
1

The Stochastic Test Collection Problem:

Models, Exact and Heuristic Solution Approaches

Yifat Douek-Pinkovich, Irad Ben-Gal, Tal Raviv*

Department of Industrial Engineering, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978,

Israel

E-mail: yifatdouek@gmail.com, bengal@tauex.tau.ac.il, talraviv@tauex.tau.ac.il

December 2021

Abstract

The classic test collection problem (TCP) selects a minimal set of binary tests needed

to classify the state of a system correctly. The TCP has applications in various domains,

such as the design of monitoring systems in engineering, communication, and

healthcare. In this paper, we define the stochastic test collection problem (STCP) that

generalizes the TCP. While the TCP assumes that the tests' results can be

deterministically mapped into classes, in the STCP, the results are mapped to

probability distributions over the classes. Moreover, each test and each type of

classification error is associated with some cost. A solution of the STCP is a subset of

tests and a mapping of their results to classes. The objective is to minimize the weighted

sum of the tests' costs and the expected cost of the classification errors. We present an

integer linear programming formulation of the problem and solve it using a commercial

solver. To solve larger instances, we apply three metaheuristics for the STCP, namely,

Tabu Search (TS), Cross-Entropy (CE), and Binary Gravitational Search Algorithm

(BGSA). These methods are tested on publicly available datasets and shown to deliver

nearly optimal solutions in a fraction of the time required for the exact solution.

Keywords: Combinatorial Optimization, The test collection problem, Integer linear

programming, Metaheuristics.

* Corresponding author

mailto:bengal@tauex.tau.ac.il
mailto:talraviv@tauex.tau.ac.il

2

1 Introduction

The well-studied minimum test collection problem (TCP) is known in the literature as

the minimum test set problem or the minimum test cover problem. Halldórsson et al.

(2001) described the minimum TCP as follows: Given a set of entities (e.g., individuals)

and a set of binary attributes (tests) that may or may not occur in each entity, the

incidence vector of each entity represents a reading. The goal is to find the minimal

subset of attributes (a test collection) such that each entity can be uniquely identified

from the information on which of the attributes in the test collection it contains. In this

way, the reading's coordinates that represent tests included in test collection form a

unique binary vector referred to as signature for distinguishing it from all the other

entities. For example, in the domain of botanic taxonomy, given a set of mushroom

varieties (entities) and a collection of binary mushroom attributes (such as bad odor,

spore-print in red color, whether it is found in a large group, etc.) such that each attribute

can characterize some mushroom varieties. To identify the mushroom type efficiently,

one looks for a minimum subset of attributes that is enough to distinguish between all

the varieties.

This paper presents the stochastic test collection problem (STCP), which complements

and generalizes the minimum TCP. The STCP is defined as follows: we are given a set

of tests with categorical outputs and all possible combinations of the results of these

tests for a population of tested entities (e.g., patients). Each such combination of the

tests' results is called a reading and is associated with a probability distribution over a

given finite set of classes (e.g., diagnoses) and with the probability of obtaining this

reading when sampling an entity from the population (i.e., the relative frequency of the

reading). A subset of some selected tests is called configuration. The outcomes of the

tests in a configuration of a given reading are jointly called a signature. Note that

several different readings may have the same signature for a particular configuration

and hence can be indistinguishable. In a situation where one needs to determine the

state of a system based on a particular signature, classification errors may occur. A

classification error of type A-B is said to happen when a signature is classified as B,

while it is actually originated from a subject of class A. The input of the STCP includes

an error cost matrix that specifies a cost associate with each type of error. A solution of

the STCP consists of two components: (1) a configuration; (2) a mapping of each

possible signature into a class. The objective is to minimize a weighted sum of the cost

of the tests that comprise the configuration as well as the expected classification error

cost implied by the mapping. The tests' costs are weighted since they may represent a

one-time initial investment, while the errors may occur each time the tests are applied.

For example, the cost associated with the installation of the sensors in a water network

should be amortized in terms of a single usage, which is equivalent to performing one

test.

 The trade-off between the two components of the objective function follows as

executing more tests (or more accurate and expensive ones, e.g., performing additional

blood tests to improve the patient's diagnosis) is likely to reduce the chances of

classification errors and thus their expected cost but will increase the total testing cost.

The challenge is that the class can rarely be inferred from the signature of a single

test. Instead, it is inferred from a combination of the results obtained from several ones.

3

A formal definition of the problem with mathematical notation is presented in Section

2.

The TCP can be seen as a special case of the STCP in which (a) each reading is

associated deterministically with a unique class; (b) the costs of all the tests are equal

and set to one; and (c) the classification error costs are set to prohibitively large numbers

(e.g., larger than the number of tests).

In the STCP, instead of a one-to-one relation between readings and classes, it allows

a probabilistic many-to-many relation. It thus enables various readings-to-class

mappings, as often happens in reality. In such a case, a deterministic diagnosis is often

impossible, hence the need to introduce the classification error cost into the objective

function.

The TCP decision version was shown to be NP-hard by (Garey and Johnson, 1979).

Halldórsson et al. (2001) and De Bontridder et al. (2003) established the APX-Hardness

of the minimum TCP. They provided constant ratio approximation algorithms for some

special cases with a small number of positive attributes in each reading. Therefore, the

intractability of the STCP follows.

Many authors have studied various applications of the TCP and its extensions. Such

applications include sensor placement in structures and networks, e.g., in Kammer

(1991), Sela et al. (2016), Douek-Pinkovich et al. (2020); robotics, e.g., in Hovland and

McCarragher (1997); energy consumption strategies, e.g., in Slijepcevic and Potkonjak

(2001); medical diagnosis, e.g., in Wendt and Potkonjak (2011); protein identification

Halldórsson et al. (2001) and De Bontridder et al. (2003); process monitoring, e.g., in

Bacher and Ben-Gal (2017), among others.

The STCP can naturally enrich most of the applications described above since the

stochastic relation between the tests' readings and the state of the system is an inherent

characteristic of almost any realistic testing system. The stochasticity stems both from

the noise in the tests and from the fact that it is typically too costly to perform enough

tests to eliminate all possible uncertainties. With modern sensing systems, a large

quantity of data is collected, and it can be used to estimate the probability distributions

required as input for the STCP model. In other situations, these distributions can be

calculated based on the physical characteristics of the tested system.

The STCP also extends another model, known as the generalized test collection

problem (GTCP) that was introduced by Bertolazzi et al. (2016) and studied by Douek-

Pinkovich et al. (2020). In the GTCP, the tests' outputs are categorical rather than

binary, different readings may be associated with a single class, and each test is

associated with a cost. A solution of the GTCP is a collection of tests and a correct

mapping of the signatures to the classes. The objective is to find a collection with

minimal costs. As in the TCP, classification errors are not allowed. Douek-Pinkovich

et al. (2020) apply their model and solution method to sensors' placement problem in

urban water networks, introduced by Sela et al. (2016). In water networks, sensors that

detect pressure waves caused by pipe bursts can be placed on each node in the network.

A burst in each edge is associated with signals in several sensors located close to it. The

goal is to select a minimal subset of nodes where sensors should be placed to detect

each fault in the system.

4

The main difference between the GTCP and the STCP is that in the former, each

reading is deterministically associated with a single class, while in the latter, a reading

is associated with a probability distribution over the classes. Consequently, in the

GTCP, the goal is to select a set of tests that enable classifying the subject

deterministically. In the STCP setting, the classification is inherently subject to errors

that should be minimized.

The GTCP can be seen as a generalization of the TCP. Using the above-mentioned

mushrooms example for the illustration purpose, a mushroom variety (characterized by

its reading) can be classified as toxic or nontoxic. Instead of identifying the specific

mushroom type, one may wish to select a minimum-cost set of attributes that can

determine the mushroom's toxicity. The STCP enriches the GTCP in the sense that it

can handle uncertainty. Naturally, mushroom attributes are subject to noise due to

measurement errors. Thus, a mushroom variety can be classified with some probability

as toxic and with another probability as edible. Hence, the objective function must now

include the error cost of identifying a mushroom as toxic while it is not such and vice

versa. In such a case, it is likely that the error of classifying a toxic mushroom as edible

will be set to have a very high cost, while the opposite error may be considered less

costly.

In many realistic applications, the STCP can be considered as a more realistic model

since: i) the readings observed in real-world scenarios may not necessarily identify the

class of the subjects with certainty; ii) the readings are often affected by some (random)

noise; iii) sometimes it is preferred to save testing costs by including a cheap set of tests

that is not sufficient by itself for a deterministic classification. For example, in the water

network sensor placement problem, bursts in the same location may result in different

readings. In fact, the intensity of the burst, and sediments in pipes, affect the signals

and contribute to the uncertainty. Another example for the STCP relevance is related to

the known wine classification problem (e.g., Cortez et al., 2009), where the wine class

is defined by its quality score and characterized by a numerical scale in the range of 3-

9. This example represents well the trade-off between the testing costs and the

classification error. Different scores can be reflected by the same readings, therefore

mapping the results to probability distributions over the classes is much more feasible

than a deterministic classification (even with all the considered variables).

Table 1 summarizes the differences between the STCP, the GTCP, and the TCP.

The first column of the table summarizes the input types and the objective function. In

the second, third, and fourth columns, the properties of the three problems are detailed.

This paper presents an effective, exact algorithm for the STCP based on an integer

linear program (ILP) formulation. It also applies three metaheuristic methods to solve

larger instances of the STCP. Namely, Tabu Search (TS), Cross-Entropy (CE), and

Binary Gravitational Search Algorithm (BGSA). Finally, it shows the merits of our

generalization by comparing it to the solution of equivalent TCP instances.

5

Table 1: The TCP, GTCP, and STCP

TCP GTCP STCP

Input types:

Test's results binary categorical

categorical Reading to class relation one to one many to one many to many

Test's cost identical any

any Classification errors are allowed No

No

Yes, with a cost

Objective function:
Minimize the cost (or number) of

the selected tests

Minimize the cost

of the selected tests

and the expected

error cost

Finally, let us note that the known Feature Selection (FS) problem is also related to

the STCP in the sense that in both problems, the goal is to select a subset of

characteristics of an entity that enables its proper classification. However, the two

problems differ in their objectives and settings. In the STCP, one looks for a minimal

set of characteristics that enable to distinguish among entities that belong to different

classes with a sufficient probability measure. It is further assumed that all the relevant

entities, with their characteristics, are available as input to the problem. Since one

considers the trade-off between the cost of the information obtained for the

classification and the expected cost of misclassification, a minimal set of characteristics

without a need for redundancy should be selected. On the other hand, in feature

selection problems, the goal is to select a subset of characteristics that minimizes the

probability of misclassification over a test set that is not available during the training

phase. Thus, over-fitting and under-fitting effects should be considered. Accordingly,

in feature selection, one may look for solutions with redundancy since future test

datasets are unknown at the training stage.

