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Abstract: 

In bike-sharing systems, a small percentage of the bicycles become unusable every day. 

Currently, there is no reliable on-line information that indicates the usability of bicycles. 

We present a model that estimates the probability that a specific bicycle is unusable as well 

as the number of unusable bicycles in a station, based on available trip transaction data. 

Further on, we present some information based enhancements of the model and discuss an 

equivalent model for detecting locker failures. 
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1. Introduction 

Bike-sharing systems have become a common sight in many cities around the world during the last 

decade. In some of the major cities, this mode of transportation attracts a considerable amount of 

commuters and tourists on a daily basis. For example, the bike-sharing system in New-York, 

CitiBike, reported on an average of 34,176 rides per day during August 2014 [9]. 

Bike-sharing systems are typically subsidized and regulated by the local governments. Such 

systems should be designed and operated in the most efficient possible way. The two main 

components of the operating costs are due to repositioning and maintenance activities. The planning 

of the repositioning activities has received substantial attention in the literature, see, for 

example, [4], [3] and the references therein.  

Maintenance operations of bike-sharing systems have not been so far at the focus of Operation 

Research or Operations Management studies. We envision a framework for the planning of these 

operations that includes three processes: (1) detection of unusable bicycles; (2) analysis of the effect 

of the presence of unusable bicycles on the quality of service provided to the users; (3) collection 

of unusable bicycles to maintenance shops or repairing them on-site. The first process is at the focus 

of this note, while the following two are studied in [6] and [7], respectively. 

The information systems installed in bike-sharing systems present to the public on-line 

aggregated information about each station. In particular, using smartphones or stations’ kiosks, 
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users may query the state of each station in terms of the number of available bicycles and the 

number of available lockers. Internally, the information system stores a log of the transactions that 

were carried out. Each transaction is featured by its type (renting, repositioning, maintenance), start 

time, end time, start station ID, start locker ID, end station ID, end locker ID, bike ID, User ID 

(either a regular user of the system or a maintenance personnel), etc. Some operators share a subset 

of the fields in this log with the public, see for example the CitiBike trip history: 

http://www.citibikenyc.com/system-data.  

In existing bike-sharing systems, information about unusable bicycles is received either from 

users or from of repositioning workers when they service the stations. The probability that a user 

will report on an unusable bicycle is rather low if other bicycles that are parked in the station can 

be rented. That is, a user will typically complain about an unusable bicycle when there is no 

alternative in the station. In addition, not all stations are serviced by repositioning workers on a 

daily basis. Therefore an unusable bicycle may be parked at a station for a long period of time 

before being detected and collected. 

In some systems, such as CitiBike, each locker is equipped with a maintenance button that the 

users may push in order to signal to the operator that the bicycle should be serviced. While through 

this mechanism, more information about bicycles that should be repaired is obtained, this also 

generates a fair amount of false alarms. In the CitiBike system, about 36% percent of the reported 

bicycles are actually usable [8] and, more importantly, many unusable bicycles are not reported 

through this button by the users. 

Undetected unusable bicycles appear in the information systems as available ones. This 

inaccuracy may adversely affect user’s route choices and result in an inferior service level. For 

example, a user may go to a station with such undetected unusable bicycles only to find out that 

there are actually no available usable bicycles in the station. If the system could provide her with 

accurate information in advance she could save time by planning her trip differently, e.g., start her 

trip at a neighboring station or select a different mode of transportation. 

The contribution of this note is as follows: we propose using data that is already collected by 

existing bike sharing systems to estimate the probability that each bicycle is usable. We formulate 

a Bayesian model that makes use of on-line transactions data to constantly update these 

probabilities and propose a method to approximate these probabilities in real-time. Subsequently, 

we present some possible extensions of the model and explain how additional information such as 

user complaints can be incorporated in the model. In addition, we discuss how an equivalent model 

can be used for detection of locker (dock) failures.  

http://www.citibikenyc.com/system-data
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2. A Bayesian Model 

The goal of this study is to estimate the number of unusable bicycles in a station and to continuously 

update this estimation in real-time. We begin by focusing on each bicycle independently. We assign 

a Probability of Unusability (PoU) to each bicycle in the system and update it continuously. A good 

indication for unusability of a bicycle is the fact that it was not rented for a long period. However, 

this probability also depends on other factors such the number of renting transactions since the 

bicycle arrived at the station and the availability of other bicycles in the station when these 

transactions occurred. The model that will be presented next makes use of the transaction data in 

order to estimate the PoU of each bicycle in a single station.  

We use the following notation: 

𝑖 Bicycle ID 

𝑒 Rent event 

𝐶 Set of all lockers in the station, |𝐶| is the capacity of the station  

𝑝𝑖 Prior probability that bicycle 𝑖 is returned to the station unusable 

𝑆𝑒 Set of bicycles that are parked in the station right before rent event 𝑒  

𝑞𝑒(𝑚, 𝑆) 
The probability that right before rent event 𝑒 there are 𝑚 usable bicycles in the set 

𝑆 

𝑃𝑒(𝑥) The probability of scenario 𝑥 at rent event 𝑒 

𝑃𝑒(𝑥, 𝑦) The joint probability of scenarios 𝑥 and 𝑦 at rent event 𝑒 

𝑝𝑖
𝑒 The PoU of bicycle 𝑖 right after the occurrence of rent event 𝑒 

We assume that when a bicycle is rented, it is usable, that is, a user never rents an unusable bicycle. 

