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Abstract 

Following a recent interest in sustainable scheduling under operational costs that vary over time, 

we study scheduling problems on a single machine under time-of-use (TOU) electricity tariffs. 

We consider two main variants of the problem: cost minimization and profit maximization. In 

the cost minimization problem, the set of jobs to be processed is given, and the goal is to schedule 

all jobs within a planning horizon so as to minimize the total cost, while in the profit 

maximization problem, one needs to select a set of jobs to be processed such that the total profit 

is maximized. The general cases of the cost minimization and profit maximization problems in 

which preemptions are forbidden are strongly NP-hard. In this paper, we show that some special 

cases with identical processing times can be solved by efficient algorithms. In addition, we 

consider several extensions of the problems, including release times, due dates, and variable 

energy consumption. 

Keywords: Scheduling, Time-of-Use Tariffs, Single Machine, Maximum Profit, Minimum Cost 

1. Introduction and literature review 
Recently, many manufacturing and energy companies have shown an increased interest in 

sustainable scheduling. This interest has led to the implementation of variable pricing to manage 

the balance between supply and demand for electricity and to improve the reliability and 

efficiency of electrical power grids. For example, with time-of-use (TOU) tariffs, retail energy 

prices to customers vary hourly to reflect changes in wholesale energy prices. Such price 

structures are used to shift energy-intensive production jobs from peak hours to off-peak hours 

and to significantly reduce costs. Gahm et al. (2016) present a comprehensive survey on “energy-

efficient scheduling” (EES); EES approaches are scheduling approaches that aim to improve 

energy efficiency. They further develop a research framework for EES scheduling and provide 

an empirical analysis of the reviewed literature and emphasize the benefits that can be achieved 

by EES in practice. 
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Some recent studies have taken a more theoretical approach, considering various 

scheduling environments. Among these is the work of Wan and Qi (2010), who study scheduling 

under operational costs that vary over time. They consider scheduling models on a single machine 

that minimize a linear combination of the total time slot costs and a traditional scheduling 

performance measure: total completion time, maximum lateness/tardiness, total weighted number 

of tardy jobs or total tardiness. They prove the intractability of the models under general 

parameters and provide polynomial-time algorithms for special cases with nonincreasing time 

slot costs. Zhong and Liu (2012) consider a single-machine scheduling problem in which 

processing of a job incurs a cost that depends on the time slots occupied by the job. Their 

objective is to minimize a linear combination of the makespan and the total time slot costs. They 

prove that the problem is strongly NP-hard and analyze a special case with nonincreasing time 

slot costs. Zhao et al. (2016) address the scheduling problem that aims to minimize the sum of 

the total weighted completion time and the total machine time slot cost. Focusing on the case of 

nonincreasing time slot cost with nonpreemptive jobs, they show that the problem can be solved 

in polynomial time when the time slot cost decreases with certain patterns and is NP-hard in the 

general decreasing-patterns case. Shrouf et al. (2014) propose a mathematical model to minimize 

energy consumption costs for single-machine production scheduling during production processes 

with “turning on” and “turning off” costs as well. The authors present a genetic algorithm 

heuristic for this problem. 

Che et al (2016) investigate a single-machine scheduling problem under TOU tariffs to 

minimize the total electricity cost. A continuous-time MILP model is developed, and an efficient 

greedy insertion heuristic is proposed. A real-life case study from a Chinese company reveals 

that the total electricity cost can be reduced by about 30% using their algorithm. 

Che et al (2017) address a single-machine scheduling problem with a power-down 

mechanism to minimize total energy consumption and maximize tardiness simultaneously. A 

MILP model based on position assignment has been developed to formulate the problem. To 

obtain the exact Pareto front of the problem, they propose a basic ε − constraint method and 

develop a local search. 

Fang et al. (2016) and Fang (2013) consider the problem of scheduling jobs on a single 

machine to minimize the total electricity cost of processing these jobs under TOU electricity 

tariffs. They study two variations of the problem: the uniform-speed case, in which all jobs have 

given processing times, and the speed-scalable case, in which the planner can control the 

processing speed and thus the processing time of each job. In the uniform-speed case, the energy 

consumption of each job is given and is not necessarily proportional to the processing time. Using 

the 3-partition problem, they prove that the nonpreemptive version of this problem is strongly 

NP-hard and inapproximable within a constant factor unless P=NP. On the other hand, for a 

special case of the problem, i.e., identical processing time, different power demands and the 

so-called pyramidal TOU electricity tariff function, the authors provide a polynomial-time 

algorithm. 

Rubaiee et al. (2018) study a nonpreemptive scheduling problem on a single machine to 

minimize the total tardiness and total energy cost under TOU electricity tariffs. They formulate 

the problem as a mixed-integer multiobjective mathematical programming model and develop 

four multiobjective genetic algorithms to obtain a near-optimal Pareto front in a timely fashion. 

https://www.sciencedirect.com/topics/computer-science/scheduling-problem
https://www.sciencedirect.com/topics/computer-science/total-energy-consumption
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The authors provide analysis and detailed experimental results evaluating the performance of the 

algorithms. 

Aghelinejad et al (2019) address a nonpreemptive scheduling problem under TOU tariffs 

in which 𝑛 jobs are to be processed in a predefined order on a single machine. Each job has its 

own processing time and energy consumption. The machine may switch among three different 

states. The aim is to minimize the total energy consumption costs. The authors suggest a dynamic 

programming approach to model the problem. They use the Dijkstra algorithm to calculate a 

shortest path on a finite graph. Using this approach, the authors show that the uniform speed case 

of this problem is solvable in polynomial time. In addition, if the order of the jobs is not 

predefined, the authors provide a polynomial-time algorithm for constant, increasing, or 

decreasing energy costs. They use the 3-partition problem to show that the case with non-

predefined job order and TOU tariffs is NP-hard. 

Chen and Zhang (2019) consider the problem of scheduling jobs on a single machine to 

minimize the total electricity cost of processing these jobs under TOU electricity tariffs. They 

refer to this problem as scheduling with TOU costs (STOUC) and show that the STOUC problem 

is strongly NP-hard. They further study the STOUC problem with very restricted TOU costs, 

namely, the case in which the cost vector has two “valleys” (they call a period P a valley if its 

TOU cost is smaller than the TOU cost(s) of its neighboring period(s)) and show that this problem 

is NP-hard at least in the ordinary sense and is inapproximable within any constant factor. Under 

the very restricted condition of at most one valley, the authors show that the STOUC problem 

with either bounded lateness, bounded tardiness, or bounded flow-time is solvable in polynomial 

time. 

Fang et al. (2016) and Chen and Zhang (2019) study scheduling on a single machine with 

uniform-speed processing time under TOU tariffs; these studies are probably the most relevant 

to our study. Since the energy cost minimization problem is NP-hard (Fang et al. (2016)), in the 

above studies, the authors develop polynomial (resp., pseudopolynomial) algorithms under very 

restricted cost (resp., TOU tariff) functions. We took a different approach by allowing any cost 

(resp., TOU tariff) function but considering uniform-speed and identical-processing-time jobs. 

In this paper, we consider two variants of the single-machine scheduling problem with 

TOU tariffs: cost minimization and profit maximization. To the best of our knowledge, we are 

the first to study the more challenging profit maximization problem. More specifically, in the 

cost minimization problem, the set of jobs to be processed is given, and the goal is to schedule 

all jobs within a planning horizon in a way that minimizes the total cost. In the profit 

maximization problem, one needs to simultaneously select a subset of jobs to be processed and 

schedule them so that the total profit is maximized. We develop efficient algorithms for some 

variants of the problems with identical processing times as well as for preemptive versions of the 

problems. In particular, for the nonpreemptive case with identical processing times, we develop 

a strongly polynomial 3-step algorithm for both the cost-minimization and profit-maximization 

objectives. The first step of these algorithms is based on a greedy algorithm for the preemptive 

case, the second step uses dynamic programming that is applied to an instance of the problem 

with smaller dimension, and the third step merges the two solutions from the previous steps into 

a solution to the original problem. For the cost minimization problem, we further develop a 

polynomial-time algorithm for the preemptive case with release times and due dates. Our 

algorithm is based on a reduction to the Hitchcock transportation problem. We also present a 

https://www.sciencedirect.com/topics/computer-science/constant-factor
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dynamic programming polynomial-time algorithm for the nonpreemptive identical-processing-

time case with general release times or due dates. In addition, we present elegant and compact 

integer programming formulations that capture many variants of the nonpreemptive unit time 

problems, including time-varying electricity tariffs, release times, and due dates for both the 

minimum cost and the maximum profit objectives. 

The rest of the paper is organized as follows: in Section 2, we introduce notations, define 

the problem variants formally and make some observations regarding the structure of an optimal 

solution. In Section 3, we present polynomial-time algorithms for the unit-time nonpreemptive 

cost-minimization problem. In Section 4, the profit-maximization problem is analyzed. The 

negative complexity result for the general case is presented as well as the polynomial-time 

algorithms for the preemptive and unit-time cases. In Section 5, we present a generalization of 

the cost minimization problems where release time and due dates are considered. In Section 6, 

we present integer programming formulations for an extension of problems in which the power 

consumption as well as other characteristics of each job may be different. A summary of the 

results obtained in this paper and some final thoughts and directions for future study are presented 

in Section 7. 

2. Problem definitions and preliminaries 

2.1 The general problem setting 

Let 𝐽 be a set of 𝑛 jobs to be scheduled on a single machine during a given time horizon [0, 𝑇]. 

For each 𝑗 ∈ 𝐽, job 𝑗 has processing time 𝑝𝑗 and revenue 𝜉𝑗. We consider the uniform-speed 

processing time where the production process consumes electrical energy at a constant rate and 

the electricity cost varies over time. 

The time horizon [0, 𝑇] is divided into 𝐾 electricity tariff intervals (ETIs), with 𝐸𝑇𝐼1 =

[𝑡0, 𝑡1] starting at time 𝑡0 = 0 and 𝐸𝑇𝐼𝐾 = (𝑡𝐾−1, 𝑡𝐾] ending at time 𝑡𝐾 = 𝑇. The length of 𝐸𝑇𝐼𝑘 

is 𝑙𝑘 = 𝑡𝑘 − 𝑡𝑘−1 with ∑𝑙𝑘 = 𝑇. The cost of the energy consumed by the machine in one unit of 

time during 𝐸𝑇𝐼𝑘 is denoted by 𝑞𝑘. Thus, the total energy cost of processing job 𝑗 in 𝐸𝑇𝐼𝑘 is 

𝑞𝑘𝑝𝑗. If the processing extends over several ETIs, the energy cost is calculated proportionally to 

the processing time during each ETI. We consider below two objective functions: minimum cost 

and maximum profit. We note that throughout the paper, we assume that the processing times of 

the jobs are positive integers and that all the other parameters are positive rational numbers. In 

addition, we assume that preemptions have no effect on the total processing times and processing 

costs of the jobs. 

