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Abstract:  

In bike sharing systems, at any given moment, a certain share of the bicycle fleet is unusable. 

This phenomenon may highly affect the quality of service provided to the users. However, this 

matter has not received so far any attention in the literature. In this study, the users’ quality of 

service is modeled by their satisfaction from the system. We measure user dissatisfaction by a 

weighted sum of the expected shortages of bicycles and lockers in a single station. The 

shortages are evaluated as a function of the initial inventory of usable and unusable bicycles in 

the station. We analyze the convexity of the resulting bivariate function and propose an 

accurate method for fitting a convex polyhedral function to it. The fitted polyhedral function 

can later be used in linear optimization models for operational and strategic decision making 

in bike sharing systems. Our numerical results demonstrate the high effect of the presence of 

unusable bicycles on user dissatisfaction. This emphasizes the need for having accurate real-

time information regarding bicycle usability.       
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1. Introduction 

Bike-sharing systems are nowadays operating in more than 700 cities around the world. One essential 

key to the sustainability of a bike sharing system is efficient planning of maintenance operations. 

Along with the fast implementation of bike sharing systems, they are receiving a growing attention in 

the operations management and operations research literature. However, maintenance aspects have 

not been studied yet. 

Previous studies dealt with a range of topics varying from aspects regarding the design of the 

system to operational issues. The design of the system includes determining the location of the 

stations, the capacity (number of lockers, also known as docking points) of each station and the fleet 
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size, see for example Lin and Yang (2011), Lin et al. (2013), George and Xia (2011), and Shu et al. 

(2013).  

The difficulty in operating bike-sharing systems arises from the need to constantly satisfy the 

demand for bicycles and for lockers. The demand processes are typically asymmetric and time 

heterogeneous. Due to this nature, shortages of bicycles or lockers might occur in some stations along 

the day. In order to provide good service to the users, the operators strive to reduce the occurrences of 

shortages. The most studied topic so far in the bike-sharing literature concerns the rebalancing of 

bicycle inventory levels in the stations. This topic can be divided into two related operational planning 

decisions. The first is concerned with determining the target inventory level in each station at the 

beginning of the day, see Raviv and Kolka (2013), Schuijbroek et al. (2013) and Vogel et al. (2014). 

The second is concerned with planning the routing of repositioning trucks between the stations and 

the loading/unloading operations. This can be done either during the night when the system is nearly 

idle and the traffic is low, with the goal of preparing the system for the next working day (static 

repositioning), or during the day when it is possible to react to unexpected events (dynamic 

repositioning). For studies on static repositioning see, for example, Nair and Miller-Hooks (2011), 

Benchimol et al. (2011), Angeloudis et al. (2012), Chemla et al. (2013a), Raviv et al. (2013), Erdoğan 

et al. (2014) and Forma et al. (2015). Few studies focus on dynamic repositioning, see Contardo et al. 

(2012), Kloimüllner et al. (2014) and Pessach et al. (2014).    

Another approach is to ease the imbalance problem by implementing system regulations or 

policies. Fricker and Gast (2014) propose a best-of-two regulation under which a user who returns a 

vehicle is directed to the least congested station among two preferred ones. Kaspi et al. (2014, 2015c) 

suggest implementing parking reservation policies as means of reducing users’ dissatisfaction and 

uncertainty by redirecting them to less congested stations. Chemla et al. (2013b) and Pfrommer et al. 

(2014) study pricing mechanisms. 

An underlying assumption in all of the above studies is that all the bicycles in the system are at a 

usable state at all times. In practice, however, every day a certain amount of bicycles become 

unusable and require repair. These bicycles block some of the system resources, i.e., the lockers. 

Therefore, it is highly important to monitor and report the usability level of bicycles. The percentage 
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of bicycles that become unusable every day is certainly not negligible and therefore this phenomenon 

should be taken into consideration in the planning of daily operational activities. See, for example, the 

monthly operating reports published by NYC Bikeshare, the operator of the bike-sharing system in 

New-York, Citibike: https://www.citibikenyc.com/system-data/operating-reports. 

Unusable bicycles have several implications: (a) until they are removed by repositioning workers 

or are fixed at the stations, they block lockers and therefore reduce the number of usable lockers in the 

stations. (b) In some cases the unusable bicycles must be removed from the stations and moved to the 

workshop. These bicycles require repositioning resources that otherwise could be used for rebalancing 

the system. This should be taken into account when planning repositioning operations. (c) Incomplete 

or inaccurate information regarding the usability of bicycles may result with inferior decision making 

of both the operators and the users.  

Detection of unusable bicycles (addressing (c)) and integration of the collection of these bicycles 

with repositioning activities (addressing (b)) are at the focus of two other studies we carried out in 

parallel. In Kaspi et al. (2015b) we develop a probabilistic model for the detection of unusable 

bicycles, which can be incorporated in the on-line information system. In Kaspi et al. (2015a) we 

propose an optimization model that integrates the collection of unusable bicycles with the 

repositioning activities, as well as a dynamic programming model that allows updating decisions at 

each station on the route, as the actual number of unusable bicycles is revealed.  

The study described in the current paper examines the effect of unusable bicycles on the service 

level provided in a single station (addressing the implications of (a)). Obviously, the effect of the 

presence of unusable bicycles may differ between stations, depending on their capacities and the 

demand processes for bicycles and lockers. A better understanding of this effect will assist in better 

planning their collection. Clearly, in order to maximize the service level, all unusable bicycles should 

be removed from the stations or be repaired as soon as possible. However, since the transportation and 

maintenance resources of the operator are limited, a method to estimate the expected effect of the 

unusable bicycles at each station can help in prioritizing these operations. 

The contribution of this paper is as follows: we introduce an Extended User Dissatisfaction 

Function (EUDF) that represents the expected weighted number of users that are unable to rent or 

https://www.citibikenyc.com/system-data/operating-reports
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return a bicycle during a given period as a bivariate function of the initial number of usable and 

unusable bicycles at the station. This is an extension of the User Dissatisfaction Function (UDF) that 

was initially presented in Raviv and Kolka (2013), which assumed that bicycles are always usable. 

We prove some discrete convexity properties of the EUDF. In addition, we propose a method for 

calculating a convex polyhedral function that has nearly identical values as the EUDF in its range. 

This polyhedral approximation can be used to optimize the initial bicycle inventories in the system 

subject to various constraints using linear programming, see for example Kaspi et al. (2015a). 

The remainder of this paper is structured as follows. In Section 2 a formulation of the EUDF for a 

single station is presented. Properties of the EUDF, including a convexity analysis are provided in 

Section 3. In Section 4, a method to approximate the EUDF by a convex polyhedral function is 

presented. Results of a numerical experiment that examines the accuracy of the approximation are 

reported in Section 5. Concluding remarks are given in Section 6. 

 

2. Extended User Dissatisfaction Function   

In this section we present an extension of the UDF that was introduced by Raviv and Kolka (2013). 

Assuming that a station is not visited by repositioning vehicles throughout a given period (say, a day), 

the UDF represents the user dissatisfaction (a measure for the service level) as a discrete function of 

the initial number of bicycles in the station. Specifically, the user dissatisfaction is expressed as a 

weighted sum of the expected shortages of bicycles and the expected shortages of lockers along the 

given period. In Raviv and Kolka (2013) it is proven that the UDF is a convex function of the initial 

inventory of bicycles. 

We begin by describing some notation and modeling assumptions that were presented in Raviv 

and Kolka (2013), which are also a part of the extended model. Subsequently, we present some 

revised notation and additional assumptions needed for the extended model. A list of the notations 

presented here and henceforward is given in Appendix A1. 

We model a single station during a finite period [0, 𝑇]. Initially, at time 0, there is a certain 

number of bicycles in the station at time 0. During this period, users who wish to rent or return a 

bicycle arrive to the station according to an arbitrary stochastic process. If the demand for a 
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bicycle/available locker can be satisfied, the bicycle is rented/returned and the station’s inventory 

level is updated accordingly. On the other hand, if the demand cannot be satisfied, we assume that the 

user immediately abandons the station (she either roams to a nearby station or abandons the system). 

