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Abstract 

The classic test collection problem (TCP) selects a minimal set of binary tests needed 

to classify the state of a system correctly. The TCP has applications in various domains, 

such as the design of monitoring systems in engineering, communication, and 

healthcare. In this paper, we define the stochastic test collection problem (STCP) that 

generalizes the TCP. While the TCP assumes that the tests' results can be 

deterministically mapped into classes, in the STCP, the results are mapped to 

probability distributions over the classes. Moreover, each test and each type of 

classification error is associated with some cost. A solution of the STCP is a subset of 

tests and a mapping of their results to classes. The objective is to minimize the weighted 

sum of the tests' costs and the expected cost of the classification errors. We present an 

integer linear programming formulation of the problem and solve it using a commercial 

solver. To solve larger instances, we apply three metaheuristics for the STCP, namely, 

Tabu Search (TS), Cross-Entropy (CE), and Binary Gravitational Search Algorithm 

(BGSA). These methods are tested on publicly available datasets and shown to deliver 

nearly optimal solutions in a fraction of the time required for the exact solution.  
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1 Introduction 

The well-studied minimum test collection problem (TCP) is known in the literature as 

the minimum test set problem or the minimum test cover problem. Halldórsson et al. 

(2001) described the minimum TCP as follows: Given a set of entities (e.g., individuals) 

and a set of binary attributes (tests) that may or may not occur in each entity, the 

incidence vector of each entity represents a reading. The goal is to find the minimal 

subset of attributes (a test collection) such that each entity can be uniquely identified 

from the information on which of the attributes in the test collection it contains. In this 

way, the reading's coordinates that represent tests included in test collection form a 

unique binary vector referred to as signature for distinguishing it from all the other 

entities. For example, in the domain of botanic taxonomy, given a set of mushroom 

varieties (entities) and a collection of binary mushroom attributes (such as bad odor, 

spore-print in red color, whether it is found in a large group, etc.) such that each attribute 

can characterize some mushroom varieties. To identify the mushroom type efficiently, 

one looks for a minimum subset of attributes that is enough to distinguish between all 

the varieties. 

This paper presents the stochastic test collection problem (STCP), which complements 

and generalizes the minimum TCP. The STCP is defined as follows: we are given a set 

of tests with categorical outputs and all possible combinations of the results of these 

tests for a population of tested entities (e.g., patients). Each such combination of the 

tests' results is called a reading and is associated with a probability distribution over a 

given finite set of classes (e.g., diagnoses) and with the probability of obtaining this 

reading when sampling an entity from the population (i.e., the relative frequency of the 

reading). A subset of some selected tests is called configuration. The outcomes of the 

tests in a configuration of a given reading are jointly called a signature. Note that 

several different readings may have the same signature for a particular configuration 

and hence can be indistinguishable. In a situation where one needs to determine the 

state of a system based on a particular signature, classification errors may occur. A 

classification error of type A-B is said to happen when a signature is classified as B, 

while it is actually originated from a subject of class A. The input of the STCP includes 

an error cost matrix that specifies a cost associate with each type of error. A solution of 

the STCP consists of two components: (1) a configuration; (2) a mapping of each 

possible signature into a class. The objective is to minimize a weighted sum of the cost 

of the tests that comprise the configuration as well as the expected classification error 

cost implied by the mapping. The tests' costs are weighted since they may represent a 

one-time initial investment, while the errors may occur each time the tests are applied. 

For example, the cost associated with the installation of the sensors in a water network 

should be amortized in terms of a single usage, which is equivalent to performing one 

test. 

 The trade-off between the two components of the objective function follows as 

executing more tests (or more accurate and expensive ones, e.g., performing additional 

blood tests to improve the patient's diagnosis) is likely to reduce the chances of 

classification errors and thus their expected cost but will increase the total testing cost. 

The challenge is that the class can rarely be inferred from the signature of a single 

test. Instead, it is inferred from a combination of the results obtained from several ones. 
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A formal definition of the problem with mathematical notation is presented in Section 

2. 

The TCP can be seen as a special case of the STCP in which (a) each reading is 

associated deterministically with a unique class; (b) the costs of all the tests are equal 

and set to one; and (c) the classification error costs are set to prohibitively large numbers 

(e.g., larger than the number of tests).  

In the STCP, instead of a one-to-one relation between readings and classes, it allows 

a probabilistic many-to-many relation. It thus enables various readings-to-class 

mappings, as often happens in reality. In such a case, a deterministic diagnosis is often 

impossible, hence the need to introduce the classification error cost into the objective 

function. 

The TCP decision version was shown to be NP-hard by (Garey and Johnson, 1979). 

Halldórsson et al. (2001) and De Bontridder et al. (2003) established the APX-Hardness 

of the minimum TCP. They provided constant ratio approximation algorithms for some 

special cases with a small number of positive attributes in each reading. Therefore, the 

intractability of the STCP follows.  

Many authors have studied various applications of the TCP and its extensions. Such 

applications include sensor placement in structures and networks, e.g., in Kammer 

(1991), Sela et al. (2016), Douek-Pinkovich et al. (2020); robotics, e.g., in Hovland and 

McCarragher (1997); energy consumption strategies, e.g., in Slijepcevic and Potkonjak 

(2001); medical diagnosis, e.g., in Wendt and Potkonjak (2011); protein identification 

Halldórsson et al. (2001) and De Bontridder et al. (2003); process monitoring, e.g., in 

Bacher and Ben-Gal (2017), among others. 

The STCP can naturally enrich most of the applications described above since the 

stochastic relation between the tests' readings and the state of the system is an inherent 

characteristic of almost any realistic testing system. The stochasticity stems both from 

the noise in the tests and from the fact that it is typically too costly to perform enough 

tests to eliminate all possible uncertainties. With modern sensing systems, a large 

quantity of data is collected, and it can be used to estimate the probability distributions 

required as input for the STCP model. In other situations, these distributions can be 

calculated based on the physical characteristics of the tested system. 

The STCP also extends another model, known as the generalized test collection 

problem (GTCP) that was introduced by Bertolazzi et al. (2016) and studied by Douek-

Pinkovich et al. (2020). In the GTCP, the tests' outputs are categorical rather than 

binary, different readings may be associated with a single class, and each test is 

associated with a cost.  A solution of the GTCP is a collection of tests and a correct 

mapping of the signatures to the classes. The objective is to find a collection with 

minimal costs. As in the TCP, classification errors are not allowed. Douek-Pinkovich 

et al. (2020) apply their model and solution method to sensors' placement problem in 

urban water networks, introduced by Sela et al. (2016). In water networks, sensors that 

detect pressure waves caused by pipe bursts can be placed on each node in the network. 

A burst in each edge is associated with signals in several sensors located close to it. The 

goal is to select a minimal subset of nodes where sensors should be placed to detect 

each fault in the system.  
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The main difference between the GTCP and the STCP is that in the former, each 

reading is deterministically associated with a single class, while in the latter, a reading 

is associated with a probability distribution over the classes. Consequently, in the 

GTCP, the goal is to select a set of tests that enable classifying the subject 

deterministically. In the STCP setting, the classification is inherently subject to errors 

that should be minimized. 

The GTCP can be seen as a generalization of the TCP. Using the above-mentioned 

mushrooms example for the illustration purpose, a mushroom variety (characterized by 

its reading) can be classified as toxic or nontoxic. Instead of identifying the specific 

mushroom type, one may wish to select a minimum-cost set of attributes that can 

determine the mushroom's toxicity. The STCP enriches the GTCP in the sense that it 

can handle uncertainty. Naturally, mushroom attributes are subject to noise due to 

measurement errors. Thus, a mushroom variety can be classified with some probability 

as toxic and with another probability as edible. Hence, the objective function must now 

include the error cost of identifying a mushroom as toxic while it is not such and vice 

versa.  In such a case, it is likely that the error of classifying a toxic mushroom as edible 

will be set to have a very high cost, while the opposite error may be considered less 

costly. 

In many realistic applications, the STCP can be considered as a more realistic model 

since: i) the readings observed in real-world scenarios may not necessarily identify the 

class of the subjects with certainty; ii) the readings are often affected by some (random) 

noise; iii) sometimes it is preferred to save testing costs by including a cheap set of tests 

that is not sufficient by itself for a deterministic classification. For example, in the water 

network sensor placement problem, bursts in the same location may result in different 

readings. In fact, the intensity of the burst, and sediments in pipes, affect the signals 

and contribute to the uncertainty. Another example for the STCP relevance is related to 

the known wine classification problem (e.g., Cortez et al., 2009), where the wine class 

is defined by its quality score and characterized by a numerical scale in the range of 3-

9. This example represents well the trade-off between the testing costs and the 

classification error. Different scores can be reflected by the same readings, therefore 

mapping the results to probability distributions over the classes is much more feasible 

than a deterministic classification (even with all the considered variables).  

Table 1 summarizes the differences between the STCP, the GTCP, and the TCP. 

The first column of the table summarizes the input types and the objective function. In 

the second, third, and fourth columns, the properties of the three problems are detailed.  

