expect that the heterogeneity function q(x) possesses a non-regular behavior of some order.
These properties can be used in conjunction with theorems on wavelets near singularities [10] to obtain estimates
on the norm bounds (see [8]). We have the following theorem.

Theorem 2.1. Let k(x, y) be the integral operator kernel. Let k(·, y) ∈ Cp, q(·) ∈ Cp′
with p, p′ ≥ 0, and

φ(x), ψ(x) ∈ CN with N > max(p, p′). Then, if ‖q‖ = O(1):

‖�‖2 ≤ cN2
0

2−2j (p′+p+2)

[1 − 2−2(p+1)][1 − 2−2(p′+1)]
, (2.5a)

‖C̄‖2 ≤ cN2
0

2−2j (p+1)

1 − 2−2(p+1)
, (2.5b)
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‖C‖2 ≤ cN2
0

2−2j (p′+1)

1 − 2−2(p′+1)
, (2.5c)

|C̄m′n′,n| ≤ cN02−m′(p+3/2), (2.5d)

where c = O(1), N0 is the number of resolution 0 grid points covering the domain of interest.

The EMO norm bound is dominated by the regularity of the integral equation kernel. The latter is closely related
to the near field structure of the background problem Greens function. This is a formal connection between the
waves physics and the across-scale coupling phenomenology. But also, it provides a rule for distinguishing between
the heterogeneities that carry a footprint and those which do not, see issue (1) in Section 1. The procedure goes
as follows. (a) Cast the problem in the form of a Fredholm integral equation. (b) Check the singularity nature
of the associated kernel k(x, y) and heterogeneity. For smooth or mildly singular ones, ‖EMO‖ � 1 and the
micro-structure practically has no footprint in us(x). For strongly singular ones, the EMO norm is significant and
the heterogeneity can have a profound footprint. Below, we contrast the two extremes of weakly singular kernel vs.
strongly singular (possessing δ singularity) one. They will be found useful in Section 3.

2.2.1. The weakly singular case
Here ‖C̄‖ � 1, ‖�‖ � 1. Thus, we have from the lower part of Eq. (2.3)

‖ud(x)‖ � ‖us‖. (2.6)

Furthermore, here ‖EMO‖ � 1, so Eq. (2.4) can be replaced by

[I − �]�s = �s0. (2.7)

The elements of the matrix operator � can be written as (L∗
b is the adjoint of Lb):

Φn′,n = 〈Lbqφjn, φjn′ 〉 = 〈qφjn,L∗
bφjn′ 〉 = 〈qφjn, φ

f

jn′ 〉. (2.8)

Recall, however, that the kernel k(x, y) is related to the background problem, thus away from the origin it comprises
macro-scales only. Together with the condition that the irregularity at the origin is weak, we can approximate

φ
f
jn(x) ≈ 2−j/2k(yjn, x), yjn = n2−j , (2.9)

which again, comprises macro-scales only (an overline denotes complex conjugate). Thus, Φn′,n can be rewritten
as

Φn′,n = 〈qsφjn, φ
f

jn′ 〉 = 〈Lbq
sφjn, φjn′ 〉. (2.10)

The last result means that the only relevant measure that affects us is qs. Furthermore, there is a conservation
of structure here: the kernel associated with Φn′,n above is the same as that associated with the original integral
equation. Using this result in Eq. (2.7) and reversing the steps back to an integral equation, we get

us(x) = u0(x) + Lbq
sus (2.11)

that means the effective measure is simply qs (compare with Eqs. (2.2a) and (2.2b)). Furthermore, since the kernel
here is the same as the one associated with the complete problem (2.2a), the generic BC apply to the effective
formulation as well.