The contributions of this paper are in formulating the stochastic variant of the TCP

and in presenting effective heuristic methods to solve it.

The rest of the paper is organized as follows. In Section 2, we present some formal

notation and a mathematical formulation of the problem. In Section 3, we demonstrate

the properties of the problem using a small illustrative example. Sensitivity analysis is

carried out to demonstrate some counterintuitive properties of the problem and its

optimal solutions. In Section 4, we present an ILP formulation of the STCP. In section

5, we present heuristic methods to solve the STCP based on the TS, CE, and BGSA

metaheuristics. In Section 6, the proposed heuristics are tested against the exact solution

obtained from our ILP formulation based on publicly known data from the UCI

Machine Learning Repository (Dua and Graff, 2019). Also, a dataset with probabilistic

labels is applied to show the advantages of the STCP. A comparison between the STCP

and the TCP is also presented. Some concluding remarks are offered in Section 7.

6

2 Notation and problem definition

To present our mathematical formulation of the STCP, we use the following notation,

where bold letters denote vectors and matrices:

𝑁 The set of candidate tests available in a given system; the number of tests is

denoted by 𝑛 = |𝑁|. 𝑆 ∈ 𝑁 is a subset of selected tests called a

configuration.

𝑐𝑖 The cost of test 𝑖 for any 𝑖 ∈ 𝑁.

𝑉𝑖 The set of outputs or results that can be obtained from test 𝑖.

𝑅 The set of valid readings, 𝑅 ⊆ 𝑉1 × 𝑉2 × ⋯ × 𝑉𝑛; for each reading �̃� ∈ 𝑅,

we denote the result of the 𝑖𝑡ℎ test as �̃�𝑖.

𝐾 The set of possible classes; 𝐾 = {1, … , 𝑘}.

𝜆𝑘𝑙 The misclassification error of type (𝑘, 𝑙), 𝑘, 𝑙 ∈ 𝐾, i.e., the cost of

classifying an object as class 𝑙 when its true class is 𝑘.

𝑝(�̃�) The a-priory probability of obtaining the reading �̃� ∈ 𝑅.

𝑝(𝑘|�̃�) The conditional probability of class 𝑘 ∈ 𝐾 given the reading �̃� ∈ 𝑅.

𝛽 The relative weight of the testing cost in the objective function.

Let us denote the prior probability of each class by 𝑝(𝑘). This probability is related to

the above parameter as follows.

 𝑝(𝑘) = ∑ 𝑝(𝑘|�̃�)𝑝(�̃�)

�̃�∈𝑅

 (1)

Let the conditional probability of each reading given a class by 𝑝(�̃�|𝑘). This probability

is determined by the above parameters by Bayes' rule,

𝑝(�̃�|𝑘) =

𝑝(𝑘|�̃�)𝑝(�̃�)

𝑝(𝑘)
 (2)

For each configuration 𝑆 ⊂ 𝑁, define 𝑅(𝑆) as the set of all its signatures. I.e., partial

readings can be obtained from the results of the selected tests. When the configuration

is known, we denote the signature of �̃� by 𝐫. The signature 𝐫 ∈ 𝑅(𝑆) is a vector of

dimension |𝑆|. For convenience, the elements 𝑟𝑖 of the signature vectors are indexed by

the original indices of the tests in 𝑁. For example, if 𝑁 ={1,…,5} and 𝐫 ∈ 𝑅({1,2,5}),

then 𝐫 = (𝑟1, 𝑟2, 𝑟5). In this example, 𝑟5 is the third element of the signature 𝐫. We

denote the set of all the possible readings from which signature 𝐫 can be obtained when

the configuration is 𝑆 as 𝑄(𝑆, 𝐫). That is, 𝑄(𝑆, 𝐫) = {�̃� ∈ 𝑅: �̃�𝑖 = 𝑟𝑖 ∀𝑖 ∈ 𝑆}.

Next, for each configuration 𝑆 ⊂ 𝑁 and 𝐫 ∈ 𝑅(𝑆), it is possible to calculate the

following three probability components: the probability of a signature given class 𝑘,

𝑝𝑆(𝐫|𝑘); the prior probability 𝑝𝑆(𝐫) of signature 𝐫 ∈ 𝑅(𝑆); and the a-posteriori

probability 𝑝𝑆(𝑘|𝐫) that the class is 𝑘 ∈ 𝐾 given that the signature is 𝐫 ∈ 𝑅(𝑆). These

probabilities can be calculated using Equations (3)-(5). For configuration 𝑆, the

conditional probability of class 𝑘 when observing a signature 𝐫, 𝑝𝑆(𝑘|𝐫), is calculated

with Equation (5) using Bayes' rule.

 𝑝𝑆(𝐫|𝑘) = ∑ 𝑝(�̃�|𝑘)

�̃�∈𝑄(𝑆,𝐫)

 (3)

7

 𝑝𝑆(𝐫) = ∑ 𝑝(�̃�)

�̃�∈𝑄(𝑆,𝐫)

= ∑ 𝑝(𝑘) ⋅ 𝑝𝑆(𝐫|𝑘)

𝑘∈𝐾

 (4)

𝑝𝑆(𝑘|𝐫) =

𝑝𝑆(𝐫|𝑘) ∙ 𝑝(𝑘)

𝑝𝑆(𝐫)
 (5)

Consider a given configuration 𝑆 ⊂ 𝑁. The expected classification error cost for

signature 𝐫 of 𝑆 if it is mapped to class 𝑙 is:

 𝐸𝑆(𝐫|𝑙) = ∑ 𝜆𝑘𝑙 ∙ 𝑝𝑆(𝑘|𝐫)

𝑘∈𝐾

(6)

let 𝑙𝑆
∗: 𝑅(𝑆) ⟶ 𝐾 be a function that maps each possible signature of 𝑆 to a class that

minimizes the expected classification error cost.

 𝑙𝑆
∗(𝐫) = argmin

𝑙∈𝐾
{𝐸𝑆(𝐫|𝑙)}. (7)

The minimum expected classification error cost for signature 𝐫 is:

 𝐸𝑆
∗(𝐫) = min

𝑙∈𝐾
{𝐸𝑆(𝐫|𝑙)} (8)

Note that (7) coincides with the "minimum Bayes risk decision rule" as given, for

example, in Duda et al. (2012).

The STCP can now be formulated mathematically. Namely, given an instance of the

problem [𝑁, 𝑅, 𝐾, p(�̃�), p(𝑘|�̃�), 𝛌, 𝐜], select a configuration 𝑆, such that the weighted

sum of the expected classification error and test costs are minimized,

min
𝑆⊆𝑁

{ ∑ 𝑝𝑆(𝐫)𝐸𝑆
∗(𝐫)

𝐫∈𝑅(𝑆)

+ 𝛽 ∑ 𝑐𝑖

𝑖∈𝑆

}

(9)

The weight coefficient is used to adjust the scale of the error cost and the testing cost.

Higher values of 𝛽 lead to testing configurations that are more prone to classification

errors. The designer of the testing system can use 𝛽 to explore the efficiency frontier of

the costs of classification errors and costs of tests. Note that multiplying 𝛽 by a constant

is equivalent to dividing the error cost matrix, 𝛌, by that constant or to multiply the

testing costs, 𝑐𝑖 by it. Note that given the set of tests 𝑆, the set of signatures is uniquely

defined by 𝑅(𝑆), while the optimal mapping of each signature to a class is given by (7).

3 Motivating example

Let us demonstrate the problem using the following small example. Consider a medical

testing system comprising three potential tests aimed at detecting a viral disease. Each

test produces a binary result, i.e., the result of medical test 𝑖 may be either

𝑉𝑖 = 0, or 1. The input, in this case, in terms of the notation presented in Section 2, is:

𝑁 {1,2,3}

𝑐𝑖 [2,0.5,0.5]

𝛽 1

𝑉𝑖 {0,1} for 𝑖 = 1,2,3; i.e., the result of each binary test can be either 0 or 1.

𝑅 𝑉1 × 𝑉2 × 𝑉3, all possible combinations of the tests' results. See also the first

group of columns in Table 2.

𝐾 {𝑁, 𝑃}; N for Negative and P for Positive

8

𝜆𝑘𝑙 [
0 50

50 0
]; i.e., both false-positive and false-negative costs are equal to 50.

𝑝(�̃�) See the second group of columns in Table 2.

𝑝(𝑘|�̃�) See the third group of columns in Table 2.

Table 2: Valid readings �̃� ∈ 𝑅 and the probabilities 𝑝(�̃�), 𝑝(�̃�|𝑘), and 𝑝(𝑘|�̃�).

Test Readings, 𝑅
𝑝(�̃�)

 𝑝(�̃�|𝑘) 𝑝(𝑘|�̃�)

Test 1 Test 2 Test 3 N P N P

0 0 0 0.067 0.035 0.105 0.289 0.711

0 0 1 0.119 0.015 0.245 0.070 0.930

0 1 0 0.105 0.105 0.105 0.550 0.450

0 1 1 0.135 0.045 0.245 0.183 0.817

1 0 0 0.097 0.140 0.045 0.792 0.208

1 0 1 0.080 0.060 0.105 0.411 0.589

1 1 0 0.251 0.420 0.045 0.919 0.081

1 1 1 0.146 0.180 0.105 0.677 0.323

In this small example, the solution can be readily calculated by an exhaustive search

overall 23 = 8 possible test configurations. The value of each subset S is calculated by

enumerating all the signatures in 𝑅(𝑆). An example of such calculations for the

configuration 𝑆 = {1,2} is described in Table 3. First, all signatures obtained from the

subset S are shown in the first group of columns. Next, for each signature 𝐫 ∈ 𝑅(𝑆) and

each diagnosis 𝑘 ∈ 𝐾, the probabilities 𝑝𝑆(𝐫|𝑘), 𝑝𝑆(𝐫), and 𝑝𝑆(𝑘|𝐫) are calculated

using (3)-(5) and are shown in the second, third, and fourth group of columns,

respectively. Now, the expected error cost of diagnosing 𝑙 when the true diagnosis is 𝑘

can be seen in the fifth group of columns and is calculated when 𝑙 is decided; i.e., it is

𝐸𝑆(𝐫|𝑙), as given in (6). Equation (7) shows the diagnosis that minimizes the expected

classification error cost for the signature 𝐫 (sixth group of columns). Its expected

classification error cost is given by (6) and can be seen in the seventh group of columns.

The results of multiplying the minimum expected classification error cost by the

probability of obtaining each signature 𝐫 ∈ 𝑅(𝑆) can be seen in the eighth group of

columns. The sum of this column is 12.25, which denotes the expected classification

error cost for the subset as given by the first addend of (9). The second addend of (9)

indicates the cost of the tests, which is 2.5. Thus, the expected total cost of the subset

𝑆 = {1,2} is 14.75.

