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Abstract 

The test collection problem, also known as the minimum test set problem or the 

minimum test cover problem, selects a minimal set of binary sensors that can determine 

the state of a monitored system. We generalize this problem by i) allowing sensors to 

produce arbitrary categorical outputs; ii) allowing multiple sensor outputs to represent 

each state of a system and iii) including a cost per sensor. The purpose of the planer is 

to select a set of sensors at a minimum cost that can determine the state of the system. 

This problem has applications to various complex systems, including, for example, 

urban water networks, wherein the locations of pipe failures must be identified by 

sensors installed at specific junctions. In such systems, it is desirable to select the most 

inexpensive set of sensors that can provide sufficiently reliable information to support 

decisions regarding the system’s maintenance and operations. To address this problem, 

we present an integer programming model and an effective exact solution method that 

uses the model’s unique structure to reduce its size so that it can easily be solved. The 

solution method is implemented and demonstrated to be superior to those described in 

previous studies.  
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1. Introduction 

In this paper, we introduce the generalized test collection problem (GTCP). Inputs of 

this problem consist of the following: (a) a set of potential sensors that measure various 

attributes of a system where each sensor is associated with an installation cost and (b) 

a list of all possible sensors’ outputs (henceforth referred to as readings) where each 

reading is associated with a specific state of the monitored system. 

We define a signature as the 'partial reading' obtained from a subset of sensors, e.g., 

in a system with four sensors, the signature of the reading (0, 1, 5, 0) with respect to 

sensors 1 and 3 is (0, 5), etc. When the set of selected sensors is known, the set of 

possible signatures can be immediately derived from the list of possible readings. 

The solution to our problem is a subset of sensors whereby each signature can be 

mapped to a unique state of the monitored system. Rather, the state of the system can 

always be determined by the set of selected sensors. This solution can be achieved when 

the signatures of readings related to different states have different outputs for at least 𝛼 

sensors. In a typical situation 𝛼 = 1, however, for the sake of robustness (e.g., when 

sensors are prone to failure), it is sometimes useful to require a greater value of 𝛼.  

The considered problem involves a rich generalization of the minimum test 

collection problem (TCP) also known as the minimum test set problem or minimum test 

cover problem. The decision version of this problem is an NP-complete problem (Garey 

and Johnson, 1979), and it is an APX-hard problem (De Bontridder et al. 2003). Using 

our terminology, the TCP constitutes a special case of the GTCP wherein all sensors 

produce binary outputs; each reading is associated with a unique binary state (“positive” 

or “negative”); 𝛼 = 1; and the costs of all of the sensors are identical. Needless to say, 

many real-life settings do not follow the above assumptions.  

This study of the GTCP is motivated by the challenges associated with designing 

modern monitoring systems in domains such as manufacturing, smart cities, 

transportation, medicine, homeland security and agriculture. Such systems often consist 

of many sensors connected to a central processing unit (CPU) that detects the current 

state of the monitored system. A major task involved when designing these systems is 

to select a subset of sensors at a minimal cost from a potentially large (and expensive) 

set of sensors. The state of the system can rarely be inferred from an output obtained 

from a single sensor. Instead, it is often deduced from a combination of several outputs 

from different sensors. 

Bertolazzi et al. (2016) studied another variant of the TCP for which the number of 

sensors was given, and the objective was to maximize the Euclidian distance between 

readings belonging to different classes. The authors refer to this value as the minimal 

threshold quantity. The paper formulates the problem as an integer linear program (ILP) 

and devises a greedy randomized adaptive search procedure (GRASP) as an appropriate 

heuristic for solving it. With their numerical experiment, the authors show that their 

method is effective when many sensors (or features) are present and when the number 

of instances is moderate. 