For ease of presentation, we use the three-field notation, 𝛼|𝛽|𝛾, introduced by Grahamet 

al. (1979) for classifying scheduling problems. The 𝛼 field represents the machine environment, 

the 𝛽 field represents the processing characteristics and constraints, and the 𝛾 field represents the 

objective function. For example, in 1|𝑒𝑛𝑒𝑟𝑔𝑦 |𝑐𝑜𝑠𝑡, 𝛼 = 1 stands for a single machine, 𝛽 =

 𝑒𝑛𝑒𝑟𝑔𝑦 indicates that we consider scheduling under TOU electricity (energy) tariffs and 𝛾 =

 𝑐𝑜𝑠𝑡 stands for the minimum cost goal. 
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2.2 The cost minimization problem 

In the above setting, the goal is to find a schedule for all 𝑛 jobs in the planning horizon [0, 𝑇] such 

that the energy cost is minimized. The jobs' revenues are irrelevant and thus ignored. We call the 

cost minimization problem identical if all processing times are identical. In such cases, we 

assume that 𝑝𝑗 = 1. Since we allow fractional values for the lengths of the ETIs, the unit time 

assumption is equivalent to the assumption that 𝑝𝑗 is constant (𝑝𝑗 = 𝑝). We consider four variants 

of the cost minimization problem. For general processing times, we distinguish between 

1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑐𝑜𝑠𝑡, where preemptions of jobs are forbidden, and 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑐𝑜𝑠t, where 

preemptions are allowed. In the identical case, we similarly differentiate between disallowing 

(resp., allowing) preemptions, i.e., 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 (resp., 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 =

1, 𝑝𝑚𝑡𝑛|𝑐𝑜𝑠𝑡). 

Fang et al (2016) show that a more general problem than the 1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑐𝑜𝑠𝑡 problem is strongly 

NP-hard and not in APX using a reduction from the 3-partition problem. Chen and Zhang (2019) 

used similar arguments to prove the NP-hardness and inapproximability of the 1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑐𝑜𝑠𝑡 

problem. In addition, Fang et al (2016) present a polynomial-time greedy algorithm that can be 

directly applied to 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑐𝑜𝑠𝑡. 

2.3 The profit maximization problem 

 

Given 𝑛 potential jobs with their processing times and revenues, the goal is to decide 

simultaneously upon the set of jobs to be produced and their schedule in order to maximize the 

profit during the planning horizon [0, 𝑇]. For a given schedule, the profit is defined as the total 

job revenues minus the total energy cost. We note that the additional degree of freedom resulting 

from the need to choose a subset of jobs to be processed leads to a more intricate problem, as 

indicated by our complexity analysis. 

We consider several variants of the profit maximization problem. In particular, we 

distinguish between identical processing times (identical revenues), i.e., 𝑝𝑗 = 1 (𝜉𝑗 = 1) for all 

jobs, and general processing times (revenues). Note that no generality is lost by assuming unit 

processing times (unit revenues) in the identical cases since the lengths of the ETIs (electricity 

tariffs) are rational numbers. 

We call a profit maximization problem identical if all processing times and all revenues 

are equal, 𝑝-semi-identical if all processing times are identical (𝑝𝑗 = 1), and 𝜉-semi-identical if 

all revenues are equal (𝜉𝑗  = 1). The problem is general if it is neither 𝑝-semi-identical nor 𝜉-

semi-identical. 

Each profit maximization problem is further classified into the nonpreemptive case 

1/𝑒𝑛𝑒𝑟𝑔𝑦/𝑝𝑟𝑜𝑓𝑖𝑡 and the preemptive case 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟ofit. That is, we have eight 

variants of the profit maximization problem since we have three binary properties that distinguish 

among them. 

2.4 The verge property 

We present the notions of a busy period and the verge property below to describe a solution's 

characteristics. 
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Definition 1: Busy period. For a given solution of a single-machine scheduling problem a busy 

period is a maximal time interval in which jobs are processed continuously on the machine. We 

assume that switching between busy and idle periods does not incur any extra time or extra cost.  

Definition 2: The verge property. We say that a feasible solution of the cost minimization or 

profit maximization problem satisfies the verge property if each busy period starts at the 

beginning of an ETI or ends at the end of an ETI. We note that the verge property plays an 

important role in the development of our algorithms. 

Proposition 1: There exist optimal solutions for the cost minimization and for the profit 

maximization problems having the verge property.  

This proposition, using different terminology, was proved independently by Chen and Zhang 

(2019) for the cost minimization version of the problem.  The proof for the maximum profit 

version is very similar and thus the it is omitted. 

The examples below demonstrate three instances of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝜉𝑗 =

1|𝑝𝑟𝑜𝑓𝑖𝑡 problem in which the solutions satisfy the verge property. Consider a problem with four 

identical jobs three ETIs, 𝑙1 = 1.1, 𝑙2 = 2.7, 𝑙3 = 1.1, 𝑞1 = 𝑞3 = 0.9 and 𝑞2 as given below. 

Clearly, since 𝑇 = ∑𝑙𝑘 = 4.9, four jobs can fit in the planning horizon but in optimal solution 

not necessarily all jobs are scheduled. 

Example 1: If 𝑞2 = 1.01, the optimal solution consists of two busy periods, each involving two 

jobs. The first starts at the beginning of 𝐸𝑇𝐼1 and the second ends at the end of 𝐸𝑇𝐼3, as illustrated 

in Figure 1. 

  

𝑙𝑘 1.1 2.7 1.1 

𝑞𝑘 0.9 1.01 0.9 

𝑘 1 2 3 

Figure 1 

Note that we would obtain the same solution for any 1.0111 … > 𝑞2 > 0.9. 

Example 2: For 𝑞2 > 1.0111…, any optimal solution consists of two busy periods, each 

involving one job. Due to the increase in the energy cost in 𝐸𝑇𝐼2 it is not worth schedule more 

than two out of the four jobs. The first starts (resp., ends) at the beginning (resp., end) of 𝐸𝑇𝐼1, 

and the second starts (resp. ends) at the beginning (resp., end) of 𝐸𝑇𝐼3, as illustrated in Figure 2. 

There are infinitely many other optimal solutions that do not satisfy the verge property.   

 

𝑙𝑘 1.1 2.7 1.1 

𝑞𝑘 0.9 1.02 0.9 

𝑘 1 2 3 

Figure 2 

Example 3: For the case of 𝑞2 < 0.9, there are four optimal solutions that satisfy the verge 

property (and many others that do not). See Figure 3. At such low energy cost at 𝐸𝑇𝐼2 it worth 

to utilize it completely and produce all the four jobs.  
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𝑙𝑘 1.1 2.7 1.1 

𝑞𝑘 0.9 0.8 0.9 

𝑘 1 2 3 

Figure 3 

Note that if 𝒒𝒌𝟏
< 𝒒𝒌𝟐

 (resp., 𝒒𝒌𝟏
> 𝒒𝒌𝟐

), a busy period that extends from 𝑬𝑻𝑰𝒌𝟏
 to 𝑬𝑻𝑰𝒌𝟐

 starts 

at the beginning of 𝑬𝑻𝑰𝒌𝟏
 (resp., ends at the end of 𝑬𝑻𝑰𝒌𝟐

). 

Corollary 1 below is an immediate consequence of Proposition 1. It allows a solution of 

the identical-jobs variants in polynomial space to be described in terms of the number of ETIs. 

Corollary 1: There exist optimal solutions for the cost minimization and profit maximization 

problems in which the number of busy periods is not greater than O(𝑲), the number of ETIs. 

 

2.5 Description of the input and output 

There are several well-defined ways to describe the parameters of the problem at hand. Since the 

complexity of an algorithm is calculated relative to the size of the input, we assume that the most 

compact possible representation is used for each variant of the problem. In particular, in cases 

where the jobs are identical in all their characteristics, the size of the input is 𝑂(𝐾), the number 

of ETIs. Otherwise, it is 𝑂(𝐾 + 𝑛), the number of ETIs plus the number of jobs. With these 

representations, an optimization algorithm for the identical jobs cases is strongly polynomial only 

if its running time is polynomial in 𝐾 and does not depend on 𝑛. 

Similarly, the complexity of an optimization algorithm can be affected by the 

representation of the output. In the 1|energy|cost and 1|energy|profit problems, a solution of a 

single-machine scheduling problem consists of a list of the scheduled tasks and their respective 

starting times. That is, the output size is 𝑂(𝑛). However, in identical jobs cases, the solution can 

be described by a list of busy periods, which is of length 𝑂(𝐾). Therefore, with this output 

representation, it may be possible to develop a strongly polynomial-time algorithm for some 

identical jobs cases. 

In Table 1, we list the variants of the problem in this study along with their input and output 

representation schemes and the size of these representations using O-notation. 
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Table 1: Input and output size and description for each variant of the problem 

Three-field notation Input Output 

1|energy|cost 𝑂(𝑛 + 𝐾): 𝑝𝑗 , 𝑞𝑘 , 𝑙𝑘 Starting time of each job, 𝑂(𝑛) 

1|energy, pmtn|cost Starting time and length of each 

busy period, 𝑂(𝐾) 1|energy, 𝑝𝑗 = 1|cost 𝑂(𝐾): 𝑞𝑘 , 𝑙𝑘, 𝑛 

1|energy, pmtn, 𝑝𝑗 = 1|cost 

1|energy|profit 𝑂(𝑛 + 𝐾): 

𝑝𝑗 , 𝜉𝑗, 𝑞𝑘, 𝑙𝑘 

List of processed jobs and their 

starting times, 𝑂(𝑛) 

1|energy, 𝑝𝑗 = 1|profit 𝑂(𝑛 + 𝐾): 𝑝𝑗 , 𝑞𝑘 , 𝑙𝑘 

1|energy, 𝜉𝑗 = |profit 𝑂(𝑛 + 𝐾): 𝜉𝑗 , 𝑞𝑘 , 𝑙𝑘 

1|energy, pmtn/profit 𝑂(𝑛 + 𝐾): 

𝑝𝑗 , 𝜉𝑗, 𝑞𝑘, 𝑙𝑘 

List of processed jobs; starting 

time and length of each busy 

period, 𝑂(𝑛 + 𝐾) 1|energy, pmtn, 𝑝𝑗 = 1|profit 𝑂(𝑛 + 𝐾): 

𝜉𝑗, 𝑞𝑘, 𝑙𝑘 

1|energy, pmtn, 𝜉𝑗 = 1|profit 𝑂(𝑛 + 𝐾): 𝑝𝑗 , 𝑞𝑘 , 𝑙𝑘 

1|energy, 𝑝𝑗 = 1, 𝜉𝑗 = 1|profit   𝑂(𝐾): 𝑞𝑘, 𝑙𝑘 , 𝑛 Starting time and length of each 

busy period (the number of jobs 

is implied), 𝑂(𝐾) 
1|energy, pmtn, 𝑝𝑗 = 1, 𝜉𝑗 = 1|profit 

  

 

3. The cost minimization problem. 
In this section, we present a polynomial-time 3-step algorithm for the nonpreemptive identical 

jobs case 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑐𝑜𝑠𝑡. The first step of this algorithm is based on a greedy algorithm 

for the preemptive case, the second step uses a dynamic program, and the third step merges the 

two solutions from the previous steps into a list of busy periods. 