Formally, we assume 𝑃𝑒(𝑖 𝑢𝑠𝑎𝑏𝑙𝑒|𝑖 𝑟𝑒𝑛𝑡𝑒𝑑) = 1 and 𝑃𝑒(𝑖 𝑟𝑒𝑛𝑡𝑒𝑑|𝑖 𝑢𝑛𝑢𝑠𝑎𝑏𝑙𝑒) = 0. However, 

bicycle 𝑖 may turn unusable during a ride, and therefore there is a probability 𝑝𝑖 that the bicycle 

will be returned to the station unusable. See discussion in Section 5.3 regarding the calculation of 

this probability. 

For simplicity of the presentation, we initially assume that the users have no preferences 

regarding the locker from which the bicycle will be rented. That is, a user uniformly selects a 

bicycle from the usable bicycles that are parked in the station. In Section 5.1, we discuss how user 

preferences regarding the lockers can be incorporated in the model.  

Our goal is to update the PoU of bicycles that are parked in the station. Given that at rent event 

𝑒 bicycle 𝑗 was rented, we use Bayes’ rule to calculate the probability that bicycle 𝑖 (𝑖 ≠ 𝑗) is 

unusable. This calculation is carried out for any bicycle that is left parked at the station:  

𝑝𝑖
𝑒 = 𝑃𝑒(𝑖 𝑢𝑛𝑢𝑠𝑎𝑏𝑙𝑒 |𝑗 𝑟𝑒𝑛𝑡𝑒𝑑) =

𝑃𝑒(𝑖 𝑢𝑛𝑢𝑠𝑎𝑏𝑙𝑒, 𝑗 𝑟𝑒𝑛𝑡𝑒𝑑)

𝑃𝑒( 𝑗 𝑟𝑒𝑛𝑡𝑒𝑑)
    ∀𝑖 ∈ 𝑆𝑒 ∖ {𝑗} (1) 
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Figure 1 depicts the notation used right before, at and right after rent event 𝑒. The updating of the 

PoU is carried out for bicycles that are left parked in the station right after each rent. 

 

Figure 1: updating the PoU at rent event 𝒆  

 

To calculate (1), let us consider first the denominator. Given that bicycle 𝑗 is usable, the probability 

that it will be rented at rent event 𝑒 is given by: 

𝑃𝑒( 𝑗 𝑟𝑒𝑛𝑡𝑒𝑑|𝑗 𝑢𝑠𝑎𝑏𝑙𝑒) = ∑
1

1 + 𝑚
⋅ 𝑞𝑒(𝑚, 𝑆𝑒\{𝑗} )

|𝑆𝑒|−1

𝑚=0

 (2) 

This expression is obtained by conditioning on the number of usable bicycles in the station (𝑚), 

excluding bicycle 𝑗, and multiplying the probability of having this number, 𝑞𝑒(𝑚, 𝑆𝑒\{𝑗} ), by the 

uniform probability that 𝑗 will be selected from within 𝑚 + 1 usable bicycles.  

Then, by definition: 𝑃𝑒(𝑗 𝑢𝑠𝑎𝑏𝑙𝑒 | 𝑗 𝑟𝑒𝑛𝑡𝑒𝑑) = 1, and equivalently: 

𝑃𝑒(𝑗 𝑟𝑒𝑛𝑡𝑒𝑑, 𝑗 𝑢𝑠𝑎𝑏𝑙𝑒) = 𝑃𝑒(𝑗 𝑟𝑒𝑛𝑡𝑒𝑑). Using Bayes’ rule, we obtain the probability that bicycle 

𝑗 will be rented at event 𝑒: 

𝑃𝑒( 𝑗 𝑟𝑒𝑛𝑡𝑒𝑑) = 𝑃𝑒(𝑗 𝑟𝑒𝑛𝑡𝑒𝑑, 𝑗 𝑢𝑠𝑎𝑏𝑙𝑒) = 𝑃𝑒(𝑗 𝑢𝑠𝑎𝑏𝑙𝑒) ⋅ 𝑃𝑒(𝑗 𝑟𝑒𝑛𝑡𝑒𝑑|𝑗 𝑢𝑠𝑎𝑏𝑙𝑒)

= (1 − 𝑝𝑗
𝑒−1) ⋅ ∑

1

1 + 𝑚
⋅ 𝑞𝑒(𝑚, 𝑆𝑒\{𝑗} )

|𝑆𝑒|−1

𝑚=0

 
(3) 

Where 𝑝𝑗
𝑒−1 denotes the PoU of bicycle 𝑗 right before rent event 𝑒. Similarly to calculate nominator 

of (1) we condition in addition over bicycle 𝑖 and obtain the joint probability that bicycle 𝑖 is 

unusable and bicycle 𝑗 is rented at rent event 𝑒: 

𝑃𝑒(𝑖 𝑢𝑛𝑢𝑠𝑎𝑏𝑙𝑒, 𝑗 𝑟𝑒𝑛𝑡𝑒𝑑) = 𝑝𝑖
𝑒−1 ⋅ (1 − 𝑝𝑗

𝑒−1) ⋅ ∑
1

1 + 𝑚
⋅ 𝑞𝑒(𝑚, 𝑆𝑒\{𝑖, 𝑗} )

|𝑆𝑒|−2

𝑚=0

  (4) 

Equations (3) and (4) contain an expression for the probability of the number of usable bicycles 

𝑚, excluding 𝑖 and 𝑗, that are parked in the station right before rent event 𝑒. Note that each bicycle 

that is parked in the station has a different probability of being usable. Therefore, this expression is 
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the sum of Bernoulli variables with different success probabilities, which is a Poisson Binomial 

distribution (see, for example, [5]), given by the following probability mass function: 