We note that the model does not take into account mutual influences of neighboring stations on the 

demand process.  

There are two sources for user dissatisfaction, namely shortage of bicycles and shortage of 

lockers. For each type of shortage the system is penalized by an amount that represents the 

dissatisfaction caused due to this shortage. We denote by 𝑝 the penalty for each user who faces 

shortage of bicycles and by ℎ the penalty for each user who faces shortage of lockers. The total 

number of lockers in the station is denoted by 𝐶. We refer to this value as the capacity of the station. 

In the EUDF an additional dimension is introduced. The initial inventory of bicycles is divided 

into two groups, namely, usable and unusable (broken) bicycles, denoted by 𝐼0 and 𝐵0, respectively. 

This extension allows us to examine the effect of changes in the initial inventory level of each group 

on the service level, given their joint station capacity. In particular, the effect of the presence of 

unusable bicycles can be studied. However, the analysis of the EUDF becomes more difficult, as will 

be described in Section 3.  

We assume that during the given period, the inventory level is not externally altered, that is, until 

time 𝑇, no repositioning or repairing activities are performed in the station. In particular, this implies 

that the number of unusable bicycles in the station cannot decrease during the given period, since it is 

assumed that unusable bicycles would not be rented by the users. However, some bicycles may 

become unusable during the ride, that is, some bicycles may be returned unusable to the station. 

Therefore, the number of unusable bicycles in the station may increase during the given period. 

Lastly, we assume that there is no change in the condition of the bicycles while they are parked in the 

station.    

Let 𝐸𝑅 denote the time epochs in which the demands for bicycles or lockers occur under demand 

realization 𝑅. We denote by 𝐼𝑗
𝑅(𝐼0, 𝐵0) the inventory level of usable bicycles right after the 𝑗𝑡ℎ 

demand occurrence under realization 𝑅, given the inventory of usable and unusable bicycles (𝐼0, 𝐵0) 
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at time 0. For the sake of brevity, we omit the conditioning on the initial inventory in subsequent 

notation. Similarly, the inventory level of unusable bicycles right after the 𝑗𝑡ℎ demand occurrence 

under realization 𝑅 is denoted by 𝐵𝑗
𝑅(𝐼0, 𝐵0). The demand for bicycles or lockers at the 𝑗𝑡ℎ occurrence 

is denoted by the pair (𝑑𝑗
𝑅,𝐼 , 𝑑𝑗

𝑅,𝐵) ∈ {(1,0), (−1,0), (0, −1)}, where (1,0) represents a demand for a 

usable bicycle, (-1,0) represents a demand for a locker in order to return a usable bicycle and (0,-1) 

represents a demand for a locker in order to return an unusable bicycle. Next, we present a recursive 

function, denoting the number of usable bicycles in the station after the occurrence of the 𝑗𝑡ℎ demand, 

given the inventory levels after the (𝑗 − 1)𝑠𝑡 demand occurrence: 

𝐼𝑗
𝑅(𝐼0, 𝐵0) =

{
 

 
0 𝐼𝑗−1

𝑅 (𝐼0, 𝐵0) − 𝑑𝑗
𝑅,𝐼 < 0

𝐶 − 𝐵𝑗−1
𝑅 (𝐼0, 𝐵0) 𝐼𝑗−1

𝑅 (𝐼0, 𝐵0) − 𝑑𝑗
𝑅,𝐼 > 𝐶 − 𝐵𝑗−1

𝑅 (𝐼0, 𝐵0)

𝐼𝑗−1
𝑅 (𝐼0, 𝐵0) − 𝑑𝑗

𝑅,𝐼 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

And the number of unusable bicycles in the station is given by the following: 

𝐵𝑗
𝑅(𝐼0, 𝐵0) = {

𝐶 − 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0) 𝐵𝑗−1

𝑅 (𝐼0, 𝐵0) − 𝑑𝑗
𝑅,𝐵 > 𝐶 − 𝐼𝑗−1

𝑅 (𝐼0, 𝐵0)

𝐵𝑗−1
𝑅 (𝐼0, 𝐵0) − 𝑑𝑗

𝑅,𝐵 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

We refer to 𝐶 − 𝐵𝑗
𝑅(𝐼0, 𝐵0) as the effective capacity of the station. Since unusable bicycles cannot be 

rented, they block the lockers in which they are parked. 

Let Δ𝑗
𝑅(𝐼0, 𝐵0)  and  Θ𝑗

𝑅(𝐼0, 𝐵0) be indicator functions that indicate whether a user faces shortage 

of a bicycle or a locker as the 𝑗𝑡ℎ demand occurs. Let (𝑥)+ = max{0, 𝑥}, then the bicycle shortage 

indicator is given by Δ𝑗
𝑅(𝐼0, 𝐵0) = (−𝐼𝑗−1

𝑅 (𝐼0, 𝐵0) + 𝑑𝑗
𝑅,𝐼)

+
 and the locker shortage indicator is given 

by Θ𝑗
𝑅(𝐼0, 𝐵0) = (𝐼𝑗−1

𝑅 (𝐼0, 𝐵0) + 𝐵𝑗−1
𝑅 (𝐼0, 𝐵0) − 𝑑𝑗

𝑅,𝐼 − 𝑑𝑗
𝑅,𝐵 − 𝐶)

+
. 

We denote by 𝐹𝑅(𝐼0, 𝐵0) the total dissatisfaction of users under demand realization 𝑅. The total 

dissatisfaction is obtained by summing all the shortages for bicycles and lockers and multiplying each 

shortage by the related penalty: 

𝐹𝑅(𝐼0, 𝐵0) = ∑(𝑝 ⋅  Δ𝑗
𝑅(𝐼0, 𝐵0) + ℎ ⋅  Θ𝑗

𝑅(𝐼0, 𝐵0))

|𝐸𝑅|

𝑗=1
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Then, we denote by 𝐹(𝐼0, 𝐵0) the expected penalty (over all realizations) due to shortages of 

bicycles and lockers during the given period as a discrete function of the initial inventory of usable 

(𝐼0) and unusable (𝐵0) bicycles. We refer to this function as the EUDF and it is given by the following 

equation: 

𝐹(𝐼0, 𝐵0) ≡ 𝔼𝑅{𝐹
𝑅(𝐼0, 𝐵0)} = 𝔼𝑅 {∑(𝑝 ⋅ Δ𝑗

𝑅(𝐼0, 𝐵0) + ℎ ⋅  Θ𝑗
𝑅(𝐼0, 𝐵0))

|𝐸𝑅|

𝑗=1

} (1) 

 

Note that the UDF is a special case of this model in which 𝐵0 = 0 and there is no demand for 

lockers in order to return unusable bicycles.  

 

3. Analysis of the EUDF 

In this section we analyze the EUDF (1) and study its convexity, which is helpful for optimization 

purposes. In Section 3.1 we prove several properties of the EUDF, which are later used in its 

convexity analysis, presented in Section 3.2.  

3.1. Properties of the EUDF  

We begin our analysis of the EUDF by proving that it is non-decreasing in the initial inventory of 

unusable bicycles. Intuitively, this is true because an addition of unusable bicycles decreases the 

effective capacity of the station. We next prove this observation formally. 

We denote by Ω a sequence of demand occurrences which do not include a returning of an 

unusable bicycle. Note that Ω can represent an entire demand realization or a subset of it. Thus, 

𝐹Ω(𝐼0, 𝐵0) denotes the user dissatisfaction under this sequence of demand occurrences. After 

analyzing such sequences, we will extend our analysis to any demand realization. 

 

Lemma 1: For any sequence of demand occurrences  Ω, the following inequality holds: 

 𝐹Ω(𝐼0, 𝐵0 + 1) ≥ 𝐹
Ω(𝐼0, 𝐵0). 

