
1

The Generalized Test Collection Problem

September 2019

Yifat Douek-Pinkovich, Tal Raviv, Irad Ben-Gal

Department of Industrial Engineering, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978,

Israel

E-mail: yifatdouek@gmail.com, talraviv@tauex.tau.ac.il, bengal@tauex.tau.ac.il

Abstract

The test collection problem, also known as the minimum test set problem or the

minimum test cover problem, selects a minimal set of binary sensors that can determine

the state of a monitored system. We generalize this problem by i) allowing sensors to

produce arbitrary categorical outputs; ii) allowing multiple sensor outputs to represent

each state of a system and iii) including a cost per sensor. The purpose of the planer is

to select a set of sensors at a minimum cost that can determine the state of the system.

This problem has applications to various complex systems, including, for example,

urban water networks, wherein the locations of pipe failures must be identified by

sensors installed at specific junctions. In such systems, it is desirable to select the most

inexpensive set of sensors that can provide sufficiently reliable information to support

decisions regarding the system’s maintenance and operations. To address this problem,

we present an integer programming model and an effective exact solution method that

uses the model’s unique structure to reduce its size so that it can easily be solved. The

solution method is implemented and demonstrated to be superior to those described in

previous studies.

Keywords: Test collection problem, sensor selection, sensor placement, water

networks, integer linear programming, constraint reduction

mailto:talraviv@tauex.tau.ac.il
mailto:bengal@tauex.tau.ac.il

2

1. Introduction

In this paper, we introduce the generalized test collection problem (GTCP). Inputs of

this problem consist of the following: (a) a set of potential sensors that measure various

attributes of a system where each sensor is associated with an installation cost and (b)

a list of all possible sensors’ outputs (henceforth referred to as readings) where each

reading is associated with a specific state of the monitored system.

We define a signature as the 'partial reading' obtained from a subset of sensors, e.g.,

in a system with four sensors, the signature of the reading (0, 1, 5, 0) with respect to

sensors 1 and 3 is (0, 5), etc. When the set of selected sensors is known, the set of

possible signatures can be immediately derived from the list of possible readings.

The solution to our problem is a subset of sensors whereby each signature can be

mapped to a unique state of the monitored system. Rather, the state of the system can

always be determined by the set of selected sensors. This solution can be achieved when

the signatures of readings related to different states have different outputs for at least 𝛼

sensors. In a typical situation 𝛼 = 1, however, for the sake of robustness (e.g., when

sensors are prone to failure), it is sometimes useful to require a greater value of 𝛼.

The considered problem involves a rich generalization of the minimum test

collection problem (TCP) also known as the minimum test set problem or minimum test

cover problem. The decision version of this problem is an NP-complete problem (Garey

and Johnson, 1979), and it is an APX-hard problem (De Bontridder et al. 2003). Using

our terminology, the TCP constitutes a special case of the GTCP wherein all sensors

produce binary outputs; each reading is associated with a unique binary state (“positive”

or “negative”); 𝛼 = 1; and the costs of all of the sensors are identical. Needless to say,

many real-life settings do not follow the above assumptions.

This study of the GTCP is motivated by the challenges associated with designing

modern monitoring systems in domains such as manufacturing, smart cities,

transportation, medicine, homeland security and agriculture. Such systems often consist

of many sensors connected to a central processing unit (CPU) that detects the current

state of the monitored system. A major task involved when designing these systems is

to select a subset of sensors at a minimal cost from a potentially large (and expensive)

set of sensors. The state of the system can rarely be inferred from an output obtained

from a single sensor. Instead, it is often deduced from a combination of several outputs

from different sensors.

Bertolazzi et al. (2016) studied another variant of the TCP for which the number of

sensors was given, and the objective was to maximize the Euclidian distance between

readings belonging to different classes. The authors refer to this value as the minimal

threshold quantity. The paper formulates the problem as an integer linear program (ILP)

and devises a greedy randomized adaptive search procedure (GRASP) as an appropriate

heuristic for solving it. With their numerical experiment, the authors show that their

method is effective when many sensors (or features) are present and when the number

of instances is moderate.

