

1

Complexity and algorithms for

min cost and max profit scheduling

under time-of-use electricity tariffs

Michal Penn1 and Tal Raviv2

1Technion, Haifa, Israel

2Tel Aviv University, Tel Aviv, Israel

October 2020

Abstract

Following a recent interest in sustainable scheduling under operational costs that vary over time,

we study scheduling problems on a single machine under time-of-use (TOU) electricity tariffs.

We consider two main variants of the problem: cost minimization and profit maximization. In

the cost minimization problem, the set of jobs to be processed is given, and the goal is to schedule

all jobs within a planning horizon so as to minimize the total cost, while in the profit

maximization problem, one needs to select a set of jobs to be processed such that the total profit

is maximized. The general cases of the cost minimization and profit maximization problems in

which preemptions are forbidden are strongly NP-hard. In this paper, we show that some special

cases with identical processing times can be solved by efficient algorithms. In addition, we

consider several extensions of the problems, including release times, due dates, and variable

energy consumption.

Keywords: Scheduling, Time-of-Use Tariffs, Single Machine, Maximum Profit, Minimum Cost

1. Introduction and literature review
Recently, many manufacturing and energy companies have shown an increased interest in

sustainable scheduling. This interest has led to the implementation of variable pricing to manage

the balance between supply and demand for electricity and to improve the reliability and

efficiency of electrical power grids. For example, with time-of-use (TOU) tariffs, retail energy

prices to customers vary hourly to reflect changes in wholesale energy prices. Such price

structures are used to shift energy-intensive production jobs from peak hours to off-peak hours

and to significantly reduce costs. Gahm et al. (2016) present a comprehensive survey on “energy-

efficient scheduling” (EES); EES approaches are scheduling approaches that aim to improve

energy efficiency. They further develop a research framework for EES scheduling and provide

an empirical analysis of the reviewed literature and emphasize the benefits that can be achieved

by EES in practice.

2

Some recent studies have taken a more theoretical approach, considering various

scheduling environments. Among these is the work of Wan and Qi (2010), who study scheduling

under operational costs that vary over time. They consider scheduling models on a single machine

that minimize a linear combination of the total time slot costs and a traditional scheduling

performance measure: total completion time, maximum lateness/tardiness, total weighted number

of tardy jobs or total tardiness. They prove the intractability of the models under general

parameters and provide polynomial-time algorithms for special cases with nonincreasing time

slot costs. Zhong and Liu (2012) consider a single-machine scheduling problem in which

processing of a job incurs a cost that depends on the time slots occupied by the job. Their

objective is to minimize a linear combination of the makespan and the total time slot costs. They

prove that the problem is strongly NP-hard and analyze a special case with nonincreasing time

slot costs. Zhao et al. (2016) address the scheduling problem that aims to minimize the sum of

the total weighted completion time and the total machine time slot cost. Focusing on the case of

nonincreasing time slot cost with nonpreemptive jobs, they show that the problem can be solved

in polynomial time when the time slot cost decreases with certain patterns and is NP-hard in the

general decreasing-patterns case. Shrouf et al. (2014) propose a mathematical model to minimize

energy consumption costs for single-machine production scheduling during production processes

with “turning on” and “turning off” costs as well. The authors present a genetic algorithm

heuristic for this problem.

Che et al (2016) investigate a single-machine scheduling problem under TOU tariffs to

minimize the total electricity cost. A continuous-time MILP model is developed, and an efficient

greedy insertion heuristic is proposed. A real-life case study from a Chinese company reveals

that the total electricity cost can be reduced by about 30% using their algorithm.

Che et al (2017) address a single-machine scheduling problem with a power-down

mechanism to minimize total energy consumption and maximize tardiness simultaneously. A

MILP model based on position assignment has been developed to formulate the problem. To

obtain the exact Pareto front of the problem, they propose a basic ε − constraint method and

develop a local search.

Fang et al. (2016) and Fang (2013) consider the problem of scheduling jobs on a single

machine to minimize the total electricity cost of processing these jobs under TOU electricity

tariffs. They study two variations of the problem: the uniform-speed case, in which all jobs have

given processing times, and the speed-scalable case, in which the planner can control the

processing speed and thus the processing time of each job. In the uniform-speed case, the energy

consumption of each job is given and is not necessarily proportional to the processing time. Using

the 3-partition problem, they prove that the nonpreemptive version of this problem is strongly

NP-hard and inapproximable within a constant factor unless P=NP. On the other hand, for a

special case of the problem, i.e., identical processing time, different power demands and the

so-called pyramidal TOU electricity tariff function, the authors provide a polynomial-time

algorithm.

Rubaiee et al. (2018) study a nonpreemptive scheduling problem on a single machine to

minimize the total tardiness and total energy cost under TOU electricity tariffs. They formulate

the problem as a mixed-integer multiobjective mathematical programming model and develop

four multiobjective genetic algorithms to obtain a near-optimal Pareto front in a timely fashion.

https://www.sciencedirect.com/topics/computer-science/scheduling-problem
https://www.sciencedirect.com/topics/computer-science/total-energy-consumption

3

The authors provide analysis and detailed experimental results evaluating the performance of the

algorithms.

Aghelinejad et al (2019) address a nonpreemptive scheduling problem under TOU tariffs

in which 𝑛 jobs are to be processed in a predefined order on a single machine. Each job has its

own processing time and energy consumption. The machine may switch among three different

states. The aim is to minimize the total energy consumption costs. The authors suggest a dynamic

programming approach to model the problem. They use the Dijkstra algorithm to calculate a

shortest path on a finite graph. Using this approach, the authors show that the uniform speed case

of this problem is solvable in polynomial time. In addition, if the order of the jobs is not

predefined, the authors provide a polynomial-time algorithm for constant, increasing, or

decreasing energy costs. They use the 3-partition problem to show that the case with non-

predefined job order and TOU tariffs is NP-hard.

Chen and Zhang (2019) consider the problem of scheduling jobs on a single machine to

minimize the total electricity cost of processing these jobs under TOU electricity tariffs. They

refer to this problem as scheduling with TOU costs (STOUC) and show that the STOUC problem

is strongly NP-hard. They further study the STOUC problem with very restricted TOU costs,

namely, the case in which the cost vector has two “valleys” (they call a period P a valley if its

TOU cost is smaller than the TOU cost(s) of its neighboring period(s)) and show that this problem

is NP-hard at least in the ordinary sense and is inapproximable within any constant factor. Under

the very restricted condition of at most one valley, the authors show that the STOUC problem

with either bounded lateness, bounded tardiness, or bounded flow-time is solvable in polynomial

time.

Fang et al. (2016) and Chen and Zhang (2019) study scheduling on a single machine with

uniform-speed processing time under TOU tariffs; these studies are probably the most relevant

to our study. Since the energy cost minimization problem is NP-hard (Fang et al. (2016)), in the

above studies, the authors develop polynomial (resp., pseudopolynomial) algorithms under very

restricted cost (resp., TOU tariff) functions. We took a different approach by allowing any cost

(resp., TOU tariff) function but considering uniform-speed and identical-processing-time jobs.

In this paper, we consider two variants of the single-machine scheduling problem with

TOU tariffs: cost minimization and profit maximization. To the best of our knowledge, we are

the first to study the more challenging profit maximization problem. More specifically, in the

cost minimization problem, the set of jobs to be processed is given, and the goal is to schedule

all jobs within a planning horizon in a way that minimizes the total cost. In the profit

maximization problem, one needs to simultaneously select a subset of jobs to be processed and

schedule them so that the total profit is maximized. We develop efficient algorithms for some

variants of the problems with identical processing times as well as for preemptive versions of the

problems. In particular, for the nonpreemptive case with identical processing times, we develop

a strongly polynomial 3-step algorithm for both the cost-minimization and profit-maximization

objectives. The first step of these algorithms is based on a greedy algorithm for the preemptive

case, the second step uses dynamic programming that is applied to an instance of the problem

with smaller dimension, and the third step merges the two solutions from the previous steps into

a solution to the original problem. For the cost minimization problem, we further develop a

polynomial-time algorithm for the preemptive case with release times and due dates. Our

algorithm is based on a reduction to the Hitchcock transportation problem. We also present a

https://www.sciencedirect.com/topics/computer-science/constant-factor

4

dynamic programming polynomial-time algorithm for the nonpreemptive identical-processing-

time case with general release times or due dates. In addition, we present elegant and compact

integer programming formulations that capture many variants of the nonpreemptive unit time

problems, including time-varying electricity tariffs, release times, and due dates for both the

minimum cost and the maximum profit objectives.

The rest of the paper is organized as follows: in Section 2, we introduce notations, define

the problem variants formally and make some observations regarding the structure of an optimal

solution. In Section 3, we present polynomial-time algorithms for the unit-time nonpreemptive

cost-minimization problem. In Section 4, the profit-maximization problem is analyzed. The

negative complexity result for the general case is presented as well as the polynomial-time

algorithms for the preemptive and unit-time cases. In Section 5, we present a generalization of

the cost minimization problems where release time and due dates are considered. In Section 6,

we present integer programming formulations for an extension of problems in which the power

consumption as well as other characteristics of each job may be different. A summary of the

results obtained in this paper and some final thoughts and directions for future study are presented

in Section 7.

2. Problem definitions and preliminaries

2.1 The general problem setting

Let 𝐽 be a set of 𝑛 jobs to be scheduled on a single machine during a given time horizon [0, 𝑇].

For each 𝑗 ∈ 𝐽, job 𝑗 has processing time 𝑝𝑗 and revenue 𝜉𝑗. We consider the uniform-speed

processing time where the production process consumes electrical energy at a constant rate and

the electricity cost varies over time.

The time horizon [0, 𝑇] is divided into 𝐾 electricity tariff intervals (ETIs), with 𝐸𝑇𝐼1 =

[𝑡0, 𝑡1] starting at time 𝑡0 = 0 and 𝐸𝑇𝐼𝐾 = (𝑡𝐾−1, 𝑡𝐾] ending at time 𝑡𝐾 = 𝑇. The length of 𝐸𝑇𝐼𝑘

is 𝑙𝑘 = 𝑡𝑘 − 𝑡𝑘−1 with ∑𝑙𝑘 = 𝑇. The cost of the energy consumed by the machine in one unit of

time during 𝐸𝑇𝐼𝑘 is denoted by 𝑞𝑘. Thus, the total energy cost of processing job 𝑗 in 𝐸𝑇𝐼𝑘 is

𝑞𝑘𝑝𝑗. If the processing extends over several ETIs, the energy cost is calculated proportionally to

the processing time during each ETI. We consider below two objective functions: minimum cost

and maximum profit. We note that throughout the paper, we assume that the processing times of

the jobs are positive integers and that all the other parameters are positive rational numbers. In

addition, we assume that preemptions have no effect on the total processing times and processing

costs of the jobs.