Proof: Consider two initial settings of a station: (𝐼0, 𝐵0 + 1) and (𝐼0, 𝐵0), i.e., when the number of 

usable bicycles is identical, but the number of unusable bicycles differs by one. We claim that the 
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number of usable bicycles under both settings may differ by at most 1 at any time, namely, either 

𝐼𝑗
Ω(𝐼0, 𝐵0 + 1) = 𝐼𝑗

Ω(𝐼0, 𝐵0) or 𝐼𝑗
Ω(𝐼0, 𝐵0 + 1) = 𝐼𝑗

Ω(𝐼0, 𝐵0) − 1. This will be demonstrated using 

Table 1. In Table 1 we describe four different shortage events that may occur in either of these 

settings. In the second column we present the relations between usable inventory levels after the 

(𝑗 − 1)𝑠𝑡 demand occurrence under settings (𝐼0, 𝐵0) and (𝐼0, 𝐵0 + 1). In the third column we describe 

the type of shortage, namely, bicycle or locker. In the fourth and fifth columns we denote under which 

setting this shortage occurs. Finally, in the sixth column we present the relations between the 

inventory levels under the two settings that result from the shortage event. Note that at time 0, the 

inventory levels of usable bicycles are identical under both settings so that the first shortage event 

may be either 2 or 4. The sixth column in Table 1 demonstrates that the relation between the usable 

inventory levels under both settings may be either 𝐼𝑗
Ω(𝐼0, 𝐵0 + 1) = 𝐼𝑗

Ω(𝐼0, 𝐵0) or 𝐼𝑗
Ω(𝐼0, 𝐵0 + 1) =

𝐼𝑗
Ω(𝐼0, 𝐵0) − 1. In the latter case, the subsequent shortage event may be either 1 or 3. Resulting again 

in the same possible inventory relations. 

Table 1: Shortage events in two settings with initial inventories (𝑰𝟎, 𝑩𝟎 + 𝟏) and (𝑰𝟎, 𝑩𝟎) 

Shortage 

event 

Usable bicycles before the 

shortage occurs 

Shortage 

type 
(𝐼0, 𝐵0 + 1) (𝐼0, 𝐵0) 

Usable bicycles after the 

shortage occurs 

1 𝐼𝑗−1
Ω (𝐼0, 𝐵0 + 1) = 𝐼𝑗−1

Ω (𝐼0, 𝐵0) − 1 Bicycle Δ𝑗
Ω(𝐼0, 𝐵0 + 1) = 1 Δ𝑗

Ω(𝐼0, 𝐵0) = 0 𝐼𝑗
Ω(𝐼0, 𝐵0 + 1) = 𝐼𝑗

Ω(𝐼0, 𝐵0) 

2 𝐼𝑗−1
Ω (𝐼0, 𝐵0 + 1) = 𝐼𝑗−1

Ω (𝐼0, 𝐵0) Bicycle Δ𝑗
Ω(𝐼0, 𝐵0 + 1) = 1 Δ𝑗

Ω(𝐼0, 𝐵0) = 1 𝐼𝑗
Ω(𝐼0, 𝐵0 + 1) = 𝐼𝑗

Ω(𝐼0, 𝐵0) 

3 𝐼𝑗−1
Ω (𝐼0, 𝐵0 + 1) = 𝐼𝑗−1

Ω (𝐼0, 𝐵0) − 1 Locker Θ𝑗
Ω(𝐼0, 𝐵0 + 1) = 1 Θ𝑗

Ω(𝐼0, 𝐵0) = 1 𝐼𝑗
Ω(𝐼0, 𝐵0 + 1) = 𝐼𝑗

Ω(𝐼0, 𝐵0) − 1 

4 𝐼𝑗−1
Ω (𝐼0, 𝐵0 + 1) = 𝐼𝑗−1

Ω (𝐼0, 𝐵0) Locker Θ𝑗
Ω(𝐼0, 𝐵0 + 1) = 1 Θ𝑗

Ω(𝐼0, 𝐵0) = 0 𝐼𝑗
Ω(𝐼0, 𝐵0 + 1) = 𝐼𝑗

Ω(𝐼0, 𝐵0) − 1 

 

It is noticeable from the fourth and fifth columns of Table 1 that whenever a shortage occurs under 

setting (𝐼0, 𝐵0) it also occurs under setting (𝐼0, 𝐵0 + 1), but not the opposite. That is, for any 

occurrence of shortage, we have Δ𝑗
Ω(𝐼0, 𝐵0 + 1) ≥ Δ𝑗

Ω(𝐼0, 𝐵0) and Θ𝑗
Ω(𝐼0, 𝐵0 + 1) ≥ Θ𝑗

Ω(𝐼0, 𝐵0). In 

addition, for any demand occurrence where no shortage occurs, all indicators equal zero, and the 

inequalities hold trivially. By summing these inequalities for all demand occurrences and multiplying 

by the related penalties we obtain for the set Ω: 𝐹Ω(𝐼0, 𝐵0 + 1) ≥ 𝐹Ω(𝐼0, 𝐵0) ∎  

 

Theorem 1: The EUDF 𝐹(𝐼0, 𝐵0) is non-decreasing in the initial inventory of unusable bicycles 𝐵0.  
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Proof: Consider the shortage occurrences given two initial settings of a station: (𝐼0, 𝐵0 + 1) and 

(𝐼0, 𝐵0). We will show that 𝐹𝑅(𝐼0, 𝐵0 + 1) ≥ 𝐹
𝑅(𝐼0, 𝐵0), for any demand realization 𝑅 and thus claim 

that it holds for the expectation. For a given demand realization 𝑅, we divide the set of demand 

occurrences 𝐸𝑅 to sequences of demand occurrences such that in each sequence there are no return 

attempts of unusable bicycles and the sequences are separated by return attempts of unusable bicycles. 

Note that for the first sequence the conditions are as in Lemma 1, i.e. the inequality holds. Following 

this sequence there are three different possibilities: (i) it is possible to return the unusable bicycle 

under both settings. (ii) it is not possible to return the unusable bicycle under both settings. (iii) it is 

possible to return the unusable bicycle under setting (𝐼0, 𝐵0) but not under (𝐼0, 𝐵0 + 1). When (i) or 

(ii) occurs, the difference in the total number of shortages up to this point, between the two settings 

remains unchanged and the same analysis may be repeated for the next sequence, since there is still a 

difference of one unusable bicycle between the two. After (iii) occurs the number of usable and 

unusable bicycles are identical under both settings, therefore, from this point and on the station faces 

exactly the same shortages under both initial settings. Now, since this is true for any demand 

realization it is also true for the expectation, thus we obtain:  𝐹(𝐼0, 𝐵0 + 1) ≥ 𝐹(𝐼0, 𝐵0).∎ 

 

Remark: Since the EUDF 𝐹(𝐼0, 𝐵0) is non-decreasing in 𝐵0, the function is minimized at 𝐵0 = 0, as 

expected. However, due to time and capacity constraints, the operator may not be able to remove all 

unusable bicycles (or even visit all stations in which there are unusable bicycles) therefore it is 

important to analyze the EUDF for all possible values of (𝐼0, 𝐵0).   

Next, we prove the following three inequalities, which are needed for the convexity proof of the 

EUDF that will be presented in Section 3.2.  

 𝐹(𝐼0, 𝐵0 + 2) − 𝐹(𝐼0, 𝐵0 + 1) − 𝐹(𝐼0, 𝐵0 + 1) + 𝐹(𝐼0, 𝐵0) ≥ 0 

 𝐹(𝐼0 + 2,𝐵0) − 𝐹(𝐼0 + 1, 𝐵0) − 𝐹(𝐼0 + 1, 𝐵0) + 𝐹(𝐼0, 𝐵0) ≥ 0 

 𝐹(𝐼0 + 1,𝐵0 + 1) − 𝐹(𝐼0 + 1, 𝐵0) − 𝐹(𝐼0, 𝐵0 + 1) + 𝐹(𝐼0, 𝐵0) ≥ 0 
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Observe that the first two inequalities mean that the EUDF is convex in each of the variables (𝐼0, 𝐵0) 

independently. The proofs for these inequalities are given under the following assumption: 

 

Assumption 1: No unusable bicycles are returned to the station during the given period. 

