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Abstract: We present a full-wave finite difference time domain (FDTD) 
study of a coupled resonator optical waveguide (CROW) rotation sensor 
consisting of 8 doubly degenerate ring resonators. First we demonstrate the 
formation of rotation-induced gap in the spectral pass-band of the CROW 
and show the existence of a dead-zone at low rotation rates which is mainly 
due to its finite size and partly because of the individual cavities losses. In 
order to overcome this deficiency, we modulate periodically the refractive 
indices of the resonators to effectively move CROW’s operating point away 
from this dead-zone. Finally, we analyze the performance of a structurally 
disordered CROW to model the unavoidable fabrication errors and 
inaccuracies. We show that in some cases structural disorder can increase 
the sensitivity to rotation by breaking the degeneracy of the resonators, thus 
making such CROW even more sensitive to rotation than its unperturbed 
ideal counterpart. 
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1. Introduction 

In recent years there has been an increased interest in the coupled resonator optical 
waveguides (CROWs) as potential candidate for an ultra-small optical rotating sensor [1–7]. 
Due to rotation each cavity experiences the Sagnac effect which manifests itself in the 
resonance frequency splitting of the resonators [8, 9]. As the direction of light propagation in 
every pair of successive resonators is in opposite direction, a rotation-induced periodic 
modulation of the resonance frequencies is effectively present, resulting in the formation of 
the rotation-induced gap in the CROW’s pass-band [10]. The most widely utilized technique 
for analyzing such devices is the transfer-matrix method [11]. This technique is relatively 
simple and easy to implement with quickly obtainable results, but it requires the a priori 
knowledge of the impact of Sagnac effect, loss, inter-cavity coupling, etc. in the device. All 
these parameters highly affect the performance of the device, and may be mutually dependent; 
therefore a full-wave simulation based directly on Maxwell’s equations is necessary during 
the design stage of such a device. Recently, a few finite-difference-time-domain (FDTD) 
methods for modeling the Sagnac effect were proposed in the literature [12,13], but their 
ability to model relatively large optical structures, such as CROW, where the computational 
widow can have an area of hundreds or more of square microns, was not demonstrated and the 
issue of numerical stability was not addressed. The development of a stable FDTD scheme, 
and its successful utilization for modeling such devices was only briefly introduced in our 
previous work for a CROW consisting of 4 racetrack ring resonators [14]. 

In this paper we present a comprehensive study of a CROW-based rotation sensor 
comprising 8 coupled doubly degenerate micro rings resonators using full-wave simulations. 
We study its performance under periodic modulation of the structure parameters and under 
structural disorder. We employ the implicit RCN-4 (Rotating Crank-Nicolson) FDTD method 
developed in [14]. This method is a modification of the Crank-Nicolson scheme holding for 
rotating frames of reference, having 4th order accuracy in space and 2nd order accuracy in 
time. 

In this work we show that a finite CROW exhibits a rotation-insensitive region–the dead-
zone–that extends from zero to a minimum detectable rotation rate. Although this range can 
be narrowed by adding more resonators, it still does not allow for measuring practical angular 
velocities. To overcome this problem, we apply a periodic modulation of the refractive indices 
of the rings, thereby shifting the operating point of the CROW out of the dead-zone and 
improving the sensitivity at low rotation rates. We also investigate the impact of disorder on 
the CROW performances by creating random local changes to the inner and outer boundaries 
of the waveguides comprising each resonator. The effect of such disorder is threefold: First, 
the noise modifies the CROW by introducing random fluctuations in the positions of the 
boundaries of the waveguides, thereby azimuthally modifying the effective radius and 
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waveguide width of each ring, consequently increasing their surface roughness and scattering 
losses. Second, it breaks the rotational symmetry of the rings thus lifting the degeneracy of the 
individual resonators, creating two new rotation eigenmodes [9]. In other words, the 
clockwise (CW) and counter clockwise (CCW) modes of every ring have different resonance 
frequencies and these frequencies differ from one ring to another. Last but not least, the noise 
randomly modifies the inter-ring coupling between the resonators. The consequences of the 
two last factors can be quite surprising as the sensitivity to rotation of a disordered CROW 
can sometime surpass that of an ideal device. 