𝑞𝑒(𝑚, 𝑆𝑒) = ∑ ∏(1 − 𝑝𝑘
𝑒−1)

𝑘∈𝑆𝑆∈𝐹𝑚(𝑆𝑒)

∏ 𝑝𝑘
𝑒−1

𝑘∈𝑆𝑒∖𝑆

  

Where 𝐹𝑚(𝑆) denotes the collection of all subsets of set S with cardinality 𝑚. Note that in Equations 

(3) and (4) this probability is calculated for all possible values of 𝑚 and therefore the calculation 

effort for evaluating (3) and (4) grows exponentially in 𝑆𝑒. Thus, the exact on-line updating of the 

PoU is impractical for large bike sharing stations. However, we observe that a related quantity, the 

expected number of usable bicycles, is easier to calculate as it is merely the sum of the probabilities 

of usability of the bicycles in the station: 

𝔼(𝑢𝑠𝑎𝑏𝑙𝑒𝑠 𝑖𝑛 𝑆𝑒) = ∑(1 − 𝑝𝑖
𝑒−1)

𝑖∈𝑆𝑒

 

 

In the following section we propose a method to approximate the PoU, based on the expected 

number of usable bicycles in the station.  

3.   Approximating the probability of unusability 

Henceforth, we denote the approximated PoU of bicycle 𝑖 after rent event 𝑒 by �̃�𝑖
𝑒. Recall that we 

assume that bicycles are selected uniformly from the set of available usable bicycles in the station. 

We approximate the probability that bicycle 𝑗 is rented, given that it is usable, by assuming that the 

number of usable bicycles in the station is known and equals its expectation. Specifically, given 

that bicycle 𝑗 is usable, the expected number of usable bicycles in the station is one plus the 

expected number of bicycles in the remaining set of available bicycles. Thus, Equation (2) is 

approximated as follows:  

�̃�𝑒(𝑗 𝑟𝑒𝑛𝑡𝑒𝑑|𝑗 𝑢𝑠𝑎𝑏𝑙𝑒) =
1

�̃�(𝑢𝑠𝑎𝑏𝑙𝑒𝑠 𝑖𝑛 𝑆𝑒| 𝑗 𝑢𝑠𝑎𝑏𝑙𝑒)
=

1

1 + ∑ (1 − �̃�𝑘
𝑒−1)𝑘∈𝑆𝑒\{𝑗}

 (5) 

where the expected number of usable bicycles in the station right before rent event 𝑒 is 

approximated by: 

�̃�(𝑢𝑠𝑎𝑏𝑙𝑒𝑠 𝑖𝑛 𝑆𝑒 ∖ {𝑗}) = ∑ (1 − �̃�𝑘
𝑒−1)

𝑘∈𝑆𝑒\{𝑗}

 (6) 

Similarly to the calculation of Equation (3), we multiply Equation (5) by the probability that bicycle 

𝑗 is usable, to obtain the approximated probability that bicycle 𝑗 is rented at rent event 𝑒: 
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�̃�𝑒(𝑗 𝑟𝑒𝑛𝑡𝑒𝑑) = �̃�𝑒(𝑗 𝑟𝑒𝑛𝑡𝑒𝑑, 𝑗 𝑢𝑠𝑎𝑏𝑙𝑒) = �̃�𝑒(𝑗 𝑢𝑠𝑎𝑏𝑙𝑒) ⋅ �̃�𝑒(𝑗 𝑟𝑒𝑛𝑡𝑒𝑑|𝑗 𝑢𝑠𝑎𝑏𝑙𝑒)

=
1 − �̃�𝑗

𝑒−1

1 + ∑ (1 − �̃�𝑘
𝑒−1)𝑘∈𝑆𝑒\{𝑗}

 
(7) 

Next, given that bicycle 𝑖 is unusable, the expected number of usable bicycles in the station is 

updated to exclude 𝑖 and thus we obtain an approximation of the following conditional probability: 

�̃�𝑒(𝑗 𝑟𝑒𝑛𝑡𝑒𝑑| 𝑖 𝑢𝑛𝑢𝑠𝑎𝑏𝑙𝑒) =
1 − �̃�𝑗

𝑒−1

1 + ∑ (1 − �̃�𝑘
𝑒−1)𝑘∈𝑆𝑒\{𝑖,𝑗}

 
 

And again, using Bayes’ rule, we obtain an approximation of the joint probability: 

�̃�𝑒(𝑗 𝑟𝑒𝑛𝑡𝑒𝑑, 𝑖 𝑢𝑛𝑢𝑠𝑎𝑏𝑙𝑒) =
(1 − �̃�𝑗

𝑒−1) ⋅ �̃�𝑖
𝑒−1

1 + ∑ (1 − �̃�𝑘
𝑒−1)𝑘∈𝑆𝑒\{𝑖,𝑗}

 (8) 

Finally, by dividing Equation (8) by Equation (7) we obtain an approximation of the updated PoU: 

�̃�𝑖
𝑒 = �̃�𝑒(𝑖 𝑢𝑛𝑢𝑠𝑎𝑏𝑙𝑒| 𝑗 𝑟𝑒𝑛𝑡𝑒𝑑 ) = �̃�𝑖

𝑒−1 ⋅
1 + ∑ (1 − �̃�𝑘

𝑒−1)𝑘∈𝑆𝑒\{𝑗}

1 + ∑ (1 − �̃�𝑘
𝑒−1)𝑘∈𝑆𝑒\{𝑖,𝑗}

 (9) 

Using Equation (6), we can rewrite Equation (9) as:   