This paper presents an effective, exact algorithm for the STCP based on an integer 

linear program (ILP) formulation. It also applies three metaheuristic methods to solve 

larger instances of the STCP. Namely, Tabu Search (TS), Cross-Entropy (CE), and 

Binary Gravitational Search Algorithm (BGSA). Finally, it shows the merits of our 

generalization by comparing it to the solution of equivalent TCP instances. 
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Table 1: The TCP, GTCP, and STCP 

 
TCP GTCP STCP 

Input types: 

Test's results binary categorical 

categorical Reading to class relation one to one many to one many to many 

Test's cost identical any 

any Classification errors are allowed No 

No 

Yes, with a cost 

Objective function: 
Minimize the cost (or number) of 

the selected tests 

Minimize the cost 

of the selected tests 

and the expected 

error cost 

 

 

Finally, let us note that the known Feature Selection (FS) problem is also related to 

the STCP in the sense that in both problems, the goal is to select a subset of 

characteristics of an entity that enables its proper classification. However, the two 

problems differ in their objectives and settings. In the STCP, one looks for a minimal 

set of characteristics that enable to distinguish among entities that belong to different 

classes with a sufficient probability measure. It is further assumed that all the relevant 

entities, with their characteristics, are available as input to the problem. Since one 

considers the trade-off between the cost of the information obtained for the 

classification and the expected cost of misclassification, a minimal set of characteristics 

without a need for redundancy should be selected. On the other hand, in feature 

selection problems, the goal is to select a subset of characteristics that minimizes the 

probability of misclassification over a test set that is not available during the training 

phase. Thus, over-fitting and under-fitting effects should be considered. Accordingly, 

in feature selection, one may look for solutions with redundancy since future test 

datasets are unknown at the training stage. 

The contributions of this paper are in formulating the stochastic variant of the TCP 

and in presenting effective heuristic methods to solve it.  

The rest of the paper is organized as follows. In Section 2, we present some formal 

notation and a mathematical formulation of the problem. In Section 3, we demonstrate 

the properties of the problem using a small illustrative example. Sensitivity analysis is 

carried out to demonstrate some counterintuitive properties of the problem and its 

optimal solutions. In Section 4, we present an ILP formulation of the STCP. In section 

5, we present heuristic methods to solve the STCP based on the TS, CE, and BGSA 

metaheuristics. In Section 6, the proposed heuristics are tested against the exact solution 

obtained from our ILP formulation based on publicly known data from the UCI 

Machine Learning Repository (Dua and Graff, 2019). Also, a dataset with probabilistic 

labels is applied to show the advantages of the STCP. A comparison between the STCP 

and the TCP is also presented. Some concluding remarks are offered in Section 7. 
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2 Notation and problem definition 

To present our mathematical formulation of the STCP, we use the following notation, 

where bold letters denote vectors and matrices: 

 

𝑁 The set of candidate tests available in a given system; the number of tests is 

denoted by 𝑛 = |𝑁|. 𝑆 ∈ 𝑁 is a subset of selected tests called a 

configuration. 

𝑐𝑖 The cost of test 𝑖 for any 𝑖 ∈ 𝑁. 

𝑉𝑖 The set of outputs or results that can be obtained from test 𝑖. 

𝑅  The set of valid readings, 𝑅 ⊆ 𝑉1 × 𝑉2 × ⋯ × 𝑉𝑛; for each reading �̃� ∈ 𝑅, 

we denote the result of the 𝑖𝑡ℎ test as �̃�𝑖.   

𝐾 The set of possible classes; 𝐾 = {1, … , 𝑘}.  

𝜆𝑘𝑙 The misclassification error of type (𝑘, 𝑙), 𝑘, 𝑙 ∈ 𝐾, i.e., the cost of 

classifying an object as class 𝑙 when its true class is 𝑘.  

𝑝(�̃�) The a-priory probability of obtaining the reading �̃� ∈ 𝑅. 

𝑝(𝑘|�̃�) The conditional probability of class 𝑘 ∈ 𝐾 given the reading �̃� ∈ 𝑅. 

𝛽 The relative weight of the testing cost in the objective function. 

 

Let us denote the prior probability of each class by 𝑝(𝑘). This probability is related to 

the above parameter as follows.  

 𝑝(𝑘) =  ∑ 𝑝(𝑘|�̃�)𝑝(�̃�)

�̃�∈𝑅

 (1)  

 

Let the conditional probability of each reading given a class by 𝑝(�̃�|𝑘). This probability 

is determined by the above parameters by Bayes' rule,  

 
𝑝(�̃�|𝑘) =

𝑝(𝑘|�̃�)𝑝(�̃�)

𝑝(𝑘)
 (2) 

For each configuration 𝑆 ⊂ 𝑁, define 𝑅(𝑆) as the set of all its signatures. I.e., partial 

readings can be obtained from the results of the selected tests. When the configuration 

is known, we denote the signature of �̃� by 𝐫. The signature 𝐫 ∈ 𝑅(𝑆) is a vector of 

dimension |𝑆|. For convenience, the elements 𝑟𝑖 of the signature vectors are indexed by 

the original indices of the tests in 𝑁. For example, if 𝑁 ={1,…,5} and  𝐫 ∈ 𝑅({1,2,5}), 

then 𝐫 = (𝑟1, 𝑟2, 𝑟5). In this example, 𝑟5 is the third element of the signature 𝐫. We 

denote the set of all the possible readings from which signature 𝐫 can be obtained when 

the configuration is 𝑆 as 𝑄(𝑆, 𝐫). That is, 𝑄(𝑆, 𝐫) = {�̃� ∈ 𝑅: �̃�𝑖 = 𝑟𝑖   ∀𝑖 ∈ 𝑆}. 

Next, for each configuration 𝑆 ⊂ 𝑁 and 𝐫 ∈ 𝑅(𝑆), it is possible to calculate the 

following three probability components: the probability of a signature given class 𝑘,

𝑝𝑆(𝐫|𝑘); the prior probability 𝑝𝑆(𝐫) of signature 𝐫 ∈ 𝑅(𝑆); and the a-posteriori 

probability 𝑝𝑆(𝑘|𝐫) that the class is 𝑘 ∈ 𝐾 given that the signature is 𝐫 ∈ 𝑅(𝑆). These 

probabilities can be calculated using Equations (3)-(5). For configuration 𝑆, the 

conditional probability of class 𝑘 when observing a signature 𝐫, 𝑝𝑆(𝑘|𝐫), is calculated 

with Equation (5) using Bayes' rule. 

 

 𝑝𝑆(𝐫|𝑘) = ∑ 𝑝(�̃�|𝑘)

�̃�∈𝑄(𝑆,𝐫)

 (3) 



7 
 

 𝑝𝑆(𝐫) = ∑ 𝑝(�̃�)

�̃�∈𝑄(𝑆,𝐫)

=  ∑ 𝑝(𝑘) ⋅ 𝑝𝑆(𝐫|𝑘)

𝑘∈𝐾

 (4) 

 
𝑝𝑆(𝑘|𝐫) =

𝑝𝑆(𝐫|𝑘) ∙ 𝑝(𝑘)

𝑝𝑆(𝐫)
 (5) 

 

Consider a given configuration 𝑆 ⊂ 𝑁. The expected classification error cost for 

signature 𝐫 of 𝑆 if it is mapped to class 𝑙 is: 

 𝐸𝑆(𝐫|𝑙) =  ∑ 𝜆𝑘𝑙 ∙ 𝑝𝑆(𝑘|𝐫)

𝑘∈𝐾

 
 

(6) 

let 𝑙𝑆
∗: 𝑅(𝑆) ⟶ 𝐾 be a function that maps each possible signature of 𝑆 to a class that 

minimizes the expected classification error cost.  

 𝑙𝑆
∗(𝐫) = argmin

𝑙∈𝐾
{𝐸𝑆(𝐫|𝑙)}. (7) 

The minimum expected classification error cost for signature 𝐫 is:  

 𝐸𝑆
∗(𝐫) = min

𝑙∈𝐾
{𝐸𝑆(𝐫|𝑙)}  (8) 

Note that (7) coincides with the "minimum Bayes risk decision rule" as given, for 

example, in Duda et al. (2012).  

The STCP can now be formulated mathematically. Namely, given an instance of the 

problem [𝑁, 𝑅, 𝐾, p(�̃�), p(𝑘|�̃�), 𝛌, 𝐜], select a configuration 𝑆, such that the weighted 

sum of the expected classification error and test costs are minimized,  

 
min
𝑆⊆𝑁

{ ∑ 𝑝𝑆(𝐫)𝐸𝑆
∗(𝐫)

𝐫∈𝑅(𝑆)

+ 𝛽 ∑ 𝑐𝑖

𝑖∈𝑆

} 
 

(9) 

The weight coefficient is used to adjust the scale of the error cost and the testing cost. 

Higher values of 𝛽 lead to testing configurations that are more prone to classification 

errors. The designer of the testing system can use 𝛽 to explore the efficiency frontier of 

the costs of classification errors and costs of tests. Note that multiplying 𝛽 by a constant 

is equivalent to dividing the error cost matrix, 𝛌, by that constant or to multiply the 

testing costs, 𝑐𝑖 by it. Note that given the set of tests 𝑆, the set of signatures is uniquely 

defined by 𝑅(𝑆), while the optimal mapping of each signature to a class is given by (7). 