 

While this assumption may seem restrictive, note that the probability that a returned bicycle is 

unusable is low (see, for example, the discussion about the maintenance reports of NYC Bikeshare in 

Section 5). Hence, a major share of the effect of unusable bicycles is already captured by the unusable 

bicycles that are already parked in the station, i.e., in the initial state of the station. We note that 

without Assumption 1 it is possible to “cook” an example in which the EUDF is non-convex. 

However, note that the approximation method of the EUDF presented in Section 4 does not rely on 

Assumption 1. Moreover, in section 5, we evaluate the EUDF using real life demand data, including 

returns of unusable bicycles and confirm that the convexity conditions hold or, at worst, are violated 

with a negligible margin. 

 

Lemma 2: Under Assumption 1, the EUDF 𝐹(𝐼0, 𝐵0) is convex in the initial inventory of unusable 

bicycles 𝐵0, i.e.: 𝐹(𝐼0, 𝐵0 + 2) − 𝐹(𝐼0, 𝐵0 + 1) ≥ 𝐹(𝐼0, 𝐵0 + 1) − 𝐹(𝐼0, 𝐵0).  

The proof of this Lemma is based on an approach similar to the one used in the proof of Lemma 1. 

For brevity of the main text, we present the complete proof in Appendix A2. 

 

Lemma 3: under Assumption 1, the EUDF  𝐹(𝐼0, 𝐵0) is convex in the initial inventory of usable 

bicycles 𝐼0, i.e.:.  𝐹(𝐼0 + 2, 𝐵0) − 𝐹(𝐼0 + 1, 𝐵0) ≥ 𝐹(𝐼0 + 1,𝐵0) − 𝐹(𝐼0, 𝐵0). 

We remark that the convexity proof provided in Raviv and Kolka (2013) can be used here since the 

effective capacity under all three settings is equal and remains constant during the entire given period. 

Here we prove this result through an alternative approach which is later used in the proof of Lemma 4.  

Proof: Note that for each side of the inequality the station’s initial setting varies only by the initial 

inventory of usable bicycles. Under Assumption 1, the number of unusable bicycles remains the same 
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in all these settings. Therefore, in a pair of settings, once a shortage occurs in one of the settings, 

either for a bicycle or for a locker, the number of usable bicycles equalizes and from that point on the 

number of shortages are equal under both settings. For example, for settings (𝐼0 + 1, 𝐵0) and (𝐼0, 𝐵0) 

if the first shortage is for a bicycle, then the demand can be satisfied by setting (𝐼0 + 1, 𝐵0) but not by 

setting (𝐼0, 𝐵0) so that right after the shortage occurs, under both settings the station is empty. 

Similarly, if the first shortage is for a locker, then the demand can be satisfied under setting (𝐼0, 𝐵0) 

but not under setting (𝐼0 + 1, 𝐵0) so that right after the shortage occurs, under both settings the station 

is full. That is, for a given realization, the shortage difference between the two settings may be either  

-1,0 or 1. In Table 2 we compare the two sides of the inequality by exhibiting all possible 

combinations of first shortage occurrences for a given demand realization 𝑅. As can be seen, for all 

possible combinations we obtain 𝐹𝑅(𝐼0 + 2, 𝐵0) − 𝐹
𝑅(𝐼0 + 1, 𝐵0) ≥ 𝐹

𝑅(𝐼0 + 1, 𝐵0) − 𝐹
𝑅(𝐼0, 𝐵0). 

Consequently, by summing over all demand realizations we obtain: 𝐹(𝐼0 + 2, 𝐵0) − 𝐹(𝐼0 + 1,𝐵0) ≥

𝐹(𝐼0 + 1,𝐵0) − 𝐹(𝐼0, 𝐵0). ∎ 

Table 2: Possible combinations of first shortage occurrences 

𝐹𝑅(𝐼0 + 2, 𝐵0) − 𝐹
𝑅(𝐼0 + 1,𝐵0) 𝐹𝑅(𝐼0 + 1, 𝐵0) − 𝐹

𝑅(𝐼0, 𝐵0) 
First shortage 

occurrence 
Difference 

First shortage 

occurrence 
Difference 

Bicycle −𝑝 Bicycle −𝑝 
Locker ℎ Bicycle −𝑝 
Locker ℎ Locker ℎ 
Locker ℎ None 0 
None 0 None 0 

None 0 Bicycle −𝑝 

 

Lemma 4: under Assumption 1, for the EUDF  𝐹(𝐼0, 𝐵0) the following inequality is maintained:  

𝐹(𝐼0 + 1, 𝐵0 + 1) − 𝐹(𝐼0, 𝐵0 + 1) ≥ 𝐹(𝐼0 + 1, 𝐵0) − 𝐹(𝐼0, 𝐵0)  

 

Proof: Observe again that in each side of the inequality the settings differ by one usable bicycle, 

therefore we can again compare the first shortage events (as in the proof of Lemma 3). In Table 3 we 

present the possible combinations of first shortage occurrences for the two sides of the inequality. 

Note that the last combination presented in Table 2 is not possible in this case and therefore does not 

appear in Table 3. It is observable from Table 3 that for all possible combinations we obtain 𝐹𝑅(𝐼0 +
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1, 𝐵0 + 1) − 𝐹
𝑅(𝐼0, 𝐵0 + 1) ≥ 𝐹

𝑅(𝐼0 + 1, 𝐵0) − 𝐹
𝑅(𝐼0, 𝐵0). Consequently, by summing over all 

demand realizations we obtain: 𝐹(𝐼0 + 1, 𝐵0 + 1) − 𝐹(𝐼0, 𝐵0 + 1) ≥ 𝐹(𝐼0 + 1, 𝐵0) − 𝐹(𝐼0, 𝐵0).∎  

Table 3: Possible combinations of first shortage occurrences 

𝐹𝑅(𝐼0 + 1, 𝐵0 + 1) − 𝐹
𝑅(𝐼0, 𝐵0 + 1) 𝐹𝑅(𝐼0 + 1, 𝐵0) − 𝐹

𝑅(𝐼0, 𝐵0) 
First shortage 

occurrence 
Difference 

First shortage 

occurrence 
Difference 

Bicycle −𝑝 Bicycle −𝑝 
Locker ℎ Bicycle −𝑝 
Locker ℎ Locker ℎ 
Locker ℎ None 0 
None 0 None 0 

 

3.2. Convexity analysis of the EUDF 

Recall that the EUDF is a bivariate discrete function. While the concept and definition of discrete 

convexity of univariate functions is quite similar to continuous convexity, this is not the case for 

multivariate discrete functions. In fact, several different definitions of convexity are given in the 

literature for multivariate discrete functions. In Murota and Shioura (2001), Murota (2009) and 

Moriguchi and Murota (2011), several classes of multivariate discrete convex functions are defined 

and the relationship among these classes is presented. We next outline some of these definitions and 

then prove that under Assumption 1, the EUDF is contained in these classes. 

 

Definition 1: Convex extensibility (Murota 2009) 

A function 𝑓: ℤ𝑛 → ℝ is said to be convex-extensible if there exists a convex function 𝑓̅: ℝ𝑛 → ℝ such 

that  𝑓̅(𝑥) = 𝑓(𝑥) for all x ∈ ℤn. 