For ease of presentation, we use the three-field notation, 𝛼|𝛽|𝛾, introduced by Grahamet

al. (1979) for classifying scheduling problems. The 𝛼 field represents the machine environment,

the 𝛽 field represents the processing characteristics and constraints, and the 𝛾 field represents the

objective function. For example, in 1|𝑒𝑛𝑒𝑟𝑔𝑦 |𝑐𝑜𝑠𝑡, 𝛼 = 1 stands for a single machine, 𝛽 =

 𝑒𝑛𝑒𝑟𝑔𝑦 indicates that we consider scheduling under TOU electricity (energy) tariffs and 𝛾 =

 𝑐𝑜𝑠𝑡 stands for the minimum cost goal.

5

2.2 The cost minimization problem

In the above setting, the goal is to find a schedule for all 𝑛 jobs in the planning horizon [0, 𝑇] such

that the energy cost is minimized. The jobs' revenues are irrelevant and thus ignored. We call the

cost minimization problem identical if all processing times are identical. In such cases, we

assume that 𝑝𝑗 = 1. Since we allow fractional values for the lengths of the ETIs, the unit time

assumption is equivalent to the assumption that 𝑝𝑗 is constant (𝑝𝑗 = 𝑝). We consider four variants

of the cost minimization problem. For general processing times, we distinguish between

1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑐𝑜𝑠𝑡, where preemptions of jobs are forbidden, and 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑐𝑜𝑠t, where

preemptions are allowed. In the identical case, we similarly differentiate between disallowing

(resp., allowing) preemptions, i.e., 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 (resp., 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 =

1, 𝑝𝑚𝑡𝑛|𝑐𝑜𝑠𝑡).

Fang et al (2016) show that a more general problem than the 1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑐𝑜𝑠𝑡 problem is strongly

NP-hard and not in APX using a reduction from the 3-partition problem. Chen and Zhang (2019)

used similar arguments to prove the NP-hardness and inapproximability of the 1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑐𝑜𝑠𝑡

problem. In addition, Fang et al (2016) present a polynomial-time greedy algorithm that can be

directly applied to 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑐𝑜𝑠𝑡.

2.3 The profit maximization problem

Given 𝑛 potential jobs with their processing times and revenues, the goal is to decide

simultaneously upon the set of jobs to be produced and their schedule in order to maximize the

profit during the planning horizon [0, 𝑇]. For a given schedule, the profit is defined as the total

job revenues minus the total energy cost. We note that the additional degree of freedom resulting

from the need to choose a subset of jobs to be processed leads to a more intricate problem, as

indicated by our complexity analysis.

We consider several variants of the profit maximization problem. In particular, we

distinguish between identical processing times (identical revenues), i.e., 𝑝𝑗 = 1 (𝜉𝑗 = 1) for all

jobs, and general processing times (revenues). Note that no generality is lost by assuming unit

processing times (unit revenues) in the identical cases since the lengths of the ETIs (electricity

tariffs) are rational numbers.

We call a profit maximization problem identical if all processing times and all revenues

are equal, 𝑝-semi-identical if all processing times are identical (𝑝𝑗 = 1), and 𝜉-semi-identical if

all revenues are equal (𝜉𝑗 = 1). The problem is general if it is neither 𝑝-semi-identical nor 𝜉-

semi-identical.

Each profit maximization problem is further classified into the nonpreemptive case

1/𝑒𝑛𝑒𝑟𝑔𝑦/𝑝𝑟𝑜𝑓𝑖𝑡 and the preemptive case 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟ofit. That is, we have eight

variants of the profit maximization problem since we have three binary properties that distinguish

among them.

2.4 The verge property

We present the notions of a busy period and the verge property below to describe a solution's

characteristics.

6

Definition 1: Busy period. For a given solution of a single-machine scheduling problem a busy

period is a maximal time interval in which jobs are processed continuously on the machine. We

assume that switching between busy and idle periods does not incur any extra time or extra cost.

Definition 2: The verge property. We say that a feasible solution of the cost minimization or

profit maximization problem satisfies the verge property if each busy period starts at the

beginning of an ETI or ends at the end of an ETI. We note that the verge property plays an

important role in the development of our algorithms.

Proposition 1: There exist optimal solutions for the cost minimization and for the profit

maximization problems having the verge property.

This proposition, using different terminology, was proved independently by Chen and Zhang

(2019) for the cost minimization version of the problem. The proof for the maximum profit

version is very similar and thus the it is omitted.

The examples below demonstrate three instances of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝜉𝑗 =

1|𝑝𝑟𝑜𝑓𝑖𝑡 problem in which the solutions satisfy the verge property. Consider a problem with four

identical jobs three ETIs, 𝑙1 = 1.1, 𝑙2 = 2.7, 𝑙3 = 1.1, 𝑞1 = 𝑞3 = 0.9 and 𝑞2 as given below.

Clearly, since 𝑇 = ∑𝑙𝑘 = 4.9, four jobs can fit in the planning horizon but in optimal solution

not necessarily all jobs are scheduled.

Example 1: If 𝑞2 = 1.01, the optimal solution consists of two busy periods, each involving two

jobs. The first starts at the beginning of 𝐸𝑇𝐼1 and the second ends at the end of 𝐸𝑇𝐼3, as illustrated

in Figure 1.

𝑙𝑘 1.1 2.7 1.1

𝑞𝑘 0.9 1.01 0.9

𝑘 1 2 3

Figure 1

Note that we would obtain the same solution for any 1.0111 … > 𝑞2 > 0.9.

Example 2: For 𝑞2 > 1.0111…, any optimal solution consists of two busy periods, each

involving one job. Due to the increase in the energy cost in 𝐸𝑇𝐼2 it is not worth schedule more

than two out of the four jobs. The first starts (resp., ends) at the beginning (resp., end) of 𝐸𝑇𝐼1,

and the second starts (resp. ends) at the beginning (resp., end) of 𝐸𝑇𝐼3, as illustrated in Figure 2.

There are infinitely many other optimal solutions that do not satisfy the verge property.

𝑙𝑘 1.1 2.7 1.1

𝑞𝑘 0.9 1.02 0.9

𝑘 1 2 3

Figure 2

Example 3: For the case of 𝑞2 < 0.9, there are four optimal solutions that satisfy the verge

property (and many others that do not). See Figure 3. At such low energy cost at 𝐸𝑇𝐼2 it worth

to utilize it completely and produce all the four jobs.

7

𝑙𝑘 1.1 2.7 1.1

𝑞𝑘 0.9 0.8 0.9

𝑘 1 2 3

Figure 3

Note that if 𝒒𝒌𝟏
< 𝒒𝒌𝟐

 (resp., 𝒒𝒌𝟏
> 𝒒𝒌𝟐

), a busy period that extends from 𝑬𝑻𝑰𝒌𝟏
 to 𝑬𝑻𝑰𝒌𝟐

 starts

at the beginning of 𝑬𝑻𝑰𝒌𝟏
 (resp., ends at the end of 𝑬𝑻𝑰𝒌𝟐

).

Corollary 1 below is an immediate consequence of Proposition 1. It allows a solution of

the identical-jobs variants in polynomial space to be described in terms of the number of ETIs.

Corollary 1: There exist optimal solutions for the cost minimization and profit maximization

problems in which the number of busy periods is not greater than O(𝑲), the number of ETIs.

2.5 Description of the input and output

There are several well-defined ways to describe the parameters of the problem at hand. Since the

complexity of an algorithm is calculated relative to the size of the input, we assume that the most

compact possible representation is used for each variant of the problem. In particular, in cases

where the jobs are identical in all their characteristics, the size of the input is 𝑂(𝐾), the number

of ETIs. Otherwise, it is 𝑂(𝐾 + 𝑛), the number of ETIs plus the number of jobs. With these

representations, an optimization algorithm for the identical jobs cases is strongly polynomial only

if its running time is polynomial in 𝐾 and does not depend on 𝑛.

Similarly, the complexity of an optimization algorithm can be affected by the

representation of the output. In the 1|energy|cost and 1|energy|profit problems, a solution of a

single-machine scheduling problem consists of a list of the scheduled tasks and their respective

starting times. That is, the output size is 𝑂(𝑛). However, in identical jobs cases, the solution can

be described by a list of busy periods, which is of length 𝑂(𝐾). Therefore, with this output

representation, it may be possible to develop a strongly polynomial-time algorithm for some

identical jobs cases.

In Table 1, we list the variants of the problem in this study along with their input and output

representation schemes and the size of these representations using O-notation.

8

Table 1: Input and output size and description for each variant of the problem

Three-field notation Input Output

1|energy|cost 𝑂(𝑛 + 𝐾): 𝑝𝑗 , 𝑞𝑘 , 𝑙𝑘 Starting time of each job, 𝑂(𝑛)

1|energy, pmtn|cost Starting time and length of each

busy period, 𝑂(𝐾) 1|energy, 𝑝𝑗 = 1|cost 𝑂(𝐾): 𝑞𝑘 , 𝑙𝑘, 𝑛

1|energy, pmtn, 𝑝𝑗 = 1|cost

1|energy|profit 𝑂(𝑛 + 𝐾):

𝑝𝑗 , 𝜉𝑗, 𝑞𝑘, 𝑙𝑘

List of processed jobs and their

starting times, 𝑂(𝑛)

1|energy, 𝑝𝑗 = 1|profit 𝑂(𝑛 + 𝐾): 𝑝𝑗 , 𝑞𝑘 , 𝑙𝑘

1|energy, 𝜉𝑗 = |profit 𝑂(𝑛 + 𝐾): 𝜉𝑗 , 𝑞𝑘 , 𝑙𝑘

1|energy, pmtn/profit 𝑂(𝑛 + 𝐾):

𝑝𝑗 , 𝜉𝑗, 𝑞𝑘, 𝑙𝑘

List of processed jobs; starting

time and length of each busy

period, 𝑂(𝑛 + 𝐾) 1|energy, pmtn, 𝑝𝑗 = 1|profit 𝑂(𝑛 + 𝐾):

𝜉𝑗, 𝑞𝑘, 𝑙𝑘

1|energy, pmtn, 𝜉𝑗 = 1|profit 𝑂(𝑛 + 𝐾): 𝑝𝑗 , 𝑞𝑘 , 𝑙𝑘

1|energy, 𝑝𝑗 = 1, 𝜉𝑗 = 1|profit 𝑂(𝐾): 𝑞𝑘, 𝑙𝑘 , 𝑛 Starting time and length of each

busy period (the number of jobs

is implied), 𝑂(𝐾)
1|energy, pmtn, 𝑝𝑗 = 1, 𝜉𝑗 = 1|profit

3. The cost minimization problem.
In this section, we present a polynomial-time 3-step algorithm for the nonpreemptive identical

jobs case 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑐𝑜𝑠𝑡. The first step of this algorithm is based on a greedy algorithm

for the preemptive case, the second step uses a dynamic program, and the third step merges the

two solutions from the previous steps into a list of busy periods.

Recall that a solution for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑐𝑜𝑠𝑡 problem can be represented by a list

of busy periods and the actual assignment of jobs or fractions of jobs to busy periods can then be

carried out in any order. The following proposition is an adaptation of a result by Fang et al

(2016).