The structure of the rest of this paper is as follows. In Sec. 2 we study the ideal finite-size 
CROW, its dead-zone, and the effect of periodic modulation. In Sec. 3 we analyze a randomly 
disordered CROW. Concluding remarks are provided in Section 4. 

2. Ideal finite length CROW design and simulation 

2.1 CROW without index modulation 

A CROW model of 8 ring resonators, together with its parameters used in our simulations, is 
shown in Fig. 1. We assume that it lies in a two-dimensional slowly rotating medium at the x-
y plane with a rotation rate Ω. Our choice of gaps between the straight waveguides and the 
rings ensures that the output of the drop (‘D’) (through (‘T’)) port is high (low) and stable 
over the frequency pass band and does not exhibit strong Fabry-Perot oscillations due to 
impedance mismatch [15]. The FDTD simulations employed throughout this paper utilize a 
Cartesian grid with a spatial resolution Δx = Δy = 20nm, a time step Δt = 5/3*10−17sec. TM 
polarization (Ez,Hx,Hy) is assumed. The vacuum wavelength of the excitation pulse is 
1.42μm, corresponding to an exact resonance of the individual ring resonators, with angular 
modal number of M = 15. M is chosen to be odd in order to ensure that both modes (CW and 
CCW) do not have a spurious resonance frequency splitting due to the grid discretization [16]. 
Prior to running the simulation of the entire CROW it is necessary to verify that the resonance 
frequencies of all resonators are identical. As the first and the last resonators have a different 
dielectric structure on one of their sides (straight waveguide with a gap of 200nm) as opposed 
to resonators 2-7, their resonance frequency differs from that of the inner cavities due to the 
stronger coupling-induced resonance frequency shift (CIFS) [16]. Using FDTD simulations 
we found the CIFS to be approximately + 550GHz for ring 1 and 8, and + 50GHz for rings 2 
to 7, all relative to the resonance frequency of 210.95THz of an isolated resonator with the 
refractive index n = 2. Therefore, there is a + 500GHz frequency mismatch between the 
resonance frequency of resonators 1, 8 and the resonance frequency of resonators 2-7. Tuning 
can be performed by either reducing the refractive indices of the rings 2-7 or by increasing the 
indices of the rings 1 and 8. By choosing the latter option we get a resonance frequency of 
210.96THz for the rings 1 and 8 using n = 2.00464; comparing it to the resonance frequency 
of 211THz for the rings 2-7 there is still a small mismatch of 40GHz. Additional iterations of 
index tuning can be done to reduce the resonance frequency mismatch further, but as we show 
below it has no major consequences on the performance of the CROW structure studied here 
for rotation sensing. We note that the above fine tuning of the resonators refraction index can 
be practically realized through, e.g., the electro-optic or thermo-optic effects [17, 18]. 
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Fig. 1. CROW consisting of 8 ring resonators and rotating at the rate Ω. The resonance 
frequency shift in each resonator due to rotation is ± δω(Ω). Alternatively, the effect of rotation 
can be mimicked in a static CROW by modulating the indices of the resonators by ± Δn, thus 
shifting the operating point (or bias) from null rotation rate. The first and the last rings have 
higher indices (different color) in order to reduce CIFS to allow more symmetric frequency 
response. 

Figures 2(a) and 2(b) show the spectral responses of the drop and through ports, 
respectively, vs. the optical frequency for an ideal CROW, i.e. without index modulation (Δn 
= 0). Each rotation rate is a multiple of Ω0 = 1010[rad/s]. 

 

Fig. 2. Spectrum of an ideal unmodulated CROW (Δn = 0) for different rotation rates; (a) drop 
(b) through. 