Definition 2:  M♮-convex (based on Moriguchi and Murota 2011) 

Denote the 𝑖𝑡ℎ unit vector by 𝑒𝑖 and 𝑒0 = 𝟎, denote the domain of 𝑓 by 

dom 𝑓 = {𝑥 ∈ ℤ𝑛|𝑓(𝑥) < +∞} and denote the positive and negative supports of a vector 𝑥 by: 

supp+(𝑥) = {𝑖 ∈ {1,… , 𝑛}|𝑥𝑖 > 0} 

supp−(𝑥) = {𝑖 ∈ {1,… , 𝑛}|𝑥𝑖 < 0} 

A function 𝑓: ℤ𝑛 → ℝ is 𝑀♮-convex if it satisfies the following exchange property: 
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 (𝐌♮-EXC) ∀𝑥, 𝑦 ∈ dom 𝑓, ∀𝑖 ∈ supp+(𝑥 − 𝑦), ∃𝑗 ∈ (supp−(𝑥 − 𝑦) ∪ {0}) such that  

𝑓(𝑥) + 𝑓(𝑦) ≥ 𝑓(𝑥 − 𝑒𝑖 + 𝑒𝑗) + 𝑓(𝑦 + 𝑒𝑖 − 𝑒𝑗). 

See Murota and Shioura (2001) for a further discussion on M♮-convexity. 

 

Definition 3: Discrete Hessian matrix (Moriguchi and Murota 2011) 

The discrete Hessian 𝐻(𝑥) = (𝐻𝑖𝑗(𝑥)) of 𝑓: ℤ𝑛 → ℝ at 𝑥 ∈ ℤ𝑛 is defined by 

𝐻𝑖𝑗(𝑥) = 𝑓(𝑥 + 𝑒𝑖 + 𝑒𝑗) − 𝑓(𝑥 + 𝑒𝑖) − 𝑓(𝑥 + 𝑒𝑗) + 𝑓(𝑥) 

 

Definition 4: (Theorem 3.1 in Moriguchi and Murota 2011) 

A function 𝑓: ℤ𝑛 → ℝ is M♮-convex if and only if the discrete Hessian matrix 𝐻(𝑥) in Definition 3 

satisfies the following conditions for each 𝑥 ∈ ℤ𝑛: 

(i)   𝐻𝑖𝑗(𝑥) ≥ min (𝐻𝑖𝑘(𝑥),𝐻𝑗𝑘(𝑥))     𝑖𝑓{𝑖, 𝑗} ∩ {𝑘} = ∅    

 (ii)  𝐻𝑖𝑗(𝑥) ≥ 0                                          𝑓𝑜𝑟 𝑎𝑛𝑦 (𝑖, 𝑗).      

Note that 𝐻𝑖𝑖(𝑥) ≥ 0 means that 𝑓 is convex in the variable 𝑖.  

 

Theorem 2: (Follows from Theorem 3.9 and Theorem 3.3 in Murota and Shioura 2001)  

An M♮-convex function is convex-extensible. 

 

Next, given the above definitions, we present and prove the main theorem of this study: 

Theorem 3: Under Assumption 1, the EUDF 𝐹(𝐼0, 𝐵0) is M♮-convex.  

Proof: Since the EUDF is a bivariate function, condition (i) of Definition 4 is not relevant for our 

analysis, and condition (ii) of Definition 4 reduces to the three inequalities that were presented and 

proved in Section 3.1. Given the proofs of Lemmas 2-4, the EUDF satisfies the conditions given in 

Definition 4. Therefore the discrete Hessian of the EUDF is positive semidefinite and the EUDF is 

M♮-convex ∎ 
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Note that since the EUDF is M♮-convex we conclude by Theorem 2 that it is also convex-extensible. 

Therefore, there exists a continuous convex function that has identical values at all integer points in 

the range of the EUDF. In the next section we present a method to approximate the EUDF by a 

convex polyhedral function that has the same values at integer points. Under Assumption 1, the EUDF 

is convex-extensible and therefore the approximation will provide an exact description of the 

function. More importantly, the results of the numerical experiment that will be presented in Section 

5, demonstrate that even if Assumption 1 is relaxed, the approximation is very accurate.  

 

4. A convex polyhedral function approximation   

The approximation procedure of the EUDF is divided into two steps. In the first step we approximate 

the values of the EUDF for each possible combination of integer initial inventory levels (𝐼0, 𝐵0). In 

the second step an LP model is used to fit a convex polyhedral function to the values calculated in the 

first stage. That is, the epigraph of the EUDF is defined, approximately, as an intersection of half 

spaces. 

Recall that the EUDF is the expectation of all possible demand realizations. One approach for 

estimating the expectations is by using Monte Carlo simulation. However, this process may require 

long calculation times and can be very noisy. Moreover since this calculation needs to be carried out 

for each possible initial setting and for every station in the bike-sharing system, this approach seems 

impractical. Instead, we adopt an approximation approach which is similar to the one presented in 

Raviv and Kolka (2013). This approach is based on a representation of the states of the station along 

the given period as a continuous time Markov chain.  

Toward that, we assume that the arrival processes of renters and returners to the station are time 

heterogeneous Poisson processes, with arrival rates 𝜇𝑡 and 𝜆𝑡, respectively. When a user returns a 

bicycle to the station there is a probability 𝜙 that the bicycle is unusable. That is, the returning rate of 

usable bicycles at time period 𝑡 is (1 − 𝜙)𝜆𝑡 and the returning rate of unusable bicycles at time period 

𝑡 is 𝜙𝜆𝑡. Since the arrival processes of renters and returners reflect the arrivals of many independent 

users, we believe that this Markovian model is an adequate description of reality. 
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Recall that during the given period, no repositioning activities are being executed. While the 

inventory level of usable bicycles may increase or decrease along the day, the inventory level of 

unusable bicycles may only increase. Therefore, for any 𝜙 > 0, in steady-state, the station will be full 

with unusable bicycles. However, we are interested in analyzing the dynamics of the station rather 

than its steady-state. Moreover, a station that is regulated in a sufficient manner is not likely to reach 

its steady-state. A description of the continuous-time Markov chain that represents the dynamic of the 

station is given in Figure 1. 

 
Figure 1 - Continuous-time Markov chain that represents the dynamics of the usable and unusable 

bicycle inventory levels 

Let 𝜋(𝐼0,𝐵0),(𝐼,𝐵)(𝑡) denote the probability that the station is in state (𝐼, 𝐵) at time 𝑡 given that in time 0 

it was in state (𝐼0, 𝐵0). Now, it is possible to state the EUDF in terms of the transition probabilities as 

follows:     

𝐹(𝐼0, 𝐵0) = ∫ ((∑ 𝜋(𝐼0,𝐵0),(0,𝑘)(𝑡)

𝐶

𝑘=𝐵0

)𝜇𝑡𝑝 + (∑ 𝜋(𝐼0,𝐵0),(𝐶−𝑘,𝑘)(𝑡)

𝐶

𝑘=𝐵0

)𝜆𝑡ℎ)𝑑𝑡 
𝑇

0

 (2) 

The first term in the integral represents the user dissatisfaction due to bicycle shortages. It is 

calculated by the probability that at time 𝑡 the station is empty, multiplied by the renting rate 𝜇𝑡 and 

the penalty for bicycle shortage 𝑝. The second term represents the user dissatisfaction due to locker 

shortages. It is calculated by the probability that at time 𝑡 the station is full, multiplied by the 

returning rate 𝜆𝑡 and the penalty for locker shortage ℎ. The evaluation of (2) is numerically obtained 

by discretizing the integral to short intervals of length 𝑑 and calculating the following sum: 
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𝐹(𝐼0, 𝐵0) = 𝑑∑((∑ 𝜋(𝐼0,𝐵0),(0,𝑘)((𝑖 − 0.5)𝑑)

𝐶

𝑘=𝐵0

)𝜇𝑡𝑝 + (∑ 𝜋(𝐼0,𝐵0),(𝐶−𝑘,𝑘)((𝑖 − 0.5)𝑑)

𝐶

𝑘=𝐵0

)𝜆𝑡ℎ) 

𝑇/𝑑

𝑖=1

 

It is assumed that 𝑇/𝑑 is an integer. The value of 𝜋(𝐼0,𝐵0),(𝐼,𝐵)(𝑡) is numerically evaluated for each of 

the 𝑇/𝑑 points in time by the method presented in Raviv and Kolka (2013), we refer the reader to 

section 4 in their paper.  

