
1

 A Combinatorial Approach for Optimal Sensor Selection

Yifat Douek-Pinkovich, Irad Ben-Gal, Tal Raviv

Department of Industrial Engineering, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978,

Israel

E-mail: yifatdouek@gmail.com, bengal@tauex.tau.ac.il, talraviv@eng.tau.ac.il

Abstract

In complex systems, such as automobiles, aircraft, and even smart cities, it is possible

to install a large number of sensors that can be used to monitor their states and make

decisions regarding their operation and maintenance. However, because the sensors

bear their costs and increase the complexity of the monitoring system, it is desirable to

select the most inexpensive set of sensors that is sufficient to provide accurate and

reliable information. In this paper, we introduce the sensor selection problem and

formulate it as an integer linear program. The model is an extension of the minimum

test collection problem with respect to several constraints, such as the sensors’ cost

which is not necessarily equal. We present an effective exact solution method that uses

the special structure of the integer-programming model to reduce its dimension so it

can easily be solved. This solution method was implemented and demonstrated to be

superior in comparison to a state-of-the-art integer programming solver. Using publicly

available datasets from the UCI Machine learning repository, we demonstrate how the

Optimization-based Sensor Selection model can be used as an effective feature

selection method as well.

Keywords: Sensor selection, feature selection, integer linear programming, dimension

reduction

mailto:bengal@tauex.tau.ac.il
mailto:talraviv@eng.tau.ac.il

2

1. Introduction

Nowadays, monitoring systems are a crucial part of various systems and processes in

many domains, such as manufacturing, medicine, transportation, and agriculture.

Sensors are used to monitor the operation of complex systems (e.g., plant floors, the

human body, aircrafts and call data centers to name just few examples). Modern

monitoring systems often consist of many sensors connected to a central processing

unit that detects the current state of the whole system. A major task in the design phase

of these systems is to select a subset of sensors with a minimal cost out of a potentially

large (and expensive) set. This task is challenging to accomplish because the state of

complex systems can rarely be inferred from an output obtained from a single sensor.

Instead, the state is concluded from a combination of several outputs from different

sensors. In this paper, we introduce the sensor selection problem (SSP). The inputs for

our model consist of the following: (a) a set of potential sensors that measure the

systemand generats outputs, with each sensor having an associated installation cost; (b)

a list of all possible instances of outputs from the sensors, where each instance is

associated with a specific state of the monitored system.

We define the notion of signature as the 'partial instance' obtained from a subset of

installed sensors, e.g., the signature of the instance (0, 1, 5, 0) with respect to sensors 1

and 3 is (0, 5). When the set of installed sensors is known, the set of possible signatures

can be immediately derived from the list of possible instances.

The solution to our problem is a subset of sensors to be installed such that each

signature can be associated with a unique state. That is, the state of the system can be

determined by the set of installed sensors. This is achieved if the signatures of instances

that are related to different states have different outputs in at least a predefined number

of sensors (also known in the literature as the ‘testability condition’). This number is

referred as the minimal threshold quantity. In many applications, this threshold is set to

one. The objective is to find such a set with minimal cost.

The considered problem is a generalization of the minimum test collection problem

(TCP), which is known to be NP-Hard (Garey and Johnson,1979) and APX-Hard (De

Bontridder et al. 2003). The special case of the TCP, using our terminology, is the case

when all the sensors produce binary outputs; each instance is associated with a unique

state, the minimal threshold quantity is one, and the installation cost of all the sensors

are identical (one unit without loss of generality).

Closely related problems were studied in the artificial intelligence, data mining, and

statistical literature, i.e., in feature selection and variable selection problems, see for

example Jović et al. (2015). Feature selection method based on a mathematical

formulation can be found in Tseng and Huang (2007). They formulated the problem

and devised a heuristic method based on the rough set theory. The method was applied

on a dataset from the domain of customer relationship management (CRM). Sun et al.

(2012) introduced a feature selection method that rely on concepts from cooperative

game theory. It uses a measure based on Shapley value. However, the feasible set of

these formulations is defined heuristically to represent a set of features that is believed

3

to enable prediction in practice. In this paper, we follow and extend the TCP by

following an axiomatic approach concerning the definition of the feasible set.

The most similar optimization problem that was studied is the one presented in

Bertolazzi et al. (2016). They considered a problem where a set of a given cardinality

of features is selected so as to maximize the minimal threshold quantity. They

formulated the problem as an integer linear program (ILP) and devise a GRASP

heuristic to solve it. In their numerical experiment, they showed that their method is

effective for the case when the number of sensors (features) is large while the number

of instances is moderate.

We consider a similar problem and our unique contribution is in two aspects. First,

we cast the SSP as a weighted version of the generalized TCP where the goal is to

minimize the cost of the sensors rather than minimize their number. Second, and more

important, we devise an exact solution strategy that is specialized in solving cases

where the number of instances is large while the number of sensors is moderate.

Our exact solution method for the SSP is based on an ILP formulation of the

problem coupled with an extensive pre-processing scheme for the elimination of

redundant constraints and decision variables. After this step, the integer program can

be easily solved even for datasets with a large number of instances, such as tens of

thousands. We refer to this algorithm as IPSS.

Karwan et al. (1983) presented a review of methods for identifying and removing

redundancy in ILPs. Later, Paulraj and Sumathi (2010) compared between five methods

for identifying the redundant constraints. However, the constraints elimination

procedure presented in this study is unique and based on the particular properties of the

SSP and our formulation.