Proposition 2: There exists an 𝑂(𝐾 log 𝐾 + 𝑛) algorithm for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑐𝑜𝑠𝑡 problem.

Proof: Recall that the solution of this variant is a list of busy periods. The problem is solved by

a greedy procedure that first calculates the total required processing time and then allocates

processing times to the cheapest ETIs. The procedure requires sorting the ETIs in nondecreasing

order of cost and then allocating the processing times of all the jobs to the ETIs one by one. The

processing time allocated to the most expensive utilized ETI may be shorter than the length of

the ETI. The amount of time needed to calculate the total processing time of all jobs and to

allocate them to the ETIs is 𝑂(𝑛). The amount of time required to sort the ETIs by energy tariffs

is O(𝐾 log 𝐾). Thus, the overall time complexity of the procedure is O(𝐾 𝑙𝑜𝑔 𝐾 + 𝑛). ∎

Fang et al (2016) present a very similar polynomial-time algorithm for a more general case in

which the jobs have variable levels of energy consumption. The complexity of their algorithm is

𝑂(𝐾 log 𝐾 + 𝑛 log 𝑛) because they need to sort the jobs by energy demand. Note that if the jobs

are identical, i.e., 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡, the procedure works in exactly the same way,

9

but there is no need to calculate the sum of the processing times and to determine the start time

of each job. In this case, the time complexity is O(K log K).

Next, we consider the identical jobs problem without preemptions 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡.

Observe that a lower bound on the value of the optimal solution is provided by the value of the

optimal solution when preemptions are allowed. We use the following observation in the design

of the algorithm for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem.

Lemma 1: Let 𝒂𝒌 be the total amount of time allocated at 𝑬𝑻𝑰𝒌 in an optimal solution of

𝟏|𝒆𝒏𝒆𝒓𝒈𝒚, 𝒑𝒋 = 𝟏, 𝒑𝒎𝒕𝒏|𝒄𝒐𝒔𝒕, as described in the proof of Proposition 2. Then, there exists an

optimal solution for the nonpreemptive case (𝟏|𝒆𝒏𝒆𝒓𝒈𝒚, 𝒑𝒋 = 𝟏|𝒄𝒐𝒔𝒕) in which the utilization

of each 𝑬𝑻𝑰𝒌 is at least 𝒂𝒌 − 𝟏.

Proof: We proceed by contradiction: consider a solution of 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 where the

utilization of one or more ETIs is less than the corresponding 𝑎𝑘 − 1, and let 𝑘′ be the index of

the cheapest such ETI. Since the total processing times of the jobs are the same in both the

preemptive and nonpreemptive versions, it must be the case that in the solution of the

nonpreemptive problem, at least one job is scheduled entirely in an ETI (or several ETIs) that is

at least as expensive as 𝐸𝑇𝐼𝑘′. However, since there is an idle time of more than one time unit in

𝐸𝑇𝐼𝑘′, it is possible to remove one job from the more expensive ETIs and schedule it in 𝐸𝑇𝐼𝑘′.

Note that if the idle time in 𝐸𝑇𝐼𝑘′ is divided among several idle periods, the above modification

may require rescheduling jobs within 𝐸𝑇𝐼𝑘′ but without affecting their energy cost. ∎

We design a polynomial-time 3-step algorithm based on the insight obtained from Lemma

1. The idea is to schedule many of the unit-time jobs in ETIs according to the solution of the

preemptive case. The remaining 𝑂(𝐾) jobs are scheduled in the remaining idle periods using a

dynamic programing algorithm. Finally, the two solutions are combined. The procedure is

described below:

Step 1 (dimension reduction): Solve the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem. Let 𝑎𝑘 be the

time allocated to 𝐸𝑇𝐼𝑘 in this solution. Tentatively schedule max(⌊𝑎𝑘 − 1⌋, 0) jobs at each ETI

in the solution of 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡.

The remaining number of jobs, 𝑛′ = 𝑛 − ∑ max(⌊𝑎𝑘 − 1⌋, 0)𝐾
𝑘=1 , cannot be too large; in

particular, it is 𝑂(𝐾).

Step 2 (dynamic programming(: We create a streamlined version of the problem with 𝑛′ tasks

and 𝐾 ETIs of length 𝑙𝑘
′ = 𝑙𝑘 − max(⌊𝑎𝑘 − 1⌋, 0), 𝑇′ = ∑ 𝑙𝑘

′𝐾
𝑘=1 , and the same 𝑞𝑘s. This problem

is solved by a dynamic programming algorithm described below:

Recall that by Proposition 1, there exists an optimal solution for the streamlined problem

that satisfies the verge property, i.e., an optimal solution such that any busy period starts at the

beginning or ends at the end of an ETI. For the identical-processing-time case, this solution

implies that the other end of a busy period (the one that does not necessarily coincide with an

ETI verge) must be at an integer time difference from such a verge. That is, the set of starting

times of any (unit time) job is included in:

Θ = {𝜃: 𝜃 = 𝑡𝑘 + 𝑖, 𝑘 = 0, … , 𝐾, 𝑖 = −𝑛′, … , 𝑛′} ∩ [0, 𝑇 − 1]. (1)

10

Clearly, the cardinality of Θ is 𝑂(𝐾𝑛′). We define the state space of our dynamic program

as {0, … , 𝑛′} × Θ, which represents the number of jobs processed so far and the current time

within the set Θ. We define the function 𝑛𝑒𝑥𝑡(𝜃) to return the next member of Θ; that is,

𝑛𝑒𝑥𝑡(𝜃) = min{𝜃′ ∈ Θ: 𝜃′ > 𝜃} (2)

and 𝑛𝑒𝑥𝑡(𝜃) = 𝑇 if 𝜃 is the greatest element in Θ.

In addition, for each candidate starting point, we can calculate the total energy cost of

processing a job starting at this point. If the next time unit falls entirely within a single ETI, this

is the electricity tariff of the ETI. If it spans several ETIs, the cost is calculated based on the

relative time in each ETI. The worst-case complexity of such a straightforward calculation is

𝑂(𝐾) for each of the 𝑂(𝐾𝑛′) members of Θ, i.e., 𝑂(𝐾2𝑛′). We denote the cost of processing a

job starting at time 𝜃 by 𝜂𝜃.

Now, the decision at each point in Θ is whether to start processing a job or not. Our

Bellman’s equation is

𝑓(𝜃, 𝑗) = min{𝑓(𝑛𝑒𝑥𝑡(𝜃), 𝑗), 𝜂𝜃 + 𝑓(𝜃 + 1, 𝑗 + 1)}

for all 𝜃 ∈ Θ: 𝜃 < 𝑇, and 𝑗 = 0, … , 𝑛′ − 1. The 𝑓(𝜃, 𝑗) function represents the minimal

remaining cost at time 𝜃 when considering the 𝑗th job. The boundary conditions are given by

𝑓(𝜃, 𝑗) = {
0 𝑗 = 𝑛′ ∧ 𝜃 < 𝑇
∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Step 3 (merging): Here, we create the busy periods for the original problem from the busy periods

created in Steps 1 and 2. From each busy period of Step 2 that starts at 𝐸𝑇𝐼𝑘1
 and ends at 𝐸𝑇𝐼𝑘2

,

we create a busy period in the original problem that consists of all the time allocated in Step 2 to

this busy period and all the time allocated in Step 1 to ETIs 𝑘1, … , 𝑘2 − 1. In addition, if there is

no other busy period in Step 2 that starts at 𝐸𝑇𝐼𝑘2
, all the time allocated to this ETI in Step 1 is

also included in the busy period. Finally, any time that was allocated in Step 1 that is not included

in the busy periods created by the above process are added as “stand-alone” busy periods to the

solution. The complexity of this process is 𝑂(𝐾).

Below is a summary of our algorithm for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem, followed

by an illustrative example (Example 4).

Algorithm 1: A 3-step procedure for the 1|energy, 𝑝𝑗 = 1|cost problem

Step 1 (dimension reduction): Solve the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem with the same

input and allocate max(⌊𝑎𝑘 − 1⌋, 0) unit-time jobs in each 𝐸𝑇𝐼𝑘, where 𝑎𝑘 is the total processing

time allocated in the preemptive case to 𝐸𝑇𝐼𝑘.

11

Step 2 (dynamic programming (: Create a streamlined version of the problem where the length

of each ETI is 𝑙𝑘 − max(⌊𝑎𝑘 − 1⌋, 0) and the number of jobs to be processed is 𝑛 −

∑ max(⌊𝑎𝑘 − 1⌋, 0)𝐾
𝑘=1 . Solve this problem using the dynamic programming algorithm described

above.

Step 3 (merging): Combine the two solutions obtained in the previous steps into a list of busy

periods that materializes their total utilization prescribed by the first two steps at each 𝐸𝑇𝐼𝑘.

Example 4: Consider an instance of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem with 𝑛 = 20 jobs and

𝐾 = 5 ETIs, where 𝑞 = (1,2,40,3,1) and 𝑙 = (8.8,1.1,2.1,2,10). When applying Algorithm 1,

we first solve the problem with preemptions. The optimal solution in terms of the time allocated

at each ETI is 𝑎 = (8.8,1.1,0,0.1,10). See Figure 4.

𝑙𝑘 8.8 1.1 2.1 2 10

𝑞𝑘 1 2 4 3 1

Figure 4: Example 4, initial preemptive solution

We round down this solution to create an initial allocation of jobs to the ETIs of (7,0,0,0,9), with

a total energy cost of 16.

𝑙𝑘 8.8 1.1 2.1 2 10

𝑞𝑘 1 2 4 3 1

Figure 5: Example 4, Step 1 rounded down solution

For Step 2, we are left with 𝑛′ = 4 jobs, ETI lengths 𝑙 = (1.8,1.1,2.1,2,1) and the same electricity

tariffs. The optimal solution at this step (obtained by solving the above dynamic program) when

represented as the time allocated at each ETI is (1.8,0.2,0,1,1), with a cost of 6.2.

𝑙𝑘 1.8 1.1 2.1 2 1

𝑞𝑘 1 2 4 3 1

Figure 6: Example 4, Step 2, solution of the reduced problem

Merging these two solutions, we obtain the solution (8.8, 0.2, 0, 1, 10), with a total cost of 16 +

6.2 = 22.2. Nine jobs are processed from time 0 to time 9 and eleven from time 13 to time 24.

𝑙𝑘 8.8 1.1 2.1 2 10

𝑞𝑘 1 2 4 3 1

Figure 7: Example 4, optimal solution

Interestingly, in this optimal solution, the utilization of the second ETI is much lower than the

utilization of the fourth one, although the electricity cost at the fourth is 50% higher. Clearly, this

outcome occurs because adding additional jobs at time 9 will require the allocation of processing

time at the third ETI, which is very costly.

12

Theorem 1: Algorithm 1 solves the 𝟏|𝒆𝒏𝒆𝒓𝒈𝒚, 𝒑𝒋 = 𝟏|𝒄𝒐𝒔𝒕 problem in 𝑶(𝑲𝟑) time.