�̃�𝑖
𝑒 ≡ �̃�𝑒(𝑖 𝑢𝑛𝑢𝑠𝑎𝑏𝑙𝑒| 𝑗 𝑟𝑒𝑛𝑡𝑒𝑑 ) = �̃�𝑖

𝑒−1 ⋅
1 + �̃�(𝑢𝑠𝑎𝑏𝑙𝑒𝑠 𝑖𝑛 𝑆𝑒\{𝑗})

�̃�𝑖
𝑒−1 + �̃�(𝑢𝑠𝑎𝑏𝑙𝑒𝑠 𝑖𝑛 𝑆𝑒\{𝑗})

  

We observe that the PoU of a bicycle increases after every rent event in which it is not selected. In 

addition, as the initial PoU of a bicycle is its prior probability, it is easy to see that the PoU of a 

bicycle increases also as its prior probability increases.  

So far, our focus was on calculating the PoU for each bicycle separately. However, it is 

typically more interesting for the operators and the users to view all the bicycles in a station 

aggregately. Similar to the above, our analysis also provides the expected number of unusable 

bicycles in the station, given in by: 

�̃�(𝑢𝑛𝑢𝑠𝑎𝑏𝑙𝑒𝑠 𝑖𝑛 𝑆𝑒) = ∑ �̃�𝑖
𝑒−1

𝑖∈𝑆𝑒

 (10) 

We note that the value calculated in (10) can be used as a reliable estimator for the actual number 

of unusable bicycles after a sufficient number of rent events. In the next section this will be 

demonstrated numerically. The expected number of unusable bicycles is a more concise measure, 

compared to the PoU of each bicycle in the station. It can be used and understood by the operators 

and by the users. 
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The approximation of the PoU and the expected number of unusable bicycles in a station can 

be carried out after each rent event in 𝑂(|𝐶|) time, i.e., linearly in the station capacity. At each rent 

event, these values can be updated in a fraction of a second. Therefore, the estimated number of 

unusable bicycles can be displayed on-line to the operators and the users. In the following section, 

we show that this is a very accurate approximation by comparing it to the result of the exact 

calculation for small stations with up to 15 lockers. Note that the complexity of the exact method 

is 𝑂(|𝐶| ⋅ 2|𝐶|) for each rent event, which is impractical for on-line usage. 

4. Numerical results 

In this section, we present the results of a numerical experiment carried out to test our proposed 

detection model. To simulate the on-line calculation of the PoU, we have used CitiBike trip history 

transactions data from July-August 2014. Using this data, we estimated the renting/returning rates 

on weekdays in each station during 30 minute periods along the day. We generated 100 demand 

realizations per station. Each demand realization consists of a set of renting and returning events 

and their times of occurrence along a 2-day period. Each return event is supplemented with a binary 

parameter that indicates whether the bicycle is usable or not. For the experiment, we set the failure 

probability of all bicycles to 0.01. That is, the unusability indicator value was drawn from a 

Bernoulli distribution with parameter 0.01. In addition, we assume that at the initial state of the 

station all bicycles parked at the station are usable, as if replenishment activities and collection of 

unusables were just executed. The initial inventory level is set to the optimal level according to the 

method of Kaspi et al. [6]. The demand realizations data used in the simulation can be downloaded 

from 

http://www.eng.tau.ac.il/~morkaspi/publications.html. 

At a rent event, if there are available usable bicycles in the station, one is selected uniformly 

and is removed from the set of available bicycles. If there are no available usable bicycles in the 

station the user is assumed to abandon the station. At return events, if there are available lockers in 

the station, one is selected uniformly and the bicycle is returned to that locker. If there are no 

available lockers in the station the user is assumed to abandon the station. If an unusable bicycle is 

returned to the station, it “occupies” a locker, but is not entered to the set of available usable 

bicycles in a station (and therefore will never be selected at a rent event).   

We compare the approximated expected number of unusable bicycles (Equation (10)) to a naïve 

approach for assessing the expected number of unusable bicycles in a station. The naïve expectation 

is obtained by summing the prior probabilities of the bicycles returned to a station in a given time 

period. For example, assume that the prior probability of all bicycles is 0.01 and that in a given 

http://www.eng.tau.ac.il/~morkaspi/publications.html
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time period 200 bicycles were returned to the station. The naïve estimation of the number of 

unusable bicycles that were returned to the station would be 2. We note that this unbiased estimator 

of the expected number of unusable bicycles by itself may provide a relatively good picture 

regarding the amount of unusable bicycles in a station. Given that in some bike sharing systems the 

number of unusable bicycles is not assessed at all, using even this naïve method would be valuable. 

In Table 1 we present simulation results for 20 arbitrarily selected stations. Simulation results 

of another 80 stations are available online, as an electronic supplementary, at 

http://www.eng.tau.ac.il/~morkaspi/publications.html. In the first and second columns of Table 1, 

the station ID and capacity are presented, respectively. The average (over 100 realizations) of the 

number of bicycles that were rented and returned to the station in the simulation are presented in 

the third and fourth column. Note that the realized number of rent/return events was in most cases 

a bit larger, but not all bicycles could be rented/returned due to bicycle/locker shortages. In the fifth 

column, the average number of unusable bicycles that were returned to the station is presented. For 

each demand realization, we calculate at the end of the 2-days period the difference between the 

actual number of unusable bicycles and its estimation obtained by the naïve approach and by the 

PoU approach. The mean absolute deviation (and the standard deviation) of these differences are 

presented in the sixth and seventh columns, respectively. In addition, we count the number of times 

in which the PoU estimation was closer to the actual value as compared to the estimation of the 

naïve approach. This number is presented in the eighth column. The P-value of the sign-test used 

to determine whether the PoU approach generates closer estimation as compared to the naïve 

approach is presented in the last column.   