 

3 Motivating example 

Let us demonstrate the problem using the following small example. Consider a medical 

testing system comprising three potential tests aimed at detecting a viral disease. Each 

test produces a binary result, i.e., the result of medical test 𝑖 may be either  

𝑉𝑖 = 0, or  1. The input, in this case, in terms of the notation presented in Section 2, is: 

 

𝑁 {1,2,3} 

𝑐𝑖 [2,0.5,0.5] 

𝛽 1 

𝑉𝑖 {0,1} for 𝑖 = 1,2,3; i.e., the result of each binary test can be either 0 or 1. 

𝑅  𝑉1 × 𝑉2 × 𝑉3, all possible combinations of the tests' results. See also the first 

group of columns in Table 2. 

𝐾 {𝑁, 𝑃}; N for Negative and P for Positive 
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𝜆𝑘𝑙 [
0 50

50 0
]; i.e., both false-positive and false-negative costs are equal to 50. 

𝑝(�̃�) See the second group of columns in Table 2. 

𝑝(𝑘|�̃�) See the third group of columns in Table 2. 

 

Table 2: Valid readings �̃� ∈ 𝑅 and the probabilities 𝑝(�̃�), 𝑝(�̃�|𝑘), and 𝑝(𝑘|�̃�). 

Test Readings, 𝑅   
𝑝(�̃�) 

 𝑝(�̃�|𝑘)  𝑝(𝑘|�̃�) 

Test 1 Test 2 Test 3   N P  N P 

0 0 0  0.067  0.035 0.105  0.289 0.711 

0 0 1  0.119  0.015 0.245  0.070 0.930 

0 1 0  0.105  0.105 0.105  0.550 0.450 

0 1 1  0.135  0.045 0.245  0.183 0.817 

1 0 0  0.097  0.140 0.045  0.792 0.208 

1 0 1  0.080  0.060 0.105  0.411 0.589 

1 1 0  0.251  0.420 0.045  0.919 0.081 

1 1 1  0.146  0.180 0.105  0.677 0.323 

 
 

In this small example, the solution can be readily calculated by an exhaustive search 

overall 23 = 8 possible test configurations. The value of each subset S is calculated by 

enumerating all the signatures in 𝑅(𝑆). An example of such calculations for the 

configuration 𝑆 = {1,2} is described in Table 3. First, all signatures obtained from the 

subset S are shown in the first group of columns. Next, for each signature 𝐫 ∈ 𝑅(𝑆) and 

each diagnosis 𝑘 ∈ 𝐾, the probabilities 𝑝𝑆(𝐫|𝑘), 𝑝𝑆(𝐫), and 𝑝𝑆(𝑘|𝐫) are calculated 

using (3)-(5) and are shown in the second, third, and fourth group of columns, 

respectively. Now, the expected error cost of diagnosing 𝑙 when the true diagnosis is 𝑘 

can be seen in the fifth group of columns and is calculated when 𝑙 is decided; i.e., it is 

𝐸𝑆(𝐫|𝑙), as given in (6). Equation (7) shows the diagnosis that minimizes the expected 

classification error cost for the signature 𝐫 (sixth group of columns). Its expected 

classification error cost is given by (6) and can be seen in the seventh group of columns. 

The results of multiplying the minimum expected classification error cost by the 

probability of obtaining each signature 𝐫 ∈ 𝑅(𝑆) can be seen in the eighth group of 

columns. The sum of this column is 12.25, which denotes the expected classification 

error cost for the subset as given by the first addend of (9). The second addend of (9) 

indicates the cost of the tests, which is 2.5. Thus, the expected total cost of the subset 

𝑆 = {1,2} is 14.75.  
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Table 3: Calculating the expected total cost for 𝑆 = {1,2} 

𝑅(𝑆)  𝑝𝑆(𝐫|𝑘)  
𝑝𝑆(𝐫)  

𝑝𝑆(𝑘|𝐫)  𝐸𝑆(𝐫|𝑙)  
𝑙𝑆

∗(𝐫)  𝐸𝑆
∗(𝐫)  𝑝𝑆(𝐫)𝐸𝑆

∗(𝐫)   
Test 

1 
Test 

2 N P N P 𝑙 =N 𝑙 =P  

0 0 0.05 0.35 0.19 0.15 0.85 42.57 7.43 P 7.43 1.38  

0 1 0.15 0.35 0.24 0.34 0.66 32.81 17.19 P 17.19 4.13  

1 0 0.2 0.15 0.18 0.62 0.38 19.01 30.99 N 19.01 3.38  

1 1 0.6 0.15 0.40 0.83 0.17 8.49 41.51 N 8.49 3.38  

             

      
∑ 𝑝𝑆(𝐫)𝐸𝑆

∗(𝐫)

𝐫∈𝑅(𝑆)

 

  

12.25  

      
∑ 𝑐𝑖

𝑖∈𝑆

 

  

2.5  

      
Expected total cost: 14.75  

 

In Table 4, for each possible configuration (given in the first column), we present 

the expected classification error cost (second column), the testing cost (third column), 

and the expected total cost, which is the error cost plus the testing cost (in the fourth 

column). One can observe that the configuration {1,2,3}, i.e., when using all the tests, 

is the one that minimizes the cost function (9), resulting in a value of 14.01. 

 

Table 4: The expected classification error cost, testing cost, and expected total cost of each 

configuration 

Configuration 
The expected 
classification 

error cost 
Testing cost Total cost 

{1,2,3} 11.01 3 14.01 
{1,2} 12.25 2.5 14.75 
{1,3} 12.25 2.5 14.75 
{2,3} 15.00 1 16.00 
{1} 12.25 2 14.25 
{2} 18.13 0.5 18.63 
{3} 15.00 0.5 15.50 
{ } 22.50 0 22.50 

 

Interestingly, the second-best configuration is {1}. Adding tests 2 or 3, i.e., using the 

configurations {1,2} or {1,3}, results in the same classification error cost as {1} but 

incurs a higher testing cost; this demonstrates the complex structure of the problem and 

that a simple greedy or local search heuristic is unlikely to solve it. 

Numerical analysis of the optimal decision, as a function of the classification error 

costs (false positive, 𝜆𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒,𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, and false negative, 𝜆𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒,𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) is 

presented in Figure 1. In this figure, the colors denote the optimal configuration. The 

vertical black line illustrates the optimal configuration changes when the false-negative 

error cost ranges from 0 to 100, and the value of the false-positive error cost is fixed at 

35. As seen, the optimal decision can be very sensitive to changes in this parameter. 

The expected classification error when performing all the tests is always smaller than 
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performing other combinations. However, the optimal decision considers the trade-off 

between the expected classification error and the cost of the tests. 

Another analysis is performed to test how changes in the prior probabilities 𝐩(𝑘) 

affect the optimal decision. The results are shown in Figure 2. The parameter 

𝑝(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) changes along the horizontal axis; note that 𝑝(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) = 1 −

𝑝(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒). The rest of the parameters are fixed to their values, as in the original 

example. It is clear that when 𝑝(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) = 1 or 𝑝(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) = 0, i.e., when the 

diagnosis is always negative or always positive, the solution is trivial: tests are not 

required. The number of tests increases as the entropy of the classes increases.  

 

 
Figure 1: An optimal configuration as a function of the false positive and false negative costs. 

 
 

 
Figure 2: The optimal subset of tests (configuration) as a function of the probability of 

diagnoses. For example, for P(Negative)=0.3 the optimal configuration is {1,3}. 

 

Note that this problem could be solved by optimality using an exhaustive search, 

which is valid when the number of tests is small. However, since the number of 

configurations grows exponentially with the number of tests, the problem quickly 

becomes computationally intractable in the number of tests. In the next two sections, 

we present more effective methods to solve large instances of the problem.  

 

1 

2 

{3} 

{2,3} 
{1} 

{1,3} {1,2,3} 

{1,3} 

{No tests} 
{2,3} 

{No tests} 

3 
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4 Integer linear programming formulation and solution method 

This section presents the proposed ILP formulation to address the STCP and the lazy 

constraints generation mechanism that solves it. Following the notation above, we 

define two decision variables. For each test 𝑖 ∈ 𝑁, let 𝑥𝑖 be equal to "1" when the test 

is included in the solution and equal to "0" otherwise. For each reading �̃� ∈ 𝑅, we define 

a binary decision variable 𝑦�̃�𝑘 that indicates whether the reading is classified as 𝑘 ∈ 𝐾.  