Proof: We first prove the feasibility of the obtained solution. That is, we show that the time

allocated by Step 3 satisfies the following requirements:

1. for each ETI the time does not exceed the ETI length;

2. the total time allocated sums to 𝑛, the number of jobs;

3. the allocated time can be grouped into busy periods of integer length.

Let 𝒮(𝑙1
′ , … , 𝑙𝐾

′) ⊂ ℝ+
𝐾 be the set of vectors that represent feasible processing times

allocated to each 𝐸𝑇𝐼 in the dimension-reduced problem that can be grouped into busy periods

of integer length. Note that by definition, a busy period does not contain idle time. For example,

the vector (0.3, 0.7, 0, 2) is a member of 𝒮(0.3, 0.9,0.9, 2), while the vector (0.3, 0, 0.7, 2) is not;

(0.5, 0.25, 0.25) is not a member of 𝒮(0.5, 0.5, 0.25), but it is a member of 𝒮(0.5, 0.25, 0.5).

Moreover, since the members of 𝒮(𝒍′) represent feasible processing time allocation, then 𝒚 ∈

𝒮(𝒍′) implies 𝑦𝑘 ≤ 𝑙𝑘
′ for all 𝑘 = 1, … , 𝐾, which is Requirement 1 above.

Let us formulate the problem as the following mathematical program:

min ∑ 𝑞𝑘𝑦𝑘

𝐾

𝑘=1

(3)

∑ 𝑦𝑘

𝐾

𝑘=1
= 𝑛′ (4)

𝐲 ∈ 𝒮(𝑙′) (5)

The objective function (3) is simply to minimize the total energy cost of all the allocated

times. Constraint (4) stipulates that we allocate enough time to process all the jobs. Constraint

(5) limits the allocation of times to ETIs in such a way that allows them to be arranged into busy

periods of integer length.

Equivalently, the original problem can be formulated as

min ∑ 𝑞𝑘𝑥𝑘

𝐾

𝑘=1

(6)

∑ 𝑥𝑘

𝐾

𝑘=1
= 𝑛 (7)

𝐱 ∈ 𝒮(𝑙) (8)

Let 𝒙′ be the vector of times allocated to each ETI at Step 1. That is,

𝑥𝑘
′ = max(0, ⌊𝑎𝑘⌋ − 1) ∀𝑘.

Let 𝒚∗ be an optimal solution of (3)-(5). The theorem can be restated as the claim that 𝒙′ +

𝒚∗ is an optimal solution of (6)-(8). To see that 𝒙′ + 𝒚∗ satisfies (7), note that ∑ 𝑥𝑘
′𝐾

𝑘=1 = 𝑛 − 𝑛′

and thus ∑ (𝑥𝑘
′ + 𝑦𝑘

∗)𝐾
𝑘=1 = ∑ 𝑥𝑘

′𝐾
𝑘=1 + ∑ 𝑦𝑘

∗𝐾
𝑘=1 = (𝑛 − 𝑛′) + 𝑛′ = 𝑛. By the construction of the

input of the first two steps, we have 𝑥𝑘
′ + 𝑦𝑘

∗ ≤ 𝑙𝑘 (Requirement 1) since 𝑦∗ ≤ 𝑙𝑘
′ = 𝑙𝑘 − 𝑥𝑘

′ . It is

only left to show that the requirement that the times allocated at the ETIs can be grouped into

13

integer-length busy periods (Requirement 3) is satisfied. Consider a busy period created in Step

3 that starts at 𝐸𝑇𝐼𝑘1
 and ends at 𝐸𝑇𝐼𝑘2

. This busy period was created by adding integer times

allocated at Step 1 to the busy period (also of integer length) created at Step 2. Clearly, the sum

of several integers is also an integer.

Next, we prove the optimality of the solution. Assume by contradiction that 𝑥′ + 𝑦∗ is not

optimal and let 𝑥∗ be an optimal solution of (6)-(8) that satisfies 𝑥𝑘
∗ ≥ 𝑥𝑘

′ . Such an optimal

solution exists by Lemma 1. Now, let 𝑦′ = 𝑥∗ − 𝑥′, so 𝑦′ is a feasible solution of (3)-(5). The

value of the optimal solution of (6)-(8) can be expressed as

∑ 𝑞𝑘𝑥𝑘
∗

𝐾

𝑘=1
= ∑ 𝑞𝑘𝑥𝑘

′
𝐾

𝑘=1
+ ∑ 𝑞𝑘𝑦𝑘

′
𝐾

𝑘=1
≥ ∑ 𝑞𝑘𝑥𝑘

′
𝐾

𝑘=1
+ ∑ 𝑞𝑘𝑦𝑘

∗
𝐾

𝑘=1
= ∑ 𝑞𝑘(𝑥𝑘

′ + 𝑦𝑘
∗)

𝐾

𝑘=1

which contradicts the assumption that 𝑥′ + 𝑦∗ is suboptimal. The first equality follows from the

construction of 𝑦′ such that 𝑥∗ = 𝑦′ + 𝑥′. The inequality follows from the optimality of 𝑦∗ with

respect to (3)-(5).

The complexity of Step 1 and Step 3 is 𝑂(𝐾). The overall complexity of the dynamic

program of Step 2 is dictated by the number 𝑛′2𝐾 of its states and by the effort of calculating the

values of 𝜂𝜃, which is 𝑂(𝐾2𝑛′). Recall that 𝑛′ = 𝑂(𝐾); thus, the complexity of our case is

𝑂(𝐾3), which is polynomial with respect to the size of the input of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡

problem. Since the dimension of the input of the original problem is 𝑂(𝐾), this is a polynomial-

time algorithm. Therefore, the complexity of Algorithm 1 is dominated by the complexity of

Step 2, which is 𝑂(𝐾3). ∎

Note that the dynamic program could be used to solve the original problem directly, but

since the complexity of the procedure depends on the number of jobs that should be scheduled,

it is not polynomial unless we reduce the number of jobs to 𝑂(𝐾), as we did during the first step.

Finally, if the lengths of the ETIs are all integers, preemption will not occur in the optimal

schedule obtained from the greedy procedure since jobs have a unit size, and all events happen

at integral times. Therefore, it is possible to use the same greedy procedure that solves the

preemptive case to solve the non-preemptive one.

4. The profit maximization problem
We turn now to the maximum-profit version of the scheduling problem under TOU electricity

tariffs. We begin with negative complexity results for 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 and

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡. In Section 4.2, we present a pseudopolynomial algorithm for

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡. In the remainder of Section 4, we continue to the more intricate cases

in which preemptions are not allowed.

4.1 Negative complexity results

First, we show that the 𝜉-semi-identical problem, 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡, is NP-hard in the

strong sense and APX. Clearly, this result implies that the general problem, 1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑝𝑟𝑜𝑓𝑖𝑡,

is also at least as hard.

14

Proposition 3: The 𝜉-semi-identical problem, 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡, is NP-hard in the strong

sense and not approximable with any constant unless 𝑃 = 𝑁𝑃.

Proof: The 1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑐𝑜𝑠𝑡 problem can be reduced to the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 problem by

multiplying all the energy costs 𝑞𝑘 by some constant 𝑎 such that 𝑎𝑞𝑘𝑝𝑗 < 1 for all ETI 𝑘 and job

j. For that, any 𝑎 <
1

max
𝑗,𝑘

𝑝𝑗𝑞𝑘
 will work. With such energy tariffs, the cost of processing any job

at any time is less than 1 and thus if in an optimal solution of the profit maximization problem

all the jobs are scheduled this is also an optimal solution for the cost minimization problem.

Otherwise, if in an optimal solution of the profit maximization problem some jobs are not

scheduled the cost minimization problem admits no feasible solution. ∎

Next, we show that the profit maximization problem with preemption (1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡)

is NP-hard in the weak sense.

Proposition 4: The 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡 problem is NP-hard in the weak sense. Moreover,

the problem remains NP-hard even if the revenue is proportional to the processing times; that is,

𝜉𝑗 = 𝛼𝑝𝑗 for some 𝑎 > 0 and for all jobs.

Proof: The proof is accomplished by a reduction of the NP-complete decision problem "subset

sum" (Karp 1972). Recall that the subset sum problem is defined as follows: given a set of

positive integers 𝑎1, 𝑎2, … , 𝑎𝑛 and an integer 𝑏, decide if there is a subset of this set whose sum

equals 𝑏. We reduce this problem to the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡 problem by creating an instance

with one "cheap" ETI of length 𝑙1 = 𝑏 with 𝑞1 = 0 and a set of jobs with 𝑝𝑗 = 𝜉𝑗 = 𝑎𝑗. Clearly,

the optimal solution of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡 problem equals 𝑏 if and only if the answer

to the subset sum problem is true. ∎

4.2 The profit maximization problem with preemption

The solution of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡 problem is characterized merely by stating the jobs

that are selected to be processed and the amount of time allocated at each ETI for processing. We

first observe a straightforward property of the optimal solutions of the problem that greatly

simplifies its solution.

Lemma 2: The 𝟏|𝒆𝒏𝒆𝒓𝒈𝒚, 𝒑𝒎𝒕𝒏|𝒑𝒓𝒐𝒇𝒊𝒕 problem admits an optimal solution in which all the

ETIs excluding one, ETI �̃�, are either fully utilized or not utilized at all. Moreover, the energy

cost 𝒒�̃� is not smaller than the energy cost 𝒒𝒌 of any of the fully utilized ETIs and not greater

than that of any of the nonutilized ETIs.

Proof: Assume by contradiction a solution that does not satisfy the conditions of the lemma.

Such a solution can be improved by deallocating the processing time of a job from the most

expensive utilized ETI and reallocating this processing time in some cheaper ETI. ∎

Next, we present a pseudopolynomial-time dynamic programming algorithm for the

problem. Recall that the processing times of the jobs are all integers, but the lengths of the ETIs

are not necessarily integers.

15

In this section the ETIs are first indexed in nondecreasing order of their electricity cost,

𝑞𝑘. Note that under this ordering, no preemptions are required in an optimal solution and thus the

solution can be characterized by the starting time of each job. Later, we revert to the original

order of the ETIs and greedily schedule the jobs that are selected to be processed.

Let �̃�𝑡𝑗 be the profit of job 𝑗 (the revenue 𝜉𝑗 net of the electricity cost required to produce

it) assuming that job 𝑗 started at time 𝑡 when the ETIs are indexed according to their electricity

cost. The calculation of each constant �̃�𝑡𝑗 can be performed in 𝑂(𝐾) units of time, and thus, the

overall complexity of calculating all of these values is 𝑂(𝑛𝑇𝐾).

We define 𝑓(𝑡, 𝑗) as the expected profit after considering 𝑗 jobs and utilizing the cheapest

𝑡 time units. The following Bellman equations define the dynamic program that solves the

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡 problem:

𝑓(𝑡, 𝑗) = max{�̃�𝑡𝑗 + 𝑓(𝑡 + 𝑝𝑗 , 𝑗 + 1), 𝑓(𝑡, 𝑗 + 1)} ∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽

𝑓(𝑡, 𝑛 + 1) = 0 ∀𝑡 ∈ 𝑇

𝑓(𝑇 + 1, 𝑗) = 0 ∀𝑗 ∈ 𝐽

Solving the dynamic program can be done in 𝑂(𝑛𝑇) time, and thus, the time complexity is

dominated by the preprocessing step, which is 𝑂(𝑛𝑇𝐾). This is clearly a pseudopolynomial

running time since the input dimension is independent of 𝑇.