From the structure of the matrix equation (2.3) it can be shown that if qd possesses scales not larger than a given
micro-scale 2−mi , so does ud. Then, a more precise estimate on the relation between ud and us can be derived. From
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Eq. (2.3), we have �d ≈ C̄�s. Thus, the mn wavelet coefficient in �d is given by ( �d)mn = ∑
n′C̄mn,n′(�s)n′ . Together

with the bound in Eq. (2.5d) it gives

|( �d)mn| ≤
∑
n′

|C̄mn,n′ ||(�s)n′ | ≤ cN0 max
n′ |(�s)n′ |2−m(p+3/2), (2.12)

where N0 and p are defined in Theorem 2.1, and c = O(1). With the Parseval identity, we find

‖ud‖2 = ∑∞
m=mi

∑
n|( �d)mn|2

≤ c‖us‖2∑∞
m=mi

∑
n2−2m(p+3/2) with Eq.(2.12)

≤ c‖us‖2N0
∑∞

m=mi
2−2m(p+1) there areN02m points in resolutionm

= c‖us‖2N02−2mi(p+1)

1 − 2−2(p+1)
.

(2.13)

Thus, as the micro-scale becomes smaller, so does ‖ud‖/‖us‖.

2.2.2. The strongly singular case
Here, we assume that k(x, y) can be written as

k(x, y) = Γ (x, y) − δ(x − y), (2.14)

where δ(x) is the Dirac δ, and Γ (x, y) has the same properties as k(x, y) of Section 2.2.1. With the strongly singular
term in k(x, y), the EMO cannot be neglected, so qd(x) can have a profound footprint in the macro-scale response.
Due to the simplicity of k(x, y), one can obtain simple expressions for the effective measures. By substituting
Eq. (2.14) into Eq. (2.2a) and performing the integration over the δ term, we obtain a new integral equation:

T (x) = u0(x) + �b

(
q

Q
T

)
, (2.15a)

where Q and T are new functions and �b is a new operator

Q(x) = 1 + q(x), T (x) = Q(x)u(x), �bf =
∫ b

a

Γ (x, y)f (y) dy. (2.15b)

Since the kernel of �b is the function Γ , this operator possesses now exactly the same features as Lb of Section
2.2.1, and the results obtained there for u can be directly applied here for T . Therefore, we have from Eq. (2.6) (or
Eq. (2.13)) and Eq. (2.11)

‖T d(x)‖ � ‖T s‖, T s(x) = u0(x) + �b

((
q

Q

)s

T s
)
. (2.15c)

However, from Eq. (2.15b), we have u = Q−1T , and from the first part of Eq. (2.15c) (or from Eq. (2.13) which
applies here forT ), we haveus = (Q−1)sT s. Reversing this last equation to expressT s in terms ofus and substituting
the result back to Eq. (2.15c) yields finally an homogenized integral equation for us

us(x) = u0(x) + Lb(q
eus), qe =

[(
1

Q(x)

)s]−1

− 1, (2.16)

where the integral operator Lb is the same as the generic one, its kernel is given by Eq. (2.14). Thus, qe above
is the effective measure of q, and the homogenized formulation possesses the same boundary conditions as the
complete one.
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When the kernel is of the form in (2.14), a correction term representing the δ contribution should be added to the
bounds in Eqs. (2.5a)–(2.5d). For C̄m′n′,n the added term is cN02−m′(p′+3/2) (assuming ‖q‖ = O(1)). Following
now the derivations in Eqs. (2.12) and (2.13), we get

‖ud‖2 ≤ c‖us‖2N02−2mi(σ+1)

1 − 2−2(σ+1)
, σ = min(p, p′), (2.17)

where p, p′ apply now to the regularity of Γ, q, respectively. Thus, also in the case of highly singular kernel,
‖ud‖/‖us‖ decreases as the micro-scale decreases.

From the relation u = (Q−1)T and from Eq. (2.15c) (or from Eq. (2.13) which applies here for T ), we obtain
the following smoothing rule:

(Qu)s = Qeus + R̃, ‖R̃‖ ≤ c‖T s‖2−mi(p+1), (2.18)

which will be found useful in subsequent derivations.

