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Abstract 

 

In complex systems, such as automobiles, aircraft, and even smart cities, it is possible 

to install a large number of sensors that can be used to monitor their states and make 

decisions regarding their operation and maintenance. However, because the sensors 

bear their costs and increase the complexity of the monitoring system, it is desirable to 

select the most inexpensive set of sensors that is sufficient to provide accurate and 

reliable information. In this paper, we introduce the sensor selection problem and 

formulate it as an integer linear program. The model is an extension of the minimum 

test collection problem with respect to several constraints, such as the sensors’ cost 

which is not necessarily equal. We present an effective exact solution method that uses 

the special structure of the integer-programming model to reduce its dimension so it 

can easily be solved. This solution method was implemented and demonstrated to be 

superior in comparison to a state-of-the-art integer programming solver. Using publicly 

available datasets from the UCI Machine learning repository, we demonstrate how the 

Optimization-based Sensor Selection model can be used as an effective feature 

selection method as well. 
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1. Introduction 

Nowadays, monitoring systems are a crucial part of various systems and processes in 

many domains, such as manufacturing, medicine, transportation, and agriculture. 

Sensors are used to monitor the operation of complex systems (e.g., plant floors, the 

human body, aircrafts and call data centers to name just few examples). Modern 

monitoring systems often consist of many sensors connected to a central processing 

unit that detects the current state of the whole system. A major task in the design phase 

of these systems is to select a subset of sensors with a minimal cost out of a potentially 

large (and expensive) set. This task is challenging to accomplish because the state of 

complex systems can rarely be inferred from an output obtained from a single sensor. 

Instead, the state is concluded from a combination of several outputs from different 

sensors. In this paper, we introduce the sensor selection problem (SSP). The inputs for 

our model consist of the following: (a) a set of potential sensors that measure the 

systemand generats outputs, with each sensor having an associated installation cost; (b) 

a list of all possible instances of outputs from the sensors, where each instance is 

associated with a specific state of the monitored system.  

We define the notion of signature as the 'partial instance' obtained from a subset of  

installed sensors, e.g., the signature of the instance (0, 1, 5, 0) with respect to sensors 1 

and 3 is (0, 5). When the set of installed sensors is known, the set of possible signatures 

can be immediately derived from the list of possible instances. 

The solution to our problem is a subset of sensors to be installed such that each 

signature can be associated with a unique state. That is, the state of the system can be 

determined by the set of installed sensors. This is achieved if the signatures of instances 

that are related to different states have different outputs in at least a predefined number 

of sensors (also known in the literature as the ‘testability condition’). This number is 

referred as the minimal threshold quantity. In many applications, this threshold is set to 

one. The objective is to find such a set with minimal cost.  

The considered problem is a generalization of the minimum test collection problem 

(TCP), which is known to be NP-Hard (Garey and Johnson,1979) and APX-Hard (De 

Bontridder et al. 2003). The special case of the TCP, using our terminology, is the case 

when all the sensors produce binary outputs; each instance is associated with a unique 

state, the minimal threshold quantity is one, and the installation cost of all the sensors 

are identical (one unit without loss of generality). 

Closely related problems were studied in the artificial intelligence, data mining, and 

statistical literature, i.e., in feature selection and variable selection problems, see for 

example Jović et al. (2015). Feature selection method based on a mathematical 

formulation can be found in Tseng and Huang (2007). They formulated the problem 

and devised a heuristic method based on the rough set theory. The method was applied 

on a dataset from the domain of customer relationship management (CRM). Sun et al. 

(2012) introduced a feature selection method that rely on concepts from cooperative 

game theory. It uses a measure based on Shapley value. However, the feasible set of 

these formulations is defined heuristically to represent a set of features that is believed 
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to enable prediction in practice. In this paper, we follow and extend the TCP by 

following an axiomatic approach concerning the definition of the feasible set.   

The most similar optimization problem that was studied is the one presented in 

Bertolazzi et al. (2016). They considered a problem where a set of a given cardinality 

of features is selected so as to maximize the minimal threshold quantity. They 

formulated the problem as an integer linear program (ILP) and devise a GRASP 

heuristic to solve it. In their numerical experiment, they showed that their method is 

effective for the case when the number of sensors (features) is large while the number 

of instances is moderate.  

We consider a similar problem and our unique contribution is in two aspects. First, 

we cast the SSP as a weighted version of the generalized TCP where the goal is to 

minimize the cost of the sensors rather than minimize their number. Second, and more 

important, we devise an exact solution strategy that is specialized in solving cases 

where the number of instances is large while the number of sensors is moderate.  

Our exact solution method for the SSP is based on an ILP formulation of the 

problem coupled with an extensive pre-processing scheme for the elimination of 

redundant constraints and decision variables. After this step, the integer program can 

be easily solved even for datasets with a large number of instances, such as tens of 

thousands. We refer to this algorithm as IPSS.  

Karwan et al. (1983) presented a review of methods for identifying and removing 

redundancy in ILPs. Later, Paulraj and Sumathi (2010) compared between five methods 

for identifying the redundant constraints. However, the constraints elimination 

procedure presented in this study is unique and based on the particular properties of the 

SSP and our formulation. 