The maximal value of the drop transmission is approximately 0.26 which is substantially 
lower than 1 due to bending losses caused by the fact that each resonator has a small radius. 
Another loss mechanism is the computational grid discretization resulting in radiation 
scattering. Using FDTD simulation the intrinsic quality factor of an isolated ring resonator 
was found to be Qint≈8000. The change in transmission of both ports is very small for rotation 
rates lower than Ω = 2 × Ω0, especially at the through port. This rotation insensitive region, 
which we designate as the dead-zone, is formed by two major mechanisms: (1) losses in the 
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CROW as described in [19] and (2) the finite number of the ring resonators in the device. In 
fact, the second factor is generally the dominant one when dealing with relatively small 
number of rings, which is definitely the case for our CROW. In Appendix A. we demonstrate 
this observation by solving Eq. (4.8) in [19], derived by the tight-binding approach, for the 
amplitude coefficients of the modes of the resonators in the CROW, while taking into account 
the finite number of resonators. Another important dead-zone mechanism which generally 
dominates in conventional RLGs is frequency locking due to back-scattering of radiation in 
the ring cavity. Such effect is caused by imperfections of the waveguides and, in conventional 
RLGs, by imperfections of the mirrors. In our FDTD simulations, non-negligible 
backscattering is generated by the staircase approximation used for the realization of the 
resonators in the computational grid. As this artificial roughness (~20nm) is generally larger 
than that of waveguides fabricated using state-of-the-art techniques it is reasonable to assume 
that the numerical backscattering in our simulations is actually larger than the real values. 
Nonetheless, as we show in appendix A, the dead-zone formed in the CROW is dominated by 
its finiteness and the impact of the backscattering is, therefore, negligible. 

In order to obtain the drop response to rotation from the spectral data plotted in Fig. 2, for 
every rotation rate we integrate the power over the range 210.5-211.5 [THz], yielding an 
estimation of the output power. We then normalize it to the value obtained for a static CROW 
(Ω = 0). The results are shown by the blue curves (Δn = 0) in Fig. 3 for both ports. Clearly, 
there is a dead-zone for Ω<1 × Ω0, which renders the device practically insensitive to rotation. 

 

Fig. 3. Response to rotation of an ideal CROW without modulation (blue, Δn = 0), and with 
modulation (green, Δn = 7.74 × 10−4). All values normalized to the value with Δn = 0 and Ω = 
0; (a) drop (b) through. 

2.2 Modulated CROW 

In order to overcome the dead-zone problem one can either bias the device at an extremely 
high rotation rate in the order of 1011 [rad/s], a solution which is not practical, or modulate the 
refractive indices of the resonators, thus effectively attaining the same result [19]. The latter 
can be achieved in practice by utilizing, e.g., the thermo-optic effect for modifying the 
resonance frequencies of the individual microrings. In our case a periodic change of the index 
of refraction by a value of Δn = 7.74e-4 mimics a CROW rotating at the rate Ω = 10 × Ω0 = 
1011 [rad/s]. Figures 4(a)-4(b) show the transmission at the drop and through ports, 
respectively, with the imposed periodic modulation of the indices. We note that the dead-zone 
no longer exists. In order to evaluate the power available from the ports of the device for each 
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rotation rate, we again integrate the spectrum in the range 210.5-211.5 [THz] and normalize it 
to the value obtained for a static CROW without index modulation. 

 

Fig. 4. Spectrum of an ideal modulated CROW using Δn = 7.74 × 10−4 for different rotation 
rates; (a) drop (b) through. 

The corresponding curves (green curves, Δn = 7.74 × 10−4) for drop and through ports are 
shown in Fig. 3. Again, once the index modulation is introduced, the dead-zone vanishes and 
the device retains its sensitivity even in the region of zero rotation rates. The index 
modulation effectively shifts the blue curves (Δn = 0) of Fig. 3 leftwards; it artificially “adds 
rotation” without any actual rotation. Hence, the dead-zone disappears independently of the 
rotation rate, and the device sensitivity (curve slope) is at its best value right at Ω = 0. Clearly, 
this improvement comes at the expense of reduced output power at the drop port (−2.75 dB), 
but it is compensated by an appropriate increase in power at the through port ( + 2 dB). These 
values are identical because the drop and through plots of Fig. 3 are normalized to different 
values; therefore in practice there is no actual power loss as a result of modulation. We 
emphasize that once the modulation is applied, the sensitivity is no longer limited by the dead-
zone and instead it is limited by the minimum detectable power of the receiver at the output of 
the CROW. 

In order to demonstrate more clearly that index modulation mimics the impact of rotation, 
we compare in Fig. 5 the spectrum of an unmodulated CROW rotating at Ω = 10 × Ω0 and that 
of a static CROW with index modulation of Δn = 7.74 × 10−4 . There is an excellent 
agreement between the spectra. Thus we conclude that one can choose a desired “out of the 
dead-zone” operating point using this technique. 