9

Table 3: Calculating the expected total cost for 𝑆 = {1,2}

𝑅(𝑆) 𝑝𝑆(𝐫|𝑘)
𝑝𝑆(𝐫)

𝑝𝑆(𝑘|𝐫) 𝐸𝑆(𝐫|𝑙)
𝑙𝑆

∗(𝐫) 𝐸𝑆
∗(𝐫) 𝑝𝑆(𝐫)𝐸𝑆

∗(𝐫)
Test

1
Test

2 N P N P 𝑙 =N 𝑙 =P

0 0 0.05 0.35 0.19 0.15 0.85 42.57 7.43 P 7.43 1.38

0 1 0.15 0.35 0.24 0.34 0.66 32.81 17.19 P 17.19 4.13

1 0 0.2 0.15 0.18 0.62 0.38 19.01 30.99 N 19.01 3.38

1 1 0.6 0.15 0.40 0.83 0.17 8.49 41.51 N 8.49 3.38

∑ 𝑝𝑆(𝐫)𝐸𝑆

∗(𝐫)

𝐫∈𝑅(𝑆)

12.25

∑ 𝑐𝑖

𝑖∈𝑆

2.5

Expected total cost: 14.75

In Table 4, for each possible configuration (given in the first column), we present

the expected classification error cost (second column), the testing cost (third column),

and the expected total cost, which is the error cost plus the testing cost (in the fourth

column). One can observe that the configuration {1,2,3}, i.e., when using all the tests,

is the one that minimizes the cost function (9), resulting in a value of 14.01.

Table 4: The expected classification error cost, testing cost, and expected total cost of each

configuration

Configuration
The expected
classification

error cost
Testing cost Total cost

{1,2,3} 11.01 3 14.01
{1,2} 12.25 2.5 14.75
{1,3} 12.25 2.5 14.75
{2,3} 15.00 1 16.00
{1} 12.25 2 14.25
{2} 18.13 0.5 18.63
{3} 15.00 0.5 15.50
{ } 22.50 0 22.50

Interestingly, the second-best configuration is {1}. Adding tests 2 or 3, i.e., using the

configurations {1,2} or {1,3}, results in the same classification error cost as {1} but

incurs a higher testing cost; this demonstrates the complex structure of the problem and

that a simple greedy or local search heuristic is unlikely to solve it.

Numerical analysis of the optimal decision, as a function of the classification error

costs (false positive, 𝜆𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒,𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, and false negative, 𝜆𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒,𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) is

presented in Figure 1. In this figure, the colors denote the optimal configuration. The

vertical black line illustrates the optimal configuration changes when the false-negative

error cost ranges from 0 to 100, and the value of the false-positive error cost is fixed at

35. As seen, the optimal decision can be very sensitive to changes in this parameter.

The expected classification error when performing all the tests is always smaller than

10

performing other combinations. However, the optimal decision considers the trade-off

between the expected classification error and the cost of the tests.

Another analysis is performed to test how changes in the prior probabilities 𝐩(𝑘)

affect the optimal decision. The results are shown in Figure 2. The parameter

𝑝(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) changes along the horizontal axis; note that 𝑝(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) = 1 −

𝑝(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒). The rest of the parameters are fixed to their values, as in the original

example. It is clear that when 𝑝(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) = 1 or 𝑝(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) = 0, i.e., when the

diagnosis is always negative or always positive, the solution is trivial: tests are not

required. The number of tests increases as the entropy of the classes increases.

Figure 1: An optimal configuration as a function of the false positive and false negative costs.

Figure 2: The optimal subset of tests (configuration) as a function of the probability of

diagnoses. For example, for P(Negative)=0.3 the optimal configuration is {1,3}.

Note that this problem could be solved by optimality using an exhaustive search,

which is valid when the number of tests is small. However, since the number of

configurations grows exponentially with the number of tests, the problem quickly

becomes computationally intractable in the number of tests. In the next two sections,

we present more effective methods to solve large instances of the problem.

1

2

{3}

{2,3}
{1}

{1,3} {1,2,3}

{1,3}

{No tests}
{2,3}

{No tests}

3

11

4 Integer linear programming formulation and solution method

This section presents the proposed ILP formulation to address the STCP and the lazy

constraints generation mechanism that solves it. Following the notation above, we

define two decision variables. For each test 𝑖 ∈ 𝑁, let 𝑥𝑖 be equal to "1" when the test

is included in the solution and equal to "0" otherwise. For each reading �̃� ∈ 𝑅, we define

a binary decision variable 𝑦�̃�𝑘 that indicates whether the reading is classified as 𝑘 ∈ 𝐾.

Following Equation (6), the expected error cost of each reading �̃� if it is classified

as 𝑙 ∈ 𝐾 is 𝐸(�̃�|𝑙) = ∑ 𝜆𝑘𝑙 ∙ 𝑝(𝑘|�̃�)𝑘∈𝐾 . Now, the STCP can be formulated as an ILP:

min ∑ 𝑐𝑖𝑥𝑖

𝑖∈𝑁

 + ∑ 𝑝(�̃�) ∙

�̃�∈𝑅,𝑙∈𝐾

𝐸(�̃�|𝑙) ∙ 𝑦�̃�𝑙 (10)

subject to

∑ 𝑥𝑖

𝑖:�̃�𝑖≠�̃�𝑖

≥ 𝑦�̃�𝑘 − 𝑦�̃�𝑘 ∀(�̃�, �̃�) ∈ 𝑅 × 𝑅, 𝑘 ∈ 𝐾 (11)

∑ 𝑦�̃�𝑘

 𝑘∈𝐾

= 1 ∀�̃� ∈ 𝑅 (12)

𝑥𝑖 ∈ {0,1} ∀𝑖 ∈ 𝑁

 𝑦�̃�𝑘 ∈ {0,1} ∀�̃� ∈ 𝑅, 𝑘 ∈ 𝐾 (13)

The objective function (10) minimizes the expected classification error and testing

costs. The set of constraints (11) ensures that every pair of identical readings will have

the same class. The set of constraints (12) ensures that each reading will be classified

with a specific class. While the model requires binary values for both types of decision

variables, once the value of 𝑥𝑖s is fixed, the remaining coefficient matrix is unimodular,

and thus (13) can be replaced by the nonnegativity constraint of 𝑦�̃�𝑘.

We first note that the dimension of the ILP (10)-(12), i.e., the number of decision

variables 𝑦�̃�𝑘 and 𝑥𝑖, is equal to the number of readings multiplied by the number of

classes plus the number of candidate tests. The number of constraints is quadratic in the

number of readings and linear in the number of classes, 𝑂(|𝑅|2|𝐾|). In a typical

application, we expect thousands of readings, which implies millions of constraints,

whereas the number of candidate tests is typically much smaller. Accordingly, we use

the lazy constraints scheme to solve the STCP. That is, we solve a relaxed version of

the problem with only a small subset of the constraints (11), and repeatedly add violated

instances of the constraint whenever an integer (super optimal) solution is obtained.

The set of initial instances of constraint (11) consists of those that are related to the

(�̃�, �̃�) reading pairs that have the smallest number of tests with different outputs, i.e.,

the pairs with a minimum cardinality of {𝑖: �̃�𝑖 ≠ �̃�𝑖}. In our numerical experiment, we

included in the master problem only instances of (11) where the cardinality was no

more than 10% of the total number of tests (rounded to the nearest integer). Note that

these constraint instances are likely to be the tightest since the sum on the left-hand side

is likely to be the smallest. The rest of the constraints are added to the model only after

a tentative integer solution that violates them is found.

12

5 Metaheuristics solution methods to the STCP

This section presents three different methods to address the STCP based on the known

Tabu Search (TS), Cross-Entropy (CE), and Binary Gravitational Search Algorithm

(BGSA) metaheuristics, all of them are considered to be of great potential to solve the

STCP. The TS is a deterministic method that exploits the structure of the STCP, where

potential solutions are generated based on the current solution (Glover, 1989). In

contrast, the CE is a random population-based method, where the solution at each

iteration is tuned according to the best solutions at the last iteration (Rubinstein, 1997).

Finally, the BGSA is a relatively new stochastic search algorithm where the interaction

among the solutions is modeled by physical gravitation law (Rashedi et al., 2009). We

study and analyze all three methods as none of them was found to predominate the

others over all the scenarios, yet the TS was shown to be more effective in most cases.

Note that the STCP is often applied within an offline long-term design problem, and

thus the decision-maker may wish to use all available heuristics and select the best

solution obtained so far.

Finally, in terms of notation, recall that a solution to a problem is defined by the

selected configuration, whereas the mapping of each signature to a class is defined by

(7). We denote a solution by the characteristic vector 𝐱 of this set, in which 𝑥𝑖 = 1 if

test 𝑖 is included in the configuration and 0 otherwise. The value of a solution,

calculated as in (9), is denoted by 𝑔(𝐱).

5.1 The TS method

The TS method extends the basic local search techniques to facilitate the exploration of

the solution space beyond local optima. Once a local optimum is reached, the method

allows one to move to a new solution even if it is inferior. The TS method uses a tabu

list (TL) to disallow moves that cancel previous moves during several subsequent

iterations in order to escape a neighborhood of locally optimal solutions.

The TS algorithm involves three main steps: (a) generate an initial solution and

initialize the TL to be empty; (b) explore the current solution's neighborhood defined

by a set of candidate moves, yet excluding moves listed in the TL; and (c) move to the

best-explored solution and add a new entry to TL to avoid any move that can direct the

search back to the previous solution. If the TL is longer than a predefined length, the

algorithm removes its oldest entries. Steps (b) and (c) are repeated up to a predefined

number of iterations or until some other stopping criterion is satisfied.

 In our implementation, the initial solution is the empty set (𝐱 = 𝟎). Given a current

solution 𝐱, its value is evaluated for all possible readings as explained and demonstrated

in Sections 2 and 3. The neighborhood of 𝐱, 𝑁(𝐱) is defined by three types of moves:

ADD - add one test that is not included in the current solution; REMOVE - remove one

test from the current solution; and SWAP - swap a test from the current solution with a

test that was not included in the solution. The set of neighboring solutions induced by

each type of the moves mentioned above are denoted by 𝐴(𝐱), 𝑅(𝐱) and 𝑆(𝐱),

respectively, thus, 𝑁(𝐱) = 𝐴(𝐱) ∪ 𝑅(𝐱) ∪ 𝑆(𝐱). Note that |𝐴(𝐱) + 𝑅(𝐱)| = 𝑛 and

|𝑆(𝐱)| ≤
1

4
𝑛2. Each entry in the tabu list consists of one or two tests that should not be

added or removed from the solution as long as the entry remains in the list. The ADD

and REMOVE operations add entries with a single test, while the SWAP operation adds

13

an entry with a pair of tests. One is forbidden for removal and the other for appending.