In Section 2, we present some formal notation and an ILP formulation of the 

problem. In Section 3, we devise an algorithm that eliminates many of the constraints 

and some of the decision variables. Then, the effectiveness of the proposed algorithm 

is demonstrated using publicly-available datasets. In Section 4, we present the 

applicability of the SSP and our solution method as a feature selection algorithm by 

comparing it with the results of feature selection algorithms from the literature on the 

datasets presented in Section 3. In section 5, we suggest an extension of our model that 

can handle datasets with continues numerical data and test this extension with a real-

life dataset. Some concluding remarks are drawn in Section 6. 

2. Notation and ILP Formulation 

We consider a design problem where a set of sensors is selected in order to monitor a 

system and identify its states. The selected set of sensors has to identify all the system 

states while minimizing the sensors’ costs. A feasible solution to the considered 

problem is given by a subset of sensors to be used such that the signatures of instances 

that are related to different states will obtain different outputs in at least a predefined 

number of sensors. This number is referred as the minimal threshold quantity. A 

feasible solution is a subset of sensors, such that each of its unique signatures can be 
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associated with a single state. An optimal solution is a feasible solution that minimizes 

the cost of the sensors in the subset. 

Let us demonstrate the problem by the following example. Consider a system 

consist of four potential sensors, each sensor, in this case, produces a binary output. 

Assume that there are seven different possible instances (denoted by IDs 1-7) and two 

possible states: “Positive” and “Negative”. The input of this small example is presented 

in Table 1. The last row of the table, ` the cost of installing each of the potential sensors. 

 

 

 

Table 1: All possible sensors, their cost, instances and their states 

Sensors: 1 2 3 4 State 

ID
s 

an
d
 I

n
st

an
ce

s 

1 0 0 1 1 Positive 

2 0 1 0 1 Positive 

3 1 1 0 1 Positive 

4 1 0 1 1 Positive 

5 1 0 0 1 Negative 

6 0 1 1 0 Negative 

7 0 0 1 0 Negative 

Sensor Cost 4 3 6 5 

 

Note that the signatures of sensors 2, 3, and 4 can be uniquely mapped to the two 

states, as demonstrated in Table 2 where the resulted signatures and the IDs of the 

instances from which they are originated are presented. The total cost of these three 

sensors is 14, which turns out to be the optimal solution for this example. Clearly, for 

any legitimate input (i.e., when each unique instance is mapped to a single state), the 

set of all the candidate sensors is a feasible solution. 

 

Table 2: The optimal solution for the example presented in Table 1 

Sensors: 2 3 4 State 

In
st

an
ce

 I
D

s 

an
d
 s

ig
n
at

u
re

s 1,4 0 1 1 Positive 

2,3 1 0 1 Positive 

5 0 0 1 Negative 

6 1 1 0 Negative 

7 0 1 0 Negative 

 

For a counterexample, consider installing sensors 2 and 4 only. This configuration 

is not a feasible solution because the signature (0, 1) is obtained from Instances 1 and 

4 (which are related to “Positive”) and from Instance 5 (which is related to “Negative”).  

In order to evaluate the quality of a solution (a set of sensors) that is not feasible 

with respect to the SSP we define the reliability measure. This measure allows a better 

comparison of our solution with ones produced by other methods in the literature, as 
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seen Section 4. The reliability measure is defined for any set of sensors, including those 

that represent infeasible solutions, as the hit ratio of the best possible mapping of 

signatures to states. The measure can be calculated with respect to any particular dataset 

and set of sensors by associating each signature with its most likely state, i.e., the one 

that minimizes the number of instances with respect to the classification errors. The 

SSP with a minimal threshold quantity of one is defined as the selection that minimizes 

the cost of the sensors that are required to obtain a 100% reliability with respect to a 

given dataset. On the other hand, feasible solutions can be classified by their minimal 

threshold quantity. 

In Table 3 we demonstrate the calculation of the reliability measure for a 

configuration that consists of sensors 2 and 4 with respect to the dataset in the example 

of Table 1. In Column 6 we count the number of instances associated with the signature, 

and in Column 7 we count the number of correctly mapped instances. The ratio between 

their totals (6/7 in this example) is the value of the reliability measure.  

 

Table 3: The obtained signatures from sensors {2,4} and their related states 

Sensors: 2 4 Positive Negative Instances Correct 

In
st

an
ce

 

ID
s 

an
d
 

si
g
n
at

u
re

s 1,4,5 0 1 2 1 3 2 

2,3 1 1 2 0 2 2 

6 1 0 0 1 1 1 

7 0 0 0 1 1 1 

Total  7 6 

 

Let us now present our integer programming formulation of the SSP. For this purpose, 

we use the following notation: 

 

𝑁 Set of candidate sensors available in a given system; The number of sensors is 

denoted by 𝑛 = |𝑁|. 

𝑐𝑖 The cost of installing Sensor 𝑖  for all 𝑖 ∈ 𝑁. 

𝑉𝑖 The set of all possible outputs that can be obtained from Sensor 𝑖. We assume 

that this is a discrete set (later this assumption is relaxed). 

𝑅 The set of valid instances, 𝑅 ⊆ 𝑉1 × 𝑉2 × ⋯ × 𝑉𝑛; for each instance 𝐫 ∈ 𝑅, we 

refer to the output of the 𝑖𝑡ℎ sensor by 𝑟𝑖. 