Following Equation (6), the expected error cost of each reading �̃� if it is classified 

as 𝑙 ∈ 𝐾 is 𝐸(�̃�|𝑙) =  ∑ 𝜆𝑘𝑙 ∙ 𝑝(𝑘|�̃�)𝑘∈𝐾 . Now, the STCP can be formulated as an ILP: 

 

min ∑ 𝑐𝑖𝑥𝑖

𝑖∈𝑁

 + ∑ 𝑝(�̃�) ∙

�̃�∈𝑅,𝑙∈𝐾

𝐸(�̃�|𝑙) ∙ 𝑦�̃�𝑙 (10) 

subject to 

∑ 𝑥𝑖

𝑖:�̃�𝑖≠�̃�𝑖

≥ 𝑦�̃�𝑘 − 𝑦�̃�𝑘       ∀(�̃�, �̃�) ∈ 𝑅 × 𝑅, 𝑘 ∈ 𝐾 (11) 

∑ 𝑦�̃�𝑘

 𝑘∈𝐾

= 1         ∀�̃� ∈ 𝑅 (12) 

𝑥𝑖 ∈ {0,1}    ∀𝑖 ∈ 𝑁  

 𝑦�̃�𝑘 ∈ {0,1}      ∀�̃� ∈ 𝑅, 𝑘 ∈ 𝐾     (13) 

 

The objective function (10) minimizes the expected classification error and testing 

costs. The set of constraints (11) ensures that every pair of identical readings will have 

the same class. The set of constraints (12) ensures that each reading will be classified 

with a specific class. While the model requires binary values for both types of decision 

variables, once the value of 𝑥𝑖s is fixed, the remaining coefficient matrix is unimodular, 

and thus (13) can be replaced by the nonnegativity constraint of 𝑦�̃�𝑘. 

We first note that the dimension of the ILP (10)-(12), i.e., the number of decision 

variables 𝑦�̃�𝑘 and 𝑥𝑖, is equal to the number of readings multiplied by the number of 

classes plus the number of candidate tests. The number of constraints is quadratic in the 

number of readings and linear in the number of classes, 𝑂( |𝑅|2|𝐾|). In a typical 

application, we expect thousands of readings, which implies millions of constraints, 

whereas the number of candidate tests is typically much smaller. Accordingly, we use 

the lazy constraints scheme to solve the STCP. That is, we solve a relaxed version of 

the problem with only a small subset of the constraints (11), and repeatedly add violated 

instances of the constraint whenever an integer (super optimal) solution is obtained. 

The set of initial instances of constraint (11) consists of those that are related to the 

(�̃�, �̃�) reading pairs that have the smallest number of tests with different outputs, i.e., 

the pairs with a minimum cardinality of {𝑖: �̃�𝑖 ≠ �̃�𝑖}. In our numerical experiment, we 

included in the master problem only instances of (11) where the cardinality was no 

more than 10% of the total number of tests (rounded to the nearest integer). Note that 

these constraint instances are likely to be the tightest since the sum on the left-hand side 

is likely to be the smallest. The rest of the constraints are added to the model only after 

a tentative integer solution that violates them is found. 
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5 Metaheuristics solution methods to the STCP  

This section presents three different methods to address the STCP based on the known 

Tabu Search (TS), Cross-Entropy (CE), and Binary Gravitational Search Algorithm 

(BGSA) metaheuristics, all of them are considered to be of great potential to solve the 

STCP. The TS is a deterministic method that exploits the structure of the STCP, where 

potential solutions are generated based on the current solution (Glover, 1989). In 

contrast, the CE is a random population-based method, where the solution at each 

iteration is tuned according to the best solutions at the last iteration (Rubinstein, 1997). 

Finally, the BGSA is a relatively new stochastic search algorithm where the interaction 

among the solutions is modeled by physical gravitation law (Rashedi et al., 2009). We 

study and analyze all three methods as none of them was found to predominate the 

others over all the scenarios, yet the TS was shown to be more effective in most cases. 

Note that the STCP is often applied within an offline long-term design problem, and 

thus the decision-maker may wish to use all available heuristics and select the best 

solution obtained so far. 

Finally, in terms of notation, recall that a solution to a problem is defined by the 

selected configuration, whereas the mapping of each signature to a class is defined by 

(7). We denote a solution by the characteristic vector 𝐱 of this set, in which 𝑥𝑖 = 1 if 

test 𝑖 is included in the configuration and 0 otherwise. The value of a solution, 

calculated as in (9), is denoted by 𝑔(𝐱). 

 

5.1 The TS method 

The TS method extends the basic local search techniques to facilitate the exploration of 

the solution space beyond local optima. Once a local optimum is reached, the method 

allows one to move to a new solution even if it is inferior. The TS method uses a tabu 

list (TL) to disallow moves that cancel previous moves during several subsequent 

iterations in order to escape a neighborhood of locally optimal solutions. 

The TS algorithm involves three main steps: (a) generate an initial solution and 

initialize the TL to be empty; (b) explore the current solution's neighborhood defined 

by a set of candidate moves, yet excluding moves listed in the TL; and (c) move to the 

best-explored solution and add a new entry to TL to avoid any move that can direct the 

search back to the previous solution. If the TL is longer than a predefined length, the 

algorithm removes its oldest entries. Steps (b) and (c) are repeated up to a predefined 

number of iterations or until some other stopping criterion is satisfied. 

 In our implementation, the initial solution is the empty set (𝐱 = 𝟎). Given a current 

solution 𝐱, its value is evaluated for all possible readings as explained and demonstrated 

in Sections 2 and 3. The neighborhood of 𝐱, 𝑁(𝐱) is defined by three types of moves: 

ADD - add one test that is not included in the current solution; REMOVE - remove one 

test from the current solution; and SWAP - swap a test from the current solution with a 

test that was not included in the solution. The set of neighboring solutions induced by 

each type of the moves mentioned above are denoted by 𝐴(𝐱), 𝑅(𝐱) and 𝑆(𝐱), 

respectively, thus, 𝑁(𝐱) = 𝐴(𝐱) ∪  𝑅(𝐱) ∪ 𝑆(𝐱). Note that |𝐴(𝐱) + 𝑅(𝐱)| = 𝑛 and 

|𝑆(𝐱)| ≤
1

4
𝑛2. Each entry in the tabu list consists of one or two tests that should not be 

added or removed from the solution as long as the entry remains in the list. The ADD 

and REMOVE operations add entries with a single test, while the SWAP operation adds 
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an entry with a pair of tests. One is forbidden for removal and the other for appending. 

If a candidate move involves a test in the tabu list, then its respective solution is 

excluded from the neighborhood. We denote this reduced neighborhood by 𝑁′(𝐱). In 

our implementation, we use a stopping criterion based on the total number of iterations 

to allow a fair comparison with the other methods. However, other criteria used in the 

literature may apply. The main algorithm is outlined as pseudocode in Figure 3. 

 

Figure 3: Pseudocode of the TS algorithm 
 

5.2 The CE Method  

The CE algorithm execute iterative steps, whereby each iteration can be broken down 

into three main phases: (a) generate a random population of solutions using a specified 

probabilistic selection rule; (b) evaluate the value of each of the generated solutions, 

and (c) update the probabilistic selection rule for the next iteration based on the best 

solutions (termed as the elite set) and iterate until some stopping criterion is satisfied.  

At each iteration, we generate 𝑤 solutions using a multi-Bernoulli distribution with 

'success probabilities' 𝐩 = (𝑝1, … , 𝑝𝑛), i.e., 𝐱 = ( 𝑥1, … , 𝑥𝑛 ) such that 𝑥𝑖~𝐵𝑒𝑟( 𝑝𝑖). 

We initialize the probabilities with 𝑝𝑖 = 0.5, for all 𝑖, and update all these probabilities 

at step (c) of each iteration. In a given iteration of the CE, we use 𝐱𝑖
(𝑗)

 to denote the 𝑖th 

test in solution 𝑗, while 𝐱(𝑗) ∈ {0,1}𝑛 is a binary vector that represents solution 𝑗. The 

probabilities 𝑝𝑖 are updated at the end of each iteration based on the best 𝜌𝑤 solutions 

(the elite set) and subject to exponential smoothing with a weight parameter 𝛼 ∈ [0,1]. 

The parameter 𝜌 ∈ (0,1) defines the relative size of the elite set, while 𝑤 is the number 

of solutions that are generated at each iteration. 𝑤 and 𝜌 are selected such that 𝑤𝜌 is an 

integer. Previous studies used 𝜌 = 0.1, i.e., the top ten percent of the solutions are taken 

as the elite set. The indices of the solutions in the elite set of iteration 𝑡 are denoted by 

ℰ𝑡. The parameters of the multi-Bernoulli distribution are updated as follows:  

Initialized   

Set 𝐱, 𝐱∗ and 𝑇𝐿 as empty 

Set 𝑣∗ = 𝑔(𝐱) 

Repeat 

 Set 𝑣 = ∞ 

For each 𝐱′ in 𝑁′(𝐱)  

Set 𝑣′ = 𝑔(𝐱′) 

If 𝑣′ < 𝑣 then  

𝑣 = 𝑣′ 

𝐲 = 𝐱′  

Let 𝑚 be the test(s) by which 𝐱 and 𝐲 differ 

Set 𝐱 = 𝐲  

If 𝑣 < 𝑣∗ then 𝐱∗ = 𝐱 and 𝑣∗ = 𝑣 

Append m as an entry to the TL  

If |𝑇𝐿| is greater than the maximal tabu length, remove its first entry 

Until a pre-determined number of iterations is performed 

Return 𝐱∗, 𝑣∗. 
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𝑞𝑡,𝑖 =

∑ 𝕀
{𝐱𝑖

(𝑗)
=1}𝑗∈ℰ𝑡

𝜌𝑤
 ,     𝑖 = 1, … 𝑛 (14) 

where 𝕀{⋅} denotes an indicator function defined as follows: 

𝕀{𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛} = {
1, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

That is, 𝑞𝑡,𝑖 is the proportion of the solutions that include test 𝑖 in the elite set of iteration 

𝑡. The following exponential smoothing formula is then used to update 𝐩𝑡: 

 

 𝑝𝑡,𝑖 = 𝛼𝑞𝑡,𝑖 + (1 − 𝛼)𝑝𝑡−1,𝑖 ,    𝑖 = 1, … 𝑛 (15) 

 

We use exponential smoothing to prevent the premature convergence of  p𝑡,𝑖 to 0 or 1. 