3. Applications to propagation in complex laminates

3.1. The basic equations

We start with a 1D Sturm–Liouville equation (the complete problem)[
d

dx
Q(x)

d

dx
+ Ω2M(x)

]
u(x) = F(x), a ≤ x ≤ b (3.1)

with Neumann or Dirichlet BC, and with Ω = O(1). The functions Q and M represent the heterogeneity. When
these are identically equal to 1, the length-scale of u is in the order ofΩ−1 = O(1)— the macro-scale. For simplicity
of derivation, we distinguish between three cases:

1. Q = 1, and M = 1 + m(x) possesses a micro-structure. Here, the governing integral equation is of the type
discussed in Section 2.2.1 (the derivation is outlined in Appendix A). Thus, for this case Me = Ms(x), with the
same BC as the complete formulation.

2. M = 1, and Q = 1 + q(x) possesses a micro-structure. Here, the governing integral equation has the same
structure as that in Section 2.2.2. This case was treated in detail in [8], see Appendix A for the derivation outlines.
Thus, here we have Qe = [(Q−1)s]−1. The corresponding boundary conditions are summarized in Table 1.

3. Q = 1+q(x), M = 1+m(x) both possess micro-structure. Here, one cannot obtain a single integral equation of
the structure discussed in Section 2.2. However, we can still obtain effective measures by applying the two-step
procedure described preliminary in [11]. Define the Green function GM :[

d2

dx2
+ Ω2M(x)

]
GM(x; y) = −δ(x − y). (3.2)

Using the results of case 1 and Section 2.2.1, it can be shown that Gs
M = GMs , where the smoothing on the l.h.s.

operates on both x and y. Furthermore, we have ‖Gd
M‖ � ‖Gs

M‖, so to a very good approximation GM = GMs .

Table 1
The complete (all scales) and effective boundary conditions

Boundary conditions Complete Effective

Dirichlet u = 0 us = 0
Neumann v = 0 vs = 0
Natural impedance αu + Qv = 0 αus + Qevs = 0
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Use GM as a background problem Green function to obtain an integral equation formulation for u with both Q

and M present, and invoke the last approximation. The result is

u(x) = u0(x) +
∫ b

a

GMs(x, y)(q(y)u′(y))′ dy. (3.3)

Although, explicit expressions of GM are not available for general M , some basic properties always hold: it
is continuous at x = y, and its second mixed derivative results in a δ distribution and a continuous term.
Furthermore, since ‖Gd

M‖ � ‖Gs
M‖, it consists of macro-scale only away from the diagonal. Thus, Eq. (3.3)

possesses exactly the same properties as Eq. (A.1). Continue from this point by following exactly the same steps
described in Appendix A. The final result is that qe is the same as in the previous case. Thus the homogenized
formulation is[

d

dx
Qe(x)

d

dx
+ Ω2Me(x)

]
us(x) = F(x), a ≤ x ≤ b, (3.4a)

where the effective properties are given by

Me = Ms(x), Qe = [(Q−1)s]−1, (3.4b)

and with the same BC as that of case 2 (see Table 1). The smoothing relation of Eq. (2.18) still holds, but for the
quantity governed by the integral equation. Thus (v = u′):

(Qv)s = Qevs + R̃, ‖R̃‖, ‖(Qv)d‖ ≤ c‖(Qv)s‖2−mi(p+1). (3.5)

Furthermore, the relation in (2.17) applies here as well.

3.1.1. Spectral properties
We wish to study how the eigenvalues and eigenfunctions of the complete formulation relate to those of the

effective one. Two new aspects of the spectral equivalence are discussed here. These are the presence of an additional
heterogeneity functionM(x), and the role of the frequency parameterΩ . We start with the following simple theorem
(see [8] for a proof).

Theorem 3.1. Let {f �
n } be an orthonormal basis in a Hilbert space H that depends on the parameter �. Let {gn}

be an orthonormal sequence in H. If ∀m �= n〈f �
n gm〉 → 0 as � → 0, then f �

n → gn as � → 0 ∀n.