Many researchers have studied various applications of the TCP. Some have used 

rather different terminology and formulations than ours. Such applications include 
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sensor placements for structures motivated by many devices such as wireless sensor 

networks for energy consumption; sensor networks for locating targets; and water 

systems. For example, Slijepcevic and Potkonjak (2001) studied the problem of placing 

sensor nodes into a monitored area so that full coverage can be achieved with minimal 

energy consumption. They cast it using a heuristic approach to the set cover problem 

(SCP) known as NP-hard. Sela Perelman et al. (2016) also used the SCP to find a 

desirable set of locations for sensors used to detect pipe failures occurring in an urban 

water network. The authors also developed a new augmented greedy heuristic for 

solving a problem equivalent to the TCP to locate pipe failures. In a later paper, Sela 

and Amin (2018) solve a robust version of the SCP problem where their goal is to detect 

pipe failures that occur when some sensors fail. We use their datasets that are based on 

an actual large water network to benchmark our solution method. Note that water 

networks are commonly examined in the scientific literature not only for fault location 

identification but also for water quality (Ostfeld et al., 2008) and contaminant detection 

(Krause et al., 2008). 

Some authors haven also taken into account sensor costs. For example, Lin and Chiu 

(2005) considered the sensor placement problem for locating targets under cost 

constraints. They formulated this problem as a min-max mathematical optimization 

model and proposed a simulated annealing-based algorithm for solving it.     

We make two novel contributions. First, we define the GTCP as a weighted version 

of the TCP with the goal of minimizing the cost of sensors rather than minimizing their 

number. Sensor outputs are assumed to taken general categorical values rather than 

binary ones, and multiple readings may represent the same system state. Second, and 

more importantly, we devise a successful exact solution strategy that is capable of 

solving large and realistic instances previously solved only heuristically. Our exact 

means of solving the GTCP is based on an ILP formulation of the problem coupled with 

an extensive preprocessing scheme for the elimination of redundant constraints and 

decision variables. To the best of our knowledge, this is the first effective and scalable 

exact solution method developed for the TCP and its variants that is based on 

mathematical programming.  

Karwan et al. (1983) presented a review of methods that identify and remove 

constraint redundancy from ILPs. Later, Paulraj and Sumathi (2010) compared five 

means of identifying redundant constraints. However, the constraint elimination 

procedure presented in this study is unique and based on the particular properties of the 

GTCP and of our formulation. 

The rest of this paper is organized as follows. In Section 2, we present notation and 

an ILP formulation of the problem. In Section 3, we devise the constraint reduction 

algorithm (CRA). In Section 4, the effectiveness of the proposed algorithm is 

demonstrated using twelve water networks studied in the literature. Our results are 

compared to previous solutions and to the effectiveness of solving the considered ILP 

model directly using a commercial solver. Concluding remarks and avenues for future 

research are given in Section 5. 
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2. Notation and ILP formulation 

In this section, we demonstrate the GTCP with a small numerical example and we 

introduce notation and formulate the problem as an ILP. A feasible solution to the 

considered problem is given by a subset of selected sensors such that the signatures of 

readings related to different states will result in different outputs for at least a predefined 

number of sensors. An optimal solution is a feasible solution that minimizes the cost of 

sensors in the subset. 

Let us demonstrate the problem with the following example. Consider a system that 

consists of four potential sensors such that sensors 1, 2 and 4 produce a binary output 

while sensor 3 produces a ternary output. Assume that there are seven different possible 

readings denoted by identifications (IDs) 1-7 and two possible states denoted as 

“Positive” and “Negative.” The input for this small-scale example is presented in Table 

1. The last row of the table presents the cost of installing each sensor. 

 

Table 1: All possible sensors and their costs, readings and states 

Sensors 1 2 3 4 System State 

ID
s 

an
d
 r

ea
d
in

g
s 

1 0 0 Blue 1 Positive 

2 0 1 Red 1 Positive 

3 1 1 Red 1 Positive 

4 1 0 Gray 1 Positive 

5 1 0 Red 1 Negative 

6 0 1 Blue 0 Negative 

7 0 0 Gray 0 Negative 

Sensor cost 4 3 6 5 

 

Note that the signatures of sensors 1, 2, and 3 can be uniquely mapped to the two 

system states as demonstrated in Table 2 where the resulting signatures and the IDs of 

the readings from which they originate are presented. Thus, this is a feasible solution 

to our problem (for 𝛼 = 1). The total cost of these three sensors is 13, which happens 

to be the optimal solution for this example. Note that when each unique reading is 

mapped to a single state, the set of all candidate sensors is a feasible solution. 