In Section 2, we present some formal notation and an ILP formulation of the

problem. In Section 3, we devise an algorithm that eliminates many of the constraints

and some of the decision variables. Then, the effectiveness of the proposed algorithm

is demonstrated using publicly-available datasets. In Section 4, we present the

applicability of the SSP and our solution method as a feature selection algorithm by

comparing it with the results of feature selection algorithms from the literature on the

datasets presented in Section 3. In section 5, we suggest an extension of our model that

can handle datasets with continues numerical data and test this extension with a real-

life dataset. Some concluding remarks are drawn in Section 6.

2. Notation and ILP Formulation

We consider a design problem where a set of sensors is selected in order to monitor a

system and identify its states. The selected set of sensors has to identify all the system

states while minimizing the sensors’ costs. A feasible solution to the considered

problem is given by a subset of sensors to be used such that the signatures of instances

that are related to different states will obtain different outputs in at least a predefined

number of sensors. This number is referred as the minimal threshold quantity. A

feasible solution is a subset of sensors, such that each of its unique signatures can be

4

associated with a single state. An optimal solution is a feasible solution that minimizes

the cost of the sensors in the subset.

Let us demonstrate the problem by the following example. Consider a system

consist of four potential sensors, each sensor, in this case, produces a binary output.

Assume that there are seven different possible instances (denoted by IDs 1-7) and two

possible states: “Positive” and “Negative”. The input of this small example is presented

in Table 1. The last row of the table, ` the cost of installing each of the potential sensors.

Table 1: All possible sensors, their cost, instances and their states

Sensors: 1 2 3 4 State

ID
s

an
d
 I

n
st

an
ce

s

1 0 0 1 1 Positive

2 0 1 0 1 Positive

3 1 1 0 1 Positive

4 1 0 1 1 Positive

5 1 0 0 1 Negative

6 0 1 1 0 Negative

7 0 0 1 0 Negative

Sensor Cost 4 3 6 5

Note that the signatures of sensors 2, 3, and 4 can be uniquely mapped to the two

states, as demonstrated in Table 2 where the resulted signatures and the IDs of the

instances from which they are originated are presented. The total cost of these three

sensors is 14, which turns out to be the optimal solution for this example. Clearly, for

any legitimate input (i.e., when each unique instance is mapped to a single state), the

set of all the candidate sensors is a feasible solution.

Table 2: The optimal solution for the example presented in Table 1

Sensors: 2 3 4 State

In
st

an
ce

 I
D

s

an
d
 s

ig
n
at

u
re

s 1,4 0 1 1 Positive

2,3 1 0 1 Positive

5 0 0 1 Negative

6 1 1 0 Negative

7 0 1 0 Negative

For a counterexample, consider installing sensors 2 and 4 only. This configuration

is not a feasible solution because the signature (0, 1) is obtained from Instances 1 and

4 (which are related to “Positive”) and from Instance 5 (which is related to “Negative”).

In order to evaluate the quality of a solution (a set of sensors) that is not feasible

with respect to the SSP we define the reliability measure. This measure allows a better

comparison of our solution with ones produced by other methods in the literature, as

5

seen Section 4. The reliability measure is defined for any set of sensors, including those

that represent infeasible solutions, as the hit ratio of the best possible mapping of

signatures to states. The measure can be calculated with respect to any particular dataset

and set of sensors by associating each signature with its most likely state, i.e., the one

that minimizes the number of instances with respect to the classification errors. The

SSP with a minimal threshold quantity of one is defined as the selection that minimizes

the cost of the sensors that are required to obtain a 100% reliability with respect to a

given dataset. On the other hand, feasible solutions can be classified by their minimal

threshold quantity.

In Table 3 we demonstrate the calculation of the reliability measure for a

configuration that consists of sensors 2 and 4 with respect to the dataset in the example

of Table 1. In Column 6 we count the number of instances associated with the signature,

and in Column 7 we count the number of correctly mapped instances. The ratio between

their totals (6/7 in this example) is the value of the reliability measure.

Table 3: The obtained signatures from sensors {2,4} and their related states

Sensors: 2 4 Positive Negative Instances Correct

In
st

an
ce

ID
s

an
d

si
g
n
at

u
re

s 1,4,5 0 1 2 1 3 2

2,3 1 1 2 0 2 2

6 1 0 0 1 1 1

7 0 0 0 1 1 1

Total 7 6

Let us now present our integer programming formulation of the SSP. For this purpose,

we use the following notation:

𝑁 Set of candidate sensors available in a given system; The number of sensors is

denoted by 𝑛 = |𝑁|.

𝑐𝑖 The cost of installing Sensor 𝑖 for all 𝑖 ∈ 𝑁.

𝑉𝑖 The set of all possible outputs that can be obtained from Sensor 𝑖. We assume

that this is a discrete set (later this assumption is relaxed).

𝑅 The set of valid instances, 𝑅 ⊆ 𝑉1 × 𝑉2 × ⋯ × 𝑉𝑛; for each instance 𝐫 ∈ 𝑅, we

refer to the output of the 𝑖𝑡ℎ sensor by 𝑟𝑖.

𝐾 The set of possible system's states 𝐾 = {1, … , 𝑘}.

𝑘𝐫 The state of the system given instance 𝐫 ∈ 𝑅.