Many researchers have studied various applications of the TCP. Some have used

rather different terminology and formulations than ours. Such applications include

3

sensor placements for structures motivated by many devices such as wireless sensor

networks for energy consumption; sensor networks for locating targets; and water

systems. For example, Slijepcevic and Potkonjak (2001) studied the problem of placing

sensor nodes into a monitored area so that full coverage can be achieved with minimal

energy consumption. They cast it using a heuristic approach to the set cover problem

(SCP) known as NP-hard. Sela Perelman et al. (2016) also used the SCP to find a

desirable set of locations for sensors used to detect pipe failures occurring in an urban

water network. The authors also developed a new augmented greedy heuristic for

solving a problem equivalent to the TCP to locate pipe failures. In a later paper, Sela

and Amin (2018) solve a robust version of the SCP problem where their goal is to detect

pipe failures that occur when some sensors fail. We use their datasets that are based on

an actual large water network to benchmark our solution method. Note that water

networks are commonly examined in the scientific literature not only for fault location

identification but also for water quality (Ostfeld et al., 2008) and contaminant detection

(Krause et al., 2008).

Some authors haven also taken into account sensor costs. For example, Lin and Chiu

(2005) considered the sensor placement problem for locating targets under cost

constraints. They formulated this problem as a min-max mathematical optimization

model and proposed a simulated annealing-based algorithm for solving it.

We make two novel contributions. First, we define the GTCP as a weighted version

of the TCP with the goal of minimizing the cost of sensors rather than minimizing their

number. Sensor outputs are assumed to taken general categorical values rather than

binary ones, and multiple readings may represent the same system state. Second, and

more importantly, we devise a successful exact solution strategy that is capable of

solving large and realistic instances previously solved only heuristically. Our exact

means of solving the GTCP is based on an ILP formulation of the problem coupled with

an extensive preprocessing scheme for the elimination of redundant constraints and

decision variables. To the best of our knowledge, this is the first effective and scalable

exact solution method developed for the TCP and its variants that is based on

mathematical programming.

Karwan et al. (1983) presented a review of methods that identify and remove

constraint redundancy from ILPs. Later, Paulraj and Sumathi (2010) compared five

means of identifying redundant constraints. However, the constraint elimination

procedure presented in this study is unique and based on the particular properties of the

GTCP and of our formulation.

The rest of this paper is organized as follows. In Section 2, we present notation and

an ILP formulation of the problem. In Section 3, we devise the constraint reduction

algorithm (CRA). In Section 4, the effectiveness of the proposed algorithm is

demonstrated using twelve water networks studied in the literature. Our results are

compared to previous solutions and to the effectiveness of solving the considered ILP

model directly using a commercial solver. Concluding remarks and avenues for future

research are given in Section 5.

4

2. Notation and ILP formulation

In this section, we demonstrate the GTCP with a small numerical example and we

introduce notation and formulate the problem as an ILP. A feasible solution to the

considered problem is given by a subset of selected sensors such that the signatures of

readings related to different states will result in different outputs for at least a predefined

number of sensors. An optimal solution is a feasible solution that minimizes the cost of

sensors in the subset.

Let us demonstrate the problem with the following example. Consider a system that

consists of four potential sensors such that sensors 1, 2 and 4 produce a binary output

while sensor 3 produces a ternary output. Assume that there are seven different possible

readings denoted by identifications (IDs) 1-7 and two possible states denoted as

“Positive” and “Negative.” The input for this small-scale example is presented in Table

1. The last row of the table presents the cost of installing each sensor.

Table 1: All possible sensors and their costs, readings and states

Sensors 1 2 3 4 System State

ID
s

an
d
 r

ea
d
in

g
s

1 0 0 Blue 1 Positive

2 0 1 Red 1 Positive

3 1 1 Red 1 Positive

4 1 0 Gray 1 Positive

5 1 0 Red 1 Negative

6 0 1 Blue 0 Negative

7 0 0 Gray 0 Negative

Sensor cost 4 3 6 5

Note that the signatures of sensors 1, 2, and 3 can be uniquely mapped to the two

system states as demonstrated in Table 2 where the resulting signatures and the IDs of

the readings from which they originate are presented. Thus, this is a feasible solution

to our problem (for 𝛼 = 1). The total cost of these three sensors is 13, which happens

to be the optimal solution for this example. Note that when each unique reading is

mapped to a single state, the set of all candidate sensors is a feasible solution.