Recall that a solution for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑐𝑜𝑠𝑡 problem can be represented by a list 

of busy periods and the actual assignment of jobs or fractions of jobs to busy periods can then be 

carried out in any order. The following proposition is an adaptation of a result by Fang et al 

(2016). 

Proposition 2: There exists an 𝑂(𝐾 log 𝐾 + 𝑛) algorithm for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑐𝑜𝑠𝑡 problem. 

Proof: Recall that the solution of this variant is a list of busy periods. The problem is solved by 

a greedy procedure that first calculates the total required processing time and then allocates 

processing times to the cheapest ETIs. The procedure requires sorting the ETIs in nondecreasing 

order of cost and then allocating the processing times of all the jobs to the ETIs one by one. The 

processing time allocated to the most expensive utilized ETI may be shorter than the length of 

the ETI. The amount of time needed to calculate the total processing time of all jobs and to 

allocate them to the ETIs is 𝑂(𝑛). The amount of time required to sort the ETIs by energy tariffs 

is O(𝐾 log 𝐾). Thus, the overall time complexity of the procedure is O(𝐾 𝑙𝑜𝑔 𝐾 + 𝑛).  ∎ 

Fang et al (2016) present a very similar polynomial-time algorithm for a more general case in 

which the jobs have variable levels of energy consumption. The complexity of their algorithm is 

𝑂(𝐾 log 𝐾  + 𝑛 log 𝑛) because they need to sort the jobs by energy demand. Note that if the jobs 

are identical, i.e., 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡, the procedure works in exactly the same way, 
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but there is no need to calculate the sum of the processing times and to determine the start time 

of each job. In this case, the time complexity is O(K log K). 

Next, we consider the identical jobs problem without preemptions 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡. 

Observe that a lower bound on the value of the optimal solution is provided by the value of the 

optimal solution when preemptions are allowed. We use the following observation in the design 

of the algorithm for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem. 

Lemma 1: Let 𝒂𝒌 be the total amount of time allocated at 𝑬𝑻𝑰𝒌 in an optimal solution of 

𝟏|𝒆𝒏𝒆𝒓𝒈𝒚, 𝒑𝒋 = 𝟏, 𝒑𝒎𝒕𝒏|𝒄𝒐𝒔𝒕, as described in the proof of Proposition 2. Then, there exists an 

optimal solution for the nonpreemptive case (𝟏|𝒆𝒏𝒆𝒓𝒈𝒚, 𝒑𝒋 = 𝟏|𝒄𝒐𝒔𝒕) in which the utilization 

of each 𝑬𝑻𝑰𝒌 is at least 𝒂𝒌 − 𝟏. 

Proof: We proceed by contradiction: consider a solution of 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 where the 

utilization of one or more ETIs is less than the corresponding 𝑎𝑘 − 1, and let 𝑘′ be the index of 

the cheapest such ETI. Since the total processing times of the jobs are the same in both the 

preemptive and nonpreemptive versions, it must be the case that in the solution of the 

nonpreemptive problem, at least one job is scheduled entirely in an ETI (or several ETIs) that is 

at least as expensive as 𝐸𝑇𝐼𝑘′. However, since there is an idle time of more than one time unit in 

𝐸𝑇𝐼𝑘′, it is possible to remove one job from the more expensive ETIs and schedule it in 𝐸𝑇𝐼𝑘′. 

Note that if the idle time in 𝐸𝑇𝐼𝑘′ is divided among several idle periods, the above modification 

may require rescheduling jobs within 𝐸𝑇𝐼𝑘′ but without affecting their energy cost.   ∎ 

We design a polynomial-time 3-step algorithm based on the insight obtained from Lemma 

1. The idea is to schedule many of the unit-time jobs in ETIs according to the solution of the 

preemptive case. The remaining 𝑂(𝐾) jobs are scheduled in the remaining idle periods using a 

dynamic programing algorithm. Finally, the two solutions are combined. The procedure is 

described below: 

Step 1 (dimension reduction): Solve the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem. Let 𝑎𝑘 be the 

time allocated to 𝐸𝑇𝐼𝑘 in this solution. Tentatively schedule max(⌊𝑎𝑘 − 1⌋, 0) jobs at each ETI 

in the solution of 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡. 

The remaining number of jobs, 𝑛′ = 𝑛 − ∑ max(⌊𝑎𝑘 − 1⌋, 0)𝐾
𝑘=1 , cannot be too large; in 

particular, it is 𝑂(𝐾). 

Step 2 (dynamic programming(: We create a streamlined version of the problem with 𝑛′ tasks 

and 𝐾 ETIs of length 𝑙𝑘
′ = 𝑙𝑘 − max(⌊𝑎𝑘 − 1⌋, 0), 𝑇′ = ∑ 𝑙𝑘

′𝐾
𝑘=1 , and the same 𝑞𝑘s. This problem 

is solved by a dynamic programming algorithm described below: 

Recall that by Proposition 1, there exists an optimal solution for the streamlined problem 

that satisfies the verge property, i.e., an optimal solution such that any busy period starts at the 

beginning or ends at the end of an ETI. For the identical-processing-time case, this solution 

implies that the other end of a busy period (the one that does not necessarily coincide with an 

ETI verge) must be at an integer time difference from such a verge. That is, the set of starting 

times of any (unit time) job is included in: 

Θ = {𝜃: 𝜃 = 𝑡𝑘 + 𝑖, 𝑘 = 0, … , 𝐾, 𝑖 = −𝑛′, … , 𝑛′} ∩ [0, 𝑇 − 1]. (1) 

 



 

 

10 

 

 

Clearly, the cardinality of Θ is 𝑂(𝐾𝑛′). We define the state space of our dynamic program 

as {0, … , 𝑛′} × Θ, which represents the number of jobs processed so far and the current time 

within the set Θ. We define the function 𝑛𝑒𝑥𝑡(𝜃) to return the next member of Θ; that is, 

𝑛𝑒𝑥𝑡(𝜃) = min{𝜃′ ∈ Θ: 𝜃′ > 𝜃} (2) 

 

and 𝑛𝑒𝑥𝑡(𝜃) = 𝑇 if 𝜃 is the greatest element in Θ. 

In addition, for each candidate starting point, we can calculate the total energy cost of 

processing a job starting at this point. If the next time unit falls entirely within a single ETI, this 

is the electricity tariff of the ETI. If it spans several ETIs, the cost is calculated based on the 

relative time in each ETI. The worst-case complexity of such a straightforward calculation is 

𝑂(𝐾) for each of the 𝑂(𝐾𝑛′) members of Θ, i.e., 𝑂(𝐾2𝑛′). We denote the cost of processing a 

job starting at time 𝜃 by 𝜂𝜃. 

Now, the decision at each point in Θ is whether to start processing a job or not. Our 

Bellman’s equation is 

𝑓(𝜃, 𝑗) = min{𝑓(𝑛𝑒𝑥𝑡(𝜃), 𝑗), 𝜂𝜃 + 𝑓(𝜃 + 1, 𝑗 + 1)}   

for all 𝜃 ∈ Θ: 𝜃 < 𝑇, and 𝑗 = 0, … , 𝑛′ − 1. The 𝑓(𝜃, 𝑗) function represents the minimal 

remaining cost at time 𝜃 when considering the 𝑗th job. The boundary conditions are given by 

𝑓(𝜃, 𝑗) = {
0 𝑗 = 𝑛′ ∧ 𝜃 < 𝑇
∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Step 3 (merging): Here, we create the busy periods for the original problem from the busy periods 

created in Steps 1 and 2. From each busy period of Step 2 that starts at 𝐸𝑇𝐼𝑘1
 and ends at 𝐸𝑇𝐼𝑘2

, 

we create a busy period in the original problem that consists of all the time allocated in Step 2 to 

this busy period and all the time allocated in Step 1 to ETIs 𝑘1, … , 𝑘2 − 1. In addition, if there is 

no other busy period in Step 2 that starts at 𝐸𝑇𝐼𝑘2
, all the time allocated to this ETI in Step 1 is 

also included in the busy period. Finally, any time that was allocated in Step 1 that is not included 

in the busy periods created by the above process are added as “stand-alone” busy periods to the 

solution. The complexity of this process is 𝑂(𝐾). 

Below is a summary of our algorithm for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem, followed 

by an illustrative example (Example 4). 

 

 

 

Algorithm 1: A 3-step procedure for the 1|energy, 𝑝𝑗 = 1|cost problem 

Step 1 (dimension reduction): Solve the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem with the same 

input and allocate max(⌊𝑎𝑘 − 1⌋, 0) unit-time jobs in each 𝐸𝑇𝐼𝑘, where 𝑎𝑘 is the total processing 

time allocated in the preemptive case to 𝐸𝑇𝐼𝑘. 
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Step 2 (dynamic programming  ( : Create a streamlined version of the problem where the length 

of each ETI is 𝑙𝑘 − max(⌊𝑎𝑘 − 1⌋, 0) and the number of jobs to be processed is 𝑛 −

∑ max(⌊𝑎𝑘 − 1⌋, 0)𝐾
𝑘=1 . Solve this problem using the dynamic programming algorithm described 

above. 

Step 3 (merging): Combine the two solutions obtained in the previous steps into a list of busy 

periods that materializes their total utilization prescribed by the first two steps at each 𝐸𝑇𝐼𝑘. 

Example 4: Consider an instance of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem with 𝑛 = 20 jobs and 

𝐾 = 5 ETIs, where 𝑞 = (1,2,40,3,1) and 𝑙 = (8.8,1.1,2.1,2,10). When applying Algorithm 1, 

we first solve the problem with preemptions. The optimal solution in terms of the time allocated 

at each ETI is 𝑎 = (8.8,1.1,0,0.1,10).  See Figure 4. 

      

𝑙𝑘 8.8 1.1 2.1 2 10 

𝑞𝑘 1 2 4 3 1 

Figure 4: Example 4, initial preemptive solution 

We round down this solution to create an initial allocation of jobs to the ETIs of (7,0,0,0,9), with 

a total energy cost of 16.  