 Next we discuss the fitting of a convex polyhedral function to the approximated values of the 

EUDF. As the EUDF is convex-extensible (under Assumption 1), there exists a continuous convex 

function that has identical values as the EUDF in all integer points. We denote this function 

by 𝑓(𝐼0, 𝐵0). Though this function is unknown, we can use the fact that it is convex. First, let us state 

the following proposition: 

Proposition 1: Supporting a convex function (adapted from Proposition 2.6.2 in Ben-Tal and 

Nemirovski 2013) 

For any point x̅ in the domain of a convex function 𝑓: ℝ𝑛 → ℝ there exists an affine function 𝑓x̅(x) =

aTx + b, such that 𝑓x̅(x̅) = 𝑓(x̅) and 𝑓x̅(x) ≤ 𝑓(x) for all x ∈ ℝ𝑛. 

 

Let 𝜃 be the range of the EUDF, namely 𝜃 = {(𝐼0, 𝐵0) ∈ ℤ
2|𝐼0 ≥ 0, 𝐵0 ≥ 0, 𝐼0 +𝐵0 ≤ 𝐶}. Since 

𝑓(𝐼0, 𝐵0) is convex and given Proposition 1, for each point (𝐼0, �̃�0) ∈ 𝜃 there exists a plane that 

satisfies:  

𝛼(𝐼0,�̃�0)𝐼 + 𝛽(𝐼0,�̃�0)𝐵 + 𝛾(𝐼0,�̃�0) = 𝑓(𝐼0, �̃�0) (3) 

and 

𝛼(𝐼0,�̃�0)𝐼0 + 𝛽(𝐼0,�̃�0)𝐵0 + 𝛾(𝐼0,�̃�0) ≤ 𝑓(𝐼0, 𝐵0)  ∀(𝐼0, 𝐵0) ∈ 𝜃 (4) 

By generating a supporting plane for each point (𝐼0, 𝐵0) ∈ 𝜃, we obtain the following convex 

polyhedral function: 

𝑓(𝐼0, 𝐵0) = max
(𝐼0,�̃�0)∈𝜃

(𝛼(𝐼0,�̃�0) ⋅ 𝐼0 + 𝛽(𝐼0,�̃�0) ⋅ 𝐵0 + 𝛾(𝐼0,�̃�0)) 

Note that for each point (𝐼0, 𝐵0) ∈ 𝜃 we have 𝑓(𝐼0, 𝐵0) = 𝑓(𝐼0, 𝐵0) = 𝐹(𝐼0, 𝐵0). 

  

However, the calculation of a plane that satisfies (3) and (4) may, in some cases, be impossible  

due to the following reasons: (i) when Assumption 1 is relaxed, the EUDF is not necessarily convex-
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extensible. (ii) in the calculation of the approximated EUDF values, numerical errors may occur. To 

overcome these issues, we construct a plane for point (𝐼0, �̃�0) such that (4) is satisfied but some error 

is allowed in (3). Namely, the constructed plane may pass under 𝐹(𝐼0, �̃�0). Our goal is to construct a 

plane that passes as close as possible to 𝐹(𝐼0, �̃�0). We use the following LP formulation to achieve 

this goal: 

 

Decision variables: 

𝛼, 𝛽, 𝛾 Coefficients of the fitted plane 

𝑠 Gap at the point (𝐼0, �̃�0)  
 

Model: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑠 (5) 
𝑠. 𝑡.  

𝛼 ⋅ 𝐼0 + 𝛽 ⋅ 𝐵0 + 𝛾 ≤ 𝐹(𝐼0, 𝐵0)        ∀(𝐼0, 𝐵0) ∈ 𝜃\{(𝐼0, �̃�0)}  (6) 

𝛼 ⋅ 𝐼0 + 𝛽 ⋅ �̃�0 + 𝛾 = 𝐹(𝐼0, �̃�0) − 𝑠          (7) 

𝛼, 𝛽, 𝛾     𝑓𝑟𝑒𝑒 (8) 
𝑠 ≥ 0 (9) 
 

The objective function (5) minimizes the gap between the fitted plane and the EUDF at point (𝐼0, �̃�0). 

Constraint (6) requires that the fitted plane pass under the EUDF at all other integer points. Constraint 

(7) defines the gap between the plane and the EUDF at point (𝐼0, �̃�0). In Constraints (8)-(9) the 

definitions of the decision variables are given. 

It is possible to redefine 𝑓(𝐼0, 𝐵0) with the values of 𝛼(𝐼0,�̃�0), 𝛽(𝐼0,�̃�0) and 𝛾(𝐼0,�̃�0) obtained by the 

LP above for all (𝐼0, 𝐵0) ∈ 𝜃. The maximal value of 𝑠 over all the points (𝐼0, �̃�0) is an upper bound 

on the gap between 𝑓(𝐼0, 𝐵0) and 𝐹(𝐼0, 𝐵0). In cases where the gap is zero for all constructed planes, 

we can say that the EUDF is convex-extensible.  

5. Numerical results 

In this section, we evaluate the accuracy of the polyhedral approximation of the EUDF and derive 

some insights regarding the effect of unusable bicycles on user dissatisfaction. As a case study, we 

use trip data of 232 stations in the Washington D.C. bike-sharing system, Capital Bikeshare, during 

the second quarter of 2013. The data can be downloaded from the system’s website: 
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http://www.capitalbikeshare.com/trip-history-data. Using this data we have estimated the renting and 

returning rates on weekdays in each station for each interval of 30 minutes for a period of 24 hours 

starting at midnight. 

The approximation of the EUDF was coded in MathWorks Matlab™. The plane fitting LP model 

was solved using IBM ILOG CPLEX Optimization Studio 12.6. The procedure was tested on an Intel 

Core i7 desktop. On average, the entire process of calculating the EUDF took three seconds per 

station and the polyhedral function fitting took less than a second per station. This means that 

approximating the function for all stations as an input for a repositioning and collection optimization 

can be executed in acceptable time. Moreover, since the calculation for each station is done 

independently, the calculation procedure is amendable for parallelization. In addition, the 

renting/returning rates are typically not estimated on a daily basis and therefore the polyhedral 

functions will not be updated very often.  

For each station we have approximated the EUDF by fine discretization to intervals of one 

minute. This was done for varying values of, 𝜙, the probability of a bicycle to be returned unusable, in 

the range 0%-5% in increments of 1%. The penalties for shortages were set to 𝑝 = ℎ = 1, so that the 

value of the function represents the expected total number of users who face shortages of bicycles or 

lockers. For each station and each polyhedral function, we calculated the maximal absolute gap with 

respect to the approximated values of the EUDF and the maximal relative gap over all possible points, 

where: 

𝑅𝑎𝑙𝑎𝑡𝑖𝑣𝑒 𝑔𝑎𝑝 =
𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑔𝑎𝑝

𝐸𝑈𝐷𝐹 𝑣𝑎𝑙𝑢𝑒
  

In Table 4, we present the aggregated values for all 232 stations. In the first column the 

probability for a bicycle to be returned unusable is presented. The second column presents the number 

of stations in which there was no gap at all in fitting the convex polyhedral function. The third and 

fourth columns represent the maximal absolute and relative gaps over all stations.  

  

http://www.capitalbikeshare.com/trip-history-data
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Table 4: Numerical results for 232 stations in the Capital Bikeshare system 

Probability that a bicycle is 

returned unusable 

Number of stations with 

no gaps 

(out of 232) 

Expected daily bicycle and locker 

shortages 

Maximal 

absolute gap 

Maximal 

relative gap 

0 210 0.000151 0.000014 

0.01 211 0.000153 0.000014 

0.02 209 0.000155 0.000014 

0.03 214 0.000157 0.000014 

0.04 214 0.000160 0.000014 

0.05 217 0.000161 0.000015 

 

One can observe in Table 4 that the maximal relative gap is negligible. That is, the EUDF is 

approximated very accurately by a convex polyhedral function and this accuracy is insensitive to 𝜙 

within the examined range. Indeed, for any practical purpose, the convex polyhedral function can be 

considered as an exact description of the approximated EUDF. The fact that the gaps are so small, 

strengthens our belief that in real life scenarios the EUDF is convex-extensible even when 

Assumption 1 is relaxed.  