𝐾 The set of possible system's states 𝐾 = {1, … , 𝑘}.  

𝑘𝐫 The state of the system given instance  𝐫 ∈ 𝑅. 

𝛼 The minimal threshold quantity  

For each sensor 𝑖 ∈ 𝑁, we define a binary decision variable 𝑥𝑖 that is equal to “1” if the 

sensor is included in the configuration and is “0” otherwise. The SSP can now be 

formulated as follows, 
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 min ∑ 𝑐𝑖𝑥𝑖

𝑖∈𝑁

 (1) 

Subject to 

 ∑ 𝑥𝑖

𝑖:𝑟𝑖≠𝑞𝑖

≥ 𝛼        ∀𝐫, 𝐪 ∈ 𝑅: 𝑘𝐫 ≠ 𝑘𝐪 (2) 

 

𝑥𝑖 ∈ {0,1}    ∀𝑖 ∈ 𝑁 

 

The objective function (1) minimizes the total cost of sensors in the configuration. The 

set of constraints (2) ensure that, for every two instances that are related to different 

states, at least 𝛼 sensors with a different output are included in the configuration.  

 

3. Solution method 

In this section, we present two solution methods for the SSP. In Section 3.1, we 

introduce an exact solution method and in Section 3.2, we present a simple greedy 

heuristic that delivers a feasible solution in very short time. In Section 4, we compare 

the preferences of these methods. 

 

3.1 Integer-programming based sensor selection (IPSS) 

We first note that the column dimension of ILP (1)-(2), i.e., the number of decision 

variables is equal to the number of candidate sensors, and the number of constraints is 

quadratic in the number of instances [𝑂(|𝑅|2)]. In a typical application, we expect 

thousands of instances, which imply millions of constraints, whereas the number of 

candidate sensors is typically much smaller. 

To solve large instances of the model in a reasonable time, our algorithm searches 

and detects redundant constraints and exploits the structure of the problem to fix the 

values of some decision variables. In this section, we show that this scheme leads to 

models that can be solved almost instantly by an ILP solver. Moreover, in some cases, 

the entire set of decision variables is fixed, and the ILP is solved to optimality at this 

preprocessing step.   

The basic idea of our algorithm is as follows: recall that, for each pair of instances 

𝐫, 𝐪 that are associated with different states, there is a constraint in the model. Let us 

define the set of sensors 𝑆𝐫𝐪 = {𝑖 ∶ 𝑟𝑖 ≠ 𝑞
𝑖
}. Using this notation, constraints (2) can be 

rewritten as (2'). 

 

Let us denote the collection of sets that defines (2') by ℂ = {𝑆𝐫𝐪: 𝑘𝐫 ≠ 𝑘𝐪} and note 

the following: 

 ∑ 𝑥𝑖

𝑖∈𝑆𝐫𝐪 

≥ 𝛼      ∀𝐫, 𝐪 ∈ 𝑅:  𝑘𝐫 ≠ 𝑘𝐪 

      

(2') 
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Proposition 1: Let 𝑆, 𝑆′ ∈ ℂ such that 𝑆 ⊂ 𝑆′. Any solution 𝐱 that satisfies (2') for 𝑆 

also satisfies it for 𝑆′.  

Proof: Immediately from the fact that if 𝑆 ⊂ 𝑆′ and 𝑥𝑖 ≥ 0, then ∑ 𝑥𝑖𝑖∈𝑆 ≤ ∑ 𝑥𝑖𝑖∈𝑆′ .  

 

Using the observation of Proposition 1, many constraints can be detected as 

redundant and eliminated. Moreover, the existence of 𝑆 ∈ ℂ such that, |𝑆| = 𝛼, implies 

that 𝑥𝑖=1 for all 𝑖 ∈ 𝑆. Similarly, if a variable does not appear in any of the remaining 

constraints its value must be zero in an optimal solution; thus, the (positive) cost of the 

associated sensor is not paid. 

We demonstrate the above idea using the small example of Table 1 with 𝛼 = 1, as 

shown in Table 4 below. In the first column of the table, we present a serial number of 

the obtained constraint instance. In Columns 2 and 3, we present a pair of instances 

from Table 1 that are related to different states. For example, column 2 and 3 of the first 

constraint represent respectively instance 1 and instance 5 in Table 1 that are associated  

to different states (Positive and Negative, respectively). In Column 4, we show the 

resulted 𝑆𝐫𝐪 for this pair. Thus, for the first constraint both sensors 1 and 3 have different 

outputs and therefore included in the set 𝑆𝐫𝐪. The respective constraint (2') is shown in 

the rightmost column.  

From Constraint Instances 3, 7, and 10, one can see that sensors 2, 3, and 4 must be 

included in any feasible solution. Thus, one can fix 𝑥2 = 𝑥3 = 𝑥4 = 1 and all the other 

constraints can be eliminated based on the observation of Proposition 1, implying that 

𝐱 = (0,1,1,1) is an optimal solution in this case. In other cases, we could end this 

process with some remaining constraints and non-fixed variable and find the optimal 

solution using an ILP solver applied for the reduced model. 