      

𝑙𝑘 8.8 1.1 2.1 2 10 

𝑞𝑘 1 2 4 3 1 

Figure 5: Example 4, Step 1 rounded down solution 

For Step 2, we are left with 𝑛′ = 4 jobs, ETI lengths 𝑙 = (1.8,1.1,2.1,2,1) and the same electricity 

tariffs. The optimal solution at this step (obtained by solving the above dynamic program) when 

represented as the time allocated at each ETI is (1.8,0.2,0,1,1), with a cost of 6.2. 

      

𝑙𝑘 1.8 1.1 2.1 2 1 

𝑞𝑘 1 2 4 3 1 

Figure 6: Example 4, Step 2, solution of the reduced problem 

Merging these two solutions, we obtain the solution (8.8, 0.2, 0, 1, 10), with a total cost of 16 +

6.2 = 22.2. Nine jobs are processed from time 0 to time 9 and eleven from time 13 to time 24.  

      

𝑙𝑘 8.8 1.1 2.1 2 10 

𝑞𝑘 1 2 4 3 1 

Figure 7: Example 4, optimal solution 

 

Interestingly, in this optimal solution, the utilization of the second ETI is much lower than the 

utilization of the fourth one, although the electricity cost at the fourth is 50% higher. Clearly, this 

outcome occurs because adding additional jobs at time 9 will require the allocation of processing 

time at the third ETI, which is very costly.  
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Theorem 1: Algorithm 1 solves the 𝟏|𝒆𝒏𝒆𝒓𝒈𝒚, 𝒑𝒋 = 𝟏|𝒄𝒐𝒔𝒕 problem in 𝑶(𝑲𝟑) time. 

Proof: We first prove the feasibility of the obtained solution. That is, we show that the time 

allocated by Step 3 satisfies the following requirements: 

1. for each ETI the time does not exceed the ETI length; 

2. the total time allocated sums to 𝑛, the number of jobs; 

3. the allocated time can be grouped into busy periods of integer length. 

Let 𝒮(𝑙1
′ , … , 𝑙𝐾

′ ) ⊂ ℝ+
𝐾 be the set of vectors that represent feasible processing times 

allocated to each 𝐸𝑇𝐼 in the dimension-reduced problem that can be grouped into busy periods 

of integer length. Note that by definition, a busy period does not contain idle time. For example, 

the vector (0.3, 0.7, 0, 2) is a member of 𝒮(0.3, 0.9,0.9, 2), while the vector (0.3, 0, 0.7, 2) is not; 

(0.5, 0.25, 0.25) is not a member of 𝒮(0.5, 0.5, 0.25), but it is a member of 𝒮(0.5, 0.25, 0.5). 

Moreover, since the members of 𝒮(𝒍′) represent feasible processing time allocation, then 𝒚 ∈

𝒮(𝒍′) implies 𝑦𝑘 ≤ 𝑙𝑘
′  for all 𝑘 = 1, … , 𝐾, which is Requirement 1 above. 

Let us formulate the problem as the following mathematical program:  

min ∑ 𝑞𝑘𝑦𝑘

𝐾

𝑘=1
 

 

(3) 

∑ 𝑦𝑘

𝐾

𝑘=1
= 𝑛′ (4) 

𝐲 ∈ 𝒮(𝑙′) (5) 

 

The objective function (3) is simply to minimize the total energy cost of all the allocated 

times. Constraint (4) stipulates that we allocate enough time to process all the jobs. Constraint 

(5) limits the allocation of times to ETIs in such a way that allows them to be arranged into busy 

periods of integer length. 

Equivalently, the original problem can be formulated as 

min ∑ 𝑞𝑘𝑥𝑘

𝐾

𝑘=1
 

 

(6) 

∑ 𝑥𝑘

𝐾

𝑘=1
= 𝑛 (7) 

𝐱 ∈ 𝒮(𝑙) (8) 

 

Let 𝒙′ be the vector of times allocated to each ETI at Step 1. That is, 

𝑥𝑘
′ = max(0, ⌊𝑎𝑘⌋ − 1)  ∀𝑘. 

Let 𝒚∗ be an optimal solution of (3)-(5). The theorem can be restated as the claim that 𝒙′ +

𝒚∗ is an optimal solution of (6)-(8). To see that 𝒙′ + 𝒚∗ satisfies (7), note that ∑ 𝑥𝑘
′𝐾

𝑘=1 = 𝑛 − 𝑛′ 

and thus ∑ (𝑥𝑘
′ + 𝑦𝑘

∗)𝐾
𝑘=1 = ∑ 𝑥𝑘

′𝐾
𝑘=1 + ∑ 𝑦𝑘

∗𝐾
𝑘=1 = (𝑛 − 𝑛′) + 𝑛′ = 𝑛. By the construction of the 

input of the first two steps, we have 𝑥𝑘
′ + 𝑦𝑘

∗ ≤ 𝑙𝑘 (Requirement 1) since 𝑦∗ ≤ 𝑙𝑘
′ = 𝑙𝑘 − 𝑥𝑘

′ . It is 

only left to show that the requirement that the times allocated at the ETIs can be grouped into 
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integer-length busy periods (Requirement 3) is satisfied. Consider a busy period created in Step 

3 that starts at 𝐸𝑇𝐼𝑘1
 and ends at 𝐸𝑇𝐼𝑘2

. This busy period was created by adding integer times 

allocated at Step 1 to the busy period (also of integer length) created at Step 2. Clearly, the sum 

of several integers is also an integer. 

Next, we prove the optimality of the solution. Assume by contradiction that 𝑥′ + 𝑦∗  is not 

optimal and let 𝑥∗ be an optimal solution of (6)-(8) that satisfies 𝑥𝑘
∗ ≥ 𝑥𝑘

′ . Such an optimal 

solution exists by Lemma 1. Now, let 𝑦′ = 𝑥∗ − 𝑥′, so 𝑦′ is a feasible solution of (3)-(5). The 

value of the optimal solution of (6)-(8) can be expressed as 

∑ 𝑞𝑘𝑥𝑘
∗

𝐾

𝑘=1
= ∑ 𝑞𝑘𝑥𝑘

′
𝐾

𝑘=1
+ ∑ 𝑞𝑘𝑦𝑘

′
𝐾

𝑘=1
≥  ∑ 𝑞𝑘𝑥𝑘

′
𝐾

𝑘=1
+ ∑ 𝑞𝑘𝑦𝑘

∗
𝐾

𝑘=1
= ∑ 𝑞𝑘(𝑥𝑘

′ + 𝑦𝑘
∗)

𝐾

𝑘=1
 

which contradicts the assumption that 𝑥′ + 𝑦∗ is suboptimal. The first equality follows from the 

construction of 𝑦′ such that 𝑥∗ = 𝑦′ + 𝑥′. The inequality follows from the optimality of 𝑦∗ with 

respect to (3)-(5). 

 

The complexity of Step 1 and Step 3 is 𝑂(𝐾). The overall complexity of the dynamic 

program of Step 2 is dictated by the number 𝑛′2𝐾 of its states and by the effort of calculating the 

values of 𝜂𝜃, which is 𝑂(𝐾2𝑛′). Recall that 𝑛′ = 𝑂(𝐾); thus, the complexity of our case is 

𝑂(𝐾3), which is polynomial with respect to the size of the input of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 

problem. Since the dimension of the input of the original problem is 𝑂(𝐾), this is a polynomial-

time algorithm.  Therefore, the complexity of Algorithm 1 is dominated by the complexity of 

Step 2, which is 𝑂(𝐾3).   ∎ 

Note that the dynamic program could be used to solve the original problem directly, but 

since the complexity of the procedure depends on the number of jobs that should be scheduled, 

it is not polynomial unless we reduce the number of jobs to 𝑂(𝐾), as we did during the first step. 

Finally, if the lengths of the ETIs are all integers, preemption will not occur in the optimal 

schedule obtained from the greedy procedure since jobs have a unit size, and all events happen 

at integral times. Therefore, it is possible to use the same greedy procedure that solves the 

preemptive case to solve the non-preemptive one.  

4. The profit maximization problem 
We turn now to the maximum-profit version of the scheduling problem under TOU electricity 

tariffs. We begin with negative complexity results for 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 and 

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡. In Section 4.2, we present a pseudopolynomial algorithm for 

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡. In the remainder of Section 4, we continue to the more intricate cases 

in which preemptions are not allowed. 

4.1 Negative complexity results 

First, we show that the 𝜉-semi-identical problem, 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡, is NP-hard in the 

strong sense and APX. Clearly, this result implies that the general problem, 1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑝𝑟𝑜𝑓𝑖𝑡, 

is also at least as hard. 
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Proposition 3: The 𝜉-semi-identical problem, 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡, is NP-hard in the strong 

sense and not approximable with any constant unless 𝑃 = 𝑁𝑃. 

Proof: The 1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑐𝑜𝑠𝑡 problem can be reduced to the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 problem by 

multiplying all the energy costs 𝑞𝑘 by some constant 𝑎 such that 𝑎𝑞𝑘𝑝𝑗 < 1 for all ETI 𝑘 and job 

j. For that, any 𝑎 <
1

max
𝑗,𝑘

𝑝𝑗𝑞𝑘
 will work.   With such energy tariffs, the cost of processing any job 

at any time is less than 1 and thus if in an optimal solution of the profit maximization problem 

all the jobs are scheduled this is also an optimal solution for the cost minimization problem. 

Otherwise, if in an optimal solution of the profit maximization problem some jobs are not 

scheduled the cost minimization problem admits no feasible solution. ∎ 

Next, we show that the profit maximization problem with preemption (1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡) 

is NP-hard in the weak sense. 

 

Proposition 4: The 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡 problem is NP-hard in the weak sense. Moreover, 

the problem remains NP-hard even if the revenue is proportional to the processing times; that is, 

𝜉𝑗 = 𝛼𝑝𝑗 for some 𝑎 > 0 and for all jobs. 

Proof: The proof is accomplished by a reduction of the NP-complete decision problem "subset 

sum" (Karp 1972). Recall that the subset sum problem is defined as follows: given a set of 

positive integers 𝑎1, 𝑎2, … , 𝑎𝑛 and an integer 𝑏, decide if there is a subset of this set whose sum 

equals 𝑏. We reduce this problem to the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡 problem by creating an instance 

with one "cheap" ETI of length 𝑙1 = 𝑏 with 𝑞1 = 0 and a set of jobs with 𝑝𝑗 = 𝜉𝑗 = 𝑎𝑗. Clearly, 

the optimal solution of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡 problem equals 𝑏 if and only if the answer 

to the subset sum problem is true. ∎ 

4.2 The profit maximization problem with preemption 

The solution of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡 problem is characterized merely by stating the jobs 

that are selected to be processed and the amount of time allocated at each ETI for processing. We 

first observe a straightforward property of the optimal solutions of the problem that greatly 

simplifies its solution. 