We shall use this theorem to establish a spectral equivalence. Letun(x), λn be thenth eigenfunction and eigenvalue
associated with the complete formulation in Eq. (3.1) withM(x) = R(x)+λW(x). Letu∗

n(x), λ
∗
n be those associated

with the effective formulation in Eqs. (3.4a) and (3.4b). The pairs un, λn and u∗
m, λ

∗
m satisfy

(Qvn)
′ + Ω2Run + Ω2λnWun = 0, (3.6a)

(Qev∗
m)

′ + Ω2Rsu∗
m + Ω2λ∗

mW
su∗

m = 0, (3.6b)

where a prime denotes a derivative with respect to the argument, v = u′. un and u∗
m satisfy the same boundary

conditions. Since both equations are real and self-adjoint, the eigenfunctions and eigenvalues are real in both cases.
Since Qe, Rs,W s are slowly varying large scale heterogeneities, the first N = 2j eigenfunctions of Eq. (3.6b)
comprise macro-scales only. We shall restrict our discussion to these first N eigenfunctions. Note also that for these
first N modes the smoothing rule in Eq. (3.5) is valid, because it results from relations between operator norms. We
perform now an inner product of Eqs. (3.6a) and (3.6b) with u∗

m and un, respectively, and subtract the second from
the first. The result is

〈u∗
m, (Qvn)

′〉 − 〈un, (Qev∗
m)

′〉 + Ω2λn〈u∗
m,Wun〉 − Ω2λ∗

m〈un,W su∗
m〉 + Ω2〈u∗

m,R
dun〉 = 0. (3.7)
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Perform now the following steps. Apply integration by parts to the two leftmost terms. Use the fact that 〈un,W su∗
m〉 =

〈us
n,W

su∗
m〉 (since W s and u∗

m(m ≤ N = 2j ) are macro-scale quantities). Multiply the last quantity by λn and add
and subtract it from the last equation. The result is

u∗
mQvn|ba − unQ

ev∗
m|ba + 〈vn,Qev∗

m〉 − 〈v∗
m,Qvn〉 + Ω2(λn − λ∗

m)〈us
n,W

su∗
m〉

+Ω2λn〈u∗
m,Wun − W sus

n〉 + Ω2〈u∗
m,R

dun〉 = 0. (3.8)

We have u∗
m = Pj u

∗
m, and P is self-adjoint. Thus

〈u∗
m,Wun〉 − 〈u∗

m,W
sus

n〉 = 〈u∗
m,W

dud
n〉, (3.9a)

〈u∗
m,R

dun〉 = 〈u∗
m,R

dud
n〉, (3.9b)

〈v∗
m,Qvn〉 = 〈Pj v

∗
m,Qvn〉 = 〈v∗

m,Q
evs

n〉 (by Eq. (3.5) as the microscale � → 0). (3.9c)

Substituting everything back into Eq. (3.8), we find

〈us
n,W

su∗
m〉(λn − λ∗

m) = [unQ
ev∗

m − u∗
mQvn]ba − 〈vd

n,Q
ev∗

m〉 − Ω2〈u∗
m, (R

d + λnW
d)ud

n〉. (3.10)

Let � be the micro-scale — the length-scale on which ud
n, vd

n vary, and L∗
m be the length-scale on which u∗

m varies.
Since the effective formulation consists of large scale coefficients only, it follows that L∗

m is determined only by the
mode order, and is approximately 1/m. It is clear that the two rightmost terms in Eq. (3.10) vanish as the parameter
� goes to zero (see Eqs. (2.13) and (2.17)). This fact is used next to establish a spectral equivalence between the
effective and complete BVPs.

Homogeneous Neumann or Dirichlet boundary conditions. In this case the first term in the r.h.s. of Eq. (3.10)
vanishes. Then

(λn − λ∗
m)〈us

n,W
su∗

m〉 = −〈vd
n,Q

ev∗
m〉 − Ω2〈u∗

m, (R
d + λnW

d)ud
n〉 → 0 as

�

L∗
n

→ 0 ∀n �= m. (3.11)

Then by Eq. (3.11) and Theorem 3.1, we get

us
n → u∗

n as
�

L∗
n

→ 0, (3.12a)

and with this last result, Eq. (3.11) gives (with m = n)

λn → λ∗
n as

�

L∗
n

→ 0. (3.12b)

This is the “spectral equivalence” discussed in issue (3) in Section 1. From the rightmost term in Eq. (3.11) it is
seen that for constant �, L, the spectral equivalence becomes less accurate as the frequency Ω increases or as λn
increases.