 

Table 4: An explicit example of ILP (1)-(2) [for 𝛼 = 1] 

Constraint 

# 

𝐫 𝐪 𝑆𝐫𝐪 Constraint 

1 (0,0,1,1) (1,0,0,1) {1,3} 𝑥1 + 𝑥3 ≥ 1 

2 (0,0,1,1) (0,1,1,0) {2,4} 𝑥2 + 𝑥4 ≥ 1 

3 (0,0,1,1) (0,0,1,0) {4} 𝑥4 ≥ 1 

4 (0,1,0,1) (1,0,0,1) {1,2} 𝑥1 + 𝑥2 ≥ 1 

5 (0,1,0,1) (0,1,1,0) {3,4} 𝑥3 + 𝑥4 ≥ 1 

6 (0,1,0,1) (0,0,1,0) {2,3,4} 𝑥2 + 𝑥3 + 𝑥4 ≥ 1 

7 (1,1,0,1) (1,0,0,1) {2} 𝑥2 ≥ 1 

8 (1,1,0,1)  (0,1,1,0) {1,3,4} 𝑥1 + 𝑥3 + 𝑥4 ≥ 1 

9 (1,1,0,1)  (0,0,1,0) {1,2,3,4} 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 1 

10 (1,0,1,1) (1,0,0,1) {3} 𝑥3 ≥ 1 

11 (1,0,1,1) (0,1,1,0) {1,2,4} 𝑥1 + 𝑥2 + 𝑥4 ≥ 1 

12 (1,0,1,1) (0,0,1,0) {1,4} 𝑥1 + 𝑥4 ≥ 1 
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In the case of 𝛼 > 1, any constraint with 𝛼 variables in the left-hand side implies 

fixing the values of these variable to one. A constraint with less than 𝛼 variables 

immediately implies infeasibility. Indeed, for the dataset in the above example, 

Constraints 3, 7, and 10 implies that the problem is infeasible for any 𝛼 ≥ 2. 

The algorithm presented as pseudocode in Figure 1 detects all the redundant 

constraint instances and fixes the required decision variables by scanning all the pairs 

of instances that are related to different states. For each such pair of instances, the set 

of sensors with different outputs (𝑆) is constructed. The set is added to the collection ℂ 

only if it does not contain a previously added set. In addition, if the set is contained in 

previously added sets, then these sets are removed from ℂ. From a computational effort 

point of view, the dominating parts of the algorithm are the inclusion tests, both 𝑆′ ⊆ 𝑆 

and 𝑆 ⊂ 𝑆′. It is possible to spare many of these tests by partitioning ℂ into subsets of 

equal cardinality and then test the inclusion of a set only versus sets with cardinality 

that is not smaller. 

The algorithm can be parallelized in a relatively simple manner by dividing the work 

done in the inner loop among several processors. Indeed, when checking the inclusion 

of a particular set 𝑆 versus each of the members of the large collection ℂ, each inclusion 

test can be done independently. Since the inclusion tests are responsible for almost all 

of the computational effort, such an approach can reduce the running time by a factor 

that is close to the number of processors.  However, the implementation of the algorithm 

used for the numerical experiment reported below is based on the simpler serial 

approach. 

 

Input: A set of instances 𝑅, where each instance is mapped to a state. 
 
Let  ℂ = ∅    // start with an empty collection of constraints 
 
For all two elements subsets {𝑟, 𝑞} ⊂ 𝑅 

If   𝑘𝐫 ≠ 𝑘𝐪  then 

𝑆 =  {𝑖 ∈ 𝑁: 𝑟𝑖 ≠ 𝑞𝑖}  

If there is no  𝑆′ ∈ ℂ  s.t 𝑆′ ⊆ 𝑆     

Delete all  𝑆′ ∈ ℂ  such that 𝑆 ⊂ 𝑆′ 

         Add S  to  ℂ 

Return ℂ 

Figure 1: Pseudocode of the constraint dimension reduction algorithm 

The dimension reduction algorithm was implemented in Python 2.7 as a single thread 

application, and the ILP model was solved by IBM Cplex 12.6.3 that can employ all 

the cores of the CPU. Our testing environment is an eight-core Intel i7-4790 3.60 GHz 

CPU, 32 GB of RAM running under Windows 7, 64 bit.  

The effectiveness of the dimension reduction algorithm was tested on nine datasets 

from the UCI Machine Learning Repository (Lichman 2013). A summary of the 

datasets is presented in Table 5. Each of the datasets was solved both by using the 

dimension reduction technique followed by solving the remaining model using Cplex 

and by solving the original (unreduced) model directly with Cplex. The results 

presented here are for 𝛼 = 1. In Table 5, the model running time of CPLEX (in seconds) 
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of the IPSS for each dataset, with and without our reduction method, is given. In 

addition, the number of constraints in the full model and the number of remaining 

constraints after the reduction is shown in the table. The merits of the proposed method 

is clear. In particular, for large datasets (e.g., letter recognition and Connect-4), Cplex 

could not solve the problem due to an out-of-memory error, while the reduced models 

were solved very quickly. In some of the smaller instances all the constraint were 

eliminated and all the decision variables were fixed by the IPSS algorithm. The running 

time of the reduction process grows sharply with the dimensions of the problem but it 

does not use an excessive amount of memory and can be applied for large instances. 

Recall that the serial python implementation is benchmarked against a state-of-the-art 

solver that exploits all the cores of the CPU. 