Lemma 2: The 𝟏|𝒆𝒏𝒆𝒓𝒈𝒚, 𝒑𝒎𝒕𝒏|𝒑𝒓𝒐𝒇𝒊𝒕 problem admits an optimal solution in which all the 

ETIs excluding one, ETI �̃�, are either fully utilized or not utilized at all. Moreover, the energy 

cost 𝒒�̃� is not smaller than the energy cost 𝒒𝒌 of any of the fully utilized ETIs and not greater 

than that of any of the nonutilized ETIs. 

Proof: Assume by contradiction a solution that does not satisfy the conditions of the lemma. 

Such a solution can be improved by deallocating the processing time of a job from the most 

expensive utilized ETI and reallocating this processing time in some cheaper ETI. ∎ 

Next, we present a pseudopolynomial-time dynamic programming algorithm for the 

problem. Recall that the processing times of the jobs are all integers, but the lengths of the ETIs 

are not necessarily integers. 
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In this section the ETIs are first indexed in nondecreasing order of their electricity cost, 

𝑞𝑘. Note that under this ordering, no preemptions are required in an optimal solution and thus the 

solution can be characterized by the starting time of each job. Later, we revert to the original 

order of the ETIs and greedily schedule the jobs that are selected to be processed. 

Let �̃�𝑡𝑗 be the profit of job 𝑗 (the revenue 𝜉𝑗 net of the electricity cost required to produce 

it) assuming that job 𝑗 started at time 𝑡 when the ETIs are indexed according to their electricity 

cost. The calculation of each constant �̃�𝑡𝑗 can be performed in 𝑂(𝐾) units of time, and thus, the 

overall complexity of calculating all of these values is 𝑂(𝑛𝑇𝐾). 

We define 𝑓(𝑡, 𝑗) as the expected profit after considering 𝑗 jobs and utilizing the cheapest 

𝑡 time units. The following Bellman equations define the dynamic program that solves the 

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡 problem: 

𝑓(𝑡, 𝑗) = max{�̃�𝑡𝑗 + 𝑓(𝑡 + 𝑝𝑗 , 𝑗 + 1), 𝑓(𝑡, 𝑗 + 1)}   ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽 

𝑓(𝑡, 𝑛 + 1) = 0    ∀𝑡 ∈ 𝑇 

𝑓(𝑇 + 1, 𝑗) = 0    ∀𝑗 ∈ 𝐽 

Solving the dynamic program can be done in 𝑂(𝑛𝑇) time, and thus, the time complexity is 

dominated by the preprocessing step, which is 𝑂(𝑛𝑇𝐾). This is clearly a pseudopolynomial 

running time since the input dimension is independent of 𝑇. 

4.3 Identical and semi-identical cases with preemptions 

Both the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 and the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 cases admit 

polynomial-time algorithms. A pseudocode that describes such a solution procedure for the 𝑝-

semi-identical maximum profit problem is given in Algorithm 2. 
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Algorithm 2: Polynomial-time algorithm for 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 

Input: 

The jobs in nonincreasing order of revenue, i.e., such that 𝜉1 ≥ 𝜉2 ≥ ⋯ ≥ 𝜉𝑛 

The ETIs in a nondecreasing order of tariffs, i.e., such that 𝑞1 ≤ 𝑞2 ≤ ⋯ ≤ 𝑞𝐾 

 

Let  𝑗 = 1, 𝑘 = 1 

Let 𝐴𝑘 = 0 for all 𝑘 = 1, … , 𝐾  // the processing time allocated to  𝐸𝑇𝐼𝑘 

While 𝑘 ≤ 𝐾 and 𝑗 ≤ 𝑛 

 // calculate the electricity cost of assigning the next job 

 𝑡 ← 𝑝𝑗, 𝑎 ← 0, 𝑘′ ← 𝑘 

 While 𝑡 ≥ 0 and 𝑘′ < 𝐾 

  𝑎 ← 𝑞𝑘′ ⋅ min(𝑡, 𝑙𝑘′ − 𝐴𝑘′) 

  𝑡 ← 𝑡 − min(𝑡, 𝑙𝑘′ − 𝐴𝑘′) 

  𝑘′ ← 𝑘′ + 1 

      

 // allocating the job processing time to the ETIs  

 If  𝜉𝑗 > 𝑎 and 𝑡′ = 0 

  𝑡 ← 𝑝𝑗 

  For 𝑘′′ = 𝑘 to (𝑘′ − 1) 

   𝐴𝑘 ← 𝐴𝑘 + min(𝑡, 𝑙𝑘′′ − 𝐴𝑘′′) 

   𝑡 ← 𝑡 − min(𝑡, 𝑙𝑘′′ − 𝐴𝑘′′) 

  𝑗 ← 𝑗 + 1 

  𝑘 ← 𝑘′′ 

 Else 

  break  // exit the while loop if no profitable allocation remains 

Return:{1, … , 𝑗 − 1}, 𝐴1, … , 𝐴𝑘 

Algorithm 2 starts by sorting the jobs in nonincreasing order of revenue and sorting the 

ETIs in nondecreasing order of tariffs. For simplicity of notation, we assume that these lists are 

already ordered. The idea is to first schedule the most profitable jobs and to continue as long as 

it is still possible to add jobs while increasing the profit. The algorithm loops through the ETIs 

and jobs while maintaining the index of the next job to consider, 𝑗, and the index of the current 

𝐸𝑇𝐼, 𝑘. For each job, the algorithm first calculates the electricity cost of allocating it to the 

cheapest remaining ETIs. If the cost is smaller than the profit, the processing time of the job is 

allocated to these ETIs. Next, the indexes of the current job and the ETI are updated. If the current 

job is already not profitable or cannot fit in the remaining time, no other jobs are considered. 

Recall that in Table 1, we specified that the solution of the semi-identical preemptive case is 

described by a list of busy periods and a list of the jobs that are being processed. Clearly, the busy 

periods can be easily constructed from the time allocated at each ETI, returned as 𝐴1, … , 𝐴𝐾. 

Proposition 5: Algorithm 2 solves the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡 problem in  

𝑂(n ⋅ log 𝑛 + K ⋅ log 𝐾) time. 

Proof: We first prove that the algorithm solves the problem and then show its complexity. Let 

𝑆𝐴𝐿𝐺 denote the solution delivered by the algorithm and proceed by contradiction: assume that 
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there is a better solution 𝑆∗ such that 𝑆∗ satisfies the conditions of Lemma 2 and has the minimal 

number of scheduled jobs among these solutions. Note that 𝑆𝐴𝐿𝐺 is the only solution that satisfies 

Lemma 2 with the same number of jobs (up to shifting busy time within the most expensive ETI, 

a modification that does not change its value). Thus, the number of scheduled unit time jobs in 

𝑆∗ must be different from the number in 𝑆𝐴𝐿𝐺. If 𝑆∗ has more jobs than 𝑆𝐴𝐿𝐺, it means that it 

utilizes times that are not utilized in 𝑆𝐴𝐿𝐺 and schedules at least one job with a revenue that is 

not greater than the one with the smallest revenue scheduled by 𝑆𝐴𝐿𝐺. Now, since 𝑆∗ is optimal 

with a minimal number of jobs, it is not possible to remove one job from it without decreasing 

its value. This observation implies that the marginal electricity cost of its last and most expensive 

time unit interval (or intervals) is smaller than the revenue of the job with the smallest revenue 

that it schedules. However, this job and these marginal time intervals were available for the 

algorithm when it stopped. The fact that the job was not scheduled by ALG is a contradiction 

because it implies that the stopping condition did not hold. A similar argument can be used to 

show why it cannot be the case that the number of jobs in 𝑆∗ is smaller than the number of jobs 

in 𝑆𝐴𝐿𝐺, and thus the contradiction holds in this case as well. 

To show its complexity of the algorithm, we note that the main loop is repeated at most 

𝑛 + 𝐾 times since at each iteration, at least one of the counters 𝑗 or 𝑘 is increased by at least one. 

The internal loop (for calculating the electricity cost of jobs that utilize several ETIs) is repeated 

at most 𝐾 times over all the iterations of the main loop. Thus, the complexity is dominated by the 

sorting of the list of jobs, which takes 𝑂(𝑛 ⋅ 𝑙𝑜𝑔 𝑛), or by the sorting of the list of ETIs, which 

takes 𝑂(𝐾 ⋅ 𝑙𝑜𝑔 𝐾). ∎ 

The solution process for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 problem is very similar, 

except that in this case, the jobs are ordered in nondecreasing order of 𝑝𝑗. We do not include the 

formal proof here for the sake of brevity. A sound heuristic for the general case of the 

1/𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛/𝑝𝑟𝑜𝑓𝑖𝑡 problem is to order the jobs in nonincreasing order of 𝜉𝑗/𝑝𝑗. This 

procedure, of course, does not guarantee an optimal solution. 

Recall that in the identical case, 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡, the input and 

output dimensions are 𝑂(𝐾), and thus, applying Algorithm 2 for this special case does not result 

in a polynomial-time algorithm. A streamlined version of the solution procedure for the identical 

jobs case is presented as a pseudocode in Algorithm 3. 
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Algorithm 3: Polynomial algorithm for 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 

Input: The ETIs in nondecreasing order of tariffs, i.e., such that 𝑞1 ≤ 𝑞2 ≤ ⋯ ≤ 𝑞𝐾 

 

Let 𝑁 = 0, 𝑘 = 1 

Let 𝐴𝑘 = 0 for all 𝑘 = 1, … , 𝐾  // the processing time allocated to  𝐸𝑇𝐼𝑘 

 

// greedily allocate time to the cheapest ETI 

While 𝑘 ≤ 𝐾 

    // allocating time to ETIs  

    If ⌈𝑁⌉ ≤ 𝑛  and 𝑞𝑘 < 1 

    𝐴𝑘 ← min(𝑛 − ⌈𝑁⌉, 𝑙𝑘)  

    𝑘 ← 𝑘 + 1  

    𝑁 ← 𝑁 + 𝐴𝑘  

    else 

    break  // exit the while loop 

 

// check the electricity cost of the last job 

𝑡 ← 𝑁 − ⌊𝑁⌋, 𝑘′ ← 𝑘 − 1, 𝑎 ← 0 //  first: the cost of the already allocated fraction 

While t > 0 

𝑎 ← 𝑎 + 𝑞𝑘′ ⋅ min(𝑡, 𝑙𝑘′)  

𝑡 ← 𝑡 − min(𝑡, 𝑙𝑘′)  

𝑘′ ← 𝑘′ − 1  

 

𝑡 ← ⌈𝑁⌉ − 𝑁, 𝑘′ ← 𝑘   // second: the cost of the remaining fraction 

While t > 0 

𝑎 ← 𝑎 + 𝑞𝑘′ ⋅ min(𝑡, 𝑙𝑘′)  

𝑡 ← 𝑡 − min(𝑡, 𝑙𝑘′)  

𝑘′ ← 𝑘′ + 1  

 

If 𝑎 < 1    // allocate the remaining processing time of the last job if it is profitable 

𝑡 ← ⌈𝑁⌉ − 𝑁  

While t > 0 

𝐴𝑘  ← min(𝑡, 𝑙𝑘)  

𝑡 ← 𝑡 − min(𝑡, 𝑙𝑘)  

𝑘 ← 𝑘 + 1  

Else  // deallocate the processing time of the last job if it is not profitable 

𝑡 ← 𝑁 − ⌊𝑁⌋   

While 𝑡 > 0 

𝑘 ← 𝑘 − 1  

𝐴𝑘  ← min(𝑡, 𝑙𝑘)  

𝑡 ← 𝑡 − min(𝑡, 𝑙𝑘)  

Return 𝑁, 𝐴1, … , 𝐴𝐾 

Algorithm 3 starts by allocating the times of the ETIs with electricity tariffs that are 

cheaper than the unit revenue of the unit time jobs. Clearly, this allocation may result in an 
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allocation of a noninteger total processing time. In such a case, we calculate the marginal cost of 

the last scheduled job, assuming it will be completed in more expensive ETIs. This cost consists 

of the cost of the already allocated time of the last job and the cost of processing its remaining 

time if allocated to the cheapest ETIs among the remaining ones. If this total cost is smaller than 

the unit revenue, the allocation of the remaining job is completed; otherwise, the fraction that 

was already allocated is deallocated. 