If a candidate move involves a test in the tabu list, then its respective solution is

excluded from the neighborhood. We denote this reduced neighborhood by 𝑁′(𝐱). In

our implementation, we use a stopping criterion based on the total number of iterations

to allow a fair comparison with the other methods. However, other criteria used in the

literature may apply. The main algorithm is outlined as pseudocode in Figure 3.

Figure 3: Pseudocode of the TS algorithm

5.2 The CE Method

The CE algorithm execute iterative steps, whereby each iteration can be broken down

into three main phases: (a) generate a random population of solutions using a specified

probabilistic selection rule; (b) evaluate the value of each of the generated solutions,

and (c) update the probabilistic selection rule for the next iteration based on the best

solutions (termed as the elite set) and iterate until some stopping criterion is satisfied.

At each iteration, we generate 𝑤 solutions using a multi-Bernoulli distribution with

'success probabilities' 𝐩 = (𝑝1, … , 𝑝𝑛), i.e., 𝐱 = (𝑥1, … , 𝑥𝑛) such that 𝑥𝑖~𝐵𝑒𝑟(𝑝𝑖).

We initialize the probabilities with 𝑝𝑖 = 0.5, for all 𝑖, and update all these probabilities

at step (c) of each iteration. In a given iteration of the CE, we use 𝐱𝑖
(𝑗)

 to denote the 𝑖th

test in solution 𝑗, while 𝐱(𝑗) ∈ {0,1}𝑛 is a binary vector that represents solution 𝑗. The

probabilities 𝑝𝑖 are updated at the end of each iteration based on the best 𝜌𝑤 solutions

(the elite set) and subject to exponential smoothing with a weight parameter 𝛼 ∈ [0,1].

The parameter 𝜌 ∈ (0,1) defines the relative size of the elite set, while 𝑤 is the number

of solutions that are generated at each iteration. 𝑤 and 𝜌 are selected such that 𝑤𝜌 is an

integer. Previous studies used 𝜌 = 0.1, i.e., the top ten percent of the solutions are taken

as the elite set. The indices of the solutions in the elite set of iteration 𝑡 are denoted by

ℰ𝑡. The parameters of the multi-Bernoulli distribution are updated as follows:

Initialized

Set 𝐱, 𝐱∗ and 𝑇𝐿 as empty

Set 𝑣∗ = 𝑔(𝐱)

Repeat

 Set 𝑣 = ∞

For each 𝐱′ in 𝑁′(𝐱)

Set 𝑣′ = 𝑔(𝐱′)

If 𝑣′ < 𝑣 then

𝑣 = 𝑣′

𝐲 = 𝐱′

Let 𝑚 be the test(s) by which 𝐱 and 𝐲 differ

Set 𝐱 = 𝐲

If 𝑣 < 𝑣∗ then 𝐱∗ = 𝐱 and 𝑣∗ = 𝑣

Append m as an entry to the TL

If |𝑇𝐿| is greater than the maximal tabu length, remove its first entry

Until a pre-determined number of iterations is performed

Return 𝐱∗, 𝑣∗.

14

𝑞𝑡,𝑖 =

∑ 𝕀
{𝐱𝑖

(𝑗)
=1}𝑗∈ℰ𝑡

𝜌𝑤
 , 𝑖 = 1, … 𝑛 (14)

where 𝕀{⋅} denotes an indicator function defined as follows:

𝕀{𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛} = {
1, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

That is, 𝑞𝑡,𝑖 is the proportion of the solutions that include test 𝑖 in the elite set of iteration

𝑡. The following exponential smoothing formula is then used to update 𝐩𝑡:

 𝑝𝑡,𝑖 = 𝛼𝑞𝑡,𝑖 + (1 − 𝛼)𝑝𝑡−1,𝑖 , 𝑖 = 1, … 𝑛 (15)

We use exponential smoothing to prevent the premature convergence of p𝑡,𝑖 to 0 or 1.

It has been empirically shown, e.g., by Alon et al. 2005, that a value of 𝛼 between 0.7 ≤

𝛼 ≤ 0.9 often obtains the best results. In this study, we use 𝛼 = 0.8.

Several types of stopping criteria have been used in the literature, such as i) stop

when the worst solution in the elite set does not change for a predefined number of

consecutive iterations; ii) stop when all the elements of 𝐩𝑡 are close enough to 0 or 1,

and thus no new solutions are likely to be generated; iii) stop after a predefined number

of iterations or computation time. Combinations of the above may also apply. In our

implementation, we use the third stopping criterion to enable a fair comparison with

other studied heuristics given a similar computational effort.

The pseudocode that describes our CE algorithm is presented in Figure 4.

Figure 4: Pseudocode of the CE algorithm

5.3 The Binary Gravitational Search Algorithm (BGSA) Method

The Binary Gravitational Search Algorithm (BGSA) is a relatively recent metaheuristic

inspired by the Newtonian law of gravitation and motion. Solutions are represented by

vectors and considered as objects (also called agents), and their position in a

multidimensional space is determined by the coordinates of these vectors. The mass of

each solution is determined by its objective function value. At each iteration, the

Initialized 𝐩 such that all test probabilities are equal to 0.5.

Set 𝑣∗ = ∞

Repeat

For j = 1 to w

 Generate solution 𝐱(𝑗) such that 𝑥𝑖
(𝑗)

~𝐵𝑒𝑟(𝑝𝑖)

 Sort the solutions in 𝐱 in non-decreasing order of 𝑔(𝐱(𝑗))

 Let x[1], x[2], … be the solutions in their sorted order

If 𝑔൫𝐱([1])൯ < 𝑣∗

 𝑣∗ = 𝑔൫𝐱([1])൯ and 𝑥∗ = 𝐱([1])

Update 𝐩 using (15)

Until a pre-determined number of iterations is performed

Return 𝐱∗, 𝑣∗

15

positions and velocities of the objects are updated based on their current positions,

masses and velocities. The mass of each object is then updated based on the population's

values of solutions. The process is repeated until all the objects are merged into one or

more heavy objects or when another stopping criterion is met.

For the implementation of the BGSA for the STCP, consider an initial set of 𝑤

solutions, each represented by a vector 𝐱(𝑗) ∈ {0,1}𝑛 for 𝑗 = 1,2, … , 𝑤; we refer to each

coordinate of these vectors 𝑥𝑖
(𝑗)

 as the position of 𝑗th solution in the 𝑖th dimension. These

values are updated from iteration to iteration, and we use 𝐱(𝑗)(𝑡) to denote the position

of the solution at iteration 𝑡 of the algorithm. Let us further define

𝑏𝑒𝑠𝑡(𝑡) = min
𝑗∈{1,…,𝑤}

𝑔 (𝐱(𝑗)(𝑡)).

𝑤𝑜𝑟𝑠𝑡(𝑡) = max
𝑗∈{1,…,𝑤}

𝑔 (𝐱(𝑗)(𝑡)).

Based on these values, one can calculate a normalized measure of each solution 𝑗:

𝑞𝑗(𝑡) =
𝑔(𝐱(𝑗)(𝑡))−𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡)−𝑤𝑜𝑟𝑠𝑡(𝑡)
.

Next, the mass of each solution 𝑗 is updated as follows:

𝑀𝑗(𝑡) =
𝑞𝑗(𝑡)

∑ 𝑞𝑗′(𝑡)𝑤
𝑗′=1

. (16)

At a specific time 𝑡, the force acting on agent 𝑗1 from agent 𝑗2 is defined as follows:

𝐹𝑖
(𝑗1,𝑗2)

(𝑡) = 𝐺0 (1 −
𝑡

𝑇
)

𝑀𝑗1
(𝑡) ⋅ 𝑀𝑗2

(𝑡)

∑ |𝑥
𝑖′

(𝑗1)
(𝑡) − 𝑥

𝑖′

(𝑗2)
|𝑛

𝑖′=1 + 𝜀
(𝑥𝑖

(𝑗2)
(𝑡) − 𝑥𝑖

(𝑗1)
),

where 𝐺0 is a gravitational constant, 𝑇 is the total number of planned iterations for the

algorithm, and 𝜀 is a small positive constant. Using some preliminary experiments, we

set 𝐺0 = 0.01𝑇 and 𝜀 = 2.2 × 10−16.

Next, we find an elite set 𝐸𝑡 comprising the best solutions at iteration 𝑡 and generate

random numbers 𝑝𝑗(𝑡)~𝑈[0,1] for each 𝑗 ∈ 𝐸𝑡. The cardinality of the 𝐸𝑡 is set to ⌈𝜌𝑡𝑤⌉

where 𝜌𝑡 linearly decreases from iteration to iteration according to the following

formula:

𝜌𝑡 = 1 −
𝑡

𝑇
(1 − 𝜌𝑇),

where 𝜌𝑇 is a parameter of the algorithm, while in our experiment, we used 𝜌𝑇 = 0.02.

Next, we define the force that acts on solution 𝑗 in dimension 𝑖 at iteration 𝑡 by:

𝐹𝑖
(𝑗)(𝑡) = ∑ 𝑝𝑗′𝐹𝑖

൫𝑗,𝑗′൯
(𝑡)

𝑗′∈𝐸𝑡∖{𝑗}

.

In such a way, at the initial stage, all solutions apply forces on each other, and as the

iterations progress, only the few best solutions affect all the others. Now, according to

the law of motion, the acceleration of a solution 𝑗 at iteration 𝑡 in dimension 𝑖 is given

by:

𝑎𝑖
(𝑗)

(𝑡) =
𝐹𝑖

(𝑗)
(𝑡)

𝑀𝑗(𝑡)
. (17)

16

The velocity of an agent is considered as a random fraction of its current velocity added

to its acceleration:

𝑣𝑖
(𝑗)(𝑡) = 𝜋𝑗(𝑡) ⋅ 𝑣𝑖

(𝑗)(𝑡 − 1) + 𝑎𝑖
(𝑗)(𝑡 − 1), (18)

where 𝑣𝑖
(𝑗)(0) is initialized to zero and 𝜋𝑗(𝑡) is drawn from 𝑈[0,1]. Moreover, to

increase the chance of convergence, the velocity is limited by some parameter 𝑣𝑚𝑎𝑥.

That is, |𝑣𝑖
(𝑗)

| < 𝑣𝑚𝑎𝑥. We followed (Rashedi et al. 2010) and set 𝑣𝑚𝑎𝑥 = 6. Based on

the velocity in each dimension, 𝑖, we flip the position of each agent, 𝑗, between 0 and 1

with probability |𝑡𝑎𝑛ℎ (𝑣𝑖
(𝑗)(𝑡))| and leave it as 𝑥𝑖

(𝑗)
(𝑡) otherwise.