 

Table 5: Reduction approach with respect to state-of-the-art ILP solver 

 Datasets summary Full model Reduction algorithm 

Dataset Features Instances States Obtained 

constraints 

Solution 

Time 

(Sec) 

Remaining 

Constraints 

Reduction 

time 

Solution 

Time 

(Sec) 

Monk 1 6 432 2 46,656 0.74 0 0.19 0 

Monk 2 6 432 2 41,180 0.48 0 0.17 0 

Monk 3 6 432 2 46,512 0.45 0 0.144 0 

Zoo 16 101 7 3,873 0.125 12 0.065 0.037 

Tic-tac-toe 9 958 2 207,832 2.72 36 1.136 0.034 

Chess 36 3,196 2 2,548,563 118.6 2 21.28 0.035 

Mushrooms 22  8,124 2 16,478,528 415.67 39 149.21 0.041 

Letter 

recognition 

16 20,000 26 192,300,979 Out of 

memory 

62 1,177 0.505 

Connect-4 42 67,557 3 1,133,893,847 Out of 

memory 

697 15,789 0.172 

 

3.2 Greedy sensor selection heuristic 

The greedy sensor selection (GSS) algorithm starts with a feasible solution that consists 

of all the sensors. At each iteration, one sensor is considered for removal by checking 

the feasibility of a solution consisting of the remaining sensors without it. The sensors 

are scanned in decreasing order of the ratio between their costs and the reliability 

measure of a configuration that consists of the tested sensor only. We refer to this ratio 

as the cost ratio. This procedure can yield a feasible solution for the problem in a short 

time. 

We demonstrate this simple idea using the dataset presented in Table 1 assuming 

𝑎 = 1. The cost ratio of sensors 1, 2, 3, and 4 are 7, 5.25, 10.5, and 5.83, respectively. 

Thus, the first sensor to be considered for removal is 3. However, because the remaining 

set of sensors {1,2,4} is not a feasible solution, Sensor 3 is not removed. The next sensor 

to be considered is 1. The set of the remaining sensors is {2, 3, 4}, which is a feasible 

solution. Thus, Sensor 1 is removed. Next, sensors 4 and then 2 are considered; 

however, both cannot be removed. Thus, the obtained solution is the set of sensors 

{2,3,4} which is, in this case, happens to be an optimal solution. Note that the GSS can 

be used to solve the problem with 𝛼 > 1. Sensors are removed from the configuration 

as long as Constraint (2) is satisfied. 
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The running time of the GSS is negligible and it guaranteed to return a feasible 

solution. However, this solution can be suboptimal as we demonstrate the next section. 

  

 

4. Application in feature selection and numerical experiment 

In this section we compare the proposed sensor selection problem to the known feature 

selection problem. The comparison is based on a rough analogy by which each sensor 

output can be considered as a feature value and each system state can be consider as a 

system class value. Note however that despite the considered analogy the two problems 

are inherently different, since the sensor selection problem is a deterministic 

optimization problem that guarantees a 100% identification reliability over a given set, 

while the feature selection problem is a probabilistic procedure that aims towards a high 

reliability (often lower than 100%) over a test set that is not given in the training stage. 

Despite these significant differences, we believe that the following comparison study 

is both interesting and has an educational value.  

Feature selection methods are well studied in data mining, machine learning, and 

statistical pattern recognition literature. Feature selection is often used to remove 

irrelevant, redundant, and noisy data. Effective feature selection results in speeding up 

data analysis algorithms and improving their predictive accuracy (Balamurugan and 

Rajaram, 2009). 

Feature selection methods are categorized into three basic approaches: filter, 

wrapper and embedded. In the filter approach, various subsets of features are explored 

to find a small subset that allows accurate classification, without directly applying any 

classification algorithm to test it. Wrapper methods, however, are search algorithms 

that apply classification algorithm iteratively to find a small subset of features that 

allows good classification performances. Embedded methods can be addressed as a 

special class of wrapper based methods, in which the feature selection technique is 

suited to only a particular classifier. The proposed Optimization-based Sensor Selection 

(OSS) model can be viewed as an embedded feature selection method because the result 

is a set of sensors (i.e., the equivalent of features), with the signature of each sensor 

mapped to a state (i.e., an equivalent of class). However, if the set of instances does not 

represent all the possible values, which is the typical situation in learning scenarios, one 

can view the OSS as a filter method. Indeed, for new, yet unseen, signatures, it is 

possible to apply many known classification methods (e.g., KNN, SVM, and Decisions 

trees). Note that, in the considered setting, the classification accuracy for the training 

set is always 100% (i.e., deterministic classification), unlike a typical classification over 

a training set. Evaluating the classification accuracy using a test-set is not considered 

and is beyond the scope of this study. 

In this section, we examine the applicability of our sensor selection model to the 

feature selection domain. To this end we apply the proposed model to the benchmark 

datasets given in Table 5, aiming to identify a subset of features that allow a distinction 

between the classes of the observation deterministically over all the data. We compare 

the selected features to other sets of features selected by state-of-the-art feature 
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selection methods taken from the literature. Finally, we calculate the reliability of these 

selected sets of features. 