Proposition 6: Algorithm 3 solves the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 problem in 

𝑂(K ⋅ log 𝐾) time. 

The proof is very similar to that of Proposition 5. 

4.4 The 𝑝-semi-identical case without preemptions 

Interestingly, while the 𝜉-semi-identical case without preemption is proven to be strongly NP-

hard, the 𝑝-semi-identical case admits a polynomial-time algorithm. The difference is due to the 

fact that identical processing times imply a relatively simple combinatorial structure with 𝑂(𝐾𝑛) 

optional points of time to start a job, while identical revenues have no effect on the combinatorial 

structure. There exists an optimal solution of 1/𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1/𝑝𝑟𝑜𝑓𝑖𝑡 where all the starting 

times of jobs are values in Θ, as defined below: 

Θ = {𝜃: 𝜃 = 𝑡𝑘 + 𝑖, 𝑘 = 0, … , 𝐾, 𝑖 = −𝑛, … , 𝑛} ∩ [0, 𝑇 − 1]. (9) 

 

The function 𝑛𝑒𝑥𝑡(𝜃) is defined as in (2). 

Note that since the size of the input of 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 is 𝑂(𝐾 + 𝑛), an algorithm that 

is polynomial in |Θ| is a polynomial-time algorithm for the problem. Indeed, |Θ| = 𝑂(𝑛𝐾). Based 

on this observation, the following dynamic program solves the problem in 𝑂(𝑛2𝐾): 

𝑓(𝜃, 𝑗) = {
max{𝑓(𝑛𝑒𝑥𝑡(𝜃), 𝑗), 𝜉𝑗 − 𝜂𝜃 + 𝑓(𝜃 + 1, 𝑗 + 1)} 𝜃 ≤ 𝑇 − 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

for all 𝜃 ∈ Θ, 𝑗 = 0, … , 𝑛 − 1. The boundary conditions are 

𝑓(𝜃, 𝑛) = 0  for all 𝜃 ∈ Θ. 

This dynamic program is similar to the one solved in Step 2 of Algorithm 1. The only 

differences are that we add 𝜉𝑗 − 𝜂𝜃 instead of 𝜂𝜃 for the decision to include job 𝑗 in our plan and 

that the set Θ is defined with the original number of jobs 𝑛 rather than with 𝑛′. 

When 𝑛 ≫ 𝐾, a more efficient algorithm can be crafted based on the idea of Algorithm 1 

introduced for the minimum cost problem. Step 1 is now based on the optimal solution of the 

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 problem and Step 2 on the dynamic program described above 

for the reduced size problem. The two solutions are merged in Step 3 in the same way as in 

Algorithm 1. The complexity of this new algorithm is 𝑂(𝐾3 + 𝑛 log 𝑛), where the 𝑂(𝑛 log 𝑛) 

arises from the need to sort the jobs by 𝜉𝑗 at Step 1. 
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4.5 The identical case without preemption 

Recall that in the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 case, the input of the problem consists of a 

list of 𝐾 ETIs with their lengths and energy costs and an integer number 𝑛 of identical jobs. The 

optimal schedule (the output) should be returned implicitly as a list of busy periods with their 

starting times and lengths. Thus, the complexity of a polynomial-time algorithm for this problem 

must be polynomial in the number of ETIs 𝐾 but independent of the number of jobs 𝑛. Indeed, 

such an algorithm is presented below. 

The length of each busy period in the solution should be an integer, and the total lengths 

of the busy periods should not exceed 𝑛. However, in contrast to the minimum cost problem, 

here, producing fewer than 𝑛 jobs can be an optimal decision if it is profitable to do so. Hence, 

in this problem, the scheduler has to decide the number of jobs to schedule and their starting 

times. 

Note that given the optimal number of jobs that should be processed, the optimal schedules 

of the maximum profit problem and of the minimum cost problem with the same number of jobs 

are identical. Hence, an optimal solution where the starting times of all jobs are in the set Θ, as 

defined in (1), exists. Our proposed solution method follows Algorithm 1 for the identical 

minimum cost problem. We start by solving the preemptive version of the identical maximum 

profit problem (1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝜉𝑗 = 1, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡). Let 𝑎𝑘 denote the total processing 

time of 𝐸𝑇𝐼𝑘 in this solution. Next, we tentatively schedule max(⌊𝑎𝑘⌋ − 1,0) jobs to each ETI. 

The remaining 𝑂(𝐾) jobs are scheduled in a modified version of the problem where the number 

of jobs that have already been scheduled is deduced from the lengths of the ETI𝑠. The schedule 

is carried out using the dynamic program presented below: 

𝑓(𝜃, 𝑗) = {
max{𝑓(𝑛𝑒𝑥𝑡(𝜃), 𝑗), 1 − 𝜂𝜃 + 𝑓(𝜃 + 1, 𝑗 + 1)} 𝜃 ∈ Θ

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

for all 𝑗 = 0, … , 𝑛 − 1, 𝜃 ∈ Θ. The function 𝑓(𝜃, 𝑗) represents the maximal profit that can be 

obtained by scheduling a subset of the set of jobs {𝑗, … , 𝑛} in the interval [𝜃, 𝑇]. The boundary 

conditions are 

𝑓(𝜃, 𝑛) = 0, for all 𝜃 ∈ Θ  

This dynamic program differs from the one presented for solving the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 =

1|𝑐𝑜𝑠𝑡 problem mainly in the boundary conditions that allow reaching the end of the planning 

horizon without scheduling all 𝑛 jobs. 

The optimal solutions of the first and second steps are then merged into a single solution, 

as in the minimum cost problem. The overall complexity is again 𝑂(𝐾3). 

We will now discuss a simple solution method for a special case of the problem where the 

number of jobs, 𝑛, is large enough so that the value of an optimal solution cannot be improved 

by increasing the number of available jobs. The fact that the number of jobs is large enough may 

be known a priori. For example, if the total number of available jobs is greater than the length of 

the planning horizon or if the solution of the preemptive case uses less than 𝑛 jobs. We denote 

this case by 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝜉𝑗 = 1, 𝑛 = ∞|𝑝𝑟𝑜𝑓𝑖𝑡. 
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With a large enough number of jobs, the second step can be solved by a simpler dynamic 

program with a smaller state space. This space consists of only the elements of |Θ| because we 

do not need to keep track of the number of jobs already scheduled. The Bellman equation for this 

problem is 

𝑓(𝜃) = {
max{𝑓(𝑛𝑒𝑥𝑡(𝜃), 1 − 𝜂𝜃 + 𝑓(𝜃 + 1)} 𝜃 ≤ 𝑇 − 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

for all 𝜃 ∈ Θ. The boundary conditions are included in the equation. The time complexity of this 

procedure is 𝑂(𝐾2), and it dominates all of Algorithm 1. 

5. Cost minimization with release times and due dates 

5.1 The cost minimization problem with preemption 
The problem 1|𝑒𝑛𝑒𝑟𝑔𝑦, pmtn, 𝑟𝑗, 𝑑𝑗|𝑐𝑜𝑠𝑡 can be cast as an instance of the Hitchcock 

transportation problem. We define the set 𝐸 of epoch ends as the union of all the release times, 

due dates and ends of ETIs: 

𝐸 = {𝑡𝑘: 𝑘 = 0, … , 𝐾) ∪ {𝑟𝑗: 𝑗 = 1, … , 𝑛} ∪ {𝑑𝑗: 𝑗 = 1, … , 𝑛} 

The set 𝐸 is sorted in increasing order, and we let 𝑒𝑖 denote the 𝑖𝑡ℎ element, where 𝑖 = 0 refers 

to the first element 𝑒0 = 0. Next, we define a set of intervals 

𝐼(𝐸) = {(𝑒𝑖−1, 𝑒𝑖): 𝑖 = 1, … , |𝐸| − 1} 

Note that the electricity tariff is constant during each interval in 𝐼(𝐸). Let 𝑞𝑖
′ denote the electricity 

tariff during the 𝑖𝑡ℎ interval. 

Using this notation, we define a transportation problem with a source for each interval in 

𝐼(𝐸) and a sink for each job. The supply of each interval (𝑒𝑖−1, 𝑒𝑖) is its length 𝑒𝑖 − 𝑒𝑖−1. The 

demand of each job 𝑗 is 𝑝𝑗. The transportation cost between each interval 𝑖 and job 𝑗 is 𝑞𝑖
′ if 

(𝑒𝑖−1, 𝑒𝑖) ⊆ (𝑟𝑗, 𝑑𝑗) and infinite otherwise. The solution of the transportation problem prescribes 

the time allocated to each job during each interval. 

The state of the art in solving the Hitchcock transportation problem is the algorithm given 

by Brenner (2008). He presents an algorithm that solves an instance with 𝑠 sources and 𝑡 sinks 

in 𝑂(𝑠𝑡2(log 𝑠 +  𝑡 log  𝑡 )) time. In our case, there are 𝑂(𝑛 + 𝐾) sources and 𝑛 sinks. That is, 

our problem can be solved in 𝑂((𝑛4 + 𝑛3𝐾) log 𝑛 + (𝑛3 + 𝑛2𝐾) log(𝑛 + 𝐾)) time. In 

particular, if the number of jobs, 𝑛, is not much smaller than the number of ETIs, 𝐾, the 

complexity is dominated by 𝑂(𝑛4 log 𝑛 ). 