It has been empirically shown, e.g., by Alon et al. 2005, that a value of 𝛼 between 0.7 ≤

𝛼 ≤ 0.9 often obtains the best results. In this study, we use 𝛼 = 0.8. 

Several types of stopping criteria have been used in the literature, such as i) stop 

when the worst solution in the elite set does not change for a predefined number of 

consecutive iterations; ii) stop when all the elements of 𝐩𝑡 are close enough to 0 or 1, 

and thus no new solutions are likely to be generated; iii) stop after a predefined number 

of iterations or computation time. Combinations of the above may also apply. In our 

implementation, we use the third stopping criterion to enable a fair comparison with 

other studied heuristics given a similar computational effort. 

The pseudocode that describes our CE algorithm is presented in Figure 4. 

 

Figure 4: Pseudocode of the CE algorithm 

 

5.3 The Binary Gravitational Search Algorithm (BGSA) Method 

The Binary Gravitational Search Algorithm (BGSA) is a relatively recent metaheuristic 

inspired by the Newtonian law of gravitation and motion. Solutions are represented by 

vectors and considered as objects (also called agents), and their position in a 

multidimensional space is determined by the coordinates of these vectors. The mass of 

each solution is determined by its objective function value. At each iteration, the 

Initialized 𝐩 such that all test probabilities are equal to 0.5. 

Set 𝑣∗ = ∞ 

Repeat 

For j = 1 to w  

 Generate solution 𝐱(𝑗) such that 𝑥𝑖
(𝑗)

~𝐵𝑒𝑟(𝑝𝑖) 

 Sort the solutions in 𝐱 in non-decreasing order of 𝑔(𝐱(𝑗))     

 Let x[1], x[2], … be the solutions in their sorted order 

If 𝑔൫𝐱([1])൯ < 𝑣∗ 

 𝑣∗ =  𝑔൫𝐱([1])൯ and 𝑥∗ = 𝐱([1]) 

Update 𝐩 using (15) 

Until a pre-determined number of iterations is performed   

Return 𝐱∗, 𝑣∗ 
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positions and velocities of the objects are updated based on their current positions, 

masses and velocities. The mass of each object is then updated based on the population's 

values of solutions. The process is repeated until all the objects are merged into one or 

more heavy objects or when another stopping criterion is met. 

For the implementation of the BGSA for the STCP, consider an initial set of 𝑤 

solutions, each represented by a vector 𝐱(𝑗) ∈ {0,1}𝑛 for 𝑗 = 1,2, … , 𝑤; we refer to each 

coordinate of these vectors 𝑥𝑖
(𝑗)

 as the position of 𝑗th solution in the 𝑖th dimension. These 

values are updated from iteration to iteration, and we use 𝐱(𝑗)(𝑡) to denote the position 

of the solution at iteration 𝑡 of the algorithm. Let us further define  

𝑏𝑒𝑠𝑡(𝑡) = min
𝑗∈{1,…,𝑤}

𝑔 (𝐱(𝑗)(𝑡)).  

𝑤𝑜𝑟𝑠𝑡(𝑡) = max
𝑗∈{1,…,𝑤}

𝑔 (𝐱(𝑗)(𝑡)). 

 
 

Based on these values, one can calculate a normalized measure of each solution 𝑗: 

𝑞𝑗(𝑡) =
𝑔(𝐱(𝑗)(𝑡))−𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡)−𝑤𝑜𝑟𝑠𝑡(𝑡)
. 

 

 

Next, the mass of each solution 𝑗 is updated as follows:  

𝑀𝑗(𝑡) =
𝑞𝑗(𝑡)

∑ 𝑞𝑗′(𝑡)𝑤
𝑗′=1

. (16) 

 

At a specific time 𝑡, the force acting on agent 𝑗1 from agent 𝑗2 is defined as follows:  

𝐹𝑖
(𝑗1,𝑗2)

(𝑡) = 𝐺0 (1 −
𝑡

𝑇
)

𝑀𝑗1
(𝑡) ⋅ 𝑀𝑗2

(𝑡)

∑ |𝑥
𝑖′

(𝑗1)
(𝑡) − 𝑥

𝑖′

(𝑗2)
|𝑛

𝑖′=1 + 𝜀
(𝑥𝑖

(𝑗2)
(𝑡) − 𝑥𝑖

(𝑗1)
), 

 

where 𝐺0 is a gravitational constant, 𝑇 is the total number of planned iterations for the 

algorithm, and 𝜀 is a small positive constant. Using some preliminary experiments, we 

set 𝐺0 = 0.01𝑇 and 𝜀 = 2.2 × 10−16. 

Next, we find an elite set 𝐸𝑡 comprising the best solutions at iteration 𝑡 and generate 

random numbers 𝑝𝑗(𝑡)~𝑈[0,1] for each 𝑗 ∈ 𝐸𝑡. The cardinality of the 𝐸𝑡 is set to ⌈𝜌𝑡𝑤⌉ 

where 𝜌𝑡 linearly decreases from iteration to iteration according to the following 

formula: 

𝜌𝑡 = 1 −
𝑡

𝑇
(1 − 𝜌𝑇), 

where 𝜌𝑇 is a parameter of the algorithm, while in our experiment, we used 𝜌𝑇 = 0.02. 

Next, we define the force that acts on solution 𝑗 in dimension 𝑖 at iteration 𝑡 by: 

𝐹𝑖
(𝑗)(𝑡) =  ∑ 𝑝𝑗′𝐹𝑖

൫𝑗,𝑗′൯
(𝑡)

𝑗′∈𝐸𝑡∖{𝑗}

. 
 

In such a way, at the initial stage, all solutions apply forces on each other, and as the 

iterations progress, only the few best solutions affect all the others. Now, according to 

the law of motion, the acceleration of a solution 𝑗 at iteration 𝑡 in dimension 𝑖 is given 

by: 

𝑎𝑖
(𝑗)

(𝑡) =  
𝐹𝑖

(𝑗)
(𝑡)

𝑀𝑗(𝑡)
. (17) 
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The velocity of an agent is considered as a random fraction of its current velocity added 

to its acceleration: 

𝑣𝑖
(𝑗)(𝑡) = 𝜋𝑗(𝑡) ⋅ 𝑣𝑖

(𝑗)(𝑡 − 1) + 𝑎𝑖
(𝑗)(𝑡 − 1), (18) 

where 𝑣𝑖
(𝑗)(0) is initialized to zero and  𝜋𝑗(𝑡) is drawn from 𝑈[0,1]. Moreover, to 

increase the chance of convergence, the velocity is limited by some parameter 𝑣𝑚𝑎𝑥. 

That is, |𝑣𝑖
(𝑗)

| < 𝑣𝑚𝑎𝑥. We followed (Rashedi et al. 2010) and set 𝑣𝑚𝑎𝑥 = 6. Based on 

the velocity in each dimension, 𝑖, we flip the position of each agent, 𝑗, between 0 and 1 

with probability |𝑡𝑎𝑛ℎ (𝑣𝑖
(𝑗)(𝑡))| and leave it as 𝑥𝑖

(𝑗)
(𝑡) otherwise.  

 

𝑥𝑖
(𝑗)

(𝑡 + 1) = {
1 − 𝑥𝑖

(𝑗)
(𝑡), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  |𝑡𝑎𝑛ℎ (𝑣𝑖

(𝑗)(𝑡))|

𝑥𝑖
(𝑗)

(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(19) 

The BGSA algorithm is outlined as pseudocode in Figure 5. 