As can be observed, both the mean absolute deviation and the standard deviation of the PoU 

approach are significantly smaller than those of the naïve approach. In particular, as more rent 

events occur in the station (the table is sorted in decreasing order of the number of rent events), 

more information is accumulated by the PoU approach and can be used to better estimate the 

number unusable bicycles. The figures in the eighth and last columns demonstrate the superiority 

of the PoU approach as compared to the naïve approach.    

http://www.eng.tau.ac.il/~morkaspi/publications.html
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Table 1: Simulation results – average over 100 realizations for 20 stations in CitiBike 

Station 

ID 
Capacity 

Number 

of 

Rents 

Number 

of  

Returns 

Unusable 

Bicycles 

Naïve 

MAD(Stdev) 

PoU 

MAD(Stdev) 

PoU better 

(out of 100) 
P-value 

134 35 393.67 403.61 4.34 1.56 (1.92) 0.39 (0.61) 85 < 0.0001 

145 36 392.96 404.82 4.09 1.38 (1.67) 0.50 (0.67) 80 < 0.0001 

132 35 366.35 364.71 3.85 1.42 (1.77) 0.37 (0.58) 87 < 0.0001 

135 42 251.89 256.65 2.54 1.22 (1.50) 0.14 (0.30) 94 < 0.0001 

139 35 208.78 206.55 1.90 1.13 (1.38) 0.15 (0.31) 88 < 0.0001 

144 27 179.65 177.77 1.52 0.98 (1.20) 0.31 (0.48) 92 < 0.0001 

142 42 176.33 182.24 1.89 1.11 (1.40) 0.32 (0.51) 87 < 0.0001 

133 27 163.04 175.27 1.93 1.04 (1.31) 0.54 (0.66) 73 < 0.0001 

138 39 108.53 110.37 1.30 0.84 (1.11) 0.21 (0.42) 80 < 0.0001 

137 28 100.81 112.66 1.13 0.84 (1.06) 0.60 (0.74) 59 0.0284 

136 23 82.74 94.71 0.87 0.62 (0.84) 0.44 (0.51) 54 0.1841 

127 27 76.70 90.85 0.89 0.69 (0.94) 0.46 (0.61) 57 0.0666 

128 19 67.45 77.97 0.78 0.69 (0.86) 0.41 (0.50) 72 < 0.0001 

129 29 65.71 82.16 0.74 0.66 (0.81) 0.45 (0.56) 62 < 0.0001 

143 23 56.26 69.22 0.68 0.69 (0.81) 0.40 (0.53) 78 < 0.0001 

140 27 38.30 45.36 0.43 0.56 (0.67) 0.38 (0.54) 71 < 0.0001 

130 23 33.33 36.09 0.31 0.47 (0.54) 0.45 (0.53) 53 0.2421 

126 24 32.51 33.60 0.31 0.46 (0.51) 0.31 (0.43) 83 < 0.0001 

141 31 31.81 40.88 0.48 0.56 (0.69) 0.46 (0.61) 73 < 0.0001 

131 23 24.82 34.03 0.35 0.48 (0.55) 0.34 (0.48) 82 < 0.0001 

 

Recall that in the simulation, we set the actual failure probability to 0.01. The estimations 

presented in Table 1 are based on the assumption that indeed the prior probability is 0.01. In reality, 

the operator may not have an exact knowledge of the prior probabilities. Next, we examine whether 

the PoU approach results with better estimations as compared to the naïve approach even if the 

exact prior probabilities are unknown exactly. We conducted the following analysis: we used the 

same demand realizations as in Table 1 (using a failure probability of 0.01) but assumed different 

levels of prior probabilities in the calculation of the PoU and naïve based estimations.  

In Table 2, we present the number of times (out of 100 realizations) that the PoU based 

estimation was closer to the actual values as compared to the naïve approach. The first and second 

columns of Table 2 are identical to those of Table 1. In the third to seventh columns, we present 

these values for the following assumed prior probabilities: 0.001, 0.005, 0.01, 0.02, and 0.05, 

respectively.  

Noticeably, as the assumed prior increases (or decreases) relative to the actual prior, the number 

of times the PoU approach delivers better estimations increases. This demonstrates that the PoU 
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approach is more robust with respect to the estimation of the prior probability as compared to the 

naïve approach and suggests that the model is not sensitive to the exact nature of the failure process.  

 

Table 2: Sensitivity analysis – Actual failure probability 0.01 

Station 

ID 
Capacity 

PoU better  (out of 100) 

Assumed Prior  

0.001 0.005 0.01 0.02 0.05 

134 35 98 85 85 96 100 

145 36 99 87 80 99 100 

132 35 100 92 87 97 100 

135 42 100 98 94 98 100 

139 35 98 86 88 96 100 

144 27 94 83 92 93 100 

142 42 93 79 87 92 100 

133 27 90 73 73 90 100 

138 39 95 95 80 86 100 

137 28 76 75 59 80 100 

136 23 81 81 54 86 99 

127 27 77 75 57 80 99 

128 19 80 80 72 82 98 

129 29 78 79 62 77 99 

143 23 87 87 78 68 98 

140 27 71 71 71 63 92 

130 23 54 53 53 51 45 

126 24 82 82 83 82 89 

141 31 73 73 73 63 79 

131 23 80 81 82 81 84 

 

A further validation of the detection model may be accomplished using real-time information 

regarding the actual number of unusable bicycles in certain points of time, and comparing it to the 

estimated one. Such information may be collected, for example, when repositioning or maintenance 

staff visit the station. Currently, the data required for such validation is not at our disposal. 