𝛼 The minimal threshold quantity

For each sensor 𝑖 ∈ 𝑁, we define a binary decision variable 𝑥𝑖 that is equal to “1” if the

sensor is included in the configuration and is “0” otherwise. The SSP can now be

formulated as follows,

6

 min ∑ 𝑐𝑖𝑥𝑖

𝑖∈𝑁

 (1)

Subject to

 ∑ 𝑥𝑖

𝑖:𝑟𝑖≠𝑞𝑖

≥ 𝛼 ∀𝐫, 𝐪 ∈ 𝑅: 𝑘𝐫 ≠ 𝑘𝐪 (2)

𝑥𝑖 ∈ {0,1} ∀𝑖 ∈ 𝑁

The objective function (1) minimizes the total cost of sensors in the configuration. The

set of constraints (2) ensure that, for every two instances that are related to different

states, at least 𝛼 sensors with a different output are included in the configuration.

3. Solution method

In this section, we present two solution methods for the SSP. In Section 3.1, we

introduce an exact solution method and in Section 3.2, we present a simple greedy

heuristic that delivers a feasible solution in very short time. In Section 4, we compare

the preferences of these methods.

3.1 Integer-programming based sensor selection (IPSS)

We first note that the column dimension of ILP (1)-(2), i.e., the number of decision

variables is equal to the number of candidate sensors, and the number of constraints is

quadratic in the number of instances [𝑂(|𝑅|2)]. In a typical application, we expect

thousands of instances, which imply millions of constraints, whereas the number of

candidate sensors is typically much smaller.

To solve large instances of the model in a reasonable time, our algorithm searches

and detects redundant constraints and exploits the structure of the problem to fix the

values of some decision variables. In this section, we show that this scheme leads to

models that can be solved almost instantly by an ILP solver. Moreover, in some cases,

the entire set of decision variables is fixed, and the ILP is solved to optimality at this

preprocessing step.

The basic idea of our algorithm is as follows: recall that, for each pair of instances

𝐫, 𝐪 that are associated with different states, there is a constraint in the model. Let us

define the set of sensors 𝑆𝐫𝐪 = {𝑖 ∶ 𝑟𝑖 ≠ 𝑞
𝑖
}. Using this notation, constraints (2) can be

rewritten as (2').

Let us denote the collection of sets that defines (2') by ℂ = {𝑆𝐫𝐪: 𝑘𝐫 ≠ 𝑘𝐪} and note

the following:

 ∑ 𝑥𝑖

𝑖∈𝑆𝐫𝐪

≥ 𝛼 ∀𝐫, 𝐪 ∈ 𝑅: 𝑘𝐫 ≠ 𝑘𝐪

(2')

7

Proposition 1: Let 𝑆, 𝑆′ ∈ ℂ such that 𝑆 ⊂ 𝑆′. Any solution 𝐱 that satisfies (2') for 𝑆

also satisfies it for 𝑆′.

Proof: Immediately from the fact that if 𝑆 ⊂ 𝑆′ and 𝑥𝑖 ≥ 0, then ∑ 𝑥𝑖𝑖∈𝑆 ≤ ∑ 𝑥𝑖𝑖∈𝑆′ .

Using the observation of Proposition 1, many constraints can be detected as

redundant and eliminated. Moreover, the existence of 𝑆 ∈ ℂ such that, |𝑆| = 𝛼, implies

that 𝑥𝑖=1 for all 𝑖 ∈ 𝑆. Similarly, if a variable does not appear in any of the remaining

constraints its value must be zero in an optimal solution; thus, the (positive) cost of the

associated sensor is not paid.

We demonstrate the above idea using the small example of Table 1 with 𝛼 = 1, as

shown in Table 4 below. In the first column of the table, we present a serial number of

the obtained constraint instance. In Columns 2 and 3, we present a pair of instances

from Table 1 that are related to different states. For example, column 2 and 3 of the first

constraint represent respectively instance 1 and instance 5 in Table 1 that are associated

to different states (Positive and Negative, respectively). In Column 4, we show the

resulted 𝑆𝐫𝐪 for this pair. Thus, for the first constraint both sensors 1 and 3 have different

outputs and therefore included in the set 𝑆𝐫𝐪. The respective constraint (2') is shown in

the rightmost column.

From Constraint Instances 3, 7, and 10, one can see that sensors 2, 3, and 4 must be

included in any feasible solution. Thus, one can fix 𝑥2 = 𝑥3 = 𝑥4 = 1 and all the other

constraints can be eliminated based on the observation of Proposition 1, implying that

𝐱 = (0,1,1,1) is an optimal solution in this case. In other cases, we could end this

process with some remaining constraints and non-fixed variable and find the optimal

solution using an ILP solver applied for the reduced model.

Table 4: An explicit example of ILP (1)-(2) [for 𝛼 = 1]

Constraint

𝐫 𝐪 𝑆𝐫𝐪 Constraint

1 (0,0,1,1) (1,0,0,1) {1,3} 𝑥1 + 𝑥3 ≥ 1

2 (0,0,1,1) (0,1,1,0) {2,4} 𝑥2 + 𝑥4 ≥ 1

3 (0,0,1,1) (0,0,1,0) {4} 𝑥4 ≥ 1

4 (0,1,0,1) (1,0,0,1) {1,2} 𝑥1 + 𝑥2 ≥ 1

5 (0,1,0,1) (0,1,1,0) {3,4} 𝑥3 + 𝑥4 ≥ 1

6 (0,1,0,1) (0,0,1,0) {2,3,4} 𝑥2 + 𝑥3 + 𝑥4 ≥ 1

7 (1,1,0,1) (1,0,0,1) {2} 𝑥2 ≥ 1

8 (1,1,0,1) (0,1,1,0) {1,3,4} 𝑥1 + 𝑥3 + 𝑥4 ≥ 1

9 (1,1,0,1) (0,0,1,0) {1,2,3,4} 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 1

10 (1,0,1,1) (1,0,0,1) {3} 𝑥3 ≥ 1

11 (1,0,1,1) (0,1,1,0) {1,2,4} 𝑥1 + 𝑥2 + 𝑥4 ≥ 1

12 (1,0,1,1) (0,0,1,0) {1,4} 𝑥1 + 𝑥4 ≥ 1

8

In the case of 𝛼 > 1, any constraint with 𝛼 variables in the left-hand side implies

fixing the values of these variable to one. A constraint with less than 𝛼 variables

immediately implies infeasibility. Indeed, for the dataset in the above example,

Constraints 3, 7, and 10 implies that the problem is infeasible for any 𝛼 ≥ 2.