Before we proceed to the comparison study, let us note that there is an essential 

difference between the proposed sensor selection problem and the feature selection 

problem. The former is a well-defined optimization method where the objective 

function represents the actual problem at hand. In contrast, in feature selection methods 

the goal is to select a set of features that are likely, in some heuristic sense, to allow 

successful classification of future instances. Moreover, in the considered problem the 

more generic goal is to minimize the total cost of the sensors rather than their number 

which can be represented by a specific case in which the sensor's cost is fixed and 

identical. Accordingly, for the sake of a fair comparison, we set the cost of all the 

features to one. In Section 5, however, we present a real-world case study in which a 

different cost is associated with each sensor/feature. 

Table 6 presents the number of sensors selected by the proposed method vis-à-vis 

state-of-the-art methods from the literature for various datasets. The first column 

presents the name of the dataset, the second column presents the total number of 

features. The third column presents the references and summarizes the result from the 

literature, including the number of selected features and their reliability. The fourth and 

fifth columns present the number of features selected by the exact IPSS algorithm and 

by the GSS heuristic, respectively. Note again that both methods yield a set that 

guarantees a 100% reliability level, unlike a typical classification problem.   

For the Mushrooms dataset, four features (namely, odor, spore-print-color, 

population, and habitat) out of the 22 are found by the OSS model as mandatory 

features. This solution implies that the toxicity of any of the 8124 mushrooms can be 

accurately (at a reliability level of 100%) determined based solely on these four features 

and it cannot be accomplished with any smaller subset of features. Just for comparison 

purpose, many studies used the Mushrooms dataset as a benchmark. For example, 

Kohavi and Frasca (1994) found five sensors using a search of useful features subset 

based on rough set theory. Liu and Setiono (1996) used a probabilistic approach that 

yields also four features that although different could guarantee a reliability level of 

100% that is necessary in such a case, where a mistake can cause a severe health 

damage.   

For the zoo dataset, five sensors out of 16 were found by the OSS model, while for 

comparison purpose, the method of Balamurugan and Rajaram (2009) selected 13 

Features. Wang et al. (2007) used a technique based on the rough sets and particle 

swarm optimization. Their methods resulted in five features. In a personal 

correspondence, the authors informed us that these features are 3, 4, 6, 8, and 13. The 

reliability was calculated based on this information.  

Another example of the effectiveness of the proposed algorithm can be seen in the 

letter recognition dataset. Our proposed algorithm selected 11 sensors out of 16. In other 

words, it indicates that one can use 11 features to fully determine the actual letter 

represented by each of the 20,000 instances (samples) in the set. The implication of this 

finding for those who wish to identify handwritten letters is that it is sufficient to store 

less than 211 signatures and compare them to the signature of each new input rather 
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than all the instances in the dataset. Devi (2015) proposed a feature selection algorithm 

based on simulated annealing that can dichotomically distinguish between each letter 

versus all the others. The reported features for each letter ranges from 9 to 15, where at 

least 15 features are necessary to distinguish between all classes. Oh et al. (2004) 

claimed that they could achieve “good” classification performances for this dataset with 

10 or 13 features using a hybrid genetic algorithm. Both papers did not provide the 

identity of their selected feature and therefore we could not evaluate their reliability. 

Following this line of examples, we also tested the OSS on the three Monk's 

problem datasets. Each problem is given by a logical description of a class, and the 

learning task is to derive a simple class description (see Thrun et al., 1991). The OSS 

model selected three, six, and three features for Monk's problems 1, 2, and 3, 

respectively. Kohavi and Frasca (1994) reported on the same of features for the first 

and the second problem but suggest two features for the third problem. Once again, the 

OSS solution is different in the sense that it ensures perfect classification for the training 

set.  

Despite the relatively good results reported above, the proposed OSS cannot always 

eliminate a large number of features that enable detecting the class deterministically. 

Because other feature selection methods do not aim at guaranteeing 100% accuracy on 

the training set, in some cases, they result in smaller number of features. For example, 

for the connect-4 dataset, the proposed OSS method reduced the number of features 

from 42 features to 34, whereas Balamurugan and Rajaram (2009) reduced it to 13; 

unfortunately, since the authors did not provide the selected features, the exact 

reliability level could not be calculated, yet obviously is lower than 100%. A 

comparable situation occurs on the Chess dataset. The OSS model proved that at least 

29 features are required for complete classification, whereas Hall (1999) found three 

features using his correlation-based feature selection search strategy with reliability of 

55.39%, and Kohavi and Frasca (1994) found ten features with reliability of 97.78%. 