4.3 Identical and semi-identical cases with preemptions

Both the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 and the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 cases admit

polynomial-time algorithms. A pseudocode that describes such a solution procedure for the 𝑝-

semi-identical maximum profit problem is given in Algorithm 2.

16

Algorithm 2: Polynomial-time algorithm for 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡

Input:

The jobs in nonincreasing order of revenue, i.e., such that 𝜉1 ≥ 𝜉2 ≥ ⋯ ≥ 𝜉𝑛

The ETIs in a nondecreasing order of tariffs, i.e., such that 𝑞1 ≤ 𝑞2 ≤ ⋯ ≤ 𝑞𝐾

Let 𝑗 = 1, 𝑘 = 1

Let 𝐴𝑘 = 0 for all 𝑘 = 1, … , 𝐾 // the processing time allocated to 𝐸𝑇𝐼𝑘

While 𝑘 ≤ 𝐾 and 𝑗 ≤ 𝑛

 // calculate the electricity cost of assigning the next job

 𝑡 ← 𝑝𝑗, 𝑎 ← 0, 𝑘′ ← 𝑘

 While 𝑡 ≥ 0 and 𝑘′ < 𝐾

 𝑎 ← 𝑞𝑘′ ⋅ min(𝑡, 𝑙𝑘′ − 𝐴𝑘′)

 𝑡 ← 𝑡 − min(𝑡, 𝑙𝑘′ − 𝐴𝑘′)

 𝑘′ ← 𝑘′ + 1

 // allocating the job processing time to the ETIs

 If 𝜉𝑗 > 𝑎 and 𝑡′ = 0

 𝑡 ← 𝑝𝑗

 For 𝑘′′ = 𝑘 to (𝑘′ − 1)

 𝐴𝑘 ← 𝐴𝑘 + min(𝑡, 𝑙𝑘′′ − 𝐴𝑘′′)

 𝑡 ← 𝑡 − min(𝑡, 𝑙𝑘′′ − 𝐴𝑘′′)

 𝑗 ← 𝑗 + 1

 𝑘 ← 𝑘′′

 Else

 break // exit the while loop if no profitable allocation remains

Return:{1, … , 𝑗 − 1}, 𝐴1, … , 𝐴𝑘

Algorithm 2 starts by sorting the jobs in nonincreasing order of revenue and sorting the

ETIs in nondecreasing order of tariffs. For simplicity of notation, we assume that these lists are

already ordered. The idea is to first schedule the most profitable jobs and to continue as long as

it is still possible to add jobs while increasing the profit. The algorithm loops through the ETIs

and jobs while maintaining the index of the next job to consider, 𝑗, and the index of the current

𝐸𝑇𝐼, 𝑘. For each job, the algorithm first calculates the electricity cost of allocating it to the

cheapest remaining ETIs. If the cost is smaller than the profit, the processing time of the job is

allocated to these ETIs. Next, the indexes of the current job and the ETI are updated. If the current

job is already not profitable or cannot fit in the remaining time, no other jobs are considered.

Recall that in Table 1, we specified that the solution of the semi-identical preemptive case is

described by a list of busy periods and a list of the jobs that are being processed. Clearly, the busy

periods can be easily constructed from the time allocated at each ETI, returned as 𝐴1, … , 𝐴𝐾.

Proposition 5: Algorithm 2 solves the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡 problem in

𝑂(n ⋅ log 𝑛 + K ⋅ log 𝐾) time.

Proof: We first prove that the algorithm solves the problem and then show its complexity. Let

𝑆𝐴𝐿𝐺 denote the solution delivered by the algorithm and proceed by contradiction: assume that

17

there is a better solution 𝑆∗ such that 𝑆∗ satisfies the conditions of Lemma 2 and has the minimal

number of scheduled jobs among these solutions. Note that 𝑆𝐴𝐿𝐺 is the only solution that satisfies

Lemma 2 with the same number of jobs (up to shifting busy time within the most expensive ETI,

a modification that does not change its value). Thus, the number of scheduled unit time jobs in

𝑆∗ must be different from the number in 𝑆𝐴𝐿𝐺. If 𝑆∗ has more jobs than 𝑆𝐴𝐿𝐺, it means that it

utilizes times that are not utilized in 𝑆𝐴𝐿𝐺 and schedules at least one job with a revenue that is

not greater than the one with the smallest revenue scheduled by 𝑆𝐴𝐿𝐺. Now, since 𝑆∗ is optimal

with a minimal number of jobs, it is not possible to remove one job from it without decreasing

its value. This observation implies that the marginal electricity cost of its last and most expensive

time unit interval (or intervals) is smaller than the revenue of the job with the smallest revenue

that it schedules. However, this job and these marginal time intervals were available for the

algorithm when it stopped. The fact that the job was not scheduled by ALG is a contradiction

because it implies that the stopping condition did not hold. A similar argument can be used to

show why it cannot be the case that the number of jobs in 𝑆∗ is smaller than the number of jobs

in 𝑆𝐴𝐿𝐺, and thus the contradiction holds in this case as well.

To show its complexity of the algorithm, we note that the main loop is repeated at most

𝑛 + 𝐾 times since at each iteration, at least one of the counters 𝑗 or 𝑘 is increased by at least one.

The internal loop (for calculating the electricity cost of jobs that utilize several ETIs) is repeated

at most 𝐾 times over all the iterations of the main loop. Thus, the complexity is dominated by the

sorting of the list of jobs, which takes 𝑂(𝑛 ⋅ 𝑙𝑜𝑔 𝑛), or by the sorting of the list of ETIs, which

takes 𝑂(𝐾 ⋅ 𝑙𝑜𝑔 𝐾). ∎

The solution process for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 problem is very similar,

except that in this case, the jobs are ordered in nondecreasing order of 𝑝𝑗. We do not include the

formal proof here for the sake of brevity. A sound heuristic for the general case of the

1/𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛/𝑝𝑟𝑜𝑓𝑖𝑡 problem is to order the jobs in nonincreasing order of 𝜉𝑗/𝑝𝑗. This

procedure, of course, does not guarantee an optimal solution.

Recall that in the identical case, 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡, the input and

output dimensions are 𝑂(𝐾), and thus, applying Algorithm 2 for this special case does not result

in a polynomial-time algorithm. A streamlined version of the solution procedure for the identical

jobs case is presented as a pseudocode in Algorithm 3.

18

Algorithm 3: Polynomial algorithm for 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡

Input: The ETIs in nondecreasing order of tariffs, i.e., such that 𝑞1 ≤ 𝑞2 ≤ ⋯ ≤ 𝑞𝐾

Let 𝑁 = 0, 𝑘 = 1

Let 𝐴𝑘 = 0 for all 𝑘 = 1, … , 𝐾 // the processing time allocated to 𝐸𝑇𝐼𝑘

// greedily allocate time to the cheapest ETI

While 𝑘 ≤ 𝐾

 // allocating time to ETIs

 If ⌈𝑁⌉ ≤ 𝑛 and 𝑞𝑘 < 1

 𝐴𝑘 ← min(𝑛 − ⌈𝑁⌉, 𝑙𝑘)

 𝑘 ← 𝑘 + 1

 𝑁 ← 𝑁 + 𝐴𝑘

 else

 break // exit the while loop

// check the electricity cost of the last job

𝑡 ← 𝑁 − ⌊𝑁⌋, 𝑘′ ← 𝑘 − 1, 𝑎 ← 0 // first: the cost of the already allocated fraction

While t > 0

𝑎 ← 𝑎 + 𝑞𝑘′ ⋅ min(𝑡, 𝑙𝑘′)

𝑡 ← 𝑡 − min(𝑡, 𝑙𝑘′)

𝑘′ ← 𝑘′ − 1

𝑡 ← ⌈𝑁⌉ − 𝑁, 𝑘′ ← 𝑘 // second: the cost of the remaining fraction

While t > 0

𝑎 ← 𝑎 + 𝑞𝑘′ ⋅ min(𝑡, 𝑙𝑘′)

𝑡 ← 𝑡 − min(𝑡, 𝑙𝑘′)

𝑘′ ← 𝑘′ + 1

If 𝑎 < 1 // allocate the remaining processing time of the last job if it is profitable

𝑡 ← ⌈𝑁⌉ − 𝑁

While t > 0

𝐴𝑘 ← min(𝑡, 𝑙𝑘)

𝑡 ← 𝑡 − min(𝑡, 𝑙𝑘)

𝑘 ← 𝑘 + 1

Else // deallocate the processing time of the last job if it is not profitable

𝑡 ← 𝑁 − ⌊𝑁⌋

While 𝑡 > 0

𝑘 ← 𝑘 − 1

𝐴𝑘 ← min(𝑡, 𝑙𝑘)

𝑡 ← 𝑡 − min(𝑡, 𝑙𝑘)

Return 𝑁, 𝐴1, … , 𝐴𝐾

Algorithm 3 starts by allocating the times of the ETIs with electricity tariffs that are

cheaper than the unit revenue of the unit time jobs. Clearly, this allocation may result in an

19

allocation of a noninteger total processing time. In such a case, we calculate the marginal cost of

the last scheduled job, assuming it will be completed in more expensive ETIs. This cost consists

of the cost of the already allocated time of the last job and the cost of processing its remaining

time if allocated to the cheapest ETIs among the remaining ones. If this total cost is smaller than

the unit revenue, the allocation of the remaining job is completed; otherwise, the fraction that

was already allocated is deallocated.

Proposition 6: Algorithm 3 solves the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 problem in

𝑂(K ⋅ log 𝐾) time.

The proof is very similar to that of Proposition 5.

4.4 The 𝑝-semi-identical case without preemptions

Interestingly, while the 𝜉-semi-identical case without preemption is proven to be strongly NP-

hard, the 𝑝-semi-identical case admits a polynomial-time algorithm. The difference is due to the

fact that identical processing times imply a relatively simple combinatorial structure with 𝑂(𝐾𝑛)

optional points of time to start a job, while identical revenues have no effect on the combinatorial

structure. There exists an optimal solution of 1/𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1/𝑝𝑟𝑜𝑓𝑖𝑡 where all the starting

times of jobs are values in Θ, as defined below:

Θ = {𝜃: 𝜃 = 𝑡𝑘 + 𝑖, 𝑘 = 0, … , 𝐾, 𝑖 = −𝑛, … , 𝑛} ∩ [0, 𝑇 − 1]. (9)

The function 𝑛𝑒𝑥𝑡(𝜃) is defined as in (2).