Impedance boundary conditions. Here, the first term on the r.h.s. of Eq. (3.10) does not vanish. The consequences
are that in general us

n �= u∗
n and λn �= λ∗

n.
Natural impedance boundary conditions. Let us consider the following boundary conditions:

Q(x)v(x) + α1,2u(x) = 0 at x = a, b (3.13a)

for the complete formulation, and

Qe(x)v∗(x) + α1,2u
∗(x) = 0 at x = a, b (3.13b)

for the effective formulation. With these BC Qvn = −α1,2un and Qev∗
m = −α1,2u

∗
m at the boundaries. Under these

conditions the first term on the r.h.s. of Eq. (3.10) vanishes and Eqs. (3.12a) and (3.12b) hold again. This result is
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of particular importance, as the impedance BC given in Eq. (3.13a) is used in many physical problems (see, for
example, Section 3.2 in [17]). The fact that the identities in Eqs. (3.12a) and (3.12b) hold when the impedance BC
of Eq. (3.13b) is applied to the effective formulation means that the effective measure of Q is also the relevant one
for establishing the effective modes in the impedance case. These results are consistent with Table 1. Also here,
when we increase Ω or λn the spectral equivalence “deteriorates”.

3.1.2. The effective Wronskian — a generalized spectral equivalence
An alternative approach to the spectral equivalence is to study the relation between the Wronskian of the complete

problem,W , and that of the effective one (effective Wronskian)We. We haveW[u�, ur ] = u�vr − v�ur(v = u′),
where u�, ur are solutions of the source-free problem satisfying the left and right boundary conditions. It is well
known that (with M(x) = R(x) + λW(x)):

Q(x)W[u�, ur ] = const. = f (Ω, λ), (3.14)

that is, f is a function of the frequency parameter Ω and the spectral parameter λ, but not of x. Operating with Pj

(see Eq. (2.1a)) on both sides and using Eq. (3.5), we find that

Qe(us
�v

s
r − vs

�u
s
r ) = f (Ω, λ) as

�

L
→ 0. (3.15)

However, us
�v

s
r − vs

�u
s
r is nothing but the Wronskian associated with the macro-scale formulation and its solutions.

Thus, Eqs. (3.14) and (3.15) yield the Wronskian equivalence

QeWe = QW = f (Ω, λ) as
�

L
→ 0. (3.16)

That is, as �/L → 0, the dependence ofWe on Ω,λ approaches that ofW . It is well known that for a fixed Ω , the
roots ofW andWe in the complex λ plane are λn and λ∗

n. Thus, this result re-establishes the spectral equivalence
(3.12b). More important, the relation between W and We yields a spectral equivalence result in the complex Ω

plane too. Let Ωn, λ and Ω∗
n , λ be the roots of W and We in the complex Ω plane, for a fixed λ. Then, the last

results yield

Ω∗
n(λ) → Ωn(λ) as

�

L
→ 0. (3.17)

These results are important for establishing effective modal representations, as well as for effective resonance
frequency analysis (effective SEM). The temporal frequency equivalence was demonstrated numerically in [16].