Thermo-optic tuning of the refractive indices has been demonstrated in recent years for a 
number of CROW platforms such as SOI and polymers [20]. The thermo-optic coefficient for 
polymer materials is of the order of −10−4 [K−1], and 10−4 [K−1] for silicon [17, 21]. Therefore, 
a modulation of Δn = 7.74 × 10-4 would require a temperature difference of ΔT≈16 [K] 
between two consecutive rings, which is not difficult to achieve. In addition, employing larger 
resonators than those used in the simulations would further reduce the required index change, 
thus rendering the resonance modulation quite straight-forward. 
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Fig. 5. Spectrum of an unmodulated (Δn = 0) CROW rotating at Ω = 10 × Ω0 (blue), and a 
modulated static CROW with Ω = 0 and Δn = 7.74 × 10−4 (green); (a) drop (b) through. 

3. Disordered CROW simulation 

In this section we investigate the influence of structural disorder in CROW on its response to 
rotation. We consider a disorder model which introduces random surface roughness on the 
inner and outer walls of the rings waveguides. Such disorder can be generated by the errors 
and tolerances of conventional fabrication methods such as E-beam and photo lithography. 
The smallest roughness that can be introduced is the computational grid resolution of ± Δx =  
± Δy =  ± 20nm. Thus we generate a disordered CROW by randomly erasing, adding (or 
leaving as is) a single cell from/to the dielectric structure at the wall boundaries of every ring 
in the ideal CROW. This procedure is illustrated in Fig. 6, which shows the relative 
permittivity of one of the rings in the 1st realization of the randomly generated CROW. The 
introduction of such noise into the device has the following impacts: (1) increased surface 
roughness, resulting in greater scattering losses; (2) The rotational symmetry of each ring is 
broken, thus lifting mode degeneracy and creating two new modes with different resonance 
frequencies;; (3) the effective separation between adjacent rings is not constant, resulting in 
modification of the inter-ring couplings. As the structural noise presented into the structure in 
our simulations ( ± 20nm) is in the order of what can be attained using conventional 
photolithographic techniques [22], we believe that the simulated effects reported here can be 
observed in a realistic device. 
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Fig. 6. Relative permittivity of a section of a ring constituting the CROW; (a) ideal CROW (b) 
instance #1 of a randomly disordered CROW. 

We randomly generated 4 realizations of a disordered CROW and, in the same manner as 
for the ideal CROW, obtained their responses to rotation. Figure 7 shows the drop and through 
responses for all 4 realizations. Each curve was normalized to the value obtained from the 
simulation of the corresponding static CROW. Therefore all curves intersect at the point of 0 
[dB] at Ω = 0. The first interesting feature of the plots is that they are no longer symmetric 
around Ω = 0, as opposed to the ideal CROW. We note that the response curves of realizations 
#1 and #4 are blue-shifted and those of #2-3 are red-shifted. This result actually indicates that 
there is no dead-zone around zero rotation rates for any of the CROWs. Thus, the randomly 
generated structural noise effectively imposes modulation of the effective refractive indices of 
the ring modes thereby causing a similar effect to that presented in Section 2.2 for the 
modulated ideal CROW. In fact, here the effect may be even stronger due to the changes of 
the inter-ring couplings, modulation that can also mimic the effect of rotation. The dead-zones 
of the disordered CROWs are shifted and their flat regions do not become wider, but rather 
the opposite. A closer look reveals another interesting feature of the drop response, that is, the 
slope of all 4 curves is actually steeper than that of the ideal CROW, rendering the disordered 
CROW even more sensitive to rotation. Table 1 shows the absolute value of the maximal 
slope for each CROW realization, as well as the ratio between the maximal powers at the drop 
port of the disordered CROWs normalized to that of the ideal CROW. Clearly, the ideal 
CROW exhibits inferior performance in terms of sensitivity. On the other hand, the disordered 
CROWs exhibit strong attenuation due to radiation scattering, requiring larger input powers 
(up to 5.75 times more) to retain the same output signal level as the ideal CROW. Therefore, 
since the minimum measurable rotation rate is tied to the signal-to-noise ratio, which changes 
with power, the ideal CROW may still have better performances in that regard. 