𝑥𝑖
(𝑗)

(𝑡 + 1) = {
1 − 𝑥𝑖

(𝑗)
(𝑡), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 |𝑡𝑎𝑛ℎ (𝑣𝑖

(𝑗)(𝑡))|

𝑥𝑖
(𝑗)

(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(19)

The BGSA algorithm is outlined as pseudocode in Figure 5.

Figure 5: Pseudocode of the BGSA algorithm

5.4 Memoization

Recall that calculating the value, 𝑔(𝐱), for each solution with a given configuration

requires evaluating the signatures of all the related readings, which is a computationally

demanding task. Indeed, almost all the running time of the three heuristics described

above is spent on computing these value evaluations. In some situations, the same

Initialized

𝑣∗ = ∞

Draw initial population of 𝑤 solutions 𝐱(𝑗), 𝑗 = 1,2, … , 𝑤

Repeat

Set = ∞, 𝑤𝑜𝑟𝑠𝑡 = −∞

For j = 1 to w

Evaluate 𝑔൫𝐱(𝑗)൯

 If 𝑔൫𝐱(𝑗)൯ < 𝑏𝑒𝑠𝑡

 𝑏𝑒𝑠𝑡 = 𝑔൫𝐱(𝑗)൯

 If 𝑔൫𝐱(𝑗)൯ > 𝑤𝑜𝑟𝑠𝑡

 𝑤𝑜𝑟𝑠𝑡 = 𝑔൫𝐱(𝑗)൯

Calculate 𝑀𝑗 // See (16)

Calculate 𝑎(𝑗) // See (17)

Calculate 𝐯(𝑗) // See (18)

Update 𝐱(𝑗) // See (19)

If 𝑔൫𝐱(𝑗)൯ < 𝑣∗

 𝑣∗ = 𝑔൫𝐱(𝑗)൯ and 𝑥∗ = 𝐱(𝑗)

Until it reaches the pre-determined number of iterations, 𝑇

Return the best solution 𝐱(𝑗)

17

solutions may be required multiple times in the same run of the algorithm. To avoid

repeated calculations, we store each calculated solution's value in a hash table that is

indexed by the binary representation of the solution. When the algorithms require the

value of 𝐱, they first check if it already exists in the table. If it exists, the value is

retrieved; otherwise, the solution is evaluated, and its value is stored in the table. This

mechanism significantly reduces the running time of all three heuristics and is

especially beneficial in the last iterations of the two randomized heuristics, namely, the

CE and BGSA. In our experiments, we created a different memoization hash table for

each algorithm to benchmark them fairly. However, in practice, the same hash table can

be used by different algorithms in parallel or sequentially to obtain the best solution.

6 Experimental results

In the first part of this section (Subsection 6.1), we tested the proposed integer

programming formulation of the problem together with the lazy constraints generation

mechanism and compared it to the three heuristic methods for the STCP. In the second

part (Subsection 6.2), we added a dataset with probabilistic labels to analyze the

advantages of the STCP. In the third part (Subsection 6.3), we show the merits of our

generalization of the STCP by comparing it to the TCP.

6.1 A comparison between the exact and heuristics methods

In this section, our integer programming formulation with lazy constraints are tested

and compared with the three heuristic results. We coded the lazy constraint generation

mechanism in Python 3. The linear programming relaxations were solved using an IBM

CPLEX 12.10 commercial solver. All three heuristic methods were implemented in

MATLAB 2018b. The testing environment was an i9-9900K Linux machine with 64

GB RAM.

For the evaluation of the algorithms presented above, we used representative

datasets from the UCI Machine Learning Repository (Dua and Graff, 2019) with up to

8,124 readings and 68 tests. In some of the datasets, we removed tests and readings to

eliminate missing values. Moreover, tests with numerical values were discretized by

dividing their values into quintiles or quartiles (depending on the number of readings).

Using this data, we estimated the prior probabilities of the classes and the readings

as well as the conditional probability of each class given a reading. Our algorithms were

executed based on these estimated probabilities.

We used three tests cost vectors for each dataset: one with a fixed (unit) cost per

test and two with randomly generated values as described below. Lastly, three

classification error cost matrices were generated for each combination of dataset and

cost vector. All cleaned and processed input data of our experiment are available online

at Douek-Pinkovich's drive (2020). In total, the use case study contained 45 problem

instances based on five different UCI datasets.

In Table 5, we show the number of tests, type of test values (continuous or discrete),

discretization level (in the case of continuous test values), number of readings, and

number of classes in the datasets. The information in the table refers to the cleaned data

after removing some tests and readings to eliminate the missing values.

18

Table 5: Characteristics of the five datasets used in the experiments.

Dataset Tests Test value

type

Discretization Readings Classes

Wine 12 Continuous Quintiles 6,463 7

Thyroid 21 Continuous Quintiles 3,103 5

Mushrooms 21 Discrete - 8,124 2

Cortex nuclear 68 Continuous Quartiles 1,077 8

Molecular biology 60 Discrete - 3,190 3

The Wine Dataset from UCI contains two tables related to red and white wine

samples, as described in Cortez et al. (2009). We followed Kaggle (Parmar, 2018) and

used a merged version of this dataset where the type of wine was added as a new feature.

The class in this dataset is the wine quality score represented by a numerical value in

the range 3-9. The classification error matrix is based on the distance between the

classified quality and the true quality (a Toeplitz matrix with values range 0-6). The

(𝑖, 𝑗) element of the Toeplitz matrix represents the absolute difference between the two

classes. An error cost matrix proportional to the Toeplitz matrix reflects that missing

the ordinal class by a greater gap is costlier than minor misses. Specifically, we created

one matrix that is 20 times the Toeplitz matrix and one that is 30 times that matrix.

In the Thyroid dataset, there are five classes: four related to pathological conditions

and one (negative) related to a healthy one. We created two matrices that assign a high

cost to a false negative diagnosis, a low one to a false-positive diagnosis, and medium

values to the misdiagnosis of a pathological condition.

In the Mushrooms Dataset, each reading should be classified as toxic or nontoxic.

The classification matrices were constructed to reflect the fact that a false negative error

(classifying a poisonous mushroom as an edible one) is much more expensive or

dangerous than a false positive error.

In the Cortex Nuclear Dataset, the classes are described by three binary features that

define the eight classes. We constructed error cost matrices based on the Hamming

distance of this binary description of the class, i.e., the distance can be zero, one, two,

or three. The matrices were created by multiplying these distances by 100 and by 200.

The Molecular Biology Dataset contains DNA sequences of 60 nucleotides (each

nucleotide is a test, in our terminology). Each sequence belongs in one of three classes

(exon-intron, intron-exon, or neither). For this dataset, we used three fixed classification

error matrices with three different values (low, medium, high).

Our experiment is full factorial. That is, we tested all combinations of the three test

cost vectors and three classification error cost matrices – nine runs for each of the five

datasets. Fractional factorial designs for larger experiments are left for future research.

For each dataset, we created one fixed test cost vector and two random cost vectors

that were drawn from a Normal distribution 𝑁(1,0.1) and a Uniform one 𝑈(0,2). The

Thyroid Dataset from UCI included one test cost vector that we used in our experiment

after normalizing it to make its mean equal one. In this instance, we used it instead of

the cost vector with normally distributed values.

For each dataset, we created three error cost matrices based on particular dataset

characteristics, while the testing cost scale parameter, 𝛽, was fixed to be one. All these

error cost matrices have zeros in their diagonal and values off the diagonal, as described

19

in Table 6. The values of the error cost matrix in the experiments were chosen by a trial-

and-error process, in order to find parameter values that do not lead to trivial solutions,

such as those including all or none of the tests. Note that the values of the error matrix

in Error cost 2 were obtained by multiplying Error cost matrix 1 by a constant, which

is equivalent to dividing the value of 𝛽 by the same constant. This setup allows

examining the trade-off between the total testing and error costs, as discussed below.

An exception to this is the error cost matrices of the Mushroom dataset, in which our

goal was to compare cases with various magnitude of difference between the costs of

false positive and false negative errors.

In a realistic setting, the true ratio between the testing and the error costs is

frequently unknown to the designer. Therefore, we recommend solving the problem for

multiple values of 𝛽 and construct an efficacy frontier between the two components of

the objectives function. The designers can then pick a testing configuration from the

efficacy frontier that fits their needs.

Table 6: Description of the classification error cost matrices.

Dataset Error cost matrix 1 Error cost matrix 2 Error cost matrix 3

Wine 20 × Toeplitz matrix

{0,..,6}

30 × Toplitz matrix

{0,..,6}

50 at each off-diagonal

element

Thyroid 1500 to false negative

600 to false positive

1200 other errors

3000 to false negative

1200 to false positive

2400 other errors

1500 at each off-diagonal

element

Mushrooms* 300 to false positive

500 to false negative

100 to false positive

400 to false negative

50 to false positive

700 to false negative

Cortex

Nuclear

100 ×

ℎ𝑎𝑚𝑚𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

200 ×

 ℎ𝑎𝑚𝑚𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

300 at each off-diagonal

element

Molecular

Biology**

30 at each off-diagonal

element

60 at each off-diagonal

element

120 at each off-diagonal

element

* In the Mushrooms Dataset, Error cost matrix 3 is not fixed.

** In the Molecular Biology Dataset, all error cost matrices are fixed.

We conducted some preliminary experiments to decide upon some of the parameters

of the algorithm. We found that the CE works well with iterations of 20𝑛 solutions and

typically converges before the 50th iteration. We found that the best number of solutions

per iteration in BGSA is not affected by the number of tests and that the algorithm

works well with 100 solutions per iteration. To make a fair comparison between the CE

and BGSA, we set the number of iterations in BGSA to 10𝑛 so that we kept the total

number of evaluated solutions to approximately 1000n in both methods. In both cases,

many solutions were sampled more than once and were retrieved from the hash table

without being reevaluated. Since the TS is a much faster heuristic, we run it with a limit

of 90 iterations but repeat each run three times with tabu list lengths of 0, 2, and 4, while

keeping the hash table from iteration to iteration. Note that setting the tabu length to 0

is equivalent to a naïve local search. The reported solution values for the TS are the best

out of the three. We note that no single alternative list length predominates the others.

The solution times reported for the TS are the sums of the three runs with the different

20

tabu lengths. All the other tuning parameters of the heuristic methods are specified in

Section 5.

We applied the three heuristic methods for each of the 5×3×3 combinations of

datasets, error cost matrices, and test cost vectors. For all instances, we also computed

the exact optimal solution by the lazy constraints’ generation mechanism. For this

method, we allocated up to 24 hours to each instance, and we were able to solve 39 out

of the 45 benchmark problems. The six instances that we could not solve were all based

on the Molecular Biology dataset. Table 7 presents all results for the smaller datasets

(Wine, Thyroid, and Mushrooms).