Moreover, it is not available to the system operators that we have been in contact with (CitiBike 

and Tel-O-Fun). To the best of our knowledge, this kind of data is not collected by any bike-sharing 

operator. Nevertheless, we emphasize that the demand data, stations’ capacities and prior failure 

probabilities used in our simulation model were obtained from a real-world system (CitiBike). We 

believe that the characteristics of the simulation model are close enough to the behavior of the 

system in reality in order to demonstrate the effectiveness of the detection model. 
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Next, we present a numerical study carried out in order to test the accuracy of the approximated 

PoU (Section 3) as compared to the exact calculation (Section 2). We have used trip history 

transactions from the Capital Bikeshare system in Washington DC, during the 2nd quarter of 2013. 

We have selected 20 stations with capacities smaller than 15, for which the exact calculation could 

be done in a reasonable time. The preprocessing of the trip history data and the simulation were 

executed in the same manner as described above.  

In Table 3 we present the simulation results. The first five columns present information about 

the realizations, as in Table 1. In the two rightmost columns, we present the average and the 

maximum absolute difference, over 100 realizations, between the exact and the approximated 

calculations of the expected number of unusable bicycles. Observing the rightmost two columns in 

the table, one can notice that the exact and the approximated calculation of the PoU result with very 

similar estimations of the number of unusable bicycles.  

 

Table 3: Simulation results for 20 small stations in Capital Bikeshare 

Station ID Capacity 
Number of 

Rents 

Number 

of 

Returns 

Unusable 

Bicycles 

Average 

difference 

Maximal 

difference 

73 14 151.89 151.11 1.46 0.0079 0.1683 

118 14 134.81 136.56 1.35 0.0059 0.1147 

183 13 128.74 127.95 1.34 0.0057 0.0576 

187 14 119.29 118.01 0.97 0.0066 0.1049 

186 14 118.32 123.33 1.30 0.0085 0.0958 

201 11 115.52 113.97 1.16 0.0120 0.1117 

188 10 113.77 114.15 1.08 0.0081 0.0949 

126 13 84.08 84.31 0.77 0.0056 0.0545 

136 14 76.64 80.10 0.77 0.0098 0.1626 

155 11 47.31 41.89 0.53 0.0113 0.1346 

209 14 46.63 46.19 0.56 0.0077 0.1269 

163 11 44.15 41.15 0.32 0.0092 0.0973 

107 11 43.43 41.18 0.48 0.0108 0.1934 

191 11 40.85 43.93 0.43 0.0079 0.0892 

80 14 38.35 31.61 0.33 0.0091 0.1023 

88 10 35.54 36.58 0.36 0.0166 0.1731 

175 11 34.88 34.26 0.27 0.0065 0.1235 

10 11 34.55 37.84 0.45 0.0148 0.1498 

154 14 32.18 22.61 0.17 0.0030 0.0881 

140 14 30.54 30.79 0.37 0.0140 0.1271 

 

5. Extensions 
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In previous sections, we have made some simplifying assumptions regarding the available data and 

the user preferences, mainly for ease of the presentation. However, additional available information 

can be used to fine-tune the estimation of the PoU of each bicycle in the system. We now discuss 

some enhancements of the model. 

5.1. User preferences 

So far, we have assumed for simplicity that a renter selects uniformly a bicycle from within the set 

of usable bicycles in the station. However, in some stations, we observe that some lockers are much 

busier than others, probably due to their distance from the station’s kiosk or due to their accessibility 

to pedestrians. Gathering information about users’ preferences of lockers can improve the 

estimations of the PoU. For example, if a locker is less likely to be selected due to its distance from 

the station’s kiosk, there is a larger probability that a usable bicycle will be parked there for a long 

period of time. On the other hand, if a preferred locker in which a bicycle is parked is not selected, 

it is more likely that the bicycle may be unusable.  

Next, we introduce additional notation needed in order to incorporate user locker preferences 

in the model: 

𝑙 Locker id, 𝑙 ∈ 𝐶 

𝕃(𝑖) The locker in which bicycle 𝑖 is parked  

𝕃(𝑆) The set of lockers in which the set of bicycles 𝑆 are parked 

𝑎(𝑙, 𝐿) The probability that locker 𝑙 will be selected from within the set of lockers 𝐿 ⊆ 𝐶 

The values of locker selection probabilities 𝑎(𝑙, 𝐿) satisfy ∑ 𝑎(𝑙, 𝐿)𝑙∈𝐿 = 1  ∀𝐿 and 

𝑎(𝑙, 𝐿) = 0  ∀𝐿  ∀𝑙 ∈ 𝐶 ∖ 𝐿  . The function 𝑎(𝑙, 𝐿) may be defined explicitly for each subset of 

lockers 𝐿 or implicitly by some oracle that is capable of calculating or estimating it. Equations (3) 

and (4) can be re-written to accommodate users’ locker preferences as follows, respectively:  

𝑃𝑒( 𝑗 𝑟𝑒𝑛𝑡𝑒𝑑) = (1 − 𝑝𝑗
𝑒−1) ⋅ ∑ 𝑎(𝕃(𝑗), 𝕃(𝑆 ∪ {𝑗}) ⋅ ∏(1 − 𝑝𝑘

𝑒−1)