The algorithm presented as pseudocode in Figure 1 detects all the redundant

constraint instances and fixes the required decision variables by scanning all the pairs

of instances that are related to different states. For each such pair of instances, the set

of sensors with different outputs (𝑆) is constructed. The set is added to the collection ℂ

only if it does not contain a previously added set. In addition, if the set is contained in

previously added sets, then these sets are removed from ℂ. From a computational effort

point of view, the dominating parts of the algorithm are the inclusion tests, both 𝑆′ ⊆ 𝑆

and 𝑆 ⊂ 𝑆′. It is possible to spare many of these tests by partitioning ℂ into subsets of

equal cardinality and then test the inclusion of a set only versus sets with cardinality

that is not smaller.

The algorithm can be parallelized in a relatively simple manner by dividing the work

done in the inner loop among several processors. Indeed, when checking the inclusion

of a particular set 𝑆 versus each of the members of the large collection ℂ, each inclusion

test can be done independently. Since the inclusion tests are responsible for almost all

of the computational effort, such an approach can reduce the running time by a factor

that is close to the number of processors. However, the implementation of the algorithm

used for the numerical experiment reported below is based on the simpler serial

approach.

Input: A set of instances 𝑅, where each instance is mapped to a state.

Let ℂ = ∅ // start with an empty collection of constraints

For all two elements subsets {𝑟, 𝑞} ⊂ 𝑅

If 𝑘𝐫 ≠ 𝑘𝐪 then

𝑆 = {𝑖 ∈ 𝑁: 𝑟𝑖 ≠ 𝑞𝑖}

If there is no 𝑆′ ∈ ℂ s.t 𝑆′ ⊆ 𝑆

Delete all 𝑆′ ∈ ℂ such that 𝑆 ⊂ 𝑆′

 Add S to ℂ

Return ℂ

Figure 1: Pseudocode of the constraint dimension reduction algorithm

The dimension reduction algorithm was implemented in Python 2.7 as a single thread

application, and the ILP model was solved by IBM Cplex 12.6.3 that can employ all

the cores of the CPU. Our testing environment is an eight-core Intel i7-4790 3.60 GHz

CPU, 32 GB of RAM running under Windows 7, 64 bit.

The effectiveness of the dimension reduction algorithm was tested on nine datasets

from the UCI Machine Learning Repository (Lichman 2013). A summary of the

datasets is presented in Table 5. Each of the datasets was solved both by using the

dimension reduction technique followed by solving the remaining model using Cplex

and by solving the original (unreduced) model directly with Cplex. The results

presented here are for 𝛼 = 1. In Table 5, the model running time of CPLEX (in seconds)

9

of the IPSS for each dataset, with and without our reduction method, is given. In

addition, the number of constraints in the full model and the number of remaining

constraints after the reduction is shown in the table. The merits of the proposed method

is clear. In particular, for large datasets (e.g., letter recognition and Connect-4), Cplex

could not solve the problem due to an out-of-memory error, while the reduced models

were solved very quickly. In some of the smaller instances all the constraint were

eliminated and all the decision variables were fixed by the IPSS algorithm. The running

time of the reduction process grows sharply with the dimensions of the problem but it

does not use an excessive amount of memory and can be applied for large instances.

Recall that the serial python implementation is benchmarked against a state-of-the-art

solver that exploits all the cores of the CPU.

Table 5: Reduction approach with respect to state-of-the-art ILP solver

 Datasets summary Full model Reduction algorithm

Dataset Features Instances States Obtained

constraints

Solution

Time

(Sec)

Remaining

Constraints

Reduction

time

Solution

Time

(Sec)

Monk 1 6 432 2 46,656 0.74 0 0.19 0

Monk 2 6 432 2 41,180 0.48 0 0.17 0

Monk 3 6 432 2 46,512 0.45 0 0.144 0

Zoo 16 101 7 3,873 0.125 12 0.065 0.037

Tic-tac-toe 9 958 2 207,832 2.72 36 1.136 0.034

Chess 36 3,196 2 2,548,563 118.6 2 21.28 0.035

Mushrooms 22 8,124 2 16,478,528 415.67 39 149.21 0.041

Letter

recognition

16 20,000 26 192,300,979 Out of

memory

62 1,177 0.505

Connect-4 42 67,557 3 1,133,893,847 Out of

memory

697 15,789 0.172

3.2 Greedy sensor selection heuristic

The greedy sensor selection (GSS) algorithm starts with a feasible solution that consists

of all the sensors. At each iteration, one sensor is considered for removal by checking

the feasibility of a solution consisting of the remaining sensors without it. The sensors

are scanned in decreasing order of the ratio between their costs and the reliability

measure of a configuration that consists of the tested sensor only. We refer to this ratio

as the cost ratio. This procedure can yield a feasible solution for the problem in a short

time.

We demonstrate this simple idea using the dataset presented in Table 1 assuming

𝑎 = 1. The cost ratio of sensors 1, 2, 3, and 4 are 7, 5.25, 10.5, and 5.83, respectively.