Table 2: The optimal solution for the example presented in Table 1

Sensors 1 2 3 System State

R
ea

d
in

g
 I

D
s

an
d

si
g
n
at

u
re

s

1 0 0 Blue Positive

2 0 1 Red Positive

3 1 1 Red Positive

4 1 0 Gray Positive

5 1 0 Red Negative

6 0 1 Blue Negative

7 0 0 Gray Negative

5

As a counterexample, consider installing sensors 2 and 4 only. This configuration

is not a feasible solution since the signature (0, 1) is obtained from readings 1 and 4,

which are related to the “positive” system state, and from reading 5, which is related to

the “negative” state. Thus, a design with sensors 2 and 4 only can result in ambiguity

regarding the system state.

Let us now present the proposed integer programming formulation for the GTCP.

For this purpose, we use the following notation:

𝑁 Set of candidate sensors available in a given system; the number of sensors is

denoted by 𝑛 = |𝑁|.

𝑐𝑖 The cost of installing sensor 𝑖 for all 𝑖 ∈ 𝑁.

𝑉𝑖 The set of all possible outputs that can be obtained from sensor 𝑖; we assume

that this is a discrete set (this assumption is later relaxed).

𝑅 The set of valid readings 𝑅 ⊆ 𝑉1 × 𝑉2 × ⋯ × 𝑉𝑛; for each reading 𝐫 ∈ 𝑅, we

refer to the output of the 𝑖𝑡ℎ sensor with 𝑟𝑖.

𝐾 The set of possible system states 𝐾 = {1, … , 𝑘}.

𝑘𝐫 The state of the system represented by reading 𝐫 ∈ 𝑅.

𝛼 The minimum number of selected sensors among which different states require

different outputs. Recall that typically 𝛼 = 1.

For each sensor 𝑖 ∈ 𝑁, we define a binary decision variable 𝑥𝑖 that is equal to “1” when

the sensor is included in the solution configuration and that is equal to “0” otherwise.

Now, the GTCP can be formulated as follows:

min ∑ 𝑐𝑖𝑥𝑖

𝑖∈𝑁

 (1)

Subject to

∑ 𝑥𝑖

𝑖:𝑟𝑖≠𝑞𝑖

≥ 𝛼 ∀𝐫, 𝐪 ∈ 𝑅: 𝑘𝐫 ≠ 𝑘𝐪 (2)

𝑥𝑖 ∈ {0,1} ∀𝑖 ∈ 𝑁

The objective function (1) minimizes the total cost of sensors in the configuration. The

set of constraints (2) ensures that for every two readings that represent different system

states, at least 𝛼 sensors with different outputs are included in the configuration.

3. The constraint reduction algorithm

In this section, we introduce an exact solution method that is based on a constraint

reduction algorithm (CRA). We first note that the dimension of the ILP (1)-(2), i.e., the

number of decision variables, is equal to the number of candidate sensors, and the

number of constraints is quadratic in the number of readings [𝑂(|𝑅|2)]. For a typical

application, we can expect to find thousands of readings, which imply millions of

6

constraints. Such models can be very difficult to solve explicitly due to memory and

computation power limitations.

To solve large instances of the model using a reasonable amount of resources, our

algorithm searches for and detects redundant constraints and exploits the structure of

the problem to fix the values of certain decision variables. In this section, we show that

this scheme produces models that can be solved within a relatively short amount of time

with a commercial ILP solver. Moreover, in some cases, the entire set of decision

variables can be fixed, and the ILP is solved during this preprocessing step.

The basic idea of our algorithm is as follows: recall that there is a constraint in the

model for each pair of readings 𝐫, 𝐪 that represent different states. Let us define the set

of sensors with different outputs in readings 𝒓 and 𝒒 as 𝑆𝐫𝐪 = {𝑖: 𝑟𝑖 ≠ 𝑞
𝑖
}. Using this

notation, constraint (2) can be rewritten as (2').

Let us denote the collection of sets that define (2') by ℂ = {𝑆𝐫𝐪: 𝑘𝐫 ≠ 𝑘𝐪} and note

the following:

Proposition 1: Let 𝑆, 𝑆′ ∈ ℂ such that 𝑆 ⊂ 𝑆′. Any solution 𝐱 that satisfies (2') for 𝑆

also satisfies (2') for 𝑆′.

Proof: Immediately, when 𝑆 ⊂ 𝑆′ and 𝑥𝑖 ≥ 0, then ∑ 𝑥𝑖𝑖∈𝑆 ≤ ∑ 𝑥𝑖𝑖∈𝑆′ .