3.1.3. Numerical example
Let us check the spectral equivalence via a simple numerical example. Consider the heterogeneity functions

Q(x) = W(x) = 1 + a cos(κπx), κ � 1, (3.18)

which have a typical length-scale of � = 2/κ . Thus, forΩ = 1 these heterogeneity functions vary on the micro-scale.
The effective properties are given, approximately, by

Qe =
√

1 − a2, W e = 1. (3.19)

We have computed the eigenvalues and eigenfunctions of the complete problem (λn, un), and those of the effective
problem (λ∗

n, u
∗
n), for Neumann, Dirichlet, and natural impedance BC. The spectral equivalence is demonstrated in

Fig. 4 for the eigenvalues. It is seen that the relative difference between the effective and complete spectra is kept
below 1% for n ≤ 1

8κ(≈ 4/�). Similar results were obtained for the modes (see more examples in Section 4).
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Fig. 4. The spectral equivalence: a comparison of the relative difference between the eigenvalues of Eq. (3.1) — the complete problem, and
those of Eq. (3.4a) — the effective, or homogenized, problem. The heterogeneity functions are given in Eqs. (3.18) and (3.19) with a = 0.5: (a)
Dirichlet BC, (b) Neumann BC, (c) natural impedance BC.
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Fig. 4 (Continued ).

3.2. Multi-resolution homogenization of propagation in complex laminates

Electromagnetic wave propagation in an isotropic plane stratified 2D medium is governed by

∇ · (Q∇u) + k2
0gu = s(x, y), Q = p−1I, 0 ≤ x ≤ a, (3.20)

where u(x, y) is the field, k0 is a reference wavenumber, s(x, y) is a source term, p(x) and g(x) represent the
medium heterogeneity, and I is the identity matrix. For TE or TM wave, u is the z-directed electric or magnetic
field and p(x) ≡ µ(x), g(x) ≡ ε(x) or p(x) ≡ ε(x), g(x) ≡ µ(x), respectively. Eq. (3.20) is accompanied by
boundary conditions at x = 0, a, and by an outgoing wave radiation condition at |y| → ∞. It is assumed throughout
that p and g vary rapidly in the x (vertical) direction and slowly in the y (horizontal) direction, when compared to
the reference wavelength λ = 2π/k0. The geometry is shown in Fig. 5. Our goal is to establish an homogenized
representation of the problem, which incorporates effective measures of the complexity in the x-direction.

Eq. (3.20) can be reduced to a 1D Sturm–Liouville problem by a Fourier transform along the y coordinate. We
define the transform pair

ũ(x, η) =
∫ ∞

−∞
u(x, y) e−ik0ηy dy, u(x, y) = k0

2π

∫ ∞

−∞
ũ(x, y) eik0ηy dη. (3.21)

Fig. 5. The geometry of the complex laminate.
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Upon applying it to the wave equation we get an ODE for ũ:[
d

dx
Q(x)

d

dx
+ k2

0M(x)

]
ũ(x, η) = s̃(x, η), Q(x) = 1

p(x)
, M(x) = g(x) − η2

p(x)
. (3.22)

The large scale solution component, in the x-direction, is governed by[
d

dx
Qe d

dx
+ k2

0M
e
]
ũs(x, η) = s̃, Qe(x) = 1

ps(x)
, Me(x) = gs(x) − η2

[
1

p(x)

]s

. (3.23)

Applying the inverse Fourier transform, we obtain the effective wave equation

∇ · (Qe∇us) + k2
0g

eus = 0, ge(x) = gs(x), Qe(x) = diag

{
1

ps(x)
,

[
1

p(x)

]s}
. (3.24)

This formulation is identical in form to Eq. (3.20) except that the heterogeneities Q and g are replaced by their
effective measuresQe and ge obtained by smoothing in the x-direction. In general 1/ps �= (1/p)s. This introduces
an effective anisotropy into the macro-scale formulation in Eq. (3.24). The anisotropy principal axes coincide with
the stratification axes.