Thus, the first sensor to be considered for removal is 3. However, because the remaining

set of sensors {1,2,4} is not a feasible solution, Sensor 3 is not removed. The next sensor

to be considered is 1. The set of the remaining sensors is {2, 3, 4}, which is a feasible

solution. Thus, Sensor 1 is removed. Next, sensors 4 and then 2 are considered;

however, both cannot be removed. Thus, the obtained solution is the set of sensors

{2,3,4} which is, in this case, happens to be an optimal solution. Note that the GSS can

be used to solve the problem with 𝛼 > 1. Sensors are removed from the configuration

as long as Constraint (2) is satisfied.

10

The running time of the GSS is negligible and it guaranteed to return a feasible

solution. However, this solution can be suboptimal as we demonstrate the next section.

4. Application in feature selection and numerical experiment

In this section we compare the proposed sensor selection problem to the known feature

selection problem. The comparison is based on a rough analogy by which each sensor

output can be considered as a feature value and each system state can be consider as a

system class value. Note however that despite the considered analogy the two problems

are inherently different, since the sensor selection problem is a deterministic

optimization problem that guarantees a 100% identification reliability over a given set,

while the feature selection problem is a probabilistic procedure that aims towards a high

reliability (often lower than 100%) over a test set that is not given in the training stage.

Despite these significant differences, we believe that the following comparison study

is both interesting and has an educational value.

Feature selection methods are well studied in data mining, machine learning, and

statistical pattern recognition literature. Feature selection is often used to remove

irrelevant, redundant, and noisy data. Effective feature selection results in speeding up

data analysis algorithms and improving their predictive accuracy (Balamurugan and

Rajaram, 2009).

Feature selection methods are categorized into three basic approaches: filter,

wrapper and embedded. In the filter approach, various subsets of features are explored

to find a small subset that allows accurate classification, without directly applying any

classification algorithm to test it. Wrapper methods, however, are search algorithms

that apply classification algorithm iteratively to find a small subset of features that

allows good classification performances. Embedded methods can be addressed as a

special class of wrapper based methods, in which the feature selection technique is

suited to only a particular classifier. The proposed Optimization-based Sensor Selection

(OSS) model can be viewed as an embedded feature selection method because the result

is a set of sensors (i.e., the equivalent of features), with the signature of each sensor

mapped to a state (i.e., an equivalent of class). However, if the set of instances does not

represent all the possible values, which is the typical situation in learning scenarios, one

can view the OSS as a filter method. Indeed, for new, yet unseen, signatures, it is

possible to apply many known classification methods (e.g., KNN, SVM, and Decisions

trees). Note that, in the considered setting, the classification accuracy for the training

set is always 100% (i.e., deterministic classification), unlike a typical classification over

a training set. Evaluating the classification accuracy using a test-set is not considered

and is beyond the scope of this study.

In this section, we examine the applicability of our sensor selection model to the

feature selection domain. To this end we apply the proposed model to the benchmark

datasets given in Table 5, aiming to identify a subset of features that allow a distinction

between the classes of the observation deterministically over all the data. We compare

the selected features to other sets of features selected by state-of-the-art feature

11

selection methods taken from the literature. Finally, we calculate the reliability of these

selected sets of features.

Before we proceed to the comparison study, let us note that there is an essential

difference between the proposed sensor selection problem and the feature selection

problem. The former is a well-defined optimization method where the objective

function represents the actual problem at hand. In contrast, in feature selection methods

the goal is to select a set of features that are likely, in some heuristic sense, to allow

successful classification of future instances. Moreover, in the considered problem the

more generic goal is to minimize the total cost of the sensors rather than their number

which can be represented by a specific case in which the sensor's cost is fixed and

identical. Accordingly, for the sake of a fair comparison, we set the cost of all the

features to one. In Section 5, however, we present a real-world case study in which a

different cost is associated with each sensor/feature.

Table 6 presents the number of sensors selected by the proposed method vis-à-vis

state-of-the-art methods from the literature for various datasets. The first column

presents the name of the dataset, the second column presents the total number of

features. The third column presents the references and summarizes the result from the

literature, including the number of selected features and their reliability. The fourth and

fifth columns present the number of features selected by the exact IPSS algorithm and

by the GSS heuristic, respectively. Note again that both methods yield a set that

guarantees a 100% reliability level, unlike a typical classification problem.

For the Mushrooms dataset, four features (namely, odor, spore-print-color,

population, and habitat) out of the 22 are found by the OSS model as mandatory

features. This solution implies that the toxicity of any of the 8124 mushrooms can be

accurately (at a reliability level of 100%) determined based solely on these four features

and it cannot be accomplished with any smaller subset of features. Just for comparison

purpose, many studies used the Mushrooms dataset as a benchmark. For example,

Kohavi and Frasca (1994) found five sensors using a search of useful features subset

based on rough set theory. Liu and Setiono (1996) used a probabilistic approach that

yields also four features that although different could guarantee a reliability level of

100% that is necessary in such a case, where a mistake can cause a severe health

damage.

For the zoo dataset, five sensors out of 16 were found by the OSS model, while for

comparison purpose, the method of Balamurugan and Rajaram (2009) selected 13

Features. Wang et al. (2007) used a technique based on the rough sets and particle

swarm optimization. Their methods resulted in five features. In a personal

correspondence, the authors informed us that these features are 3, 4, 6, 8, and 13. The

reliability was calculated based on this information.