Figure 5: Pseudocode of the BGSA algorithm 

 

5.4 Memoization 

Recall that calculating the value, 𝑔(𝐱), for each solution with a given configuration 

requires evaluating the signatures of all the related readings, which is a computationally 

demanding task. Indeed, almost all the running time of the three heuristics described 

above is spent on computing these value evaluations. In some situations, the same 

Initialized  

𝑣∗ = ∞ 

Draw initial population of 𝑤 solutions 𝐱(𝑗), 𝑗 = 1,2, … , 𝑤 

Repeat   

Set = ∞, 𝑤𝑜𝑟𝑠𝑡 = −∞ 

For j = 1 to w  

Evaluate 𝑔൫𝐱(𝑗)൯ 

 If 𝑔൫𝐱(𝑗)൯ < 𝑏𝑒𝑠𝑡 

  𝑏𝑒𝑠𝑡 = 𝑔൫𝐱(𝑗)൯ 

 If 𝑔൫𝐱(𝑗)൯ > 𝑤𝑜𝑟𝑠𝑡  

  𝑤𝑜𝑟𝑠𝑡 = 𝑔൫𝐱(𝑗)൯ 

Calculate 𝑀𝑗    // See (16) 

Calculate 𝑎(𝑗)  // See (17) 

Calculate 𝐯(𝑗)  // See (18) 

Update 𝐱(𝑗)     // See (19) 

If 𝑔൫𝐱(𝑗)൯ < 𝑣∗ 

  𝑣∗ =  𝑔൫𝐱(𝑗)൯ and 𝑥∗ = 𝐱(𝑗) 

Until it reaches the pre-determined number of iterations, 𝑇 

Return the best solution 𝐱(𝑗) 
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solutions may be required multiple times in the same run of the algorithm. To avoid 

repeated calculations, we store each calculated solution's value in a hash table that is 

indexed by the binary representation of the solution. When the algorithms require the 

value of 𝐱, they first check if it already exists in the table. If it exists, the value is 

retrieved; otherwise, the solution is evaluated, and its value is stored in the table. This 

mechanism significantly reduces the running time of all three heuristics and is 

especially beneficial in the last iterations of the two randomized heuristics, namely, the 

CE and BGSA. In our experiments, we created a different memoization hash table for 

each algorithm to benchmark them fairly. However, in practice, the same hash table can 

be used by different algorithms in parallel or sequentially to obtain the best solution. 

 

6 Experimental results 

In the first part of this section (Subsection 6.1), we tested the proposed integer 

programming formulation of the problem together with the lazy constraints generation 

mechanism and compared it to the three heuristic methods for the STCP. In the second 

part (Subsection 6.2), we added a dataset with probabilistic labels to analyze the 

advantages of the STCP.  In the third part (Subsection 6.3), we show the merits of our 

generalization of the STCP by comparing it to the TCP.  

   

6.1 A comparison between the exact and heuristics methods  

In this section, our integer programming formulation with lazy constraints are tested 

and compared with the three heuristic results. We coded the lazy constraint generation 

mechanism in Python 3. The linear programming relaxations were solved using an IBM 

CPLEX 12.10 commercial solver. All three heuristic methods were implemented in 

MATLAB 2018b. The testing environment was an i9-9900K Linux machine with 64 

GB RAM. 

For the evaluation of the algorithms presented above, we used representative 

datasets from the UCI Machine Learning Repository (Dua and Graff, 2019) with up to 

8,124 readings and 68 tests. In some of the datasets, we removed tests and readings to 

eliminate missing values. Moreover, tests with numerical values were discretized by 

dividing their values into quintiles or quartiles (depending on the number of readings).   

Using this data, we estimated the prior probabilities of the classes and the readings 

as well as the conditional probability of each class given a reading. Our algorithms were 

executed based on these estimated probabilities. 

We used three tests cost vectors for each dataset: one with a fixed (unit) cost per 

test and two with randomly generated values as described below. Lastly, three 

classification error cost matrices were generated for each combination of dataset and 

cost vector. All cleaned and processed input data of our experiment are available online 

at Douek-Pinkovich's drive (2020). In total, the use case study contained 45 problem 

instances based on five different UCI datasets. 

In Table 5, we show the number of tests, type of test values (continuous or discrete), 

discretization level (in the case of continuous test values), number of readings, and 

number of classes in the datasets. The information in the table refers to the cleaned data 

after removing some tests and readings to eliminate the missing values.  

 



18 
 

Table 5: Characteristics of the five datasets used in the experiments. 

Dataset Tests Test value 

type 

Discretization Readings Classes 

Wine 12 Continuous Quintiles 6,463 7 

Thyroid 21 Continuous Quintiles 3,103 5 

Mushrooms 21 Discrete - 8,124 2 

Cortex nuclear 68 Continuous Quartiles 1,077 8 

Molecular biology 60 Discrete  - 3,190 3 

 

The Wine Dataset from UCI contains two tables related to red and white wine 

samples, as described in Cortez et al. (2009). We followed Kaggle (Parmar, 2018) and 

used a merged version of this dataset where the type of wine was added as a new feature. 

The class in this dataset is the wine quality score represented by a numerical value in 

the range 3-9. The classification error matrix is based on the distance between the 

classified quality and the true quality (a Toeplitz matrix with values range 0-6). The 

(𝑖, 𝑗) element of the Toeplitz matrix represents the absolute difference between the two 

classes. An error cost matrix proportional to the Toeplitz matrix reflects that missing 

the ordinal class by a greater gap is costlier than minor misses. Specifically, we created 

one matrix that is 20 times the Toeplitz matrix and one that is 30 times that matrix.  

In the Thyroid dataset, there are five classes: four related to pathological conditions 

and one (negative) related to a healthy one. We created two matrices that assign a high 

cost to a false negative diagnosis, a low one to a false-positive diagnosis, and medium 

values to the misdiagnosis of a pathological condition. 

In the Mushrooms Dataset, each reading should be classified as toxic or nontoxic. 

The classification matrices were constructed to reflect the fact that a false negative error 

(classifying a poisonous mushroom as an edible one) is much more expensive or 

dangerous than a false positive error. 

In the Cortex Nuclear Dataset, the classes are described by three binary features that 

define the eight classes. We constructed error cost matrices based on the Hamming 

distance of this binary description of the class, i.e., the distance can be zero, one, two, 

or three. The matrices were created by multiplying these distances by 100 and by 200.  

The Molecular Biology Dataset contains DNA sequences of 60 nucleotides (each 

nucleotide is a test, in our terminology). Each sequence belongs in one of three classes 

(exon-intron, intron-exon, or neither). For this dataset, we used three fixed classification 

error matrices with three different values (low, medium, high). 

Our experiment is full factorial. That is, we tested all combinations of the three test 

cost vectors and three classification error cost matrices – nine runs for each of the five 

datasets. Fractional factorial designs for larger experiments are left for future research. 

For each dataset, we created one fixed test cost vector and two random cost vectors 

that were drawn from a Normal distribution 𝑁(1,0.1) and a Uniform one 𝑈(0,2). The 

Thyroid Dataset from UCI included one test cost vector that we used in our experiment 

after normalizing it to make its mean equal one. In this instance, we used it instead of 

the cost vector with normally distributed values.  

For each dataset, we created three error cost matrices based on particular dataset 

characteristics, while the testing cost scale parameter, 𝛽, was fixed to be one. All these 

error cost matrices have zeros in their diagonal and values off the diagonal, as described 
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in Table 6. The values of the error cost matrix in the experiments were chosen by a trial-

and-error process, in order to find parameter values that do not lead to trivial solutions, 

such as those including all or none of the tests. Note that the values of the error matrix 

in Error cost 2 were obtained by multiplying Error cost matrix 1 by a constant, which 

is equivalent to dividing the value of 𝛽 by the same constant. This setup allows 

examining the trade-off between the total testing and error costs, as discussed below. 

An exception to this is the error cost matrices of the Mushroom dataset, in which our 

goal was to compare cases with various magnitude of difference between the costs of 

false positive and false negative errors.  

In a realistic setting, the true ratio between the testing and the error costs is 

frequently unknown to the designer. Therefore, we recommend solving the problem for 

multiple values of 𝛽 and construct an efficacy frontier between the two components of 

the objectives function. The designers can then pick a testing configuration from the 

efficacy frontier that fits their needs.  

 

 

Table 6: Description of the classification error cost matrices. 

Dataset Error cost matrix 1 Error cost matrix 2 Error cost matrix 3 

Wine 20 × Toeplitz matrix 

{0,..,6}  

30 × Toplitz matrix 

{0,..,6} 

50 at each off-diagonal 

element  

Thyroid 1500 to false negative  

600 to false positive 

1200 other errors 

3000 to false negative  

1200 to false positive 

2400 other errors 

1500 at each off-diagonal 

element 

Mushrooms* 300 to false positive 

500 to false negative 

100 to false positive 

400 to false negative 

50 to false positive 

700 to false negative 

Cortex 

Nuclear 

100 × 

ℎ𝑎𝑚𝑚𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

200 ×

 ℎ𝑎𝑚𝑚𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

300 at each off-diagonal 

element 

Molecular 

Biology** 

30 at each off-diagonal 

element 

60 at each off-diagonal 

element 

120 at each off-diagonal 

element 

* In the Mushrooms Dataset, Error cost matrix 3 is not fixed. 

** In the Molecular Biology Dataset, all error cost matrices are fixed. 

 

We conducted some preliminary experiments to decide upon some of the parameters 

of the algorithm. We found that the CE works well with iterations of 20𝑛 solutions and 

typically converges before the 50th iteration. We found that the best number of solutions 

per iteration in BGSA is not affected by the number of tests and that the algorithm 

works well with 100 solutions per iteration. To make a fair comparison between the CE 

and BGSA, we set the number of iterations in BGSA to 10𝑛 so that we kept the total 

number of evaluated solutions to approximately 1000n in both methods. In both cases, 

many solutions were sampled more than once and were retrieved from the hash table 

without being reevaluated. Since the TS is a much faster heuristic, we run it with a limit 

of 90 iterations but repeat each run three times with tabu list lengths of 0, 2, and 4, while 

keeping the hash table from iteration to iteration. Note that setting the tabu length to 0 

is equivalent to a naïve local search. The reported solution values for the TS are the best 

out of the three. We note that no single alternative list length predominates the others. 