5.2 The nonpreemptive min-cost problem with unit processing times 

In this section, we present a polynomial-time algorithm for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝑑𝑗|𝑐𝑜𝑠𝑡 

problem. The same idea is also applicable to 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝑟𝑗|𝑐𝑜𝑠𝑡. Our algorithm is based 

on the following two simple observations. 
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Observation 1: There exists an optimal solution of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝑑𝑗|𝑐𝑜𝑠𝑡 problem 

where the jobs are sorted in nondecreasing order of their due dates (EDD). This observation can 

be shown by a simple swapping argument. 

The following observation is valid under the assumption that the jobs are indexed by EDD 

order. 

Observation 2: The starting time of job 𝑗 in a solution of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝑑𝑗|𝑐𝑜𝑠𝑡 problem 

is not greater than 

ωj = min
𝑗′∈{𝑗,..,𝑛}

{𝑑𝑗′ − (𝑗′ − 𝑗 + 1)}. (10) 

Indeed, under the EDD rule, for any pair of jobs 𝑗 < 𝑗′, job 𝑗 must start at least 𝑗′ − 𝑗 units of 

time before job 𝑗′ starts and job 𝑗′ must start at least one unit of time before its due date. 

The values of 𝜔𝑗 for all 𝑗 = 1, … , 𝑛 can be calculated in linear time using the following recursive 

formula: 

ωj = min(𝑑𝑗, 𝜔𝑗+1) − 1   ∀𝑗 = 1, … , 𝑛 − 1  

and 

ωn = 𝑑𝑛 − 1   

 

Based on the definition of Θ in (9), we define 

H = Θ ∪ {𝜔𝑗 + ℎ: 𝑗 = 1, … , 𝑛, ℎ = 0, … , 𝑛 − 𝑗} 

𝐻𝑗 = {𝜃 ∈ H: j − 1 ≤ θ ≤ ωj} 

Proposition 7: There exists an optimal solution where the starting time of each job 𝑗 is in the set 

𝐻𝑗. 

Proof: Assume by contradiction that there is no such optimal solution and consider an optimal 

solution where the first job that starts at a time not in 𝐻𝑗 has a maximal index, among all the 

optimal solutions that satisfy the EDD property. We use 𝜏𝑗 to denote the starting time of job 𝑗 in 

a solution. Let 𝑗∗ be the first job in this solution that does not satisfy 𝜏𝑗∗ ∈ 𝐻𝑗. Next, let ℎ denote 

the position of job 𝑗∗ in its busy period in this solution, where  ℎ = 0 refers to the first job in the 

busy period. If ℎ > 0, then job 𝑗∗ − 1 starts at time (𝜏𝑗∗ − 1) ∈ 𝐻, and in particular, (𝜏𝑗∗ − 1) ∈

𝐻𝑗∗−1. Now, we consider two cases: 

1) (𝜏𝑗∗ − 1) ∈ Θ, 

2) (𝜏𝑗∗ − 1) ∈ {𝜔𝑗 + ℎ: 𝑗 = 1, … , 𝑛, ℎ = 0, … , 𝑛 − 𝑗}. 

In case 1, it follows from the definition of Θ that 𝜏𝑗∗ ∈ Θ and thus 𝜏𝑗∗ ∈ 𝐻, which is a 

contradiction. 
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In case 2, since 𝜏𝑗∗−1 ≤ 𝜔𝑗∗−1, we know that for some 𝑗′ ≤ 𝑗∗ − 1, 𝜏𝑗∗−1 = 𝜔𝑗′ + (𝑗∗ − 1 − 𝑗′) 

and therefore 𝜏𝑗∗ = 𝜔𝑗′ + (𝑗∗ − 𝑗′). Since it must be the case that 𝑗∗ − 𝑗′ ≤ 𝑛 − 𝑗′, we conclude 

that 𝜏𝑗∗ ∈ {𝜔𝑗 + ℎ: 𝑗 = 1, … , 𝑛, ℎ = 0, … , 𝑛 − 𝑗}, which is again a contradiction. 

If, on the other hand, ℎ = 0, meaning that 𝑗∗ is the first job in its busy period, we consider two 

other cases. Either 

1) The electricity tariff of the first ETI of the busy period is not greater than the tariff at the last 

ETI of the busy period, or 

2) The electricity tariff of the first ETI of the busy period is greater than the tariff at the last ETI 

of the busy period. 

In case 1, the entire busy period may be shifted backward until it meets either another busy period 

or the beginning of the ETI. In either case, the busy period will satisfy the verge property, and all 

the jobs in it will start at times in Θ. In case 2, it would be desirable to shift the busy period 

forward, but since this is an optimal solution, such a shift must be impossible because one of the 

jobs in the busy period ends at its due date. However, if this is the case, this job and all the jobs 

𝑗 that precede it in the busy period start at 𝜔𝑗, which is also in 𝐻. 

Finally, since 𝜏𝑗∗ ∈ 𝐻 and 𝑗 − 1 ≤ 𝜏𝑗∗ ≤ 𝜔𝑗, we conclude that 𝜏𝑗∗ ∈ 𝐻𝑗.    ∎ 

 

We define a function 

𝑛𝑒𝑥𝑡(𝜃) = min{𝜃′ ∈ H: 𝜃′ > 𝜃} 

and the function 

𝑠𝑢𝑐𝑐(𝜃, 𝑗) = 𝑚𝑖𝑛 {𝜃′ ∈ H𝑗+1: 𝜃′ ≥ 𝜃 + 1 }. 

Recall that the constant 𝜂𝜃 is the energy cost of the job that starts at time 𝜃. The optimal solution 

can be obtained from the following Bellman equation defined for each state 𝜃 ∈ Θ and 𝑗 ∈

{1 … , 𝑛}: 

𝑓(𝜃, 𝑗) = {
min{𝑓(𝑛𝑒𝑥𝑡(𝜃), 𝑗), 𝜂𝜃 + 𝑓(𝑠𝑢𝑐𝑐(𝜃, 𝑗), 𝑗 + 1, )} θ ∈ Hj: next(θ) ∈ Θj

𝜂𝜃 + 𝑓( 𝑠𝑢𝑐𝑐(𝜃, 𝑗), 𝑗 + 1) 𝜃 = 𝜔𝑗
.  

(11) 

 

The function 𝑓(𝜃, 𝑗) represents the minimal cost of scheduling jobs {𝑗, … , 𝑛} in the time interval 

[𝜃, 𝑇]. The optimal solution is obtained by evaluating the program starting from 𝑓(1,0). The size 

of the state space of (11) is 𝑂(𝑛2𝐾), and the calculation of the value of each state can be done in 

constant time. The preprocessing step of calculating 𝜂𝜃 for each 𝜃 ∈ Θ ∪ {𝜔𝑗: 𝑗 ∈ 1, … , 𝑛} is 

𝑂(𝐾). However, a more cautious implementation allows the calculation of all 𝜂𝜃 to be done in 

𝑂(|Θ ∪ {𝜔𝑗: 𝑗 ∈ 1, … , 𝑛}|) = 𝑂(𝑛𝐾) time, though the straightforward procedure requires 

𝑂(𝑛𝐾2) time. Therefore, the Bellman equations (11) can be solved in 𝑂(𝑛2𝐾) time. 

A similar approach could be applied to the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑟𝑗|𝑐𝑜𝑠𝑡 problem with the jobs sorted in 

nondecreasing order of their release time and a lower bound for the starting time calculated as 
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δj = max(𝑟𝑗, 𝛿𝑗−1) − 1   ∀𝑗 = 2, … , 𝑛  

and 

𝛿1 = 𝑟1   

However, the problem 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑟𝑗, 𝑑𝑗|𝑐𝑜𝑠𝑡 is left for future consideration. We note that the 

solution approach presented in this section does not work because we do not know of any order 

that jobs follow in an optimal solution. 

6. The variable-energy-consumption generalization 
Fang et al. (2016) study a generalization of the 1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑐𝑜𝑠𝑡 problem in which power 

consumption varies among jobs and denote it as Problem U. We let 𝜋𝑗 denote the power 

consumption of job 𝑗. The cost of processing job 𝑗, assuming it is processed entirely during 𝐸𝑇𝐼𝑘, 

is thus 𝜋𝑗 ⋅ 𝑝𝑗 ⋅ 𝑞𝑘 (the power consumption times the duration times the electricity tariff). If the 

processing of a job spans over several ETIs, its cost is calculated proportionally. Using the 3-

field notation, we refer to this problem as 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟|𝑐𝑜𝑠𝑡. This problem is proven 

by Fang et al (2016) to be strongly NP-hard and not approximable. Note that the 1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑐𝑜𝑠𝑡 

problem is clearly obtained as a special case of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟|𝑐𝑜𝑠𝑡 problem with 

𝜋𝑗 = 1. Recall that the complexity results of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟|𝑐𝑜𝑠𝑡 are clearly implied 

by the fact that the special case of identical power consumption is also NP-hard and not in APX 

(Theorem 1). 

Fang et al (2016) discuss the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 𝑝|𝑐𝑜𝑠𝑡 problem (using our 

notation) where 𝑝 and the ETI lengths are integers. We consider the equivalent problem 

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 with rational ETI lengths. For the special case of a particular 

electricity tariff structure known as a pyramid structure, they develop a polynomial-time greedy 

algorithm. However, the complexity status of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem 

for a general tariff structure is left open. 

The method for solving the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑟𝑗, 𝑑𝑗|𝑐𝑜𝑠𝑡 problem using the transportation 

problem as described in Section 5 can easily be generalized to solve the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟 −

𝑝𝑜𝑤𝑒𝑟, 𝑝𝑚𝑡𝑛, 𝑟𝑗, 𝑑𝑗|𝑐𝑜𝑠𝑡 problem. This method requires setting the transportation cost between 

each interval (𝑒𝑖−1, 𝑒𝑖) and job 𝑗 to 𝜋𝑗𝑞𝑖
′. 

In the rest of this section, we derive an interesting structural property of optimal solutions 

of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟|𝑐𝑜𝑠𝑡 problem and present a compact integer programming 

formulation for the identical-processing-time case that is based on this property. 

It turns out that the verge property does not hold for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟|𝑐𝑜𝑠𝑡 

problem even in the identical-processing-time case. For a counterexample, consider an instance 

of the problem with 𝑛 = 3, 𝑘 = 5, 𝑝𝑗 = 1, 𝜋 = (4,8,8), 𝑞 = (100,1,10,1,100), 𝑙 =

(1.25,0.75, 1,0.75,1.25). It is easy to see that it is optimal to schedule the three jobs in order 

(2,1,3) at one busy period starting at time 1 with a cost of 452. However, this solution does not 

satisfy the verge property, as seen in Figure . No other schedule of the three jobs can yield equal 

or smaller cost (except for the one obtained by swapping jobs 2 and 3 within the same busy 

period). For example, shifting the busy period forward to start at time 1.25 (to the beginning of 
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𝐸𝑇𝐼2) results in a schedule with a cost of 461. Clearly, this example could be transformed to one 

with integer length ETIs and identical-length jobs by multiplying all times by 4. 