 

Table 2: The optimal solution for the example presented in Table 1 

Sensors 1 2 3 System State 

R
ea

d
in

g
 I

D
s 

an
d
 

si
g
n
at

u
re

s 

1 0 0 Blue Positive 

2 0 1 Red Positive 

3 1 1 Red Positive 

4 1 0 Gray Positive 

5 1 0 Red Negative 

6 0 1 Blue Negative 

7 0 0 Gray Negative 
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As a counterexample, consider installing sensors 2 and 4 only. This configuration 

is not a feasible solution since the signature (0, 1) is obtained from readings 1 and 4, 

which are related to the “positive” system state, and from reading 5, which is related to 

the “negative” state. Thus, a design with sensors 2 and 4 only can result in ambiguity 

regarding the system state.  

Let us now present the proposed integer programming formulation for the GTCP. 

For this purpose, we use the following notation: 

 

𝑁 Set of candidate sensors available in a given system; the number of sensors is 

denoted by 𝑛 = |𝑁|. 

𝑐𝑖 The cost of installing sensor 𝑖 for all 𝑖 ∈ 𝑁. 

𝑉𝑖 The set of all possible outputs that can be obtained from sensor 𝑖; we assume 

that this is a discrete set (this assumption is later relaxed). 

𝑅 The set of valid readings 𝑅 ⊆ 𝑉1 × 𝑉2 × ⋯ × 𝑉𝑛; for each reading 𝐫 ∈ 𝑅, we 

refer to the output of the 𝑖𝑡ℎ sensor with 𝑟𝑖.  

𝐾 The set of possible system states 𝐾 = {1, … , 𝑘}.  

𝑘𝐫 The state of the system represented by reading 𝐫 ∈ 𝑅. 

𝛼 The minimum number of selected sensors among which different states require 

different outputs. Recall that typically 𝛼 = 1. 

For each sensor 𝑖 ∈ 𝑁, we define a binary decision variable 𝑥𝑖 that is equal to “1” when 

the sensor is included in the solution configuration and that is equal to “0” otherwise. 

Now, the GTCP can be formulated as follows: 

 

min ∑ 𝑐𝑖𝑥𝑖

𝑖∈𝑁

 (1) 

Subject to 

∑ 𝑥𝑖

𝑖:𝑟𝑖≠𝑞𝑖

≥ 𝛼        ∀𝐫, 𝐪 ∈ 𝑅: 𝑘𝐫 ≠ 𝑘𝐪 (2) 

 

𝑥𝑖 ∈ {0,1}    ∀𝑖 ∈ 𝑁 

 

The objective function (1) minimizes the total cost of sensors in the configuration. The 

set of constraints (2) ensures that for every two readings that represent different system 

states, at least 𝛼 sensors with different outputs are included in the configuration. 

 

3. The constraint reduction algorithm  

In this section, we introduce an exact solution method that is based on a constraint 

reduction algorithm (CRA). We first note that the dimension of the ILP (1)-(2), i.e., the 

number of decision variables, is equal to the number of candidate sensors, and the 

number of constraints is quadratic in the number of readings [𝑂(|𝑅|2)]. For a typical 

application, we can expect to find thousands of readings, which imply millions of 
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constraints. Such models can be very difficult to solve explicitly due to memory and 

computation power limitations. 

To solve large instances of the model using a reasonable amount of resources, our 

algorithm searches for and detects redundant constraints and exploits the structure of 

the problem to fix the values of certain decision variables. In this section, we show that 

this scheme produces models that can be solved within a relatively short amount of time 

with a commercial ILP solver. Moreover, in some cases, the entire set of decision 

variables can be fixed, and the ILP is solved during this preprocessing step. 