From the observations of Proposition 1, many constraints can be detected as

redundant and eliminated. Moreover, the existence of 𝑆 ∈ ℂ such that |𝑆| = 𝛼 implies

that 𝑥𝑖=1 for all 𝑖 ∈ 𝑆. Similarly, when a variable does not appear in any of the

remaining constraints, its value must be zero in an optimal solution; thus, the (positive)

cost of the associated sensor is not paid.

We demonstrate the above idea with the small-scale example illustrated in Table 1

with 𝛼 = 1 as shown in Table 3 below. In the first column of the table, we present the

number of constraint instances obtained. In columns 2 and 3, we present a pair of

readings taken from Table 1 related to different states (note that "B" denotes "blue,"

"R" denotes "red," and "G" denotes "gray" as the outputs of sensor 3). For example,

columns 2 and 3 of the first constraint represent readings 1 and 5 in Table 1,

respectively, which are associated with different states (positive and negative,

respectively). In column 4, we show the resulting 𝑆𝐫𝐪 for this pair. Thus, for the first

constraint, sensors 1 and 3 have different outputs and are therefore included in the set

𝑆𝐫𝐪. The respective constraint (2') is shown in the rightmost column.

From constraint instances 7 and 10, one can see that sensors 2 and 3 must be

included in any feasible solution. Thus, one can fix 𝑥2 = 𝑥3 = 1. Then, except

constraint instance 12, all constraints can be eliminated based on the observations of

Proposition 1. The reduced ILP without redundant constraints is presented below:

min 4𝑥1 + 5𝑥4

∑ 𝑥𝑖

𝑖∈𝑆𝐫𝐪

≥ 𝛼 ∀𝐫, 𝐪 ∈ 𝑅: 𝑘𝐫 ≠ 𝑘𝐪

(2')

7

subject to

𝑥1 + 𝑥4 ≥ 1

𝑥1, 𝑥4 ∈ {0,1}

The optimal solution for this ILP with fixed sensors (2 and 3) is 𝐱 = (1,1,1,0) at a cost

of 13. For this small-scale example, all eliminated constraints are implied by the

singleton constraint 𝑥2 ≥ 1 and 𝑥3 ≥ 1. Note, however, that constraints can be

eliminated due to any other constraints, e.g., 𝑥2 + 𝑥3 + 𝑥4 ≥ 1 can be eliminated due

to constraint 𝑥2 + 𝑥3 ≥ 1.

Table 3: An explicit example of the ILP (1)-(2) [for 𝛼 = 1]

Constraint

𝐫 𝐪 𝑆𝐫𝐪 Constraint

1 (0,0,B,1) (1,0,R,1) {1,3} 𝑥1 + 𝑥3 ≥ 1

2 (0,0,B,1) (0,1,B,0) {2,4} 𝑥2 + 𝑥4 ≥ 1

3 (0,0,B,1) (0,0,G,0) {3,4} 𝑥3 + 𝑥4 ≥ 1

4 (0,1,R,1) (1,0,R,1) {1,2} 𝑥1 + 𝑥2 ≥ 1

5 (0,1,R,1) (0,1,B,0) {3,4} 𝑥3 + 𝑥4 ≥ 1

6 (0,1,R,1) (0,0,G,0) {2,3,4} 𝑥2 + 𝑥3 + 𝑥4 ≥ 1

7 (1,1,R,1) (1,0,R,1) {2} 𝑥2 ≥ 1

8 (1,1,R,1) (0,1,B,0) {1,3,4} 𝑥1 + 𝑥3 + 𝑥4 ≥ 1

9 (1,1,R,1) (0,0,G,0) {1,2,3,4} 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 1

10 (1,0,G,1) (1,0,R,1) {3} 𝑥3 ≥ 1

11 (1,0,G,1) (0,1,B,0) {1,2,3,4} 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≥ 1

12 (1,0,G,1) (0,0,G,0) {1,4} 𝑥1 + 𝑥4 ≥ 1

When 𝛼 > 1, any constraint with 𝛼 variables on the left-hand side implies that the

values of these variables are fixed at a value of one. A constraint with fewer than 𝛼

variables immediately implies infeasibility. Indeed, for the dataset used in the above

example, constraints 7 and 10 imply that the problem is infeasible for 𝛼 ≥ 2.