Another example is the tic-tac-toe dataset, where the OSS reduced only one feature, 

whereas Kohavi and Frasca (1994) reduced two features, yet again with a cost of some 

probability of having classification errors.   
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Table 6: Comparison of the number of selected features and reliability according to IPSS, 

GSS, and feature selection methods from the literature 

Dataset 
No. of 

features 

Literature: number of selected features 

(reliability∗) 
IPSS  GSS 

Monk 1 6 Kohavi and Frasca (1994): 3 (100) 3 (100) 3 (100) 

Monk 2 6 Kohavi and Frasca (1994):6 (100) 6 (100) 6 (100) 

Monk 3 6 Kohavi and Frasca (1994): 2 (97.23) 3 (100) 3 (100) 

Zoo 16 
Balamurugan & Rajaram (2009): 13 (N/A) 

Wang et al. (2006): 5 (100) 
5 (100) 5 (100) 

Tic-tac-toe 9 Kohavi and Frasca (1994): 7 (99.58) 8 (100) 8 (100) 

Chess 36 
Hall (1999): 3 (55.39) 

Kohavi and Frasca (1994): 10 (97.78) 
29 (100) 29 (100) 

Mushrooms 22 
Liu and Setiono (1996): 4 (100) 

Kohavi and Frasca (1994): 5 (100) 
4 (100) 5 (100) 

Letter 

recognition 
16 

Devi (2015): 15 (N/A) 

Oh et al. (2004): 10, 13 (N/A) 
11 (100) 12 (100) 

Connect-4 42 Balamurugan & Rajaram (2009): 13 (N/A) 34 (100) 41 (100) 

*full classification is NOT guaranteed! 

  

 Note that the GSS heuristic provides an optimal solution for the smaller datasets 

but, as expected, fails in some of the larger ones, thus motivating the use of the 

computationally heavy IPSS algorithm.  

In conclusion, one can see that the proposed OSS model can be practically used as 

a feature selection method based on a conservative approach. That is, the method 

always selects an exactly minimal number of features that are required for a complete 

classification of the instances in the training set, whereas other methods either result in 

a larger number of features or in a set that cannot guarantee perfect classification over 

many of the UCI training datasets. 

 

5. Extension to continuous outputs 

Until now, we based our sensor selection model on the assumption that the outputs 

produced by the sensors are discrete values (categorical). In this section, we extend the 

model to capture cases, where some of the outputs are continuous values (e.g., such as 

temperature and pressure). Recall that, for the discrete case, we assumed that the 

training set contains all the possible instances. This assumption is not feasible in the 

context of continuous outputs. Note that, if the accuracy of the output values is high, it 

is very likely that a single sensor will be enough to distinguish among all the categories 

in the training set, but has very little power with respect to instances that are not 

included in the dataset. To overcome this difficulty, we aim at considering two 

continuous output values as different, only if the difference between them is significant 

enough. For example, if a sensor collects a body temperature, a difference of one degree 
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may be considered significant; however, a difference of 0.01 degrees is probably not 

indicative for changing the diagnosis of medical conditions. 

One alternative approach is to discretize or categorize such numerical values; note 

however, that the categorization process itself may result in a loss of relevant 

information. To overcome this problem, we incorporate the categorization process into 

the optimization model. All the numerical values in our dataset are normalized and 

expressed in terms of standard deviation scores around their means. Both the mean and 

the standard deviation are estimated from the dataset. Two outputs of a sensor (or values 

of a feature) are considered different if the difference between them, in terms of 

standard deviations, exceed some predefined threshold parameter, denoted by 𝑇. 

Accordingly, to reflect this modification, we revise constraint (2) as follows: 

∑ 𝑥𝑖

𝑖∈𝑁:|𝑟𝑖
′−𝑞𝑖

′|>𝑇 

+ ∑ 𝑥𝑖

𝑖∈𝐶:𝑟𝑖≠𝑞𝑖 

≥ 𝛼         ∀𝐫, 𝐪 ∈ 𝑅: 𝑘𝐫 ≠ 𝑘𝐪 
(2'') 

 

Where 𝑁 and 𝐶 are the sets of continuous and categorical sensors (or features), 

respectively. 𝑟𝑖
′ and 𝑞𝑖

′ denotes the normalized values of the output of sensor 𝑖 of 

instances 𝐫 and 𝐪, respectively. The set of constraints (2'') ensures that, for every two 

instances that are related to different states, the outputs of at least 𝛼 sensors are 

significantly different. The values of 𝑇 and 𝛼 determine the sensitivity of the model. 

Higher values typically result in costlier solutions but may allow better classification. 

The value of 𝑇 and 𝛼 parameters can be fine-tuned by solving the problem for various 

combinations of these parameters. The accuracy obtained with the selected features of 

each combination can then be evaluated. Using this process, we create an efficiency 

frontier of the total cost versus the model accuracy.  

To examine the applicability of the sensor selection model on continuous sensors, 

we tested the Pima Indians Diabetes (PID) dataset that is also acquired from the UCI 

machine learning repository. Diabetes is a disease in which the body is unable to 

properly use and store glucose. Poorly managed diabetes can lead to a host of long-term 

complications, including heart attacks, strokes, blindness, and kidney failure. The PID 

dataset consists of eight continuous features, i.e., diagnostic measurements, as 

presented in Table 7. The task is to predict, based on these measurements, whether a 

patient has diabetes or not. All the patients in the dataset are females, at least 21 years 

old of Pima Indian heritage. The data has 768 instances (patients); however, many of 

them contain missing values. Like other studies that use this dataset, e.g., Karegowda 

et al. (2010), we used only the 392 instances with no missing values. In this group 130 

women were positively diagnosed with diabetes.   