The solution times reported for the TS are the sums of the three runs with the different 
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tabu lengths. All the other tuning parameters of the heuristic methods are specified in 

Section 5.  

We applied the three heuristic methods for each of the 5×3×3 combinations of 

datasets, error cost matrices, and test cost vectors. For all instances, we also computed 

the exact optimal solution by the lazy constraints’ generation mechanism. For this 

method, we allocated up to 24 hours to each instance, and we were able to solve 39 out 

of the 45 benchmark problems. The six instances that we could not solve were all based 

on the Molecular Biology dataset. Table 7 presents all results for the smaller datasets 

(Wine, Thyroid, and Mushrooms). 

For each run, the solution value is presented first, and optimal ones (obtained from 

the lazy constraints generation mechanism) are in boldface. Next, the two components 

of the solution values are listed – the expected error cost and the tests cost. In addition, 

the iteration number when the best solution is first found (only from the heuristic 

methods) and the solution times in seconds are displayed. It can be seen that we succeed 

in achieving the exact solution using our lazy constraints mechanism in all of these 

instances.  

In Table 8, the same results are reported for the larger datasets, namely, Molecular 

Biology and Cortex Nuclear. Here, we could not achieve the exact solution using the 

lazy constraints mechanism for all these instances. Thus, we added a column for the 

lazy constraints (denoted as LC) solution that was achieved within 24 hours. The 

solution values in bold are the best found using the three heuristic methods or the lazy 

constraints generation method.    

It is apparent from Tables 7 and 8 that none of the three solution methods 

consistently provide a better solution than the others. All instances of the three smaller 

datasets were solved to optimality using both CE and BGSA and the TS while missing 

the optimal solutions occurred in only one case out of the 27. Thus, to save space in the 

table, a separated column for the lazy constraints’ solution values was not added. In the 

six instances that could not be solved to optimality within the 24-hour time limit, the 

best solution found was similar to the one obtained by the heuristics, but the lower 

bound provided by the solver was very weak (with optimality gaps of 44-59%). These 

results support the strength of these heuristic solution methods.  

In the larger datasets, the TS provided the best solutions (or the optimal ones, when 

it obtained by our exact method) in 14 out of 18 instances and missed the best solution 

within a small margin of up to 1.5%. In these datasets, the CE and BGSA found the 

best solutions in 8 and 7 cases, respectively. 

In terms of solution times, the heuristic methods are up to approximately 100 times 

faster than the implementation of the lazy constraint’s solution algorithm.  

We further observed that the best solutions in almost all the runs of the three 

heuristic methods were found in an early iteration (relative to the number of allowed 

iterations), which implies that with the other tuning parameters used, our stopping 

criteria were correct. However, it may be the case that other criteria could save 

computation time without sacrificing quality. Lastly, it seems that in most of the cases, 

the TS outperforms the two other heuristics in terms of computation time. However, 

since the STCP is a long-run design problem, a good practice would be to apply both 

all three heuristics and lazy constraints generation mechanism. 
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Table 7: Result summary for Wine, Thyroid, and Mushrooms datasets. 

*Except in the Thyroid dataset, where the cost vector was taken from UCI 

Test 

cost 

vector 

Error 

cost 

matrix 

Parameters 

Wine Thyroid Mushrooms 

TS BGSA CE TS BGSA CE TS BGSA CE 

fixed 1 

Solution value 11.602 11.602 11.602 17.058 17.058 17.058 4 4 4 

Expected error cost 4.602 4.602 4.602 7.058 7.058 7.058 0 

 
 

0 0 

Tests cost 7 7 7 10 10 10 4 4 4 

# of iterations until best solution 10/90 2/120 3/50 12/90 106/210 10/50 6/90 66/210 11/50 

Solution time (sec.) 19.2 108.2 64.4 32.3 191.9 103.0 22.7 188.1 56.1 

fixed 2 

Solution value 13.765 13.765 13.765 23.762 23.762 23.762 3.591 3.591 3.591 

Expected error cost 5.765 5.765 5.765 12.762 12.762 12.762 0.591 0.591 0.591 

Tests cost 8 8 8 11 11 11 3 3 3 

# of iterations until best solution 10/90 4/120 4/50 13/90 124/210 10/50 4/90 132/210 10/50 

Solution time (sec.) 36.7 107.4 62.3 38.5 183.8 96.9 17.3 180.2 54.3 

fixed 3 

Solution value 15.388 15.388 15.388 23.568 23.568 23.568 3.295 3.295 3.295 

Expected error cost 7.388 7.388 7.388 12.568 12.568 12.568 0.295 0.295 0.295 

Tests cost 8 8 8 11 11 11 3 3 3 

# of iterations until best solution 10/90 11/120 4/50 13/90 115/210 10/50 4/90 98/210 9/50 

Solution time (sec.) 32.7 108.7 61.4 26.4 192.6 89.7 15.2 175.1 58.0 

Normal* 1 

Solution value 11.691 11.691 11.691 40.122 39.609 39.609 4.014 4.014 4.014 

Expected error cost 4.601 4.601 4.601 40.122 37.609 37.609 0.217 0.217 0.217 

Tests cost 7.090 7.090 7.090 0 2 2 3.797 3.797 3.797 

# of iterations until best solution 8/90 4/120 4/50 1/90 102/210 9/50 5/90 110/210 13/50 

Solution time (sec.) 25.8 105.4 60.3 2.4 60.9 22.4 23.0 178.3 78.0 

Normal* 2 

Solution value 13.881 13.881 13.881 60.991 60.991 60.991 3.895 3.895 3.895 

Expected error cost 5.765 5.765 5.765 27.071 27.071 27.071 0.098 0.098 0.098 

Tests cost 8.116 8.116 8.116 33.920 33.920 33.920 3.797 3.797 3.797 

# of iterations until best solution 9/90 1/120 4/50 13/90 129/210 13/50 5/90 119/210 13/50 

Solution time (sec.) 28.9 106.7 59.4 20.6 129.4 70.0 11.0 168.6 68.0 

Normal* 3 

Solution value 15.504 15.504 15.504 40.122 40.122 40.122 3.846 3.846 3.846 

Expected error cost 7.388 7.388 7.388 40.122 40.122 40.122 0.049 0.049 0.049 

Tests cost 8.116 8.116 8.116 0 0 0 3.797 3.797 3.797 

# of iterations until best solution 10/90 8/120 5/50 1/90 72/210 12/50 6/90 113/210 11/50 

Solution time (sec.) 17.9 110.4 62.5 3.0 55.0 21.7 10.9 174.3 68.3 

Uniform 1 

Solution value 12.369 12.369 12.369 15.790 15.790 15.790 2.235 2.235 2.235 

Expected error cost 5.471 5.471 5.471 8.121 8.121 8.121 0.492 0.492 0.492 

Tests cost 6.898 6.898 6.898 7.669 7.669 7.669 1.743 1.743 1.743 

# of iterations until best solution 8/90 1/120 4/50 12/90 131/210 11/50 6/90 128/210 10/50 

Solution time (sec.) 33.2 94.4 55.9 36.4 177.5 95.0 11.2 198.6 65.1 

Uniform 2 

Solution value 15.004 15.004 15.004 22.159 22.159 22.159 2.137 2.137 2.137 

Expected error cost 7.288 7.288 7.288 21.743 21.743 21.743 0.394 0.394 0.394 

Tests cost 7.716 7.716 7.716 0.416 0.416 0.416 1.743 1.743 1.743 

# of iterations until best solution 9/90 10/120 5/50 13/90 119/210 12/50 6/90 105/210 9/50 

Solution time (sec.) 22.7 103.7 60.0 33.5 184.5 93.0 7.2 174.6 64.5 

Uniform 3 

Solution value 16.974 16.974 16.974 22.183 22.183 22.183 2.038 2.038 2.038 

Expected error cost 7.426 7.426 7.426 21.767 21.767 21.767 0.295 0.295 0.295 

Tests cost 9.548 9.548 9.548 0.416 0.416 0.416 1.743 1.743 1.743 

# of iterations until best solution 11/90 8/120 4/50 13/90 128/210 7/50 9/90 143/210 12/50 

Solution time (sec.) 28.5 100.7 60.2 20.8 187.3 95.8 13.4 170.0 60.3 
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Table 8: Result summary for Cortex Nuclear and Molecular Biology datasets. 