It is also worth noting that the results in Fig. 7 were obtained using the same frequency 
range of 210.5-211.5 [THz] as for the ideal CROW. This underlines the advantage of the 
band-gap power measurement of the CROW rotation sensors, as opposed to the conventional 
measurement of a frequency shift such as in a RFOG, for example, where there is a need to 
stabilize the resonance frequency of the device in order to extract the rotation rate in a reliable 
manner. 
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Fig. 7. Response to rotation of 4 different random realizations of a disordered CROW; (a) drop 
(b) through. 

Table 1. Maximal absolute slopes and ratio max(D)/max(Dideal) for drop response ideal 
and disordered CROWs 

CROW Max. Slope [dB/rad/s] max(D)/max(Dideal) [dB] 
Ideal 38.1 × 10−11 0 
#1 60.4 × 10−11 −6.9 
#2 70.1 × 10−11 −7.6 
#3 58.7 × 10−11 −3.5 
#4 46.8 × 10−11 −7 

4. Conclusions 

We performed a full-wave FDTD study of ideal and disordered CROWs consisting of 8 ring 
resonators. We showed the formation of rotation induced-gap and demonstrated the existence 
of a dead-zone at low rotation rates. For such small devices the primary cause for the dead-
zone was found to be the finite length of the CROWs and not the losses of the individual 
cavities. Modulating the refractive indices of the rings effectively biases the device at the 
desired operating point and thus resolves the dead-zone obstacle. Finally, we studied 4 
instances of randomly generated CROWs with surface roughness noise. In terms of sensitivity 
all 4 devices are superior to the ideal CROW, but require more power to obtain a similar level 
of output signal because of the higher radiation scattering losses. We believe that these are 
encouraging results as it might suggest that the use of CROWs as rotation sensors is a tangible 
option. 

Appendix A. Dead-zone formation: Finite-size vs. Loss comparison 

The results shown in this section are obtained by solving Eq. (4.8) in [19]. That equation was 
derived by the tight-binding approach, for the amplitude coefficients of the modes of the 
resonators in the CROW. This approach is valid only if the inter-cavity power coupling is 
weak (i.e. a few percents), but within this limit it provides very accurate results, very close to 
those obtained by the FDTD method. We note, however, that the tight-binding approach 
cannot model directly structural disorder effects. Here, we first consider a lossless CROW 
comprising N=8, 16, 32 and 64 cavities; the inter-cavity power coupling is 1%, the mode 
order is M=15, and εr=4, εi=0 (real and imaginary parts of relative permittivity). Figure 8(a) 
shows the drop response as a function of the rotation rate for the various CROWs. Figure 8(b) 
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shows the corresponding sensitivity defined as the ratio of the drop response in [dB] to the 
rotation rate Ω in [rad/s]. 

 

Fig. 8. (a) Drop response calculated by the tight-binding approach [19] for a lossless CROW 
with different number of rings. (b) The corresponding sensitivity. 

 

Fig. 9. (a) Drop response calculated by the tight-binding approach [19] for a CROW of 8 rings 
with different round-trip power loss rates in a single ring. (b) The corresponding sensitivity. 

For high rotation rates the response is exponential as expected, while at slow rotation rates 
the response becomes flat, thus generating a dead-zone. Note that adding more resonators only 
narrows that region but does not eliminate it completely. In order to ensure that losses play no 
major role in dead-zone creation in our FDTD simulations, we set N=8 and varied the 
imaginary part of the refractive index as εi=0, 106e-6, 212e-6, 424e-6 corresponding to a 
single ring round trip power loss of 0%, 0.5%, 1% and 2% respectively. Figure 9(a) shows the 
calculated drop response and Fig. 9(b) shows the corresponding sensitivity. At very low 
rotation rates the response decreases with losses, but the slope of each curve is similar, thus 
indicating similar (and small) sensitivity. The sensitivity grows significantly and achieves its 
maximum value around Ω=20×Ω0 for all losses. Thus we conclude that the dead-zone 
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formation in the CROWs which are studied in this paper is primarily due to the finite number 
of resonators in the device. 
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