The basic idea of our algorithm is as follows: recall that there is a constraint in the 

model for each pair of readings 𝐫, 𝐪 that represent different states. Let us define the set 

of sensors with different outputs in readings 𝒓 and 𝒒 as 𝑆𝐫𝐪 = {𝑖: 𝑟𝑖 ≠ 𝑞
𝑖
}. Using this 

notation, constraint (2) can be rewritten as (2'). 

 

Let us denote the collection of sets that define (2') by ℂ = {𝑆𝐫𝐪: 𝑘𝐫 ≠ 𝑘𝐪} and note 

the following: 

Proposition 1: Let 𝑆, 𝑆′ ∈ ℂ such that 𝑆 ⊂ 𝑆′. Any solution 𝐱 that satisfies (2') for 𝑆 

also satisfies (2') for 𝑆′. 

Proof: Immediately, when 𝑆 ⊂ 𝑆′ and 𝑥𝑖 ≥ 0, then ∑ 𝑥𝑖𝑖∈𝑆 ≤ ∑ 𝑥𝑖𝑖∈𝑆′ . 

 

From the observations of Proposition 1, many constraints can be detected as 

redundant and eliminated. Moreover, the existence of 𝑆 ∈ ℂ such that |𝑆| = 𝛼 implies 

that 𝑥𝑖=1 for all 𝑖 ∈ 𝑆. Similarly, when a variable does not appear in any of the 

remaining constraints, its value must be zero in an optimal solution; thus, the (positive) 

cost of the associated sensor is not paid. 

We demonstrate the above idea with the small-scale example illustrated in Table 1 

with 𝛼 = 1 as shown in Table 3 below. In the first column of the table, we present the 

number of constraint instances obtained. In columns 2 and 3, we present a pair of 

readings taken from Table 1 related to different states (note that "B" denotes "blue," 

"R" denotes "red," and "G" denotes "gray" as the outputs of sensor 3). For example, 

columns 2 and 3 of the first constraint represent readings 1 and 5 in Table 1, 

respectively, which are associated with different states (positive and negative, 

respectively). In column 4, we show the resulting 𝑆𝐫𝐪 for this pair. Thus, for the first 

constraint, sensors 1 and 3 have different outputs and are therefore included in the set 

𝑆𝐫𝐪. The respective constraint (2') is shown in the rightmost column. 

From constraint instances 7 and 10, one can see that sensors 2 and 3 must be 

included in any feasible solution. Thus, one can fix 𝑥2 = 𝑥3 = 1. Then, except 

constraint instance 12, all constraints can be eliminated based on the observations of 

Proposition 1. The reduced ILP without redundant constraints is presented below: 

 

min 4𝑥1 + 5𝑥4 

∑ 𝑥𝑖

𝑖∈𝑆𝐫𝐪 

≥ 𝛼      ∀𝐫, 𝐪 ∈ 𝑅:  𝑘𝐫 ≠ 𝑘𝐪 

      

(2') 
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subject to 

𝑥1 + 𝑥4 ≥ 1 

𝑥1, 𝑥4 ∈ {0,1} 

The optimal solution for this ILP with fixed sensors (2 and 3) is 𝐱 = (1,1,1,0) at a cost 

of 13. For this small-scale example, all eliminated constraints are implied by the 

singleton constraint 𝑥2 ≥ 1 and 𝑥3 ≥ 1. Note, however, that constraints can be 

eliminated due to any other constraints, e.g., 𝑥2 + 𝑥3 + 𝑥4 ≥ 1 can be eliminated due 

to constraint 𝑥2 + 𝑥3 ≥ 1. 