𝑘∈𝑆𝑆∈𝐹(𝑆𝑒∖{𝑗})

∏ 𝑝𝑘
𝑒−1

𝑘∈𝑆𝑒∖(𝑆∪{𝑗})

 

𝑃𝑒(𝑖 𝑢𝑛𝑢𝑠𝑎𝑏𝑙𝑒, 𝑗 𝑟𝑒𝑛𝑡𝑒𝑑) = 

𝑝𝑖
𝑒−1 ⋅ (1 − 𝑝𝑗

𝑒−1) ⋅  ∑ 𝑎(𝕃(𝑗), 𝕃(𝑆 ∪ {𝑗}) ⋅ ∏(1 − 𝑝𝑘
𝑒−1)

𝑘∈𝑆𝑆∈𝐹(𝑆𝑒∖{𝑖,𝑗})

∏ 𝑝𝑘
𝑒−1

𝑘∈𝑆𝑒∖(𝑆∪{𝑖,𝑗})

 

Where 𝐹(𝑆) denotes the collection of all subsets of set S. Note that these equations are more 

complex as compared to (3) and (4), since not only the number of usable bicycles that are parked 

in the station is taken into account, but also the location of these bicycles. 

Similarly, the approximated conditional probability (5) can be updated as follows:  
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�̃�𝑒(𝑗 𝑟𝑒𝑛𝑡𝑒𝑑|𝑗 𝑢𝑠𝑎𝑏𝑙𝑒) =
𝑎(𝕃(𝑗), 𝕃(𝑆𝑒))

𝑎(𝕃(𝑗), 𝕃(𝑆𝑒)) + ∑ 𝑎(𝕃(𝑘), 𝕃(𝑆𝑒)) ⋅ (1 − �̃�𝑘
𝑒−1)𝑘∈𝑆𝑒\{𝑗}

 
(11) 

Note that if 𝑎(𝕃(𝑖), 𝕃(𝑆𝑒)) =
1

|𝑆𝑒|
 ∀𝑖 ∈ 𝑆𝑒, i.e. all lockers have the same probability to be selected, 

Equation (11) is reduced back to Equation (5). In addition, given that all the bicycles in the station 

are usable, the probability in Equation (11) equals 𝑎(𝕃(𝑗), 𝐿𝑒), namely, the probability that locker 

𝕃(𝑗) will be selected. 

Due to the same mathematical arguments as in Section 3, we obtain the following iterative 

equation for updating the PoU of bicycle 𝑖 after event 𝑒: 

�̃�𝑖
𝑒 = �̃�𝑒(𝑖 𝑢𝑛𝑢𝑠𝑎𝑏𝑙𝑒| 𝑗 𝑟𝑒𝑛𝑡𝑒𝑑 )

= �̃�𝑖
𝑒−1 ⋅

𝑎(𝕃(𝑗), 𝕃(𝑆𝑒)) + ∑ 𝑎(𝕃(𝑘), 𝕃(𝑆𝑒)) ⋅ (1 − �̃�𝑘
𝑒−1)𝑘∈𝑆𝑒\{𝑗}

𝑎(𝕃(𝑗), 𝕃(𝑆𝑒 ∖ {𝑖})) + ∑ 𝑎(𝕃(𝑘), 𝕃(𝑆𝑒 ∖ {𝑖})) ⋅ (1 − �̃�𝑘
𝑒−1)𝑘∈𝑆𝑒\{𝑖,𝑗}

 

Note that if 𝑎(𝕃(𝑖), 𝕃(𝑆𝑒)) equals 0, we obtain �̃�𝑖
𝑒 = �̃�𝑖

𝑒−1. In other words, if the probability that a 

locker 𝕃(𝑖) will be selected equals zero or is close to zero, the fact that bicycle 𝑖 was not selected 

in event 𝑒 does not provide information regarding the usability of bicycle 𝑖.   

5.2. Station idle time 

Until now we considered methods to update the PoU only at rent events. However, there may be 

situations in which for relatively long periods of time no rent event occurs in a station, even though 

bicycles are parked in it. This may be explained by one of the following: (1) no renters have arrived 

at the station (2) renters have arrived at the station but none of the bicycles were in a usable 

condition and no rent transaction has occurred (3) the station is malfunctioning. Recall that in the 

information system, there is no direct evidence for any of these occurrences. Here we present a 

method to update the PoU between rent events in order to call the attention of the operators to 

situations (2) or (3).  

The arrival rates of renters during different time periods along the day can be estimated using 

trip history transaction data. If no rent event occurs for a long period of time in a non-empty station 

even though the estimated arrival rate of renters is high, the probability that the parked bicycles in 

the station are unusable (or cannot be rented due to station failure) increases.  

Here we assume that the demand for bicycles is a time heterogeneous Poisson process. We 

denote by 𝑇 the elapsed time since the last rent event in a station, and let  𝑡1, 𝑡2, … 𝑡𝑚 (𝑇 = ∑ 𝑡𝑟
𝑚
𝑟=1 ) 

be the lengths of consecutive time intervals. The expected number of arrivals of renters at each of 

these time intervals is denoted by 𝜇1, 𝜇2, … , 𝜇𝑚, then the probability that no renter arrived until 

time 𝑇 is: 
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∏ exp (−𝜇𝑟𝑡𝑟)

𝑚

𝑟=1

= exp (− ∑ 𝜇𝑟𝑡𝑟

𝑚

𝑟=1

) 
 