For each run, the solution value is presented first, and optimal ones (obtained from

the lazy constraints generation mechanism) are in boldface. Next, the two components

of the solution values are listed – the expected error cost and the tests cost. In addition,

the iteration number when the best solution is first found (only from the heuristic

methods) and the solution times in seconds are displayed. It can be seen that we succeed

in achieving the exact solution using our lazy constraints mechanism in all of these

instances.

In Table 8, the same results are reported for the larger datasets, namely, Molecular

Biology and Cortex Nuclear. Here, we could not achieve the exact solution using the

lazy constraints mechanism for all these instances. Thus, we added a column for the

lazy constraints (denoted as LC) solution that was achieved within 24 hours. The

solution values in bold are the best found using the three heuristic methods or the lazy

constraints generation method.

It is apparent from Tables 7 and 8 that none of the three solution methods

consistently provide a better solution than the others. All instances of the three smaller

datasets were solved to optimality using both CE and BGSA and the TS while missing

the optimal solutions occurred in only one case out of the 27. Thus, to save space in the

table, a separated column for the lazy constraints’ solution values was not added. In the

six instances that could not be solved to optimality within the 24-hour time limit, the

best solution found was similar to the one obtained by the heuristics, but the lower

bound provided by the solver was very weak (with optimality gaps of 44-59%). These

results support the strength of these heuristic solution methods.

In the larger datasets, the TS provided the best solutions (or the optimal ones, when

it obtained by our exact method) in 14 out of 18 instances and missed the best solution

within a small margin of up to 1.5%. In these datasets, the CE and BGSA found the

best solutions in 8 and 7 cases, respectively.

In terms of solution times, the heuristic methods are up to approximately 100 times

faster than the implementation of the lazy constraint’s solution algorithm.

We further observed that the best solutions in almost all the runs of the three

heuristic methods were found in an early iteration (relative to the number of allowed

iterations), which implies that with the other tuning parameters used, our stopping

criteria were correct. However, it may be the case that other criteria could save

computation time without sacrificing quality. Lastly, it seems that in most of the cases,

the TS outperforms the two other heuristics in terms of computation time. However,

since the STCP is a long-run design problem, a good practice would be to apply both

all three heuristics and lazy constraints generation mechanism.

21

Table 7: Result summary for Wine, Thyroid, and Mushrooms datasets.

*Except in the Thyroid dataset, where the cost vector was taken from UCI

Test

cost

vector

Error

cost

matrix

Parameters

Wine Thyroid Mushrooms

TS BGSA CE TS BGSA CE TS BGSA CE

fixed 1

Solution value 11.602 11.602 11.602 17.058 17.058 17.058 4 4 4

Expected error cost 4.602 4.602 4.602 7.058 7.058 7.058 0

0 0

Tests cost 7 7 7 10 10 10 4 4 4

of iterations until best solution 10/90 2/120 3/50 12/90 106/210 10/50 6/90 66/210 11/50

Solution time (sec.) 19.2 108.2 64.4 32.3 191.9 103.0 22.7 188.1 56.1

fixed 2

Solution value 13.765 13.765 13.765 23.762 23.762 23.762 3.591 3.591 3.591

Expected error cost 5.765 5.765 5.765 12.762 12.762 12.762 0.591 0.591 0.591

Tests cost 8 8 8 11 11 11 3 3 3

of iterations until best solution 10/90 4/120 4/50 13/90 124/210 10/50 4/90 132/210 10/50

Solution time (sec.) 36.7 107.4 62.3 38.5 183.8 96.9 17.3 180.2 54.3

fixed 3

Solution value 15.388 15.388 15.388 23.568 23.568 23.568 3.295 3.295 3.295

Expected error cost 7.388 7.388 7.388 12.568 12.568 12.568 0.295 0.295 0.295

Tests cost 8 8 8 11 11 11 3 3 3

of iterations until best solution 10/90 11/120 4/50 13/90 115/210 10/50 4/90 98/210 9/50

Solution time (sec.) 32.7 108.7 61.4 26.4 192.6 89.7 15.2 175.1 58.0

Normal* 1

Solution value 11.691 11.691 11.691 40.122 39.609 39.609 4.014 4.014 4.014

Expected error cost 4.601 4.601 4.601 40.122 37.609 37.609 0.217 0.217 0.217

Tests cost 7.090 7.090 7.090 0 2 2 3.797 3.797 3.797

of iterations until best solution 8/90 4/120 4/50 1/90 102/210 9/50 5/90 110/210 13/50

Solution time (sec.) 25.8 105.4 60.3 2.4 60.9 22.4 23.0 178.3 78.0

Normal* 2

Solution value 13.881 13.881 13.881 60.991 60.991 60.991 3.895 3.895 3.895

Expected error cost 5.765 5.765 5.765 27.071 27.071 27.071 0.098 0.098 0.098

Tests cost 8.116 8.116 8.116 33.920 33.920 33.920 3.797 3.797 3.797

of iterations until best solution 9/90 1/120 4/50 13/90 129/210 13/50 5/90 119/210 13/50

Solution time (sec.) 28.9 106.7 59.4 20.6 129.4 70.0 11.0 168.6 68.0

Normal* 3

Solution value 15.504 15.504 15.504 40.122 40.122 40.122 3.846 3.846 3.846

Expected error cost 7.388 7.388 7.388 40.122 40.122 40.122 0.049 0.049 0.049

Tests cost 8.116 8.116 8.116 0 0 0 3.797 3.797 3.797

of iterations until best solution 10/90 8/120 5/50 1/90 72/210 12/50 6/90 113/210 11/50

Solution time (sec.) 17.9 110.4 62.5 3.0 55.0 21.7 10.9 174.3 68.3

Uniform 1

Solution value 12.369 12.369 12.369 15.790 15.790 15.790 2.235 2.235 2.235

Expected error cost 5.471 5.471 5.471 8.121 8.121 8.121 0.492 0.492 0.492

Tests cost 6.898 6.898 6.898 7.669 7.669 7.669 1.743 1.743 1.743

of iterations until best solution 8/90 1/120 4/50 12/90 131/210 11/50 6/90 128/210 10/50

Solution time (sec.) 33.2 94.4 55.9 36.4 177.5 95.0 11.2 198.6 65.1

Uniform 2

Solution value 15.004 15.004 15.004 22.159 22.159 22.159 2.137 2.137 2.137

Expected error cost 7.288 7.288 7.288 21.743 21.743 21.743 0.394 0.394 0.394

Tests cost 7.716 7.716 7.716 0.416 0.416 0.416 1.743 1.743 1.743

of iterations until best solution 9/90 10/120 5/50 13/90 119/210 12/50 6/90 105/210 9/50

Solution time (sec.) 22.7 103.7 60.0 33.5 184.5 93.0 7.2 174.6 64.5

Uniform 3

Solution value 16.974 16.974 16.974 22.183 22.183 22.183 2.038 2.038 2.038

Expected error cost 7.426 7.426 7.426 21.767 21.767 21.767 0.295 0.295 0.295

Tests cost 9.548 9.548 9.548 0.416 0.416 0.416 1.743 1.743 1.743

of iterations until best solution 11/90 8/120 4/50 13/90 128/210 7/50 9/90 143/210 12/50

Solution time (sec.) 28.5 100.7 60.2 20.8 187.3 95.8 13.4 170.0 60.3

22

Table 8: Result summary for Cortex Nuclear and Molecular Biology datasets.

Test

cost

vector

Error

cost

matrix

Parameters

Cortex nuclear Molecular biology

TS BGSA CE LC TS BGSA CE LC

fixed 1

Solution value 7.371 7.650 8.093 7.371 7.103 7.969 7.828

Expected error cost 0.371 0.650 0.093 0.371 3.103 0.969 0.828

Tests cost 7 7 8 7 4 7 7

of iterations until best solution 9/90 642/680 45/50 --- 5/90 569/600 49/50

Solution time (sec.) 261.6 357.8 315.3 57,109 405.6 1561.0 1342.0 >day

fixed 2

Solution value 7.743 8.371 8.371 7.743 8.282 8.395 8.357

Expected error cost 0.743 0.371 0.371 0.743 0.282 0.395 0.357

Tests cost 7 8 8 7 8 8 8

of iterations until best solution 9/90 674/680 33/50 --- 23/90 521/600 46/50

Solution time (sec.) 264.7 357.7 320.7 56,509 1230.0 1571.0 1417.5 >day

fixed 3

Solution value 8 8.836 8.279 7.836 8.564 8.978 8.865

Expected error cost 0 0.836 0.279 0.836 0.564 0.978 0.865

Tests cost 8 8 8 7 8 8 8

of iterations until best solution 10/90 650/680 42/50 --- 23/90 565/600 20/50

Solution time (sec.) 269.3 357.4 322.8 59,740 1230.7 1562.6 1456.3 >day

Normal 1

Solution value 6.852 7.353 6.747 6.747 6.760 6.760 6.760

Expected error cost 0.464 0.372 0.464 0.464 0.903 0.903 0.903

Tests cost 6.388 6.981 6.283 6.283 5.857 5.857 5.857

of iterations until best solution 10/90 645/680 42/50 --- 29/90 558/600 41/50

Solution time (sec.) 169.1 354.2 312.5 10,866 528.8 1539.6 1192.8 >day

Normal 2

Solution value 7.056 7.293 7.458 7.056 7.189 7.189 7.189

Expected error cost 0.185 0.186 0.371 0.185 0.470 0.470 0.470

Tests cost 6.871 7.107 7.087 6.871 6.719 6.719 6.719

of iterations until best solution 40/90 659/680 50/50 --- 32/90 581/600 36/50

Solution time (sec.) 194.4 354.4 322.2 12,288 702.7 1564.3 1374.6 >day

Normal 3

Solution value 7.087 7.771 7.274 7.087 7.675 7.660 7.652

Expected error cost 0 0 0 0 0.790 0.941 0.753

Tests cost 7.087 7.771 7.274 7.087 6.885 6.719 6.899

of iterations until best solution 86/90 645/680 49/50 --- 43/90 570/600 40/50

Solution time (sec.) 292.3 350.4 320.5 7,151 980.4 1541.2 1396.3 >day

Uniform 1

Solution value 2.224 2.224 2.224 2.224 1.758 1.758 1.758 1.758

Expected error cost 0.186 0.186 0.186 0.186 0.301 0.301 0.301 0.301

Tests cost 2.038 2.038 2.038 2.038 1.457 1.457 1.457 1.457

of iterations until best solution 30/90 615/680 37/50 --- 13/90 526/600 31/50 ---

Solution time (sec.) 169.3 341.6 277.2 178 214.1 1467.9 1082.7 921

Uniform 2

Solution value 2.307 2.295 2.307 2.295 1.969 1.969 1.969 1.969

Expected error cost 2.094 0 2.094 0 0.151 0.151 0.151 0.151

Tests cost 0.213 2.295 0.213 2.295 1.818 1.818 1.818 1.818

of iterations until best solution 21/90 609/680 39/50 --- 15/90 534/600 29/50 ---

Solution time (sec.) 258.8 342.0 292.0 161 623.0 1465.9 1099.6 804

Uniform 3

Solution value 2.295 2.307 2.307 2.295 2.119 2.119 2.119 2.119

Expected error cost 0 2.094 2.094 0 0.301 0.301 0.301 0.301

Tests cost 2.295 0.213 0.213 2.295 1.818 1.818 1.818 1.818

of iterations until best solution 50/90 620/680 30/50 --- 16/90 533/600 33/50 ---

Solution time (sec.) 303.4 340.0 290.6 76 690.0 1468.0 1126.5 1252

23

The trade-off between the total testing and error costs is demonstrated in Tables 7

and Table 8, for the obtained optimal solutions. Note that Error cost matrix 2 is a

constant multiplication of Error cost matrix 1 (except for the Mushrooms dataset). Such

a multiplication is equivalent to the division of 𝛽 by the same factor. That is, Error cost

matrix 1 represents higher 𝛽 values than Error cost matrix 2. As expected, increasing

the error cost (or equivalently decreasing the testing costs) would result in an optimal

solution that consist of additional tests.