Moreover, recall that in the case 𝜙 = 0, the EUDF is M♮-convex (Theorem 3), and therefore a 

polyhedral convex function should be fitted with no gap. The fact that we observe similar gaps in this 

case indicates that they may originate from numerical errors in the approximation of the EUDF values 

and not from the true structure of the function. 

In Table 4, the range of probabilities we examined was 0%-5%. In order to estimate the 

probability that a bicycle is returned unusable in a real system, relevant information should be 

collected. To the best of our knowledge, the only bike-sharing operator that publishes maintenance 

reports is NYC Bikeshare. The total number of trips taken in this system in 2014 was 8,791,987 and 

the total number of bicycle repairs was 34,806. Therefore, a reasonable estimator of 𝜙 is about 0.004 

(0.4%). The results provided in Table 4 demonstrate that for such a probability, the approximation of 

a polyhedral convex function is very accurate. 

Next, we focus on a single station and examine the effect of properly estimating the number of 

unusable bicycles. As an example, we present in Table 5 the approximated EUDF values for a station 

with 10 lockers. The values are calculated for 𝜙 = 1% and ℎ = 𝑝 = 1. As can be observed, a change 

of one unit of usable bicycles in the initial setting, may lead to an increase or a decrease in the users’ 
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dissatisfaction by less than one unit of shortage. However, a change in the initial number of unusable 

bicycles may lead to a greater change in the users’ dissatisfaction. This can be explained by the fact 

that increasing the number of unusable bicycles by one is equivalent to decreasing the effective 

capacity of the station by one, which may increase the bicycle or locker shortages by more than one. 

Indeed, wrong information about the number of unusable bicycles may lead to discrepancies in user 

dissatisfaction estimation. For example, in Table 5, if in the initial setting there are no unusable 

bicycles, there is a small difference in user dissatisfaction if the initial number of usable bicycles is 

between 2 to 6 [11.32-11.73]. Nevertheless, if two of these bicycles are actually unusable, the user 

dissatisfaction increases by at least 3 units [14.28-15.36]. This emphasizes the need for having correct 

information regarding unusable bicycles and for the proper planning of collecting them. In fact, 

collecting unusable bicycles may have a greater effect on the service level at a station as compared to 

addition/reduction of usable bicycles and therefore should be prioritized.   

 

Table 5: User dissatisfaction as a function of the initial usable and unusable bicycles in a station with 10 

lockers 

In
it

ia
l 

n
u
m

b
er

 o
f 

u
n
u
sa

b
le

 b
ic

y
cl

es
 10 126.58 

          
9 72.86 72.69 

         
8 47.97 47.76 48.11 

        
7 35.20 34.91 35.13 35.74 

       
6 27.77 27.37 27.45 27.89 28.61 

      
5 22.97 22.49 22.43 22.71 23.26 24.04 

     
4 19.64 19.10 18.92 19.05 19.45 20.07 20.89 

    
3 17.21 16.61 16.34 16.35 16.60 17.08 17.77 18.61 

   
2 15.36 14.72 14.38 14.28 14.42 14.76 15.31 16.03 16.90 

  
1 13.93 13.26 12.85 12.67 12.70 12.92 13.34 13.93 14.68 15.57 

 
0 12.80 12.10 11.64 11.39 11.32 11.44 11.73 12.20 12.84 13.61 14.51 

  

0 1 2 3 4 5 6 7 8 9 10 

  

Initial number of usable bicycles 

 

6. Conclusions 

In this study, we have extended the user dissatisfaction function to account for the amount of unusable 

bicycles in addition to the number of usable bicycles. The presence of unusable bicycles highly affects 
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the quality of service given to the users of bike sharing systems. Maintenance aspects in bike sharing 

are studied for the first time in this paper and in Kaspi et al (2015a, 2015b). 

We have demonstrated that a convex polyhedral function can be accurately fitted to the EUDF. In 

particular, we have proved that the EUDF is M♮-convex (and thus convex-extensible) for 𝜙 = 0. The 

results of our numerical experiment suggest that in real life setting the EUDF is convex-extensible 

also for 𝜙 > 0. As a consequence, the EUDF can be used in linear optimization models for planning 

of the operational activities. In addition, the extended user dissatisfaction model can assist in strategic 

planning, e.g., deciding on the size of the bicycle fleet, capacity of the stations, manpower 

requirement for operations and maintenance activities, etc. 

The numerical results demonstrate that the presence of unusable bicycles may highly increase 

user dissatisfaction. Thus, even though only a small fraction of the bicycles is returned unusable the 

effect of these bicycles is significant. Therefore, this matter should receive more attention in the 

planning process. Particularly, system operators should invest resources in detection and collection of 

unusable bicycles. Accurate information regarding bicycle usability should be obtained and made 

available to the operators and the users of the system. The former can use it to optimize the 

maintenance and repositioning activities and the latter to better plan their itineraries.  
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Appendix A1  

Table 6: List of notations used throughout the paper, in order of appearance 

Parameter Definition 

𝑇 Length of the given period. 

𝐼0 Initial number of usable bicycles in the station 

𝐵0 Initial number of unusable bicycles in the station 

𝑝 Penalty for each bicycle shortage 

ℎ Penalty for each locker shortage 

𝐶 Capacity of the station (number of lockers) 

𝐸𝑅 Time epochs in which the demands for bicycles or lockers occur under demand 

realization 𝑅 

𝐼𝑗
𝑅(𝐼0, 𝐵0) The inventory level of usable bicycles right after the occurrence of the 𝑗𝑡ℎ 

demand in demand realization 𝑅, given the initial inventory of usable and 

unusable bicycles 

𝐵𝑗
𝑅(𝐼0, 𝐵0) The inventory level of unusable bicycles right after the occurrence of the 𝑗𝑡ℎ 

demand in demand realization 𝑅, given the initial inventory of usable and 

unusable bicycles 

(𝑑𝑗
𝑅,𝐼 , 𝑑𝑗

𝑅,𝐵) The demand for bicycles or lockers at the 𝑗𝑡ℎ demand occurrence in demand 

realization 𝑅,  (𝑑𝑗
𝑅,𝐼 , 𝑑𝑗

𝑅,𝐵) ∈ {(1,0), (−1,0), (0, −1)} 

𝛥𝑗
𝑅(𝐼0, 𝐵0) Bicycle shortage indicator right after the occurrence of the 𝑗𝑡ℎ demand in 

demand realization 𝑅, given the initial inventory of usable and unusable bicycles 

𝛩𝑗
𝑅(𝐼0, 𝐵0) Locker shortage indicator right after the occurrence of the 𝑗𝑡ℎ demand in 

demand realization 𝑅, given the initial inventory of usable and unusable bicycles 

𝐹𝑅(𝐼0, 𝐵0) User dissatisfaction under demand realization 𝑅, given the initial inventory of 

usable and unusable bicycles 

𝐹(𝐼0, 𝐵0) User dissatisfaction given the initial inventory of usable and unusable bicycles 

Ω A sequence of demand occurrences which do not include a returning of an 

unusable bicycle 

𝐹Ω(𝐼0, 𝐵0) User dissatisfaction under sequence of demand occurrences 

Ω, given the initial inventory of usable and unusable bicycles 

𝜙 The probability that a bicycle is returned to a station in an unusable condition 

𝜃 Range of the EUDF. The set of all possible inventory states  

{(𝐼0, 𝐵0) ∈ ℤ
2|𝐼0 ≥ 0, 𝐵0 ≥ 0, 𝐼0 + 𝐵0 ≤ 𝐶} 

𝜇𝑡 Arrival rate of returners at time period 𝑡 

𝜆𝑡 Arrival rate of renters at time period 𝑡   
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Appendix A2 – Proof of Lemma 2 