 

      

𝑙𝑘 1.25 0.75 1 0.75 1.25 

𝑞𝑘 100 1 10 1 100 

𝐸𝑇𝐼𝑘 1 2 3 4 5 

Figure 8: Example of an instance of the 𝟏|𝒆𝒏𝒆𝒓𝒈𝒚, 𝒗𝒂𝒓-𝒑𝒐𝒘𝒆𝒓, 𝒑𝒋 = 𝟏|𝒄𝒐𝒔𝒕 problem that 

does not satisfy the verge property. 

Fortunately, although the verge property does not hold, we can prove that a similar useful 

property is satisfied.  

Definition 3: the boundary property. A solution of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟|𝑐𝑜𝑠𝑡 problem is 

said to satisfy the boundary property if, in each busy period, the start time or end time of at least 

one job coincides with a boundary of an ETI.  

The solution presented in Figure satisfies this property because the start time of job 1 coincides 

with the start time of 𝐸𝑇𝐼3. 

Proposition 8: There exists an optimal solution of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟|𝑐𝑜𝑠𝑡 problem that 

satisfies the boundary property. 

Proof: Consider an optimal solution with a minimal number of busy periods that violate the 

boundary property. Let us examine the first (relative to the starting times of the busy periods) 

such violating busy period. Note that this busy period can be shifted backward or forward without 

increasing either the total electricity consumption or its cost until either the busy period hits 

another busy period or the boundary property is satisfied. In the first case, the number of busy 

periods is reduced by one, contradicting the minimality of the number of busy periods. In the 

second case, the number of busy periods that violate the boundary conditions is reduced by one. 

We can continue with this process until either there are no violating busy periods, or the number 

of busy periods is reduced by one, contradicting our assumption. Hence, there exists an optimal 

solution of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟|𝑐𝑜𝑠𝑡 problem in which all busy periods satisfy the 

boundary property.  ∎ 

Recall that the identical-processing-time case (𝑝𝑗 = 𝑝) is equivalent to the unit-time case 

(𝑝𝑗 = 1) when the lengths of the ETIs are not necessarily integers. An implication of Proposition 

8 for the solution of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem is that there exists an 

optimal solution of the problem in which the starting time of any job differs by an integer number 

of time units from an ETI boundary. That is, the cardinality of the set of candidate starting times 

is 𝑂(𝑛𝐾). In particular, this set can be defined as 

Θ = {𝑡: 𝑡 = 𝑡𝑘 + 𝑖, 𝑘 = 0, … , 𝐾, 𝑖 = −𝑛, … , 𝑛} ∩ [0, 𝑇 − 1]. (12) 

Note that Θ is defined in a similar way to the set with the same notation introduced in Step 

2 of Algorithm 1 as presented in (1), only here 𝑛′ is replaced by the total number of jobs, 𝑛. 

Unfortunately, the boundary property does not lead to a polynomial-time dynamic program 
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algorithm for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem similar to the one applicable to 

the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem since a state space that consists of all the pairs Θ × {0, … , 𝑛} 

is not enough to encode the information for an optimal local decision. For this purpose, one needs 

to know which jobs remain to be processed. 

Next, we formulate the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem as a linear integer 

program. For each 𝜃 ∈ Θ, let 𝜂𝜃 be the electricity cost per power unit for a time unit that starts at 

time 𝜃. In addition, for each 𝜃, let ℬ𝜃 = Θ ∩ [𝜃, 𝜃 + 1). That is, ℬ𝜃 consists of the time 𝜃 and all 

the other members of Θ that are within one unit from 𝜃. We define a set of 𝑂(𝐾𝑛2) binary 

decision variables 𝑥𝜃,𝑗 that equal “1” if job 𝑗 is scheduled to start at time 𝜃 and “0” otherwise: 

min ∑ ∑ 𝜂𝜃𝜋𝑗𝑥𝜃,𝑗

𝑗∈𝐽𝜃∈Θ

 
(13) 

∑ 𝑥𝜃,𝑗

𝜃∈Θ

= 1     ∀𝑗 ∈ 𝐽 
(14) 

∑ ∑ 𝑥𝜃,𝑗

𝑗∈𝐽𝜃∈ℬ𝜃

≤ 1    ∀𝜃 ∈ Θ 
(15) 

𝑥𝜃,𝑗 ∈ {0,1}   ∀𝜃 ∈ Θ, 𝑗 ∈ 𝐽  

In the objective function(13), the total cost of the schedule is minimized. Constraint (14) 

stipulates that each job is scheduled exactly once at a candidate starting time in Θ. Constraint (15) 

assures that no two jobs are scheduled to be processed at an overlapping time. 

A profit maximization version of this problem can be formulated and is denoted by 

1|energy, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡, where the schedulers select which jobs to process and 

according to what schedule so to maximize their net profit. The problem exhibits the same 

boundary property as the cost minimization problem; thus, in the unit time case, the set of possible 

starting times of jobs is the set Θ defined above. It is possible to formulate the problem as a linear 

integer program as follows: 

max ∑ ∑(𝜉𝑗 − 𝜂𝜃)𝜋𝑗𝑥𝜃,𝑗

𝑗∈𝐽𝜃∈Θ

 
(16) 

∑ 𝑥𝜃,𝑗

𝜃∈Θ

≤ 1     ∀𝑗 ∈ 𝐽 
(17) 

∑ ∑ 𝑥𝜃,𝑗

𝑗∈𝐽𝜃∈ℬ𝜃

≤ 1    ∀𝜃 ∈ Θ 
(18) 

𝑥𝜃,𝑗 ∈ {0,1}   ∀𝜃 ∈ Θ, 𝑗 ∈ 𝐽  

The objective function (16) maximizes the revenue net of the electricity cost of the 

scheduled jobs. Constraint (17) is similar to (14) except that here, in the profit maximization 

problem, a job is scheduled at most once rather than exactly once. Constraint (14) works exactly 

as in the cost minimization model to eliminate the possibility of scheduling jobs at overlapping 

times. 
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It should be noted that formulations (13)-(15) and (16)-(18) can be easily extended to 

include release time and due date constraints as well as lateness or tardiness components in the 

objective function. 

7. Summary and conclusions 
Recently, we have observed growing interest and awareness in better ways to operate and manage 

systems to improve their energy efficiency. We follow this direction and study operational 

systems that aim to save energy by taking into account time-of-use (TOU) electricity tariffs. In 

particular, we study cost minimization and profit maximization scheduling problems on a single 

machine in such environments. 

Tables 2 and 3 summarize our results, presenting the complexity status of all four variants 

of the cost minimization problem and all eight variants of the profit maximization problem. For 

the release time and due date extensions, we also report our findings regarding the cost 

minimization problem. 

Table 2: Complexity status for the minimum cost problem 

Problem Complexity 

1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑐𝑜𝑠𝑡 
 

Strongly NP-hard and not in APX. A reduction 

from 3-partition by Fang et al (2016). 

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑐𝑜𝑠𝑡 
 

Greedy, select the cheapest ETIs, 𝑂(𝐾 log 𝐾 + 𝑛). 

Fang et al (2016) presented an 𝑂(𝐾 log 𝐾 + 𝑛 log 𝑛) 

algorithm for a more general case. 

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑖 = 1, 𝑝𝑚𝑡𝑛 |𝑐𝑜𝑠𝑡 Greedy, select the cheapest ETIs, 𝑂(𝐾 log 𝐾) 

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑖 = 1|𝑐𝑜𝑠𝑡 
 

𝑂(𝐾3), a 3-step algorithm based on the of solution 

of the preemptive case, dynamic programming and 

merging the two solutions. 

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑟𝑗, 𝑑𝑗|𝑐𝑜𝑠𝑡 

 

𝑂((𝑛4 + 𝑛3𝐾) log 𝑛 + (𝑛3 + 𝑛2𝐾) log(𝑛 + 𝐾)) 
Formulated as a transportation problem 

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝑑𝑗|𝑐𝑜𝑠𝑡   

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝑟𝑗|𝑐𝑜𝑠𝑡 

𝑂(𝑛2𝐾) using dynamic programming 

 

Table 3: Complexity status for the maximum profit problem 

Problem Complexity and solution method 

1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑝𝑟𝑜𝑓𝑖𝑡 
 

Strongly NP-hard (reduction from bin packing 

decision problem as in the minimum cost problem) 

and in APX (reduction from the set partitioning). 

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡 
 

Weakly NP-hard (reduction from knapsack), 

pseudopolynomial-time algorithm, 𝑂(𝑛𝑇𝐾). 

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 

 

Strongly NP-hard (reduction from bin packing 

decision problem as in the minimum cost problem). 

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 

 

𝑂(𝑛2𝐾) dynamic programming or 𝑂(𝐾3 + 𝑛 log 𝑛), 
3-step algorithm. 

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝜉𝑗 = 1 |𝑝𝑟𝑜𝑓𝑖𝑡 

 

𝑂(𝐾3), 3-step algorithm. If there are more than 𝑇 

jobs (𝑛 ≥ 𝑇) then the problem can be solved in 

𝑂(𝐾2). 
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1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 
 

𝑂(𝐾 log 𝐾 + 𝑛 log 𝑛 ), greedy algorithm  

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 

 

𝑂(𝐾 log 𝐾 + 𝑛 log 𝑛), greedy algorithm. 

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 

 

𝑂(𝐾 log 𝐾), greedy algorithm. 

 

The solution methods that we used for the cost minimization problems with release times 

and due dates cannot be easily adapted for the profit maximization variations; the development 

of such methods is left for future research. Another interesting question that is left open by this 

study is the approximability of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡 problem. We show that this problem 

is weakly NP-hard. 

For a special case of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟 − 𝑝𝑜𝑤𝑒𝑟, 𝑝𝑖 = 1|𝑐𝑜𝑠𝑡 problem where the TOU 

tariffs satisfy the pyramidal structure, Fang at el. (2016) presented a greedy algorithm but left the 

case of general TOU tariffs open. Based on the boundary property of optimal solutions 

(Proposition 8), we formulated a compact linear integer program for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟 −

𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 and 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟 −  𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 1 |𝑝𝑟𝑜𝑓𝑖𝑡 problems. These 

formulations are easily extendable to include release times and due dates. It is still a challenge to 

find the complexity status of these unit time problems. 

Acknowledgment: the authors wish to express their thanks to the anonymous reviewers for their 

constructive remarks.   
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