In Table 9, we present some aggregated statistics that measure our memorized

mechanism's success for the three heuristic methods. In the first row, we present the

average number of solutions that are evaluated for each of the nine instances. In the

second row, we present the average number of times when the required solution could

be obtained from the hash table (memoized hits), and thus, there was no need to

reevaluate it. The ratio between the number of memoized hits and the total number of

scanned solutions (actually evaluated and retrieved from the memoize) is presented in

the third row, entitled "Frac. hits rate." In the fourth row, we give the ratio between the

number of evaluated solutions and the number of all the possible ones.

It can be seen that for all the three algorithms, the hash table is beneficial, especially

in instances with a small number of tests. When the number of tests grows, the hash

table is effective mostly for the TS algorithm that searches in previous good solutions

but not so much for the BGSA and CE. We note that for all three methods, the fraction

of evaluated solutions approaches zero as the number of tests grows. Given that all three

algorithms spend very most of their computation time in the evaluation of solutions,

this implies that their solution time is much shorter than the time needed for complete

enumeration.

Table 9: Statistics of the memorization mechanism.

Solution

method
Measure Wine Thyroid Mushrooms

Cortex

nuclear

Molecular

biology

 # Tests 12 21 21 68 60

TS

of evaluations

of memoized hits

Frac. hits rate

Frac evaluated

558

4,055

0.88

0.14

1,685

16,664

0.91

0.0008

2,329

15,208

0.87

0.0011

50,047

68,128

0.58

1.7 × 10−16

29,062

62,248

0.68

2.5 × 10−14

BGSA

of evaluations

of memoized hits

Frac. hits rate

Frac evaluated

2,376

9,624

0.80

0.58

13,101

7,899

0.38

0.0062

13,989

7,011

0.33

0.0067

64,136

3,864

0.06

2.2 × 10−16

56,346

3,654

0.06

4.9 × 10−14

CE

of evaluations

of memoized hits

Frac. hits rate

Frac. evaluated

1,342

10,658

0.89

0.33

5,858

15,142

0.72

0.0028

6,007

14,993

0.71

0.0029

63,769

4,231

0.06

2.2 × 10−16

52,298

7,702

0.13

4.5 × 10−14

24

6.2 Probabilistic Dataset

In Section 6.1, the proposed solution was applied to instances of the STCP problem that

are degenerated in the sense that each reading is mapped deterministically to a single

class. As indicated earlier, the STCP model is relevant for such cases and differs from

the GTCP model since it is capable of considering the trade-off between the

classification accuracy and the testing cost. Another virtue of the STCP model is that it

is capable of dealing with noisy input, i.e., when each reading indicates a distribution

vector over the classes. In this section, we apply the TS on the noisy MNIST dataset of

handwritten digits that obtains probabilistic input labels of the digits for each reading.

This dataset was first presented in Gruber et al. (2021). It is an adaptation of the well-

known deterministic version of MNIST that was introduced at LeCun et al. (2010).

Moreover, the MNIST dataset has been used to analyze and reduce the images

classification error in a noisy environment (e.g., Huang et al., 2015, Cheng et al., 2020)

and we further discuss this point later in this section.

The MNIST dataset contains 10,000 black and white images (readings). Each image

consists of 28 × 28 pixels, i.e., 784 pixels (that represent tests in this context). The

value of each pixel is a number from 0 to 255 that represents its greyscale. Each reading

is represented by ten probabilistic labels (the number of digits). For example, an image

may be classified as the digit '7' with a probability of 0.8, the digit '1' with a probability

of 0.15, and the digit '4' with a probability of 0.05.

Since the range of the possible pixel outputs is very large with 256 different possible

levels, we consider these outputs and discretized them to quantiles representing two,

four, and eight color levels. Figure 6 shows for illustration purpose the four-color levels

of one of the images from the dataset.

Figure 6: Four-color levels of a noisy image from the MNIST dataset.

25

Since the MNIST dataset is larger than the datasets that were examined in Section

6.1, we applied only the TS heuristic that was shown to be the fastest (and efficient)

heuristic. We used a single test cost vector with a fixed (unit) cost per pixel and four

classification error cost matrices with 900, 1800, 3600, and infinity in each of the off-

diagonal elements. Since the solution is determined by the ratio between the error cost

and the testing cost, using infinity error cost is equivalent to setting the testing cost as

zero, which implies using all the pixels to identify the digits. The processed input data

for our experiment is available online at Douek-Pinkovich's drive (2020).

Table 10 presents all results for the three-color discretization levels of the noisy

MNIST dataset. For each solution, the error probability is presented first. Next, the

number of tests (pixels) that minimizes the expected cost. In addition, the table shows

the iteration number in which the best solution is first found and the solution times in

seconds. It can be seen that although the noisy MNIST dataset is significantly large, the

proposed method can still find solutions in a reasonable time for a design problem that

needs to be solved once in a lifetime of the system.

Table 10 shows that the TS significantly reduces the number of pixels (tests) needed.

For each color level, the error probabilities decrease slightly when the input cost of the

errors increases. The smallest error probability is obtained with infinity error cost and

naturally requires using all the 784 tests. This is clearly the lower bound on the

obtainable error probability. However, one can observe that it is only slightly smaller

than the error probability that can be obtained when using a significantly smaller

number of tests. Expectedly, as the grayscale levels of the images decrease, more pixels

are required to identify the digits since the images become more distorted.

As Gruber et al. (2021) kindly made their data available to us, in an additional

experiment, we reduced the noise over their MNIST dataset, by using distribution over

the classes that are closer to the undistorted ones. In this case, the lower bound on the

obtainable error probability is less than 0.1, and the TS error probability (with an error

cost matrix of 900 on the two-color levels data) is 0.118. Thus, this experiment shows

that relying on 20 pixels is enough for a reduced error probability settings, that is close

to the lower bound.

As indicated above, note that reducing the images' classification error in a noisy

environment by properly analyzing a limited number of pixels can be related to the

growing field of adversarial learning. In particular, it was found that despite the fact

that Deep Neural Networks (DNN) are significantly good classifiers, these models are

not typically robust (Szegedy et al., 2013). That is, by introducing a small perturbation

to the model input, the model classification could change significantly. It has been

shown that an accurate DNN model can be fooled into misclassifying typical data points

by introducing a human-indistinguishable perturbation of the original inputs. Therefore,

securing a correct classification by protecting a limited number of pixels (tests in our

case) can be a relevant application to the proposed STCP in future research. Such a

direction could also include the analysis of fewer inputs on Generative Adversarial

Network (GAN) in the field of computer vision for image synthesis. Related research

in this direction includes, for example, Cheng et al. (2020) that analyzed different

variants of GAN for image generation on the MNIST dataset and evaluated results

based on classification accuracy, as well as Huang et al. (2015) that proposed a learning

method that attempts to minimize misclassification errors against the adversary.

26

Table 10: Result Summary for the noisy MNIST dataset

6.3 A comparison between the STCP and the TCP

This subsection addresses one of the merits of the STCP model by comparing its

configurations to the ones obtained from the GTCP model. Recall that the GTCP does

not allow classification errors and thus, focuses on problem instances that can (with a

sufficient number of tests) be classified deterministically. Therefore, each reading is

mapped to a unique class with probability 1. Yet, even for such instances, it may be

desired to allow a small probability of errors because often it is cheaper to absorb the

error cost and save on the testing costs.

For a comparison between the two models, we adapted the datasets used in Douek-

Pinkovich et al. (2020) that are available in the UCI repository. We set the cost of each

sensor (test) to 1, so the value of the solution of the GTCP is the minimal number of

sensors that are sufficient to map the readings deterministically to their classes. For the

input of the STCP, we used the same sensor costs. In addition, we created three error

cost matrices denoted by Λ𝑙𝑜𝑤, Λ𝑚𝑒𝑑, Λℎ𝑖𝑔ℎ. The elements of these matrices have fixed

positive values except the diagonal, where the elements are zeros. The fixed values of

the positive elements are selected based on the other parameters of the instances.

For each dataset, we estimated the prior probabilities of the classes and the readings

based on their frequency in the input data. We solved the STCP using the exact method

presented in this paper and the GTCP instances using an exact method presented in

Douek-Pinkovich et al. (2020). The experiment consists of 21 problem instances based

on seven different UCI datasets with three different error cost matrices each. We

limited the running time of our algorithm to 24 hours for each instance. If the algorithm

did not converge within this period, we report the best-found solution and mark the

instance with an asterisk (*).

Error cost

matrix
Parameters

TS

2 color-levels 4 color-levels 8 color-levels

900

Error probability 0.1751 0.1742 0.1736

Number of tests 19 11 10

of iterations until the best solution 90/90 40/90 17/90

Solution time (sec.) 80,136 157,300 80,171

1800

Error probability 0.1738 0.1735 0.1736

Number of tests 21 12 10

of iterations until the best solution 59/90 17/90 17/90

Solution time (sec.) 105,260 168,490 83,068

66/90

Error probability 0.1735 0.1735 0.1737

Number of tests 22 12 10

of iterations until the best solution 79/90 17/90 66/90

Solution time (sec.) 110,860 189,400 149,840

∞ Error probability (Lower Bound) 0.1734 0.1734 0.1734

27

Let us note that in the experimental setting presented above, the solutions of the

GTCP are always feasible for the STCP and have the same objective function value.

Therefore, the optimal solution values of the GTCP can be considered as upper bounds

to the optimal solution of the STCP.