 

Lemma 2: under Assumption 1, the EUDF 𝐹(𝐼0, 𝐵0) is convex in the initial inventory of unusable 

bicycles 𝐵0, i.e.: 𝐹(𝐼0, 𝐵0 + 2) − 𝐹(𝐼0, 𝐵0 + 1) ≥ 𝐹(𝐼0, 𝐵0 + 1) − 𝐹(𝐼0, 𝐵0) 

 

Proof: Consider the shortage occurrences given three settings of a station: (𝐼0, 𝐵0 + 2), (𝐼0, 𝐵0 + 1) 

and (𝐼0, 𝐵0), i.e., when the number of usable bicycles is identical, but the number of unusable bicycles 

differs by one and two. We study the bicycle shortage indicator differences,  

Δ𝑗
𝑅(𝐼0, 𝐵0 + 2) − Δ𝑗

𝑅(𝐼0, 𝐵0 + 1) and  Δ𝑗
𝑅(𝐼0, 𝐵0 + 1) − Δ𝑗

𝑅(𝐼0, 𝐵0) and demonstrate that each shortage 

occurrence in which the latter equals 1 is preceded by at least one shortage occurrence in which the 

former equals 1. This is also demonstrated for locker shortages. Therefore, by summing over all 

demand occurrences we obtain that the inequality holds for any demand realization that satisfies 

Assumption 1.  

We distinguish between eight possible shortage events, as described in Table 7 and present the 

shortage differences in Table 8: 

Table 7: Shortage events in three settings with initial inventories (𝑰𝟎, 𝑩𝟎 + 𝟐) (𝑰𝟎, 𝑩𝟎 + 𝟏) and (𝑰𝟎, 𝑩𝟎) 

Shortage 

event 

Usable bicycles before the shortage 

occurs 
Shortage type 

Usable bicycles after the shortage 

occurs 

1 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0 + 2) = 𝐼𝑗−1

𝑅 (𝐼0, 𝐵0 + 1) − 1 = 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0) − 2 Bicycle 𝐼𝑗

𝑅(𝐼0, 𝐵0 + 2) = 𝐼𝑗
𝑅(𝐼0, 𝐵0 + 1) = 𝐼𝑗

𝑅(𝐼0, 𝐵0) − 1 

2 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0 + 2) = 𝐼𝑗−1

𝑅 (𝐼0, 𝐵0 + 1) − 1 = 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0) − 1 Bicycle 𝐼𝑗

𝑅(𝐼0, 𝐵0 + 2) = 𝐼𝑗
𝑅(𝐼0, 𝐵0 + 1) = 𝐼𝑗

𝑅(𝐼0, 𝐵0) 

3 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0 + 2) = 𝐼𝑗−1

𝑅 (𝐼0, 𝐵0 + 1) = 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0) − 1 Bicycle 𝐼𝑗

𝑅(𝐼0, 𝐵0 + 2) = 𝐼𝑗
𝑅(𝐼0, 𝐵0 + 1) = 𝐼𝑗

𝑅(𝐼0, 𝐵0) 

4 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0 + 2) = 𝐼𝑗−1

𝑅 (𝐼0, 𝐵0 + 1) = 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0) Bicycle 𝐼𝑗

𝑅(𝐼0, 𝐵0 + 2) = 𝐼𝑗
𝑅(𝐼0, 𝐵0 + 1) = 𝐼𝑗

𝑅(𝐼0, 𝐵0) 

5 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0 + 2) = 𝐼𝑗−1

𝑅 (𝐼0, 𝐵0 + 1) − 1 = 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0) − 2 Locker 𝐼𝑗

𝑅(𝐼0, 𝐵0 + 2) = 𝐼𝑗
𝑅(𝐼0, 𝐵0 + 1) − 1 = 𝐼𝑗

𝑅(𝐼0, 𝐵0) − 2 

6 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0 + 2) = 𝐼𝑗−1

𝑅 (𝐼0, 𝐵0 + 1) − 1 = 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0) − 1 Locker 𝐼𝑗

𝑅(𝐼0, 𝐵0 + 2) = 𝐼𝑗
𝑅(𝐼0, 𝐵0 + 1) − 1 = 𝐼𝑗

𝑅(𝐼0, 𝐵0) − 2 

7 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0 + 2) = 𝐼𝑗−1

𝑅 (𝐼0, 𝐵0 + 1) = 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0) − 1 Locker 𝐼𝑗

𝑅(𝐼0, 𝐵0 + 2) = 𝐼𝑗
𝑅(𝐼0, 𝐵0 + 1) − 1 = 𝐼𝑗

𝑅(𝐼0, 𝐵0) − 2 

8 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0 + 2) = 𝐼𝑗−1

𝑅 (𝐼0, 𝐵0 + 1) = 𝐼𝑗−1
𝑅 (𝐼0, 𝐵0) Locker 𝐼𝑗

𝑅(𝐼0, 𝐵0 + 2) = 𝐼𝑗
𝑅(𝐼0, 𝐵0 + 1) − 1 = 𝐼𝑗

𝑅(𝐼0, 𝐵0) − 1 

 

Table 8: Shortage indicator differences 

Shortage event Δ𝑗
𝑅(𝐼0, 𝐵0 + 2) − Δ𝑗

𝑅(𝐼0, 𝐵0 + 1) Δ𝑗
𝑅(𝐼0, 𝐵0 + 1) − Δ𝑗

𝑅(𝐼0, 𝐵0) 

1 1 0 
2 1 0 
3 0 1 
4 0 0 

Shortage event Θ𝑗
𝑅(𝐼0, 𝐵0 + 2) − Θ𝑗

𝑅(𝐼0, 𝐵0 + 1) Θ𝑗
𝑅(𝐼0, 𝐵0 + 1) − Θ𝑗

𝑅(𝐼0, 𝐵0) 

5 0 0 
6 0 1 
7 1 0 
8 1 0 
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Figure 2: Possible transitions between shortage events 

In Figure 2 the possible transitions between shortage events are presented. Since at time 𝑡 = 0 (before 

the first demand occurrence) we have 𝐼0
𝑅(𝐼0, 𝐵0 + 2) = 𝐼0

𝑅(𝐼0, 𝐵0 + 1) = 𝐼0
𝑅(𝐼0, 𝐵0) = 𝐼0, the first 

shortage event may be either 4 or 8. Notice that each occurrence of event 6 is preceded by at least one 

occurrence of event 8. Similarly each occurrence of event 3 is preceded by at least one occurrence of 

event 1. Therefore by summing over all the demand occurrences of a given demand realization, we 

obtain: 

∑(Δ𝑗
𝑅(𝐼0, 𝐵0 + 2) − Δ𝑗

𝑅(𝐼0, 𝐵0 + 1))

|𝐸𝑅|

𝑗=1

≥ ∑(Δ𝑗
𝑅(𝐼0, 𝐵0 + 1) − Δ𝑗

𝑅(𝐼0, 𝐵0))

|𝐸𝑅|

𝑗=1

 

and:  

∑(Θ𝑗
𝑅(𝐼0, 𝐵0 + 2) − Θ𝑗

𝑅(𝐼0, 𝐵0 + 1))

|𝐸𝑅|

𝑗=1

≥ ∑(Θ𝑗
𝑅(𝐼0, 𝐵0 + 1) − Θ𝑗

𝑅(𝐼0, 𝐵0))

|𝐸𝑅|

𝑗=1

 

By multiplying the above inequalities by the relevant shortage penalties and summing the two 

inequalities we obtain:  

𝐹𝑅(𝐼0,𝐵0 + 2) − 𝐹
𝑅(𝐼0, 𝐵0 + 1) ≥ 𝐹

𝑅(𝐼0, 𝐵0 + 1) − 𝐹
𝑅(𝐼0, 𝐵0). 

 

Since this inequality holds for each demand realization that satisfies Assumption 1, it also holds for 

the expectation. ∎ 

 