Note that since the size of the input of 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 is 𝑂(𝐾 + 𝑛), an algorithm that

is polynomial in |Θ| is a polynomial-time algorithm for the problem. Indeed, |Θ| = 𝑂(𝑛𝐾). Based

on this observation, the following dynamic program solves the problem in 𝑂(𝑛2𝐾):

𝑓(𝜃, 𝑗) = {
max{𝑓(𝑛𝑒𝑥𝑡(𝜃), 𝑗), 𝜉𝑗 − 𝜂𝜃 + 𝑓(𝜃 + 1, 𝑗 + 1)} 𝜃 ≤ 𝑇 − 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

for all 𝜃 ∈ Θ, 𝑗 = 0, … , 𝑛 − 1. The boundary conditions are

𝑓(𝜃, 𝑛) = 0 for all 𝜃 ∈ Θ.

This dynamic program is similar to the one solved in Step 2 of Algorithm 1. The only

differences are that we add 𝜉𝑗 − 𝜂𝜃 instead of 𝜂𝜃 for the decision to include job 𝑗 in our plan and

that the set Θ is defined with the original number of jobs 𝑛 rather than with 𝑛′.

When 𝑛 ≫ 𝐾, a more efficient algorithm can be crafted based on the idea of Algorithm 1

introduced for the minimum cost problem. Step 1 is now based on the optimal solution of the

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 problem and Step 2 on the dynamic program described above

for the reduced size problem. The two solutions are merged in Step 3 in the same way as in

Algorithm 1. The complexity of this new algorithm is 𝑂(𝐾3 + 𝑛 log 𝑛), where the 𝑂(𝑛 log 𝑛)

arises from the need to sort the jobs by 𝜉𝑗 at Step 1.

20

4.5 The identical case without preemption

Recall that in the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡 case, the input of the problem consists of a

list of 𝐾 ETIs with their lengths and energy costs and an integer number 𝑛 of identical jobs. The

optimal schedule (the output) should be returned implicitly as a list of busy periods with their

starting times and lengths. Thus, the complexity of a polynomial-time algorithm for this problem

must be polynomial in the number of ETIs 𝐾 but independent of the number of jobs 𝑛. Indeed,

such an algorithm is presented below.

The length of each busy period in the solution should be an integer, and the total lengths

of the busy periods should not exceed 𝑛. However, in contrast to the minimum cost problem,

here, producing fewer than 𝑛 jobs can be an optimal decision if it is profitable to do so. Hence,

in this problem, the scheduler has to decide the number of jobs to schedule and their starting

times.

Note that given the optimal number of jobs that should be processed, the optimal schedules

of the maximum profit problem and of the minimum cost problem with the same number of jobs

are identical. Hence, an optimal solution where the starting times of all jobs are in the set Θ, as

defined in (1), exists. Our proposed solution method follows Algorithm 1 for the identical

minimum cost problem. We start by solving the preemptive version of the identical maximum

profit problem (1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝜉𝑗 = 1, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡). Let 𝑎𝑘 denote the total processing

time of 𝐸𝑇𝐼𝑘 in this solution. Next, we tentatively schedule max(⌊𝑎𝑘⌋ − 1,0) jobs to each ETI.

The remaining 𝑂(𝐾) jobs are scheduled in a modified version of the problem where the number

of jobs that have already been scheduled is deduced from the lengths of the ETI𝑠. The schedule

is carried out using the dynamic program presented below:

𝑓(𝜃, 𝑗) = {
max{𝑓(𝑛𝑒𝑥𝑡(𝜃), 𝑗), 1 − 𝜂𝜃 + 𝑓(𝜃 + 1, 𝑗 + 1)} 𝜃 ∈ Θ

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

for all 𝑗 = 0, … , 𝑛 − 1, 𝜃 ∈ Θ. The function 𝑓(𝜃, 𝑗) represents the maximal profit that can be

obtained by scheduling a subset of the set of jobs {𝑗, … , 𝑛} in the interval [𝜃, 𝑇]. The boundary

conditions are

𝑓(𝜃, 𝑛) = 0, for all 𝜃 ∈ Θ

This dynamic program differs from the one presented for solving the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 =

1|𝑐𝑜𝑠𝑡 problem mainly in the boundary conditions that allow reaching the end of the planning

horizon without scheduling all 𝑛 jobs.

The optimal solutions of the first and second steps are then merged into a single solution,

as in the minimum cost problem. The overall complexity is again 𝑂(𝐾3).

We will now discuss a simple solution method for a special case of the problem where the

number of jobs, 𝑛, is large enough so that the value of an optimal solution cannot be improved

by increasing the number of available jobs. The fact that the number of jobs is large enough may

be known a priori. For example, if the total number of available jobs is greater than the length of

the planning horizon or if the solution of the preemptive case uses less than 𝑛 jobs. We denote

this case by 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝜉𝑗 = 1, 𝑛 = ∞|𝑝𝑟𝑜𝑓𝑖𝑡.

21

With a large enough number of jobs, the second step can be solved by a simpler dynamic

program with a smaller state space. This space consists of only the elements of |Θ| because we

do not need to keep track of the number of jobs already scheduled. The Bellman equation for this

problem is

𝑓(𝜃) = {
max{𝑓(𝑛𝑒𝑥𝑡(𝜃), 1 − 𝜂𝜃 + 𝑓(𝜃 + 1)} 𝜃 ≤ 𝑇 − 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

for all 𝜃 ∈ Θ. The boundary conditions are included in the equation. The time complexity of this

procedure is 𝑂(𝐾2), and it dominates all of Algorithm 1.

5. Cost minimization with release times and due dates

5.1 The cost minimization problem with preemption
The problem 1|𝑒𝑛𝑒𝑟𝑔𝑦, pmtn, 𝑟𝑗, 𝑑𝑗|𝑐𝑜𝑠𝑡 can be cast as an instance of the Hitchcock

transportation problem. We define the set 𝐸 of epoch ends as the union of all the release times,

due dates and ends of ETIs:

𝐸 = {𝑡𝑘: 𝑘 = 0, … , 𝐾) ∪ {𝑟𝑗: 𝑗 = 1, … , 𝑛} ∪ {𝑑𝑗: 𝑗 = 1, … , 𝑛}

The set 𝐸 is sorted in increasing order, and we let 𝑒𝑖 denote the 𝑖𝑡ℎ element, where 𝑖 = 0 refers

to the first element 𝑒0 = 0. Next, we define a set of intervals

𝐼(𝐸) = {(𝑒𝑖−1, 𝑒𝑖): 𝑖 = 1, … , |𝐸| − 1}

Note that the electricity tariff is constant during each interval in 𝐼(𝐸). Let 𝑞𝑖
′ denote the electricity

tariff during the 𝑖𝑡ℎ interval.

Using this notation, we define a transportation problem with a source for each interval in

𝐼(𝐸) and a sink for each job. The supply of each interval (𝑒𝑖−1, 𝑒𝑖) is its length 𝑒𝑖 − 𝑒𝑖−1. The

demand of each job 𝑗 is 𝑝𝑗. The transportation cost between each interval 𝑖 and job 𝑗 is 𝑞𝑖
′ if

(𝑒𝑖−1, 𝑒𝑖) ⊆ (𝑟𝑗, 𝑑𝑗) and infinite otherwise. The solution of the transportation problem prescribes

the time allocated to each job during each interval.

The state of the art in solving the Hitchcock transportation problem is the algorithm given

by Brenner (2008). He presents an algorithm that solves an instance with 𝑠 sources and 𝑡 sinks

in 𝑂(𝑠𝑡2(log 𝑠 + 𝑡 log 𝑡)) time. In our case, there are 𝑂(𝑛 + 𝐾) sources and 𝑛 sinks. That is,

our problem can be solved in 𝑂((𝑛4 + 𝑛3𝐾) log 𝑛 + (𝑛3 + 𝑛2𝐾) log(𝑛 + 𝐾)) time. In

particular, if the number of jobs, 𝑛, is not much smaller than the number of ETIs, 𝐾, the

complexity is dominated by 𝑂(𝑛4 log 𝑛).

5.2 The nonpreemptive min-cost problem with unit processing times

In this section, we present a polynomial-time algorithm for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝑑𝑗|𝑐𝑜𝑠𝑡

problem. The same idea is also applicable to 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝑟𝑗|𝑐𝑜𝑠𝑡. Our algorithm is based

on the following two simple observations.

22

Observation 1: There exists an optimal solution of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝑑𝑗|𝑐𝑜𝑠𝑡 problem

where the jobs are sorted in nondecreasing order of their due dates (EDD). This observation can

be shown by a simple swapping argument.

The following observation is valid under the assumption that the jobs are indexed by EDD

order.

Observation 2: The starting time of job 𝑗 in a solution of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝑑𝑗|𝑐𝑜𝑠𝑡 problem

is not greater than

ωj = min
𝑗′∈{𝑗,..,𝑛}

{𝑑𝑗′ − (𝑗′ − 𝑗 + 1)}. (10)

Indeed, under the EDD rule, for any pair of jobs 𝑗 < 𝑗′, job 𝑗 must start at least 𝑗′ − 𝑗 units of

time before job 𝑗′ starts and job 𝑗′ must start at least one unit of time before its due date.

The values of 𝜔𝑗 for all 𝑗 = 1, … , 𝑛 can be calculated in linear time using the following recursive

formula:

ωj = min(𝑑𝑗, 𝜔𝑗+1) − 1 ∀𝑗 = 1, … , 𝑛 − 1

and

ωn = 𝑑𝑛 − 1

Based on the definition of Θ in (9), we define

H = Θ ∪ {𝜔𝑗 + ℎ: 𝑗 = 1, … , 𝑛, ℎ = 0, … , 𝑛 − 𝑗}

𝐻𝑗 = {𝜃 ∈ H: j − 1 ≤ θ ≤ ωj}

Proposition 7: There exists an optimal solution where the starting time of each job 𝑗 is in the set

𝐻𝑗.

Proof: Assume by contradiction that there is no such optimal solution and consider an optimal

solution where the first job that starts at a time not in 𝐻𝑗 has a maximal index, among all the

optimal solutions that satisfy the EDD property. We use 𝜏𝑗 to denote the starting time of job 𝑗 in

a solution. Let 𝑗∗ be the first job in this solution that does not satisfy 𝜏𝑗∗ ∈ 𝐻𝑗. Next, let ℎ denote

the position of job 𝑗∗ in its busy period in this solution, where ℎ = 0 refers to the first job in the

busy period. If ℎ > 0, then job 𝑗∗ − 1 starts at time (𝜏𝑗∗ − 1) ∈ 𝐻, and in particular, (𝜏𝑗∗ − 1) ∈

𝐻𝑗∗−1. Now, we consider two cases:

1) (𝜏𝑗∗ − 1) ∈ Θ,

2) (𝜏𝑗∗ − 1) ∈ {𝜔𝑗 + ℎ: 𝑗 = 1, … , 𝑛, ℎ = 0, … , 𝑛 − 𝑗}.

In case 1, it follows from the definition of Θ that 𝜏𝑗∗ ∈ Θ and thus 𝜏𝑗∗ ∈ 𝐻, which is a

contradiction.