Given that the elapsed time since the last rent event (𝑒) is 𝑇, the PoU of bicycle 𝑖 is recalculated 

as follows. If no renter arrived at the station, the PoU of bicycle 𝑖 is �̃�𝑖
𝑒. However, if one or more 

renters arrived at the station but no rent event occurred, then bicycle 𝑖 is unusable. By conditioning 

over these two complementary events and multiplying by their corresponding probabilities we can 

update the PoU of any bicycle 𝑖 in the station to: 

�̃�𝑖
𝑒 ⋅ exp (− ∑ 𝜇𝑟𝑡𝑟

𝑚

𝑟=1

) + 1 ⋅ (1 − exp (− ∑ 𝜇𝑟𝑡𝑟

𝑚

𝑟=1

)) 
 

Note that this updating expression depends on the time in which it is performed due to the 

dependency of  𝜇1, 𝜇2, … , 𝜇𝑚 on this time. Noticeably, the PoU increases with the arrival rates in 

the given time intervals and the length of these time intervals. This update is effective until the next 

rent event at the station occurs. Once a rent event occurs the PoU is updated as discussed above in 

Section 3 or as in Section 5.1.  

5.3. Enhancing the estimation of the prior probabilities  

In this section, we discuss additional available information that can be used to estimate the prior 

probabilities. A generic estimator for the prior probability may be obtained by dividing the total 

number of bicycles repaired in a given period by the total number of the trips taken in the same 

period. However, the prior of each specific bicycle can be better estimated given data features such 

as: elapsed time since its last repair, accumulated riding time, mileage, usage areas, users’ 

characteristics, etc. Specifically, it might be reasonable to assume that the prior probability of a 

bicycle that is returned from maintenance is close to zero. For a discussion on classes of life 

distributions based on notions of aging, see [1]. 

In addition to user’s trips and maintenance activities, bicycles may also be removed from a 

station for the purpose of rebalancing the stations’ bicycle inventory levels (repositioning 

activities). If the repositioning worker is instructed to check the condition of each loaded/unloaded 

bicycle, we can assume that when the bicycle is returned to a station at the end of the repositioning 

its prior probability to be unusable is close to zero. Alternatively, the calculation of the conditional 

probability may continue from the calculated value right before the repositioning.  

Other aspects that can be taken into account when estimating the prior probability are the 

transactions’ characteristics. For example, a short time (less than two minutes) round-trip (identical 

start and end stations) transaction suggests that a user unlocked a bicycle from a locker and almost 

immediately returned it to the same station. This may indicate that the bicycle is unusable. This 
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kind of transaction is not rare; one may evaluate the percentage of times this kind of transaction 

was followed by a maintenance activity. This can be done by cross-checking transaction history 

and maintenance data.  

Failure reports provided by users, i.e., by complaint calls or by a maintenance button, installed 

on the locker, can also be incorporated into the model. In particular, if user complaints are 

considered highly reliable, the reported bicycles can be flagged as unusable, i.e. 𝑝𝑖
𝑒 = 1. Given 

such information, the unusable bicycle can be removed from the set of available bicycles in the 

station, and the PoU of the other bicycles can then be updated accordingly.  

5.4. Locker failure detection 

Another failure type that may decrease the quality of service is locker failures. Specifically, the 

electro-mechanical locking system may sometimes fail to work properly. When this occurs, the 

users cannot rent or return the bicycles at such lockers. If the locker is occupied with a bicycle, this 

bicycle will eventually be flagged as unusable using our method. However, if the faulty locker is 

vacant it will be left empty until the locking mechanism is repaired. Such type of failure is not 

reported in the information system, and so the on-line state of the stations presented to the users 

may not be accurate. Currently, the operators cannot remotely detect such failures.  

A complementary model equivalent to the one presented in Sections 2 and 3 may be formulated 

in order to assess the usability of vacant lockers. As a mirror scenario, the data to be used are the 

returning transactions. On each return of a bicycle to a station, we calculate the conditional 

probability that a locker is unusable given that bicycles were not returned to it. And again, as more 

return events occur in a station there is a greater probability that a locker that is left empty is 

unusable. 

6. Discussion 

In this paper, we presented a method to detect unusable resources (bicycles and lockers). Our 

approach introduces new real-time estimation of the number of unusable bicycles and lockers, 

which is currently not available to the operators. We validated our detection model using a 

simulation model that is based on data from a real-world system and demonstrated that it predicts 

well, in real-time, the number of unusable bicycles in a station. This is achieved without any 

knowledge about the arbitrary stochastic process according to which unusable bicycles arrive in a 

station. In addition, we presented several extensions of the model that may enhance the quality of 

the model’s predictions based on more detailed data about the process that is available to the 

operators. 
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As discussed in Section 4, a further validation of the detection model can be accomplished 

using real-world data regarding unusable bicycles and lockers. We call practitioners to collect and 

make use of such data in their planning process. Retroactively, this data can be used to continuously 

fine-tune the detection model.  

One limitation of our model stems from the assumption that bicycle failure is a binary property, 

i.e., a bicycle is either usable or unusable. In reality, some bicycles that require maintenance due to 

minor failures but may still be rented by the users. Bicycles in such a condition cannot be detected 

by the proposed model. A different detection model that considers the long-term transaction history 

of the bicycles in the system can be devised to detect such failures. 

The negative implication of the presence of unusable resources is the reduction of the station 

capacity and the presentation of misleading information to the users. Unusable bicycles/lockers 

may have different effect on the quality of service in different stations, depending on the capacity 

of the station and the demand patterns. Evaluating this effect may assist in prioritizing the stations 

that should be visited by maintenance and repositioning workers. Once this is determined, the next 

planning stage is to determine the routes of the maintenance workers.  
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