Another example of the effectiveness of the proposed algorithm can be seen in the

letter recognition dataset. Our proposed algorithm selected 11 sensors out of 16. In other

words, it indicates that one can use 11 features to fully determine the actual letter

represented by each of the 20,000 instances (samples) in the set. The implication of this

finding for those who wish to identify handwritten letters is that it is sufficient to store

less than 211 signatures and compare them to the signature of each new input rather

12

than all the instances in the dataset. Devi (2015) proposed a feature selection algorithm

based on simulated annealing that can dichotomically distinguish between each letter

versus all the others. The reported features for each letter ranges from 9 to 15, where at

least 15 features are necessary to distinguish between all classes. Oh et al. (2004)

claimed that they could achieve “good” classification performances for this dataset with

10 or 13 features using a hybrid genetic algorithm. Both papers did not provide the

identity of their selected feature and therefore we could not evaluate their reliability.

Following this line of examples, we also tested the OSS on the three Monk's

problem datasets. Each problem is given by a logical description of a class, and the

learning task is to derive a simple class description (see Thrun et al., 1991). The OSS

model selected three, six, and three features for Monk's problems 1, 2, and 3,

respectively. Kohavi and Frasca (1994) reported on the same of features for the first

and the second problem but suggest two features for the third problem. Once again, the

OSS solution is different in the sense that it ensures perfect classification for the training

set.

Despite the relatively good results reported above, the proposed OSS cannot always

eliminate a large number of features that enable detecting the class deterministically.

Because other feature selection methods do not aim at guaranteeing 100% accuracy on

the training set, in some cases, they result in smaller number of features. For example,

for the connect-4 dataset, the proposed OSS method reduced the number of features

from 42 features to 34, whereas Balamurugan and Rajaram (2009) reduced it to 13;

unfortunately, since the authors did not provide the selected features, the exact

reliability level could not be calculated, yet obviously is lower than 100%. A

comparable situation occurs on the Chess dataset. The OSS model proved that at least

29 features are required for complete classification, whereas Hall (1999) found three

features using his correlation-based feature selection search strategy with reliability of

55.39%, and Kohavi and Frasca (1994) found ten features with reliability of 97.78%.

Another example is the tic-tac-toe dataset, where the OSS reduced only one feature,

whereas Kohavi and Frasca (1994) reduced two features, yet again with a cost of some

probability of having classification errors.

13

Table 6: Comparison of the number of selected features and reliability according to IPSS,

GSS, and feature selection methods from the literature

Dataset
No. of

features

Literature: number of selected features

(reliability∗)
IPSS GSS

Monk 1 6 Kohavi and Frasca (1994): 3 (100) 3 (100) 3 (100)

Monk 2 6 Kohavi and Frasca (1994):6 (100) 6 (100) 6 (100)

Monk 3 6 Kohavi and Frasca (1994): 2 (97.23) 3 (100) 3 (100)

Zoo 16
Balamurugan & Rajaram (2009): 13 (N/A)

Wang et al. (2006): 5 (100)
5 (100) 5 (100)

Tic-tac-toe 9 Kohavi and Frasca (1994): 7 (99.58) 8 (100) 8 (100)

Chess 36
Hall (1999): 3 (55.39)

Kohavi and Frasca (1994): 10 (97.78)
29 (100) 29 (100)

Mushrooms 22
Liu and Setiono (1996): 4 (100)

Kohavi and Frasca (1994): 5 (100)
4 (100) 5 (100)

Letter

recognition
16

Devi (2015): 15 (N/A)

Oh et al. (2004): 10, 13 (N/A)
11 (100) 12 (100)

Connect-4 42 Balamurugan & Rajaram (2009): 13 (N/A) 34 (100) 41 (100)

*full classification is NOT guaranteed!

 Note that the GSS heuristic provides an optimal solution for the smaller datasets

but, as expected, fails in some of the larger ones, thus motivating the use of the

computationally heavy IPSS algorithm.

In conclusion, one can see that the proposed OSS model can be practically used as

a feature selection method based on a conservative approach. That is, the method

always selects an exactly minimal number of features that are required for a complete

classification of the instances in the training set, whereas other methods either result in

a larger number of features or in a set that cannot guarantee perfect classification over

many of the UCI training datasets.

5. Extension to continuous outputs

Until now, we based our sensor selection model on the assumption that the outputs

produced by the sensors are discrete values (categorical). In this section, we extend the

model to capture cases, where some of the outputs are continuous values (e.g., such as

temperature and pressure). Recall that, for the discrete case, we assumed that the

training set contains all the possible instances. This assumption is not feasible in the

context of continuous outputs. Note that, if the accuracy of the output values is high, it

is very likely that a single sensor will be enough to distinguish among all the categories

in the training set, but has very little power with respect to instances that are not

included in the dataset. To overcome this difficulty, we aim at considering two

continuous output values as different, only if the difference between them is significant

enough. For example, if a sensor collects a body temperature, a difference of one degree

14

may be considered significant; however, a difference of 0.01 degrees is probably not

indicative for changing the diagnosis of medical conditions.

One alternative approach is to discretize or categorize such numerical values; note

however, that the categorization process itself may result in a loss of relevant

information. To overcome this problem, we incorporate the categorization process into

the optimization model. All the numerical values in our dataset are normalized and

expressed in terms of standard deviation scores around their means. Both the mean and

the standard deviation are estimated from the dataset. Two outputs of a sensor (or values

of a feature) are considered different if the difference between them, in terms of

standard deviations, exceed some predefined threshold parameter, denoted by 𝑇.