3.2.1. The spectral equivalence and modal representation of wave fields
We turn now to use the spectral equivalence results of Sections 3.1.1 and 3.1.2 to derive an effective modal expan-

sion scheme in a waveguide. Let ũn(x), η2
n and ũ∗

n(x), (η
2
n)

∗ be the eigenfunctions and eigenvalues associated with
the complete and effective problems of Eqs. (3.22) and (3.23), respectively. The spectral equivalence demonstrated
in Section 3.1.1 directly apply. Thus, we have

ũ∗
n → ũs

n, η∗
n → ηn as

�

L∗
n

→ 0. (3.25)

This equivalence is demonstrated in Section 4. The corresponding propagation modes are

un(x, y) = ũn(x) eik0ηny, (3.26a)

u∗
n(x, y) = ũ∗

n(x) eik0η
∗
ny . (3.26b)

Thus, in view of the spectral equivalence, the effective modes have the same x dependence as that of the macro-scale
component of the complete ones, and the same propagation constants as those of the complete ones. Since |ηn −η∗

n|
is a fraction of a percent (see Section 3.1.3), it follows that for the lowest modes the homogenized formulations
keep track of the correct phase accumulation for hundreds of wavelengths, at least in the asymptotic sense pointed
in Eq. (3.25). The importance of this fact cannot be overemphasized.

Consider now an initial illumination field u0(x) at y = 0. Formal modal expansion of the field in the complete
and homogenized formulations are given, respectively, by

u(x, y) =
∞∑
n=1

〈u0, ũn〉ũn(x) eik0ηny =
∞∑
n=1

〈u0, ũ
s
n〉ũn(x) eik0ηny (by (2.13) and (2.17) as � → 0), (3.27a)

u∗(x, y) =
N∑
n=1

〈u0, ũ
∗
n〉ũ∗

n(x) eik0η
∗
ny, (3.27b)

where the upper limit of the summation in the latter, N , is chosen as to include scales consistent with the pre-defined
smoothing level j . ThusN = 2j (assuming a laminate width of unity). Under this condition, the spectral equivalence
holds and one has

u∗ = Pj u = us. (3.28)
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3.2.2. The Green function
The one-dimensional Green function G̃(x, η; x′, y′) of the complete problem (3.20)–(3.22) can be expressed by

the modal summation [17]

G̃(x, η; x′, y′) = −
∑
n

ũn(x)ũn(x
′)

η2 − η2
n

e−iηy′
. (3.29)

When the last expression and the inverse transform, Eq. (3.21), are used in conjunction with the Residue theorem,
we get the modal representation of G(x, y; x′, y′):

G(x, y; x′, y′) = ik0

2

∑
n

ũn(x)ũn(x
′)

ηn
eik0ηn|y−y′|. (3.30)

Formally, the Green function of the effective problem is given by the same summation, with un, ηn replaced
by the corresponding quantities of the homogenized formulation u∗

n, η
∗
n. This, however, yields the response for a

δ(x−x′) source, which is inconsistent with the initial requirements from the homogenized formulation; the solutions
associated with the latter should not contain, at least formally, any micro-scale component. Furthermore, summation
of elements with increasingly large n must include building blocks for which the spectral equivalence breaks down.

The way to circumvent this inconsistency is to redefine the role of G, as to match the ideas behind macro-scale
formulations. The effective Green function should be the response to a source excitation from which all and only large
scale sources can be obtained. Thus, it is the response to the smoothed δ, containing only the spectral components
in the interval |ξ | ≤ 2j . The corresponding Green function, termed now the effective Green function, is given by

Ge(x, y; x′, y′) = ik0

2

N=2j∑
n=1

ũ∗
n(x)ũ

∗
n(x

′)
η∗
n

eik0η
∗
n|y−y′|, (3.31)

which is now consistent with the idea of large scale solutions. Furthermore, for this range of summation, the spectral
equivalence holds, thus Ge can be expressed also as PjP′

jG(x, z; x′, z′), where Pj and P′
j act on the x and x′

dependence, respectively. This establishes a “horizontal” connection between the complete and effective Green
functions (see Fig. 2).