We solved the OSS model for this dataset assuming unit sensor (feature) cost with 

𝛼 = 1,2 and with 𝑇 = 0, 0.01, 0.02, … ,0.32. Feasible solutions could be found for 𝑇 ≤

0.31 where 𝛼 = 1 and 𝑇 ≤ 0.19, where 𝛼 = 2. Each of the obtained configurations 

was evaluated in a 10-fold cross validation process using the k-nearest neighbors (k-

NN) classification method with 𝑘 = 1, … ,30 and three different metrics namely: 

Euclidian, Cityblock and Mahalanobis. The best 𝑘 and the best metrics, in terms of 

mean classification error (MCE) were used for each configuration.   
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In Figure 2 we plot all the 52 solutions for the various 𝛼 and 𝑇 combinations on the 

cost versus MCE plan. We obtained three points on the efficiency frontier, all with 𝑎 =

1. One with features {6,7} when 𝑇 = 0. In this case the MCE is 0.327. The second is 

with features {2,6,8} when 𝑇 = 0.07 and MCE is 0.212. The last point on the frontier 

is with sensors {2,6,7,8} when 𝑇 = 0.17, 0.18, 0.19. In this case, the MCE is 0.204. 

 

 

Figure 2: Feature's cost versus MCE for all OSS solutions of the various 𝛼 and T  

To benchmark our method, we compared our results with the results of Karegowda 

et al. (2010). They used two filter approaches: one based on C4.5 and another based on 

a genetic algorithm (GA). We used the same training and testing procedure with k-NN 

to test the features selected by these methods. We note that Karegowda et al. (2010) 

reports on similar classification results. 

  In Table 7, the solutions obtained by our method (with 𝑇 = 0.07 and 𝑇 ∈

[0.17,0.19]) are compared to the results of C4.5 and GA. Indeed, two of the three points 

on our efficiency frontier dominates the results obtained by the above-mentioned 

methods in terms of both MCE and costs (number of features). 
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Table 7: Description of PID features 

Feature 

index 

Feature name OSS 

T=.07 

 

OSS 

T=.19 

 

C4.5 GA 

1 number of pregnancies     

2 plasma glucose concentration at 2 hours X X X X 

3 diastolic blood pressure (mm Hg)   X  

4 triceps skinfold thickness (mm)     

5 2-Hour serum insulin (mu U/ml)    X 

6 BMI (weight in kg/(height in m)2) X X X X 

7 diabetes pedigree function  X X  

8 Age (years) X X X X 

MCE  0.212 0.204 0.227 0.214 

 

In practice, medical tests are related to different data collection costs. For example, 

measuring the weight of a person (easy and cheap to perform) versus measuring her 

plasma glucose level (may be more expensive and painful). Indeed, the Pima dataset 

specifies the cost of each of the eight tests. The second column of Table 8, presents the 

cost of each feature (test). The optimal set of features obtained by the OSS, in this case 

with 𝑇 = 0.02 is presented in the third column of the table and the result for C4.5 and 

GA are presented in the two right most columns. The OSS selects tests at a total cost of 

$3 while the other methods, which are oblivious to the testing cost, selects much more 

expensive tests ($21.61 and $42.39) that yield only slightly better prediction. Thus, using 

the proposed OSS approach one can observe and address a tradeoff between the 

classification performance and the cost, unlike many conventional machine learning 

methods that do not take it into account. 

 

Table 8: Solution of the weighted version 

Feature name Test 

Cost ($) 

OSS 

T=.02 

C4.5 GA 

number of pregnancies 1.00    

plasma glucose concentration at 2 

hours 

17.61  X X 

diastolic blood pressure (mm Hg) 1.00  X  

triceps skinfold thickness (mm) 1.00    

2-Hour serum insulin (mu U/ml) 22.78   X 

BMI (weight in kg/(height in m)2) 1.00 X X X 

diabetes pedigree function 1.00 X X  

Age (years) 1.00 X X X 

MCE 0.258 0.227 0.214 

Testing cost $3 $21.61 $42.39 
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6. Conclusions 

This paper introduce a problem of optimal sensor selection and propose a method for 

solving it. The objective is to minimize the total cost of a set of selected sensors while 

guaranteeing a full identification of various system states. The considered problem is a 

generalization of the minimum test collection problem (TCP) which is known to be NP-

Hard and APX-Hard. An ILP formulation is presented, and a method to reduce its 

dimension is devised based on the problem characteristics. The reduced ILP model is 

shown to obtain an exact solution for large instances of the problem, as demonstrated 

in an extensive numerical study that is reported here.  

The SSP can also be considered as a generalization, or modification of the well-

known feature selection problem. It extends the feature selection problem in the sense 

that a specific cost can be assigned to each feature (sensor). Moreover, it provides both 

a lower bound on the number of required features that can guarantee a zero-

classification error, as well as a method to evaluate the tradeoff between the model 

accuracy vs. the feature costs. The proposed OSS method was applied to various 

datasets and compared to other feature selection methods. It is shown to be superior in 

many use cases and address the above phenomena.  

 Since the optimal solution of the presented problem is a set of sensors (features) that 

can be used to identify fully the state of each instance, the OSS may result in a set of 

sensors that is too large (or too expensive). For situations in which a small probability 

of classification errors can be tolerated, an interesting direction for future research is to 

develop a model that considers more rigorously the tradeoffs between the cost of 

misclassification and the cost of the sensors. Another direction for future research is 

related to the use of the proposed method to a learning scheme, in which the algorithm 

is executed over a training set while the performance of the selected sensors is evaluated 

over a new test set. 
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