The algorithm, which is presented as a pseudocode in Figure 1, detects all redundant

constraint instances and fixes the required decision variables by scanning all pairs of

readings related to different states. For each such pair of readings, a set of sensors with

different outputs (𝑆) is constructed. The set is added to the collection ℂ only when it

does not contain a previously added set. In addition, when the set is contained in

previously added sets, these sets are removed from ℂ. In terms of computational effort,

dominating parts of the algorithm are inclusion tests 𝑆′ ⊆ 𝑆 and 𝑆 ⊂ 𝑆′. It is possible

to avoid executing many of these tests by partitioning ℂ into subsets of equal cardinality

and then testing the inclusion of a set versus sets with larger cardinalities.

The algorithm can be parallelized in a relatively simple manner by dividing steps of

the inner loop across several processors. Indeed, when checking the inclusion of a

particular set 𝑆 versus each member of the large collection ℂ, each inclusion test can be

performed independently. Since the inclusion tests account for almost all of the

computational effort exerted, such an approach can reduce the running time by a factor

8

close to the number of processors. However, the implementation of the algorithm used

for the numerical experiment reported below is based on the simpler serial approach.

Input: A set of readings 𝑅 where each reading is mapped to a state.

Let ℂ = ∅ // start with an empty collection of constraints

For two element subsets {𝑟, 𝑞} ⊂ 𝑅

If 𝑘𝐫 ≠ 𝑘𝐪, then

𝑆 = {𝑖 ∈ 𝑁: 𝑟𝑖 ≠ 𝑞𝑖}

If there is no 𝑆′ ∈ ℂ s.t 𝑆′ ⊆ 𝑆

Remove all 𝑆′ ∈ ℂ such that 𝑆 ⊂ 𝑆′W

 Add S to ℂ

Return ℂ

Figure 1: Pseudocode of the CRA

4. Numerical experiment

To demonstrate the effectiveness of our solution method and to benchmark it, we solve

the sensor placement problem introduced by Sela Perelman et al. (2016). Their model

uses a graph wherein edges represent pipes, valves, and pumps while nodes represent

junctions, and sources in a system. Binary sensors that detect pressure waves caused by

pipe bursts can be placed on each node in the network. A fault in each edge is associated

with a true signal in several sensors located close to the fault location depending on the

structure of the network and its topography. Each potential sensor can be affected by

several fault locations and each fault may affect several sensors. The goal is to select a

subset of nodes where sensors should be placed to detect each fault in the system and

to identify its location. The objective is to minimize the number of sensors (implicitly

assuming that installation costs are identical at all locations). Their problem clearly

reflects a special case of the proposed GTCP model.

We coded the CRA in Python 3 as a single thread application and ran it with PyPy

on an i9-9900K Linux machine with 64 GB RAM. The ILP models (both full and

reduced) were solved using an IBM CPLEX 12.9 commercial MILP solver with the

same machine. Note that CPLEX was implemented as a multithread application that

efficiently employed all sixteen cores of the CPU. Sela Perelman et al. (2016)

graciously made their input data available to us. These data are based on 12 different

realistic water networks designated as Net1-Net12. These networks were adopted from

Jolly et al. (2014) and from the Centre of Water Systems University of EXETER and

range from a small instance with roughly 100 nodes to one with more than 12,000.

Some simplifying assumptions as described in Sela Perelman et al. (2016) were made

to map any possible failure in the network to a reading.

In Table 4, we report the performance of the CRA. In the first three columns we

present the network name, the number of sensors and the number of unique readings

for each network. In the fourth column we present the number of constraints of the full

model. Since each state has one unique reading, the number of constraints is (
|𝑅|
2

). The

9

running time of the CRA is presented in the fifth column and the remaining number of

constraints after reduction are presented in the sixth column. The solution time of the

reduced model in CPLEX is presented in the last column of the table.

Note that in the original input, many readings related to faults in closely located

pipes are identical, meaning that these types of faults are not identifiable with any

possible sensor placement subject to the sensing technology assumed by Sela Perelman

et al. (2016). Following their study, we consider these readings to belong to one state,

i.e., one fault location. Moreover, we include a case involving no faults as an additional

system state that can be identified whereas Sela Perelman et al. (2016) addressed this

issue using a different detection model. In this sense, our model is slightly more

constrained and may require the use of slightly larger number of sensors for optimal

solution.