4. Numerical examples

Consider a propagation of a TM wave in a complex laminate with boundaries at a = 0, b = 1, with µ = 1,
and with the complex ε heterogeneity described in Fig. 1. The inner scale of this heterogeneity is � = 0.02. We
choose k0 = 5π that corresponds to a wavelength λ = 0.4, 20 times larger than �. For this range of parameters, an
appropriate smoothing level is j = 4. Also, spectral equivalence should hold well for the first few modes. Fig. 6
shows 1/ps and (1/p)s associated with p(x). Fig. 7 shows η2

m (× signs) and (η2
m)

∗ (+ signs) associated with p(x)

of Fig. 1 and with its effective measures (of Fig. 6), respectively. To appreciate the effects of the heterogeneity, we
also show by circles η2

m in the absence of the heterogeneity (p(x) = 1). Fig. 8 shows the corresponding first three
modes associated with the complete (solid) and with the effective (dash-dot) formulation. The latter are smoother,
but convey the same large scale behavior. These results demonstrate the efficacy of large scale modal representations.

5. Conclusions

Multi-resolution theory and wavelets expansion were used to develop homogenized formulation for propagation
in complex laminates. This formulation governs the propagation of the field macro-scale component. The connection
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Fig. 6. The effective measures associated with the heterogeneity of Fig. 1.

Fig. 7. The eigenvalues. Shown are η2
m (× signs), (η2

m)
∗ (+ signs), and η2

m associated with the homogeneous problem p = 1 (� signs).
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Fig. 8. The first three modes. Shown are ũn and ũ∗
n.

between the basic entities associated with the complete formulation (such as boundary conditions, modes, eigen-
values, resonances, modal expansions) and those of the homogenized one was investigated. A central issue here is
the spectral equivalence (or more generally, the Wronskian equivalence) and its dependence on the micro-scale. It
is shown that spectral equivalence holds for modes satisfying L∗

m � �, the former is the length-scale on which the
mth effective mode varies, and the latter is the micro-scale. Self-consistent effective modal expansion scheme and
effective Green function representation were suggested.
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Appendix A. Derivation of integral equations

Case 1 is the simplest one. Define the background Green functionG(x; y) as that associated with the homogeneous
medium Q = M = 1, with the same BC as for Eq. (3.1). The solution for G is straightforward and can be found
in many textbooks. It is continuous at x = y and varies on the macro-scale dimension for x �= y. An integral
equation formulation is obtained by moving m(x) to the differential equation r.h.s., and expressing the solution u(x)

as a convolution of G with the extended source term F(x) − Ω2m(x)u(x). The result is given by the formulation
in Eqs. (2.2a) and (2.2b) with k(x, y) = G(x, y), q = m, and u0 = ∫

F(y)G(x, y) dy. Recalling the regularity
properties of G, this case corresponds to the one described in Section 2.2.1. The key point here is that us satisfies,
to a good approximation, the same integral equation (i.e. the same kernel) as that of u, with M replaced by Ms.
That means us satisfies also the corresponding complete differential equation with M replaced by Ms, and with the
same boundary conditions.

In case 2, the procedure leading to an integral equation is somewhat more involved. First, we move the term (qu′)′
to the r.h.s. of the differential equation governing u. Then, we use G of case 1 to express u as a convolution with
the extended source term F − (qu′)′. The result is an integro-differential equation for u,
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u(x) = u0(x) +
∫ b

a

G(x, y)(q(y)u′(y))′ dy. (A.1)

Taking a derivative with respect to x, defining v = u′, and performing integration by parts, we obtain an integral
equation for v in the form discussed in Section 2.2.2 with k(x, y) = ∂2

xyG(x, y) = Γ (x, y) − δ(x − y), where Γ

is continuous at x = y (see [8] for details). The results of Section 2.2.2 directly apply

Qe(x) = [(Q−1)s]−1. (A.2)

However, due to the integration by parts, the forcing and Γ generally depend now on the numbers q(a), q(b). Thus,
while the structure of the equation is preserved, the effective formulation cannot be obtained from the complete
one by a mere replacement q → qe. The dependencies on q(a), q(b) cancel only for the three cases of boundary
conditions summarized in the left column of Table 1, and these are the only cases that one can define boundary
conditions to be applied on us. The corresponding effective BC are summarized in the table. Finally, we note that
the smoothing rule of Eq. (2.18) holds, but for v = u′, the quantity governed by the integral equation.
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