23

In case 2, since 𝜏𝑗∗−1 ≤ 𝜔𝑗∗−1, we know that for some 𝑗′ ≤ 𝑗∗ − 1, 𝜏𝑗∗−1 = 𝜔𝑗′ + (𝑗∗ − 1 − 𝑗′)

and therefore 𝜏𝑗∗ = 𝜔𝑗′ + (𝑗∗ − 𝑗′). Since it must be the case that 𝑗∗ − 𝑗′ ≤ 𝑛 − 𝑗′, we conclude

that 𝜏𝑗∗ ∈ {𝜔𝑗 + ℎ: 𝑗 = 1, … , 𝑛, ℎ = 0, … , 𝑛 − 𝑗}, which is again a contradiction.

If, on the other hand, ℎ = 0, meaning that 𝑗∗ is the first job in its busy period, we consider two

other cases. Either

1) The electricity tariff of the first ETI of the busy period is not greater than the tariff at the last

ETI of the busy period, or

2) The electricity tariff of the first ETI of the busy period is greater than the tariff at the last ETI

of the busy period.

In case 1, the entire busy period may be shifted backward until it meets either another busy period

or the beginning of the ETI. In either case, the busy period will satisfy the verge property, and all

the jobs in it will start at times in Θ. In case 2, it would be desirable to shift the busy period

forward, but since this is an optimal solution, such a shift must be impossible because one of the

jobs in the busy period ends at its due date. However, if this is the case, this job and all the jobs

𝑗 that precede it in the busy period start at 𝜔𝑗, which is also in 𝐻.

Finally, since 𝜏𝑗∗ ∈ 𝐻 and 𝑗 − 1 ≤ 𝜏𝑗∗ ≤ 𝜔𝑗, we conclude that 𝜏𝑗∗ ∈ 𝐻𝑗. ∎

We define a function

𝑛𝑒𝑥𝑡(𝜃) = min{𝜃′ ∈ H: 𝜃′ > 𝜃}

and the function

𝑠𝑢𝑐𝑐(𝜃, 𝑗) = 𝑚𝑖𝑛 {𝜃′ ∈ H𝑗+1: 𝜃′ ≥ 𝜃 + 1 }.

Recall that the constant 𝜂𝜃 is the energy cost of the job that starts at time 𝜃. The optimal solution

can be obtained from the following Bellman equation defined for each state 𝜃 ∈ Θ and 𝑗 ∈

{1 … , 𝑛}:

𝑓(𝜃, 𝑗) = {
min{𝑓(𝑛𝑒𝑥𝑡(𝜃), 𝑗), 𝜂𝜃 + 𝑓(𝑠𝑢𝑐𝑐(𝜃, 𝑗), 𝑗 + 1,)} θ ∈ Hj: next(θ) ∈ Θj

𝜂𝜃 + 𝑓(𝑠𝑢𝑐𝑐(𝜃, 𝑗), 𝑗 + 1) 𝜃 = 𝜔𝑗
.

(11)

The function 𝑓(𝜃, 𝑗) represents the minimal cost of scheduling jobs {𝑗, … , 𝑛} in the time interval

[𝜃, 𝑇]. The optimal solution is obtained by evaluating the program starting from 𝑓(1,0). The size

of the state space of (11) is 𝑂(𝑛2𝐾), and the calculation of the value of each state can be done in

constant time. The preprocessing step of calculating 𝜂𝜃 for each 𝜃 ∈ Θ ∪ {𝜔𝑗: 𝑗 ∈ 1, … , 𝑛} is

𝑂(𝐾). However, a more cautious implementation allows the calculation of all 𝜂𝜃 to be done in

𝑂(|Θ ∪ {𝜔𝑗: 𝑗 ∈ 1, … , 𝑛}|) = 𝑂(𝑛𝐾) time, though the straightforward procedure requires

𝑂(𝑛𝐾2) time. Therefore, the Bellman equations (11) can be solved in 𝑂(𝑛2𝐾) time.

A similar approach could be applied to the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑟𝑗|𝑐𝑜𝑠𝑡 problem with the jobs sorted in

nondecreasing order of their release time and a lower bound for the starting time calculated as

24

δj = max(𝑟𝑗, 𝛿𝑗−1) − 1 ∀𝑗 = 2, … , 𝑛

and

𝛿1 = 𝑟1

However, the problem 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑟𝑗, 𝑑𝑗|𝑐𝑜𝑠𝑡 is left for future consideration. We note that the

solution approach presented in this section does not work because we do not know of any order

that jobs follow in an optimal solution.

6. The variable-energy-consumption generalization
Fang et al. (2016) study a generalization of the 1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑐𝑜𝑠𝑡 problem in which power

consumption varies among jobs and denote it as Problem U. We let 𝜋𝑗 denote the power

consumption of job 𝑗. The cost of processing job 𝑗, assuming it is processed entirely during 𝐸𝑇𝐼𝑘,

is thus 𝜋𝑗 ⋅ 𝑝𝑗 ⋅ 𝑞𝑘 (the power consumption times the duration times the electricity tariff). If the

processing of a job spans over several ETIs, its cost is calculated proportionally. Using the 3-

field notation, we refer to this problem as 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟|𝑐𝑜𝑠𝑡. This problem is proven

by Fang et al (2016) to be strongly NP-hard and not approximable. Note that the 1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑐𝑜𝑠𝑡

problem is clearly obtained as a special case of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟|𝑐𝑜𝑠𝑡 problem with

𝜋𝑗 = 1. Recall that the complexity results of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟|𝑐𝑜𝑠𝑡 are clearly implied

by the fact that the special case of identical power consumption is also NP-hard and not in APX

(Theorem 1).

Fang et al (2016) discuss the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 𝑝|𝑐𝑜𝑠𝑡 problem (using our

notation) where 𝑝 and the ETI lengths are integers. We consider the equivalent problem

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 with rational ETI lengths. For the special case of a particular

electricity tariff structure known as a pyramid structure, they develop a polynomial-time greedy

algorithm. However, the complexity status of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem

for a general tariff structure is left open.

The method for solving the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑟𝑗, 𝑑𝑗|𝑐𝑜𝑠𝑡 problem using the transportation

problem as described in Section 5 can easily be generalized to solve the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟 −

𝑝𝑜𝑤𝑒𝑟, 𝑝𝑚𝑡𝑛, 𝑟𝑗, 𝑑𝑗|𝑐𝑜𝑠𝑡 problem. This method requires setting the transportation cost between

each interval (𝑒𝑖−1, 𝑒𝑖) and job 𝑗 to 𝜋𝑗𝑞𝑖
′.

In the rest of this section, we derive an interesting structural property of optimal solutions

of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟|𝑐𝑜𝑠𝑡 problem and present a compact integer programming

formulation for the identical-processing-time case that is based on this property.

It turns out that the verge property does not hold for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟|𝑐𝑜𝑠𝑡

problem even in the identical-processing-time case. For a counterexample, consider an instance

of the problem with 𝑛 = 3, 𝑘 = 5, 𝑝𝑗 = 1, 𝜋 = (4,8,8), 𝑞 = (100,1,10,1,100), 𝑙 =

(1.25,0.75, 1,0.75,1.25). It is easy to see that it is optimal to schedule the three jobs in order

(2,1,3) at one busy period starting at time 1 with a cost of 452. However, this solution does not

satisfy the verge property, as seen in Figure . No other schedule of the three jobs can yield equal

or smaller cost (except for the one obtained by swapping jobs 2 and 3 within the same busy

period). For example, shifting the busy period forward to start at time 1.25 (to the beginning of

25

𝐸𝑇𝐼2) results in a schedule with a cost of 461. Clearly, this example could be transformed to one

with integer length ETIs and identical-length jobs by multiplying all times by 4.

𝑙𝑘 1.25 0.75 1 0.75 1.25

𝑞𝑘 100 1 10 1 100

𝐸𝑇𝐼𝑘 1 2 3 4 5

Figure 8: Example of an instance of the 𝟏|𝒆𝒏𝒆𝒓𝒈𝒚, 𝒗𝒂𝒓-𝒑𝒐𝒘𝒆𝒓, 𝒑𝒋 = 𝟏|𝒄𝒐𝒔𝒕 problem that

does not satisfy the verge property.

Fortunately, although the verge property does not hold, we can prove that a similar useful

property is satisfied.

Definition 3: the boundary property. A solution of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟|𝑐𝑜𝑠𝑡 problem is

said to satisfy the boundary property if, in each busy period, the start time or end time of at least

one job coincides with a boundary of an ETI.

The solution presented in Figure satisfies this property because the start time of job 1 coincides

with the start time of 𝐸𝑇𝐼3.

Proposition 8: There exists an optimal solution of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟|𝑐𝑜𝑠𝑡 problem that

satisfies the boundary property.

Proof: Consider an optimal solution with a minimal number of busy periods that violate the

boundary property. Let us examine the first (relative to the starting times of the busy periods)

such violating busy period. Note that this busy period can be shifted backward or forward without

increasing either the total electricity consumption or its cost until either the busy period hits

another busy period or the boundary property is satisfied. In the first case, the number of busy

periods is reduced by one, contradicting the minimality of the number of busy periods. In the

second case, the number of busy periods that violate the boundary conditions is reduced by one.

We can continue with this process until either there are no violating busy periods, or the number

of busy periods is reduced by one, contradicting our assumption. Hence, there exists an optimal

solution of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟|𝑐𝑜𝑠𝑡 problem in which all busy periods satisfy the

boundary property. ∎

Recall that the identical-processing-time case (𝑝𝑗 = 𝑝) is equivalent to the unit-time case

(𝑝𝑗 = 1) when the lengths of the ETIs are not necessarily integers. An implication of Proposition

8 for the solution of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem is that there exists an

optimal solution of the problem in which the starting time of any job differs by an integer number

of time units from an ETI boundary. That is, the cardinality of the set of candidate starting times

is 𝑂(𝑛𝐾). In particular, this set can be defined as

Θ = {𝑡: 𝑡 = 𝑡𝑘 + 𝑖, 𝑘 = 0, … , 𝐾, 𝑖 = −𝑛, … , 𝑛} ∩ [0, 𝑇 − 1]. (12)

Note that Θ is defined in a similar way to the set with the same notation introduced in Step

2 of Algorithm 1 as presented in (1), only here 𝑛′ is replaced by the total number of jobs, 𝑛.

Unfortunately, the boundary property does not lead to a polynomial-time dynamic program

𝜋1 = 4

3𝜋3 = 8

𝜋1 = 8

3𝜋2 = 8

𝜋1 = 8

26

algorithm for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem similar to the one applicable to

the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem since a state space that consists of all the pairs Θ × {0, … , 𝑛}

is not enough to encode the information for an optimal local decision. For this purpose, one needs

to know which jobs remain to be processed.