Accordingly, to reflect this modification, we revise constraint (2) as follows:

∑ 𝑥𝑖

𝑖∈𝑁:|𝑟𝑖
′−𝑞𝑖

′|>𝑇

+ ∑ 𝑥𝑖

𝑖∈𝐶:𝑟𝑖≠𝑞𝑖

≥ 𝛼 ∀𝐫, 𝐪 ∈ 𝑅: 𝑘𝐫 ≠ 𝑘𝐪
(2'')

Where 𝑁 and 𝐶 are the sets of continuous and categorical sensors (or features),

respectively. 𝑟𝑖
′ and 𝑞𝑖

′ denotes the normalized values of the output of sensor 𝑖 of

instances 𝐫 and 𝐪, respectively. The set of constraints (2'') ensures that, for every two

instances that are related to different states, the outputs of at least 𝛼 sensors are

significantly different. The values of 𝑇 and 𝛼 determine the sensitivity of the model.

Higher values typically result in costlier solutions but may allow better classification.

The value of 𝑇 and 𝛼 parameters can be fine-tuned by solving the problem for various

combinations of these parameters. The accuracy obtained with the selected features of

each combination can then be evaluated. Using this process, we create an efficiency

frontier of the total cost versus the model accuracy.

To examine the applicability of the sensor selection model on continuous sensors,

we tested the Pima Indians Diabetes (PID) dataset that is also acquired from the UCI

machine learning repository. Diabetes is a disease in which the body is unable to

properly use and store glucose. Poorly managed diabetes can lead to a host of long-term

complications, including heart attacks, strokes, blindness, and kidney failure. The PID

dataset consists of eight continuous features, i.e., diagnostic measurements, as

presented in Table 7. The task is to predict, based on these measurements, whether a

patient has diabetes or not. All the patients in the dataset are females, at least 21 years

old of Pima Indian heritage. The data has 768 instances (patients); however, many of

them contain missing values. Like other studies that use this dataset, e.g., Karegowda

et al. (2010), we used only the 392 instances with no missing values. In this group 130

women were positively diagnosed with diabetes.

We solved the OSS model for this dataset assuming unit sensor (feature) cost with

𝛼 = 1,2 and with 𝑇 = 0, 0.01, 0.02, … ,0.32. Feasible solutions could be found for 𝑇 ≤

0.31 where 𝛼 = 1 and 𝑇 ≤ 0.19, where 𝛼 = 2. Each of the obtained configurations

was evaluated in a 10-fold cross validation process using the k-nearest neighbors (k-

NN) classification method with 𝑘 = 1, … ,30 and three different metrics namely:

Euclidian, Cityblock and Mahalanobis. The best 𝑘 and the best metrics, in terms of

mean classification error (MCE) were used for each configuration.

15

In Figure 2 we plot all the 52 solutions for the various 𝛼 and 𝑇 combinations on the

cost versus MCE plan. We obtained three points on the efficiency frontier, all with 𝑎 =

1. One with features {6,7} when 𝑇 = 0. In this case the MCE is 0.327. The second is

with features {2,6,8} when 𝑇 = 0.07 and MCE is 0.212. The last point on the frontier

is with sensors {2,6,7,8} when 𝑇 = 0.17, 0.18, 0.19. In this case, the MCE is 0.204.

Figure 2: Feature's cost versus MCE for all OSS solutions of the various 𝛼 and T

To benchmark our method, we compared our results with the results of Karegowda

et al. (2010). They used two filter approaches: one based on C4.5 and another based on

a genetic algorithm (GA). We used the same training and testing procedure with k-NN

to test the features selected by these methods. We note that Karegowda et al. (2010)

reports on similar classification results.

 In Table 7, the solutions obtained by our method (with 𝑇 = 0.07 and 𝑇 ∈

[0.17,0.19]) are compared to the results of C4.5 and GA. Indeed, two of the three points

on our efficiency frontier dominates the results obtained by the above-mentioned

methods in terms of both MCE and costs (number of features).

16

Table 7: Description of PID features

Feature

index

Feature name OSS

T=.07

OSS

T=.19

C4.5 GA

1 number of pregnancies

2 plasma glucose concentration at 2 hours X X X X

3 diastolic blood pressure (mm Hg) X

4 triceps skinfold thickness (mm)

5 2-Hour serum insulin (mu U/ml) X

6 BMI (weight in kg/(height in m)2) X X X X

7 diabetes pedigree function X X

8 Age (years) X X X X

MCE 0.212 0.204 0.227 0.214

In practice, medical tests are related to different data collection costs. For example,

measuring the weight of a person (easy and cheap to perform) versus measuring her

plasma glucose level (may be more expensive and painful). Indeed, the Pima dataset

specifies the cost of each of the eight tests. The second column of Table 8, presents the

cost of each feature (test). The optimal set of features obtained by the OSS, in this case

with 𝑇 = 0.02 is presented in the third column of the table and the result for C4.5 and

GA are presented in the two right most columns. The OSS selects tests at a total cost of

$3 while the other methods, which are oblivious to the testing cost, selects much more

expensive tests ($21.61 and $42.39) that yield only slightly better prediction. Thus, using

the proposed OSS approach one can observe and address a tradeoff between the

classification performance and the cost, unlike many conventional machine learning

methods that do not take it into account.