In Table 11, we present the result of this experiment. A summary of the datasets is

presented in the four first columns. In the next column, we present the solution value

of the GTCP, which is, in this case, the number of selected tests. Columns 4-6 of the

table show the fixed positive values in Λ𝑙𝑜𝑤, Λ𝑚𝑒𝑑, Λℎ𝑖𝑔ℎ. In the last three columns, we

present the testing cost and error probability under each of the three error cost matrices

of the STCP model. Note that the error probability in our setting can be obtained as the

ratio between the expected classification error cost of the solution and the value of the

positive elements in the error cost matrices.

As expected, when the values of the fixed positive elements of the error cost matrix

are high enough, the solutions of the STCP and GTCP coincide because the optimal

solution is to avoid classification errors completely. This outcome can be achieved by

selecting the same set of tests as in the GTCP. In fact, we selected the positive fixed

values of Λℎ𝑖𝑔ℎ to be high enough to assure such an outcome. For lower error costs, it

is more profitable to absorb some errors with small probabilities and to save on the

tests. When the positive fixed values of Λ are low enough, it is optimal to use no tests

at all. In this case, there is only one (empty) signature that is mapped to the class with

the highest prior probability, and the error costs for all other classes are incurred. One

can view the solutions for different error cost matrices as points on the efficiency

frontier of a bi-objective problem where the goal is to minimize the testing cost and the

expected error cost. Note that in the letter recognition instances with Λ𝑙𝑜𝑤 and Λ𝑚𝑒𝑑,

optimal solutions could not be achieved within the 24-hour time limit, and thus we

report there on the best-found solutions.

Table 11: A comparison between the STCP with three levels of error costs and the TCP

Dataset summary GTCP

testing

cost

(number

of tests)

Error costs matrices

(positive elements)

STCP solution

testing cost (error probability)

Name Tests Readings

Classes Λ𝑙𝑜𝑤 Λ𝑚𝑒𝑑 Λℎ𝑖𝑔ℎ Λ𝑙𝑜𝑤 Λ𝑚𝑒𝑑 Λℎ𝑖𝑔ℎ

Monk 1 6 432 2 3 3 6 9 0 (.5000) 1 (.2500) 3 (0)

Monk 2 6 432 2 6 9 18 27 0 (.3288) 0 (.3288) 6 (0)

Monk 3 6 432 2 3 5 25 45 1 (.1940) 2 (.0276) 3 (0)

Zoo 16 101 7 5 20 80 120 3 (.0495) 4 (.0099) 5 (0)

Tic-tac-toe 9 958 2 8 20 120 240 0 (.3465) 7 (.0042) 8 (0)

Chess 36 3,196 2 29 3000 6000 9000 24 (.0009) 25 (.0006) 29 (0)

Mushrooms 21 8,124 2 4 150 300 450 2 (.0059) 2 (.0059) 4 (0)

Letter

recognition

16 20,000 26 11 300 900 18000 8 (.0017)* 9 (.0004)* 11 (0)

*The reported solutions are the best found within the 24-hour time limit.

The results presented in Table 11 demonstrate the advantage of using the STCP

model even when the reading can be mapped deterministically to classes. The model

allows the planner to consider and address the trade-off between testing cost and the

risk of errors rather than always choosing the expensive (and not necessarily feasible)

alternative of avoiding classification errors at all costs.

28

7 Conclusions

This paper introduces a practical problem whereby decisions about the test

configuration must be made at the design phase of various systems and processes. The

goal is to minimize the sum of the expected error cost associated with classification

errors and the testing cost. The STCP is a generalization of the deterministic variant of

the minimum TCP as well as the GTCP; both are known to be intractable.

We present an exact solution method for the STCP based on an ILP with a large

number of constraints that can be added as lazy constraints. The applicability of the

solution is demonstrated using some instances adapted from the UCI repository. While

this paper presents the first successful exact solution method for STCP, it is still not

capable of consistently solving large instances with reasonable computational

resources. Therefore, we also present three heuristic methods. Our numerical

experiments show that the three proposed heuristic solution methods are all effective.

Specifically, for a given budget of computational effort, the TS method appears to be

superior to the CE and BGSA. However, since none of these methods consistently

predominates the others, when computational resources are available, all the three

methods as well as the lazy constraints should be applied if possible. We believe that

this situation is common since the STCP model can be typically implemented within an

offline long-term design problem.

The STCP is related to the well-studied feature selection problem, and it may be the

case that similar solution methods can be applied to it. However, solutions to the feature

selection problem should be evaluated jointly using a classification method to examine

their predictive power and control their sensitivity to overfitting and underfitting

effects, which is a different objective than that of the STCP and left for future research.

Acknowledgment: The first author of this paper was partially supported by a

scholarship from the Shlomo-Shmeltzer Institute. The research was partially supported

by the Koret's Digital Living 2030 Grant.

References

Alon, G., Kroese, D. P., Raviv, T., & Rubinstein, R. Y. (2005). Application of the

cross-entropy method to the buffer allocation problem in a simulation-based

environment. Annals of Operations Research, 134(1), 137-151.

Bacher, M., & Ben-Gal, I. (2017). Ensemble-Bayesian SPC: Multi-mode process

monitoring for novelty detection. IISE Transactions, 49(11), 1014-1030.

Bertolazzi, P., Felici, G., Festa, P., Fiscon, G., & Weitschek, E. (2016). Integer

programming models for feature selection: New extensions and a randomized solution

algorithm. European Journal of Operational Research, 250(2), 389-399.

Cangalovic, M. M., Kovacevic-Vujcic, V. V., Ivanovic, L., Drazic, M., & Asic, M.

D. (1996). Tabu search: A brief survey and some real-life applications. Yugoslav

journal of operations research, 6(1), 5-18.

29

Cheng, K., Tahir, R., Eric, L. K., & Li, M. (2020). An analysis of generative

adversarial networks and variants for image synthesis on MNIST dataset. Multimedia

Tools and Applications, 79(19), 13725-13752.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis, J. (2009). Modeling wine

preferences by data mining from physicochemical properties. In Decision Support

Systems, Elsevier, 47(4):547-553.

De Boer, P. T., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. (2005). A tutorial on

the cross-entropy method. Annals of operations research, 134(1), 19-67.

De Bontridder, K. M., Halldórsson, B. V., Halldórsson, M. M., Hurkens, C. A.,

Lenstra, J. K., Ravi, R., & Stougie, L. (2003). Approximation algorithms for the test

cover problem. Mathematical Programming, 98(1-3), 477-491.

Douek-Pinkovich, Y., Ben-Gal, I., and Raviv, T. (2020). The Generalized Test

Collection Problem, TOP, Springer. https://doi.org/10.1007/s11750-020-00554-1

Douek-Pinkovich's drive (2020). STCP: Cleaned and Processed Input Data. STCP:

Input data from Yifat's drive

Drezner, Z., Marcoulides, G. A., & Hoven Stohs, M. (2001). Financial applications

of a tabu search variable selection model. Journal of Applied Mathematics and Decision

Sciences, 5(4), 215-234.

Dua, D., and Graff, C. (2019). UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of

Information and Computer Science.

Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification. John Wiley

& Sons.

Duman, S., Güvenç, U., Sönmez, Y., & Yörükeren, N. (2012). Optimal power flow

using gravitational search algorithm. Energy Conversion and Management, 59, 86-95.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness.

Glover, F. (1989). Tabu search—part I. ORSA Journal on computing, 1(3), 190-206.

 Gruber, N., Ben-Gal, I., Steinberg, D. M. (2021). Supervised active learning

algorithm for sequential informative sampling. Unpublished manuscript.

Halldórsson, B. V., Halldórsson, M. M., & Ravi, R. (2001, August). On the

approximability of the minimum test collection problem. In European Symposium on

Algorithms (pp. 158-169). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/s11750-020-00554-1
https://drive.google.com/drive/folders/1OnWTlCR7o4086wYwLIaDVDUwPw5wdGMQ?usp=sharing
https://drive.google.com/drive/folders/1OnWTlCR7o4086wYwLIaDVDUwPw5wdGMQ?usp=sharing
http://archive.ics.uci.edu/ml

30

Hovland, G. E., & McCarragher, B. J. (1997, April). Dynamic sensor selection for

robotic systems. In Robotics and Automation, 1997. Proceedings., 1997 IEEE

International Conference on (Vol. 1, pp. 272-277). IEEE.

Huang, R., Xu, B., Schuurmans, D., & Szepesvári, C. (2015). Learning with a strong

adversary. arXiv preprint arXiv:1511.03034.

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist handwritten digit database,

ATTLabs [Online]. Available: http://yann.lecun.com/exdb/mnist, vol. 2.

Kammer, D. C. (1991). Sensor placement for on-orbit modal identification and

correlation of large space structures. Journal of Guidance, Control, and

Dynamics, 14(2), 251-259.

Pacheco, J., Casado, S., & Núñez, L. (2009). A variable selection method based on

Tabu search for logistic regression models. European Journal of Operational

Research, 199(2), 506-511.

Papa, J. P., Pagnin, A., Schellini, S. A., Spadotto, A., Guido, R. C., Ponti, M., ... &

Falcão, A. X. (2011, May). Feature selection through gravitational search algorithm.

In Acoustics, Speech, and Signal Processing (ICASSP), 2011 IEEE International

Conference on (pp. 2052-2055). IEEE.

Parmar, R. (2018). Wine quality. https://www.kaggle.com/rajyellow46/wine-

quality#winequalityN.csv.

Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: a gravitational

search algorithm. Information sciences, 179(13), 2232-2248.

Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2010). BGSA: binary

gravitational search algorithm. Natural Computing, 9(3), 727-745.

Rubinstein, R. Y. (1997). Optimization of computer simulation models with rare

events. European Journal of Operational Research, 99(1), 89-112.

Rubinstein, R.Y. and D.P. Kroese. (2004). The Cross-Entropy Method: A Unified

Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine

Learning. Springer-Verlag, New York

Sela Perelman, L. S., Abbas, W., Koutsoukos, X., & Amin, S. (2016). Sensor

placement for fault location identification in water networks: A minimum test cover

approach. Automatica, 72, 166-176.

Slijepcevic, S., & Potkonjak, M. (2001). Power efficient organization of wireless

sensor networks. In Communications, 2001. ICC 2001. IEEE International Conference

on (Vol. 2, pp. 472-476). IEEE.

http://yann.lecun.com/exdb/mnist
https://www.kaggle.com/rajyellow46/wine-quality#winequalityN.csv
https://www.kaggle.com/rajyellow46/wine-quality#winequalityN.csv

31

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,

Fergus, R., Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,

2013.

Wendt, J. B., & Potkonjak, M. (2011, October). Medical diagnostic-based sensor

selection. In Sensors, 2011 IEEE (pp. 1507-1510). IEEE.