Next, we formulate the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 problem as a linear integer

program. For each 𝜃 ∈ Θ, let 𝜂𝜃 be the electricity cost per power unit for a time unit that starts at

time 𝜃. In addition, for each 𝜃, let ℬ𝜃 = Θ ∩ [𝜃, 𝜃 + 1). That is, ℬ𝜃 consists of the time 𝜃 and all

the other members of Θ that are within one unit from 𝜃. We define a set of 𝑂(𝐾𝑛2) binary

decision variables 𝑥𝜃,𝑗 that equal “1” if job 𝑗 is scheduled to start at time 𝜃 and “0” otherwise:

min ∑ ∑ 𝜂𝜃𝜋𝑗𝑥𝜃,𝑗

𝑗∈𝐽𝜃∈Θ

(13)

∑ 𝑥𝜃,𝑗

𝜃∈Θ

= 1 ∀𝑗 ∈ 𝐽
(14)

∑ ∑ 𝑥𝜃,𝑗

𝑗∈𝐽𝜃∈ℬ𝜃

≤ 1 ∀𝜃 ∈ Θ
(15)

𝑥𝜃,𝑗 ∈ {0,1} ∀𝜃 ∈ Θ, 𝑗 ∈ 𝐽

In the objective function(13), the total cost of the schedule is minimized. Constraint (14)

stipulates that each job is scheduled exactly once at a candidate starting time in Θ. Constraint (15)

assures that no two jobs are scheduled to be processed at an overlapping time.

A profit maximization version of this problem can be formulated and is denoted by

1|energy, 𝑣𝑎𝑟-𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡, where the schedulers select which jobs to process and

according to what schedule so to maximize their net profit. The problem exhibits the same

boundary property as the cost minimization problem; thus, in the unit time case, the set of possible

starting times of jobs is the set Θ defined above. It is possible to formulate the problem as a linear

integer program as follows:

max ∑ ∑(𝜉𝑗 − 𝜂𝜃)𝜋𝑗𝑥𝜃,𝑗

𝑗∈𝐽𝜃∈Θ

(16)

∑ 𝑥𝜃,𝑗

𝜃∈Θ

≤ 1 ∀𝑗 ∈ 𝐽
(17)

∑ ∑ 𝑥𝜃,𝑗

𝑗∈𝐽𝜃∈ℬ𝜃

≤ 1 ∀𝜃 ∈ Θ
(18)

𝑥𝜃,𝑗 ∈ {0,1} ∀𝜃 ∈ Θ, 𝑗 ∈ 𝐽

The objective function (16) maximizes the revenue net of the electricity cost of the

scheduled jobs. Constraint (17) is similar to (14) except that here, in the profit maximization

problem, a job is scheduled at most once rather than exactly once. Constraint (14) works exactly

as in the cost minimization model to eliminate the possibility of scheduling jobs at overlapping

times.

27

It should be noted that formulations (13)-(15) and (16)-(18) can be easily extended to

include release time and due date constraints as well as lateness or tardiness components in the

objective function.

7. Summary and conclusions
Recently, we have observed growing interest and awareness in better ways to operate and manage

systems to improve their energy efficiency. We follow this direction and study operational

systems that aim to save energy by taking into account time-of-use (TOU) electricity tariffs. In

particular, we study cost minimization and profit maximization scheduling problems on a single

machine in such environments.

Tables 2 and 3 summarize our results, presenting the complexity status of all four variants

of the cost minimization problem and all eight variants of the profit maximization problem. For

the release time and due date extensions, we also report our findings regarding the cost

minimization problem.

Table 2: Complexity status for the minimum cost problem

Problem Complexity

1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑐𝑜𝑠𝑡

Strongly NP-hard and not in APX. A reduction

from 3-partition by Fang et al (2016).

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑐𝑜𝑠𝑡

Greedy, select the cheapest ETIs, 𝑂(𝐾 log 𝐾 + 𝑛).

Fang et al (2016) presented an 𝑂(𝐾 log 𝐾 + 𝑛 log 𝑛)

algorithm for a more general case.

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑖 = 1, 𝑝𝑚𝑡𝑛 |𝑐𝑜𝑠𝑡 Greedy, select the cheapest ETIs, 𝑂(𝐾 log 𝐾)

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑖 = 1|𝑐𝑜𝑠𝑡

𝑂(𝐾3), a 3-step algorithm based on the of solution

of the preemptive case, dynamic programming and

merging the two solutions.

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑟𝑗, 𝑑𝑗|𝑐𝑜𝑠𝑡

𝑂((𝑛4 + 𝑛3𝐾) log 𝑛 + (𝑛3 + 𝑛2𝐾) log(𝑛 + 𝐾))
Formulated as a transportation problem

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝑑𝑗|𝑐𝑜𝑠𝑡

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝑟𝑗|𝑐𝑜𝑠𝑡

𝑂(𝑛2𝐾) using dynamic programming

Table 3: Complexity status for the maximum profit problem

Problem Complexity and solution method

1|𝑒𝑛𝑒𝑟𝑔𝑦|𝑝𝑟𝑜𝑓𝑖𝑡

Strongly NP-hard (reduction from bin packing

decision problem as in the minimum cost problem)

and in APX (reduction from the set partitioning).

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡

Weakly NP-hard (reduction from knapsack),

pseudopolynomial-time algorithm, 𝑂(𝑛𝑇𝐾).

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡

Strongly NP-hard (reduction from bin packing

decision problem as in the minimum cost problem).

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡

𝑂(𝑛2𝐾) dynamic programming or 𝑂(𝐾3 + 𝑛 log 𝑛),
3-step algorithm.

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑗 = 1, 𝜉𝑗 = 1 |𝑝𝑟𝑜𝑓𝑖𝑡

𝑂(𝐾3), 3-step algorithm. If there are more than 𝑇

jobs (𝑛 ≥ 𝑇) then the problem can be solved in

𝑂(𝐾2).

28

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡

𝑂(𝐾 log 𝐾 + 𝑛 log 𝑛), greedy algorithm

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡

𝑂(𝐾 log 𝐾 + 𝑛 log 𝑛), greedy algorithm.

1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛, 𝑝𝑗 = 1, 𝜉𝑗 = 1|𝑝𝑟𝑜𝑓𝑖𝑡

𝑂(𝐾 log 𝐾), greedy algorithm.

The solution methods that we used for the cost minimization problems with release times

and due dates cannot be easily adapted for the profit maximization variations; the development

of such methods is left for future research. Another interesting question that is left open by this

study is the approximability of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑝𝑚𝑡𝑛|𝑝𝑟𝑜𝑓𝑖𝑡 problem. We show that this problem

is weakly NP-hard.

For a special case of the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟 − 𝑝𝑜𝑤𝑒𝑟, 𝑝𝑖 = 1|𝑐𝑜𝑠𝑡 problem where the TOU

tariffs satisfy the pyramidal structure, Fang at el. (2016) presented a greedy algorithm but left the

case of general TOU tariffs open. Based on the boundary property of optimal solutions

(Proposition 8), we formulated a compact linear integer program for the 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟 −

𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 1|𝑐𝑜𝑠𝑡 and 1|𝑒𝑛𝑒𝑟𝑔𝑦, 𝑣𝑎𝑟 − 𝑝𝑜𝑤𝑒𝑟, 𝑝𝑗 = 1 |𝑝𝑟𝑜𝑓𝑖𝑡 problems. These

formulations are easily extendable to include release times and due dates. It is still a challenge to

find the complexity status of these unit time problems.

Acknowledgment: the authors wish to express their thanks to the anonymous reviewers for their

constructive remarks.

Bibliography

Aghelinejad, M., Ouazene, Y., and Yalaoui, A. (2019). Complexity analysis of energy-efficient

single machine scheduling problems. Operations Research Perspectives, 6, 100105.

Brenner U, 2008, A faster polynomial algorithm for the unbalanced Hitchcock transportation

problem. Operations Research Letters, Vol 36, 408-413.

Che, A., Wu, X., Peng, J., and Yan, P., 2017, Energy-efficient bi-objective single-machine

scheduling with power-down mechanism. Computers & Operations Research, 85, 172-183.

Che, A., Zeng, Y., and Lyu, K., 2016. An efficient greedy insertion heuristic for energy-conscious

single machine scheduling problem under time-of-use electricity tariffs. Journal of Cleaner

Production, 129, 565-577.

Chen, B., and Zhang, X., 2019, Scheduling with time-of-use costs. European Journal of

Operational Research, 274(3), 900-908.

Fang K., 2013, Algorithmic and mathematical programming approaches to scheduling problems

with energy-based objectives, Ph.D. dissertation, Purdue University, ProQuest Dissertations

Publishing, 2013. 3613120.

Fang, K., Uhan, N.A., Zhao, F. and Sutherland, J.W., 2016. Scheduling on a single machine under

time-of-use electricity tariffs. Annals of Operations Research, 238(1-2), 199-227.

https://search.proquest.com/indexinglinkhandler/sng/au/Fang,+Kan/$N?accountid=27233

29

Gahm C., Denz F., Dirr M. and Tuma A., 2016, Energy-efficient scheduling in manufacturing

companies: A review and research framework, European Journal of Operational Research,

248(3).

Garey M. R. and Johnson D. S., 1978, "Strong" NP-Completeness Results: Motivation,

Examples, and Implications Journal of the ACM, 25, 499-508.

Garey, M.R. and Johnson, D.S., 1979, Computers and Intractability: A Guide to the Theory of

NP-Completeness. pp. 96–105. A Series of Books in the Mathematical Sciences. San Francisco,

California: W. H. Freeman and Co.

Graham, R.L., Lawler, E.L., Lenstra, J.K., and Rinnooy Kan, A.H.G., 1979, Optimization and

Approximation in Deterministic Sequencing and Scheduling: A Survey, Annals of Discrete

Mathematics, 3, 287-326.

Karp R., 1972, Reducibility among Combinatorial Problems, in R. E. Miller and J. W. Thatcher

(eds). Complexity of Computer Computations, Plenum Press, NY, 85-103.

Rubaiee, S., Cinar, S., and Yildirim, M. B., 2018, An energy-aware multiobjective optimization

framework to minimize total tardiness and energy cost on a single-machine nonpreemptive

scheduling. IEEE Transactions on Engineering Management (Early access).

Shrouf F., J. Ordieres-Meré, A. García-Sánchez and M. Ortega-Mier, 2014, Optimizing the

production scheduling of a single machine to minimize total energy consumption costs. Journal

of Cleaner Production Vol. 67, 197-207.

Wan G. and X. Qi, 2010, Scheduling with Variable Time Slot Costs, Naval Research Logistics,

57, 159–171.

Zhao Y., X. Qi, and Minming L. 2016. On scheduling with non-increasing time slot cost to

minimize total weighted completion time, Journal of Scheduling 19,759–767.

Zhong, W. and Liu, X. 2012. A single machine scheduling problem with time slot costs. Recent

advances in computer science and information engineering. Heidelberg: Springer, 678-681.

file:///C:/science/journal/03772217/248/3
file:///C:/science/journal/03772217/248/3
https://link.springer.com/book/10.1007/978-1-4684-2001-2
file://///www.sciencedirect.com/science/journal/09596526
file://///www.sciencedirect.com/science/journal/09596526
file://///www.sciencedirect.com/science/journal/09596526/67/supp/C