 

Table 3: An explicit example of the ILP (1)-(2) [for 𝛼 = 1] 

Constraint 

# 

𝐫 𝐪 𝑆𝐫𝐪 Constraint 

1 (0,0,B,1) (1,0,R,1) {1,3} 𝑥1 + 𝑥3 ≥ 1 

2 (0,0,B,1) (0,1,B,0) {2,4} 𝑥2 + 𝑥4 ≥ 1 

3 (0,0,B,1) (0,0,G,0) {3,4} 𝑥3 + 𝑥4 ≥ 1 

4 (0,1,R,1) (1,0,R,1) {1,2} 𝑥1 + 𝑥2 ≥ 1 

5 (0,1,R,1) (0,1,B,0) {3,4} 𝑥3 + 𝑥4 ≥ 1 

6 (0,1,R,1) (0,0,G,0) {2,3,4} 𝑥2 + 𝑥3 + 𝑥4 ≥ 1 

7 (1,1,R,1) (1,0,R,1) {2} 𝑥2 ≥ 1 

8 (1,1,R,1) (0,1,B,0) {1,3,4} 𝑥1 + 𝑥3 + 𝑥4 ≥ 1 

9 (1,1,R,1) (0,0,G,0) {1,2,3,4} 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 1 

10 (1,0,G,1) (1,0,R,1) {3} 𝑥3 ≥ 1 

11 (1,0,G,1) (0,1,B,0) {1,2,3,4} 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 1 

12 (1,0,G,1) (0,0,G,0) {1,4} 𝑥1 + 𝑥4 ≥ 1 

 

When 𝛼 > 1, any constraint with 𝛼 variables on the left-hand side implies that the 

values of these variables are fixed at a value of one. A constraint with fewer than 𝛼 

variables immediately implies infeasibility. Indeed, for the dataset used in the above 

example, constraints 7 and 10 imply that the problem is infeasible for 𝛼 ≥ 2. 

The algorithm, which is presented as a pseudocode in Figure 1, detects all redundant 

constraint instances and fixes the required decision variables by scanning all pairs of 

readings related to different states. For each such pair of readings, a set of sensors with 

different outputs (𝑆) is constructed. The set is added to the collection ℂ only when it 

does not contain a previously added set. In addition, when the set is contained in 

previously added sets, these sets are removed from ℂ. In terms of computational effort, 

dominating parts of the algorithm are inclusion tests 𝑆′ ⊆ 𝑆 and 𝑆 ⊂ 𝑆′. It is possible 

to avoid executing many of these tests by partitioning ℂ into subsets of equal cardinality 

and then testing the inclusion of a set versus sets with larger cardinalities. 

The algorithm can be parallelized in a relatively simple manner by dividing steps of 

the inner loop across several processors. Indeed, when checking the inclusion of a 

particular set 𝑆 versus each member of the large collection ℂ, each inclusion test can be 

performed independently. Since the inclusion tests account for almost all of the 

computational effort exerted, such an approach can reduce the running time by a factor 
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close to the number of processors. However, the implementation of the algorithm used 

for the numerical experiment reported below is based on the simpler serial approach. 

 

Input: A set of readings 𝑅 where each reading is mapped to a state. 
 
Let ℂ = ∅ // start with an empty collection of constraints 
 
For two element subsets {𝑟, 𝑞} ⊂ 𝑅 

If 𝑘𝐫 ≠ 𝑘𝐪, then 

𝑆 =  {𝑖 ∈ 𝑁: 𝑟𝑖 ≠ 𝑞𝑖}  

If there is no 𝑆′ ∈ ℂ s.t 𝑆′ ⊆ 𝑆     

Remove all 𝑆′ ∈ ℂ such that 𝑆 ⊂ 𝑆′W 

         Add S to ℂ 

Return ℂ 

Figure 1: Pseudocode of the CRA 

 

4. Numerical experiment 

To demonstrate the effectiveness of our solution method and to benchmark it, we solve 

the sensor placement problem introduced by Sela Perelman et al. (2016). Their model 

uses a graph wherein edges represent pipes, valves, and pumps while nodes represent 

junctions, and sources in a system. Binary sensors that detect pressure waves caused by 

pipe bursts can be placed on each node in the network. A fault in each edge is associated 

with a true signal in several sensors located close to the fault location depending on the 

structure of the network and its topography. Each potential sensor can be affected by 

several fault locations and each fault may affect several sensors. The goal is to select a 

subset of nodes where sensors should be placed to detect each fault in the system and 

to identify its location. The objective is to minimize the number of sensors (implicitly 

assuming that installation costs are identical at all locations). Their problem clearly 

reflects a special case of the proposed GTCP model. 