Table 4: Reduction approach for each network
Dataset features Constraint reduction model

Network Number

of nodes

Unique

readings

Number of

constraints

Reduction

time (sec)

Remaining

constraints

ILP time

(sec)

Net1 126 110 5,995 0.03 50 0.01

Net2 269 317 50,086 0.12 242 0.03

Net3 420 428 91,378 0.24 262 0.03

Net4 481 549 150,426 0.72 600 0.21

Net5 543 558 155,403 0.53 357 0.03

Net6 791 784 306,936 0.91 678 0.13

Net7 778 761 289,180 0.9 373 0.05

Net8 811 1,058 559,153 4.35 973 0.51

Net9 959 1,006 505,515 1.44 802 0.07

Net10 1,325 1,437 1,031,766 4.81 983 0.2

Net11 1,891 2,094 2,191,371 6.95 1310 0.18

Net12 12,523 13,100 85,798,450 943.91 10846 7200*

* While the problem instance could not be optimally solved within the 7200-second

time limit, a near solution was obtained as described in Table 5.

 It is clear from the results presented in Table 4 that our proposed CRA is capable of

significantly reducing the size of the ILP model for the GTCP and that its effectiveness

improves as the size of the full model increases, e.g., in “Net12”, roughly 99.99% of

the constraints are eliminated. This is achieved over a relatively short period of time

even with our simple python approach.

Next, we compared the solution time and the results obtained from our algorithm to

those achieved using the full model and the state-of-the-art Augmented Greedy (AG)

Algorithm method developed by Sela Perelman et al. (2016) as reported in their paper.

For this end, we solve both the reduced and full model using CPLEX and a time

limit of two hours. This limit was used because in a preliminary experiment, CPLEX

used almost 64GB RAM from our machine and encountered memory errors when

longer processing times were allowed.

In Table 5, we present the number of selected sensors and solution times for each

of the three models. For the reduced and full models, the time also includes the model

generation time. For example, in “Net12” where the allocated running time was not

10

sufficient for CPLEX to converge to the optimal solution, we report the obtained lower

bound and the best identified solution.

It is also important to note that our comparison of the solution times of our method

and of the AG algorithm presented by Sela Perelman et al. (2016) is not completely

balanced because our testing machine was several times faster than that used in their

study. However, the fact that the exact solutions obtained with our method require on

average 10% fewer sensors is significant regardless of the solution time required.

Table 5: Comparisons of numbers of selected sensors and solution times required for the

optimization model (GTCP) and Sela Perelman et al.’s (2016) method.

Network

Reduced model Full model AG (Sela Perelman et al., 2016)

Number of

sensors

Solution time

(sec)

Number of

sensors

Solution time

(sec)

Number of

sensors

Solution time

(sec)

Net1 45 0.04 45 1.12 (1) 5

Net2 86 0.15 86 1.36 98 35

Net3 115 0.27 115 3.22 134 99

Net4 122 0.93 122 8.12 138 296

Net5 151 0.56 151 7.98 164 231

Net6 229 1.04 229 13.5 254 379

Net7 224 0.95 224 14.1 237 (2) 559

Net8 166 4.86 166 50.8 195 1684

Net9 327 1.51 327 14.9 359 664

Net10 356 5.01 356 65.4 408 2369

Net11 635 7.13 635 64.3 717 3032

Net12 [3346, 3350] 8144 (1) (3) (1) 108000

(1) In these cases, Sela Perelman et al. (2016) reported on a set of sensors that allow for an only partial

identification of identifiable faults. These are not comparable to our results, for which complete

identification is applied as a hard constraint.

(2) In this case, Sela Perelman et al. (2016) originally reported on 139 sensors but through personal

communication with the first author, we found this to be a typo.

(3) For the “Net12” instance, the full model could not be run with the amount of memory available

(64 GB) and CPLEX reported errors.

The merits of our CRA are clear from Table 5. While CPLEX is capable of finding

an optimal solution for fairly substantial instances of the GTCP, our CRA saves

considerable processing time and memory resources and extends the range of instances

for which optimal or near-optimal solutions can be obtained using reasonable

computational resources.

5. Conclusions

This paper introduces the GTCP and formulates it as an ILP. While the formulation

may present a very large number of constraints, we find many of them to be redundant.

We introduce a constraint reduction algorithm that can render large models effectively

solvable with a commercial solver.