Table 8: Solution of the weighted version

Feature name Test

Cost ($)

OSS

T=.02

C4.5 GA

number of pregnancies 1.00

plasma glucose concentration at 2

hours

17.61 X X

diastolic blood pressure (mm Hg) 1.00 X

triceps skinfold thickness (mm) 1.00

2-Hour serum insulin (mu U/ml) 22.78 X

BMI (weight in kg/(height in m)2) 1.00 X X X

diabetes pedigree function 1.00 X X

Age (years) 1.00 X X X

MCE 0.258 0.227 0.214

Testing cost $3 $21.61 $42.39

17

6. Conclusions

This paper introduce a problem of optimal sensor selection and propose a method for

solving it. The objective is to minimize the total cost of a set of selected sensors while

guaranteeing a full identification of various system states. The considered problem is a

generalization of the minimum test collection problem (TCP) which is known to be NP-

Hard and APX-Hard. An ILP formulation is presented, and a method to reduce its

dimension is devised based on the problem characteristics. The reduced ILP model is

shown to obtain an exact solution for large instances of the problem, as demonstrated

in an extensive numerical study that is reported here.

The SSP can also be considered as a generalization, or modification of the well-

known feature selection problem. It extends the feature selection problem in the sense

that a specific cost can be assigned to each feature (sensor). Moreover, it provides both

a lower bound on the number of required features that can guarantee a zero-

classification error, as well as a method to evaluate the tradeoff between the model

accuracy vs. the feature costs. The proposed OSS method was applied to various

datasets and compared to other feature selection methods. It is shown to be superior in

many use cases and address the above phenomena.

 Since the optimal solution of the presented problem is a set of sensors (features) that

can be used to identify fully the state of each instance, the OSS may result in a set of

sensors that is too large (or too expensive). For situations in which a small probability

of classification errors can be tolerated, an interesting direction for future research is to

develop a model that considers more rigorously the tradeoffs between the cost of

misclassification and the cost of the sensors. Another direction for future research is

related to the use of the proposed method to a learning scheme, in which the algorithm

is executed over a training set while the performance of the selected sensors is evaluated

over a new test set.

Acknowledgment

This work is partially supported by Shlomo Shmeltzer Institute for Smart

Transportation grant.

References

Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., &

Protasi, M. (2012). Complexity and approximation: Combinatorial optimization

problems and their approximability properties. Springer Science & Business Media.

Balamurugan, S. A. A., & Rajaram, R. (2009) Effective and efficient feature

selection for large-scale data using Bayes’ theorem. International Journal of

Automation and Computing 6(1), 62-71.

18

Bertolazzi, P., Felici, G., Festa, P., Fiscon, G., & Weitschek, E. (2016). Integer

programming models for feature selection: New extensions and a randomized solution

algorithm. European Journal of Operational Research, 250(2), 389-399.

De Bontridder, K. M., Halldórsson, B. V., Halldórsson, M. M., Hurkens, C. A.,

Lenstra, J. K., Ravi, R., & Stougie, L. (2003). Approximation algorithms for the test

cover problem. Mathematical Programming, 98(1-3), 477-491.

Devi, V. S. (2015, December). Class Specific Feature Selection Using Simulated

Annealing. In International Conference on Mining Intelligence and Knowledge

Exploration (pp. 12-21). Springer, Cham.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness.

Hall, M. A. (1999). Correlation-based feature selection for machine learning. PhD

Thesis. The University of Waikato, New Zealand.

Jović, A., Brkić, K., & Bogunović, N. (2015, May). A review of feature selection

methods with applications. In Information and Communication Technology,

Electronics and Microelectronics (MIPRO), 2015 38th International Convention on

(pp. 1200–1205). IEEE.

Karegowda, A. G., Manjunath A. S., & Jayaram M. A. (2010). Comparative study

of attribute selection using gain ratio and correlation based feature selection.

International Journal of Information Technology and Knowledge Management, 2(2),

271-277.

Karwan, M. H., Lofti, V., Telgen, J., & Zionts, S. (1983). Redundancy in

Mathematical Programming: a State-of-the-Art Survey, volume 206 of Lecture Notes

in Economics and Mathematical Systems.

Kohavi, R., & Frasca, B. (1994, November). Useful feature subsets and rough set

reducts. In Third International Workshop on Rough Sets and Soft Computing (pp. 310-

317).

Lichman, M. (2013). UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of

Information and Computer Science.

Liu, H., & Setiono, R. (1996, July). A Probabilistic approach to feature selection- a

filter solution. In ICML (Vol. 96, pp. 319-327).

Oh, I. S., Lee, J. S., & Moon, B. R. (2004). Hybrid genetic algorithms for feature

selection. IEEE Transactions on pattern analysis and machine intelligence, 26(11),

1424-1437.

19

Paulraj, S., & Sumathi, P. (2010). A comparative study of redundant constraints

identification methods in linear programming problems. Mathematical Problems in

Engineering, 2010.

Sun, X., Liu, Y., Li, J., Zhu, J., Liu, X., & Chen, H. (2012). Using cooperative game

theory to optimize the feature selection problem. Neurocomputing, 97, 86-93.

Thrun, S., Bala, J. Bloedorn, E., Bratko, I., Cestnik, B., Cheng, J., De Jong, K.,

Dzeroski, S., Fahlman, S., Fisher, D., Hamann, R., Kaufman, K., Keller, S.,

Kononenko, I., Kreuziger, J., Michalski, R., Mitchell, T., Pachowicz, P., Reich, Y.,

Vafaie, H., Van de Welde, W., Wenzel, W., Wnek, J., & Zhang, J. (1991). The MONK's

problem: A performance comparison of different learning algorithms. (Technical

Report CMU-CS-91-197). Pittsburgh, PA: Carnegie Mellon.

Tseng, T. L. B., & Huang, C. C. (2007). Rough set-based approach to feature

selection in customer relationship management. Omega, 35(4), 365-383.

Wang, X., Yang, J., Teng, X., Xia, W., & Jensen, R. (2007). Feature selection based

on rough sets and particle swarm optimization. Pattern recognition letters, 28(4), 459-

471.