We coded the CRA in Python 3 as a single thread application and ran it with PyPy 

on an i9-9900K Linux machine with 64 GB RAM. The ILP models (both full and 

reduced) were solved using an IBM CPLEX 12.9 commercial MILP solver with the 

same machine. Note that CPLEX was implemented as a multithread application that 

efficiently employed all sixteen cores of the CPU. Sela Perelman et al. (2016) 

graciously made their input data available to us. These data are based on 12 different 

realistic water networks designated as Net1-Net12. These networks were adopted from 

Jolly et al. (2014) and from the Centre of Water Systems University of EXETER and 

range from a small instance with roughly 100 nodes to one with more than 12,000. 

Some simplifying assumptions as described in Sela Perelman et al. (2016) were made 

to map any possible failure in the network to a reading. 

In Table 4, we report the performance of the CRA. In the first three columns we 

present the network name, the number of sensors and the number of unique readings 

for each network. In the fourth column we present the number of constraints of the full 

model. Since each state has one unique reading, the number of constraints is (
|𝑅|
2

). The 
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running time of the CRA is presented in the fifth column and the remaining number of 

constraints after reduction are presented in the sixth column. The solution time of the 

reduced model in CPLEX is presented in the last column of the table. 

Note that in the original input, many readings related to faults in closely located 

pipes are identical, meaning that these types of faults are not identifiable with any 

possible sensor placement subject to the sensing technology assumed by Sela Perelman 

et al. (2016). Following their study, we consider these readings to belong to one state, 

i.e., one fault location. Moreover, we include a case involving no faults as an additional 

system state that can be identified whereas Sela Perelman et al. (2016) addressed this 

issue using a different detection model. In this sense, our model is slightly more 

constrained and may require the use of slightly larger number of sensors for optimal 

solution. 

 

 

Table 4: Reduction approach for each network  
Dataset features Constraint reduction model 

Network Number 

of nodes 

Unique 

readings 

Number of 

constraints 

Reduction 

time (sec) 

Remaining 

constraints 

ILP time 

(sec) 

Net1 126 110 5,995 0.03 50 0.01 

Net2 269 317 50,086 0.12 242 0.03 

Net3 420 428 91,378 0.24 262 0.03 

Net4 481 549 150,426 0.72 600 0.21 

Net5 543 558 155,403 0.53 357 0.03 

Net6 791 784 306,936 0.91 678 0.13 

Net7 778 761 289,180 0.9 373 0.05 

Net8 811 1,058 559,153 4.35 973 0.51 

Net9 959 1,006 505,515 1.44 802 0.07 

Net10 1,325 1,437 1,031,766 4.81 983 0.2 

Net11 1,891 2,094 2,191,371 6.95 1310 0.18 

Net12 12,523 13,100 85,798,450 943.91 10846 7200* 

* While the problem instance could not be optimally solved within the 7200-second 

time limit, a near solution was obtained as described in Table 5. 

  

 It is clear from the results presented in Table 4 that our proposed CRA is capable of 

significantly reducing the size of the ILP model for the GTCP and that its effectiveness 

improves as the size of the full model increases, e.g., in “Net12”, roughly 99.99% of 

the constraints are eliminated. This is achieved over a relatively short period of time 

even with our simple python approach. 

Next, we compared the solution time and the results obtained from our algorithm to 

those achieved using the full model and the state-of-the-art Augmented Greedy (AG) 

Algorithm method developed by Sela Perelman et al. (2016) as reported in their paper. 

For this end, we solve both the reduced and full model using CPLEX and a time 

limit of two hours. This limit was used because in a preliminary experiment, CPLEX 

used almost 64GB RAM from our machine and encountered memory errors when 

longer processing times were allowed.  

In Table 5, we present the number of selected sensors and solution times for each 

of the three models. For the reduced and full models, the time also includes the model 

generation time. For example, in “Net12” where the allocated running time was not 
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sufficient for CPLEX to converge to the optimal solution, we report the obtained lower 

bound and the best identified solution. 