An alternative solution method for the GTCP could involve generating violating

constraints of the ILP and adding them to the model gradually in branch and cut

procedure. This approach may be a promising one when the number of constraints is

11

exponential in the dimension of the master problem and when the separation problem

can be solved in polynomial time. However, for our model, while the number of

constraints is typically very large, it is still quadratic in the input (number of readings).

Hence, only a very efficient, sub-quadratic separation algorithm can lead to an effective

row generation algorithm. We suspect that no such separation algorithm exists.

We demonstrated the model and our solution method by applying it to a use case of

sensor placement in water distribution networks. We show that it can deliver optimal

or near-optimal solutions to large-scale instances in relatively short time. The previous

literature on this problem presents heuristic methods that deliver solutions with

significantly larger number of sensors and that take more time to solve the problem.

There are several possible interesting extensions to our model: First, since the

optimal solution of the presented problem involves a set of sensors that can be used to

detect all the identifiable states of the system, the optimization model may result in a

set of sensors that is too large (or too expensive). For situations in which it is sufficient

to detect the state of the system with a high probability, an interesting direction for

future research would involve developing a model that considers the tradeoffs between

the cost of errors and the cost of sensors. Such a model can also consider a situation

where the sensor output is not reliable. That is when there is no deterministic mapping

of the readings to states of the system. Finally, our GTCP is based on the assumption

that the outputs produced by sensors are discrete values (categorical). A possible

extension could consider cases in which some outputs are continuous values (e.g.,

temperature and pressure).

Acknowledgments

The first author of this paper was supported by a scholarship from the Shlomo

Shmeltzer Institute for Smart Transportation at Tel Aviv University.

References

Bertolazzi, P., Felici, G., Festa, P., Fiscon, G., & Weitschek, E. (2016). Integer

programming models for feature selection: New extensions and a randomized solution

algorithm. European Journal of Operational Research, 250(2), 389-399.

Centre of Water Systems University of EXETER (2015). http://emps.exeter.ac.uk/

engineering/research/cws/downloads/benchmarks/.

De Bontridder, K. M., Halldórsson, B. V., Halldórsson, M. M., Hurkens, C. A.,

Lenstra, J. K., Ravi, R., & Stougie, L. (2003). Approximation algorithms for the test

cover problem. Mathematical Programming, 98(1-3), 477-491.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness.

12

Jolly, M. D., Lothes, A. D., Sebastian Bryson, L., & Ormsbee, L. (2014). Research

database of water distribution system models. Journal of Water Resources Planning

and Management, 140(4), 410-416.

Karwan, M. H., Lofti, V., Telgen, J., & Zionts, S. (1983). Redundancy in

Mathematical Programming: a State-of-the-Art Survey, volume 206 of Lecture Notes

in Economics and Mathematical Systems.

Krause, A., Leskovec, J., Guestrin, C., VanBriesen, J., & Faloutsos, C. (2008).

Efficient sensor placement optimization for securing large water distribution

networks. Journal of Water Resources Planning and Management, 134(6), 516-526.

Lin, F. Y., & Chiu, P. L. (2005). A near-optimal sensor placement algorithm to

achieve complete coverage-discrimination in sensor networks. IEEE Communications

Letters, 9(1), 43-45.

Ostfeld, A., Uber, J. G., Salomons, E., Berry, J. W., Hart, W. E., Phillips, C. A., ...

& di Pierro, F. (2008). The battle of the water sensor networks (BWSN): A design

challenge for engineers and algorithms. Journal of Water Resources Planning and

Management, 134(6), 556-568.

Paulraj, S., & Sumathi, P. (2010). A comparative study of redundant constraints

identification methods in linear programming problems. Mathematical Problems in

Engineering, 2010.

Sela, L., & Amin, S. (2018). Robust sensor placement for pipeline monitoring:

Mixed integer and greedy optimization. Advanced Engineering Informatics, 36, 55-63.

Sela Perelman, L. S., Abbas, W., Koutsoukos, X., & Amin, S. (2016). Sensor

placement for fault location identification in water networks: A minimum test cover

approach. Automatica, 72, 166-176.

Slijepcevic, S., & Potkonjak, M. (2001). Power efficient organization of wireless

sensor networks. In Communications, 2001. ICC 2001. IEEE International Conference

on (Vol. 2, pp. 472-476). IEEE.