It is also important to note that our comparison of the solution times of our method 

and of the AG algorithm presented by Sela Perelman et al. (2016) is not completely 

balanced because our testing machine was several times faster than that used in their 

study. However, the fact that the exact solutions obtained with our method require on 

average 10% fewer sensors is significant regardless of the solution time required. 

 
Table 5: Comparisons of numbers of selected sensors and solution times required for the 

optimization model (GTCP) and Sela Perelman et al.’s (2016) method. 

Network 

Reduced model Full model AG (Sela Perelman et al., 2016) 

Number of 

sensors  

 

Solution time 

(sec) 

Number of 

sensors  

 

Solution time 

(sec) 

Number of 

sensors  

Solution time 

(sec) 

Net1 45 0.04 45 1.12 (1) 5 

Net2 86 0.15 86 1.36 98 35 

Net3 115 0.27 115 3.22 134 99 

Net4 122 0.93 122 8.12 138 296 

Net5 151 0.56 151 7.98 164 231 

Net6 229 1.04 229 13.5 254 379 

Net7 224 0.95 224 14.1 237 (2) 559 

Net8 166 4.86 166 50.8 195 1684 

Net9 327 1.51 327 14.9 359 664 

Net10 356 5.01 356 65.4 408 2369 

Net11 635 7.13 635 64.3 717 3032 

Net12 [3346, 3350]  8144 (1) (3) (1) 108000 

(1) In these cases, Sela Perelman et al. (2016) reported on a set of sensors that allow for an only partial 

identification of identifiable faults. These are not comparable to our results, for which complete 

identification is applied as a hard constraint. 

(2) In this case, Sela Perelman et al. (2016) originally reported on 139 sensors but through personal 

communication with the first author, we found this to be a typo. 

(3) For the “Net12” instance, the full model could not be run with the amount of memory available 

(64 GB) and CPLEX reported errors.  

 

The merits of our CRA are clear from Table 5. While CPLEX is capable of finding 

an optimal solution for fairly substantial instances of the GTCP, our CRA saves 

considerable processing time and memory resources and extends the range of instances 

for which optimal or near-optimal solutions can be obtained using reasonable 

computational resources. 

 

5. Conclusions 

This paper introduces the GTCP and formulates it as an ILP. While the formulation 

may present a very large number of constraints, we find many of them to be redundant. 

We introduce a constraint reduction algorithm that can render large models effectively 

solvable with a commercial solver.   

An alternative solution method for the GTCP could involve generating violating 

constraints of the ILP and adding them to the model gradually in branch and cut 

procedure. This approach may be a promising one when the number of constraints is 
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exponential in the dimension of the master problem and when the separation problem 

can be solved in polynomial time. However, for our model, while the number of 

constraints is typically very large, it is still quadratic in the input (number of readings). 

Hence, only a very efficient, sub-quadratic separation algorithm can lead to an effective 

row generation algorithm. We suspect that no such separation algorithm exists.   

We demonstrated the model and our solution method by applying it to a use case of 

sensor placement in water distribution networks. We show that it can deliver optimal 

or near-optimal solutions to large-scale instances in relatively short time. The previous 

literature on this problem presents heuristic methods that deliver solutions with 

significantly larger number of sensors and that take more time to solve the problem. 

There are several possible interesting extensions to our model: First, since the 

optimal solution of the presented problem involves a set of sensors that can be used to 

detect all the identifiable states of the system, the optimization model may result in a 

set of sensors that is too large (or too expensive). For situations in which it is sufficient 

to detect the state of the system with a high probability, an interesting direction for 

future research would involve developing a model that considers the tradeoffs between 

the cost of errors and the cost of sensors. Such a model can also consider a situation 

where the sensor output is not reliable. That is when there is no deterministic mapping 

of the readings to states of the system.  Finally, our GTCP is based on the assumption 

that the outputs produced by sensors are discrete values (categorical). A possible 

extension could consider cases in which some outputs are continuous values (e.g., 

temperature and pressure). 
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