 

Test 

cost 

vector 

Error 

cost 

matrix 

Parameters 

Cortex nuclear Molecular biology 

TS BGSA CE LC TS BGSA CE LC 

fixed 1 

Solution value 7.371 7.650 8.093 7.371 7.103 7.969 7.828  

Expected error cost 0.371 0.650 0.093 0.371 3.103 0.969 0.828  

Tests cost 7 7 8 7 4 7 7  

# of iterations until best solution 9/90 642/680 45/50 --- 5/90 569/600 49/50  

Solution time (sec.) 261.6 357.8 315.3 57,109 405.6 1561.0 1342.0 >day 

fixed 2 

Solution value 7.743 8.371 8.371 7.743 8.282 8.395 8.357  

Expected error cost 0.743 0.371 0.371 0.743 0.282 0.395 0.357  

Tests cost 7 8 8 7 8 8 8  

# of iterations until best solution 9/90 674/680 33/50 --- 23/90 521/600 46/50  

Solution time (sec.) 264.7 357.7 320.7 56,509 1230.0 1571.0 1417.5 >day 

fixed 3 

Solution value 8 8.836 8.279 7.836 8.564 8.978 8.865  

Expected error cost 0 0.836 0.279 0.836 0.564 0.978 0.865  

Tests cost 8 8 8 7 8 8 8  

# of iterations until best solution 10/90 650/680 42/50 --- 23/90 565/600 20/50  

Solution time (sec.) 269.3 357.4 322.8 59,740 1230.7 1562.6 1456.3 >day 

Normal 1 

Solution value 6.852 7.353 6.747 6.747 6.760 6.760 6.760  

Expected error cost 0.464 0.372 0.464 0.464 0.903 0.903 0.903  

Tests cost 6.388 6.981 6.283 6.283 5.857 5.857 5.857  

# of iterations until best solution 10/90 645/680 42/50 --- 29/90 558/600 41/50  

Solution time (sec.) 169.1 354.2 312.5 10,866 528.8 1539.6 1192.8 >day 

Normal 2 

Solution value 7.056 7.293 7.458 7.056 7.189 7.189 7.189  

Expected error cost 0.185 0.186 0.371 0.185 0.470 0.470 0.470  

Tests cost 6.871 7.107 7.087 6.871 6.719 6.719 6.719  

# of iterations until best solution 40/90 659/680 50/50 --- 32/90 581/600 36/50  

Solution time (sec.) 194.4 354.4 322.2 12,288 702.7 1564.3 1374.6 >day 

Normal 3 

Solution value 7.087 7.771 7.274 7.087 7.675 7.660 7.652  

Expected error cost 0 0 0 0 0.790 0.941 0.753  

Tests cost 7.087 7.771 7.274 7.087 6.885 6.719 6.899  

# of iterations until best solution 86/90 645/680 49/50 --- 43/90 570/600 40/50  

Solution time (sec.) 292.3 350.4 320.5 7,151 980.4 1541.2 1396.3 >day 

Uniform 1 

Solution value 2.224 2.224 2.224 2.224 1.758 1.758 1.758 1.758 

Expected error cost 0.186 0.186 0.186 0.186 0.301 0.301 0.301 0.301 

Tests cost 2.038 2.038 2.038 2.038 1.457 1.457 1.457 1.457 

# of iterations until best solution 30/90 615/680 37/50 --- 13/90 526/600 31/50 --- 

Solution time (sec.) 169.3 341.6 277.2 178 214.1 1467.9 1082.7 921 

Uniform 2 

Solution value 2.307 2.295 2.307 2.295 1.969 1.969 1.969 1.969 

Expected error cost 2.094 0 2.094 0 0.151 0.151 0.151 0.151 

Tests cost 0.213 2.295 0.213 2.295 1.818 1.818 1.818 1.818 

# of iterations until best solution 21/90 609/680 39/50 --- 15/90 534/600 29/50 --- 

Solution time (sec.) 258.8 342.0 292.0 161 623.0 1465.9 1099.6 804 

Uniform 3 

Solution value 2.295 2.307 2.307 2.295 2.119 2.119 2.119 2.119 

Expected error cost 0 2.094 2.094 0 0.301 0.301 0.301 0.301 

Tests cost 2.295 0.213 0.213 2.295 1.818 1.818 1.818 1.818 

# of iterations until best solution 50/90 620/680 30/50 --- 16/90 533/600 33/50 --- 

Solution time (sec.) 303.4 340.0 290.6 76 690.0 1468.0 1126.5 1252 
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The trade-off between the total testing and error costs is demonstrated in Tables 7 

and Table 8, for the obtained optimal solutions. Note that Error cost matrix 2 is a 

constant multiplication of Error cost matrix 1 (except for the Mushrooms dataset). Such 

a multiplication is equivalent to the division of 𝛽 by the same factor. That is, Error cost 

matrix 1 represents higher 𝛽 values than Error cost matrix 2. As expected, increasing 

the error cost (or equivalently decreasing the testing costs) would result in an optimal 

solution that consist of additional tests.  

In Table 9, we present some aggregated statistics that measure our memorized 

mechanism's success for the three heuristic methods. In the first row, we present the 

average number of solutions that are evaluated for each of the nine instances. In the 

second row, we present the average number of times when the required solution could 

be obtained from the hash table (memoized hits), and thus, there was no need to 

reevaluate it. The ratio between the number of memoized hits and the total number of 

scanned solutions (actually evaluated and retrieved from the memoize) is presented in 

the third row, entitled "Frac. hits rate." In the fourth row, we give the ratio between the 

number of evaluated solutions and the number of all the possible ones.  

It can be seen that for all the three algorithms, the hash table is beneficial, especially 

in instances with a small number of tests. When the number of tests grows, the hash 

table is effective mostly for the TS algorithm that searches in previous good solutions 

but not so much for the BGSA and CE. We note that for all three methods, the fraction 

of evaluated solutions approaches zero as the number of tests grows. Given that all three 

algorithms spend very most of their computation time in the evaluation of solutions, 

this implies that their solution time is much shorter than the time needed for complete 

enumeration.  

 

Table 9: Statistics of the memorization mechanism. 

Solution 

method 
Measure Wine Thyroid Mushrooms 

Cortex 

nuclear 

Molecular 

biology 

 # Tests 12 21 21 68 60 

TS 

# of evaluations 

# of memoized hits 

Frac. hits rate 

Frac evaluated 

558 

4,055 

0.88 

0.14 

1,685 

16,664 

0.91 

0.0008 

2,329 

15,208 

0.87 

0.0011 

50,047 

68,128 

0.58 

1.7 × 10−16 

29,062 

62,248 

0.68 

2.5 × 10−14 

BGSA 

# of evaluations 

# of memoized hits 

Frac. hits rate 

Frac evaluated 

2,376 

9,624 

0.80 

0.58 

13,101 

7,899 

0.38 

0.0062 

13,989 

7,011 

0.33 

0.0067 

64,136 

3,864 

0.06 

2.2 × 10−16 

56,346 

3,654 

0.06 

4.9 × 10−14 

CE 

# of evaluations 

# of memoized hits 

Frac. hits rate 

Frac. evaluated 

1,342 

10,658 

0.89 

0.33 

5,858 

15,142 

0.72 

0.0028 

6,007 

14,993 

0.71 

0.0029 

63,769 

4,231 

0.06 

2.2 × 10−16 

52,298 

7,702 

0.13 

4.5 × 10−14 
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6.2 Probabilistic Dataset 

In Section 6.1, the proposed solution was applied to instances of the STCP problem that 

are degenerated in the sense that each reading is mapped deterministically to a single 

class. As indicated earlier, the STCP model is relevant for such cases and differs from 

the GTCP model since it is capable of considering the trade-off between the 

classification accuracy and the testing cost. Another virtue of the STCP model is that it 

is capable of dealing with noisy input, i.e., when each reading indicates a distribution 

vector over the classes. In this section, we apply the TS on the noisy MNIST dataset of 

handwritten digits that obtains probabilistic input labels of the digits for each reading. 

This dataset was first presented in Gruber et al. (2021). It is an adaptation of the well-

known deterministic version of MNIST that was introduced at LeCun et al. (2010). 

Moreover, the MNIST dataset has been used to analyze and reduce the images 

classification error in a noisy environment (e.g., Huang et al., 2015, Cheng et al., 2020) 

and we further discuss this point later in this section.  

The MNIST dataset contains 10,000 black and white images (readings). Each image 

consists of 28 × 28 pixels, i.e., 784 pixels (that represent tests in this context). The 

value of each pixel is a number from 0 to 255 that represents its greyscale. Each reading 

is represented by ten probabilistic labels (the number of digits).  For example, an image 

may be classified as the digit '7' with a probability of 0.8, the digit '1' with a probability 

of 0.15, and the digit '4' with a probability of 0.05. 

Since the range of the possible pixel outputs is very large with 256 different possible 

levels, we consider these outputs and discretized them to quantiles representing two, 

four, and eight color levels. Figure 6 shows for illustration purpose the four-color levels 

of one of the images from the dataset.  

 

  

  

Figure 6: Four-color levels of a noisy image from the MNIST dataset. 
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Since the MNIST dataset is larger than the datasets that were examined in Section 

6.1, we applied only the TS heuristic that was shown to be the fastest (and efficient) 

heuristic. We used a single test cost vector with a fixed (unit) cost per pixel and four 

classification error cost matrices with 900, 1800, 3600, and infinity in each of the off-

diagonal elements. Since the solution is determined by the ratio between the error cost 

and the testing cost, using infinity error cost is equivalent to setting the testing cost as 

zero, which implies using all the pixels to identify the digits. The processed input data 

for our experiment is available online at Douek-Pinkovich's drive (2020). 

Table 10 presents all results for the three-color discretization levels of the noisy 

MNIST dataset. For each solution, the error probability is presented first. Next, the 

number of tests (pixels) that minimizes the expected cost. In addition, the table shows 

the iteration number in which the best solution is first found and the solution times in 

seconds. It can be seen that although the noisy MNIST dataset is significantly large, the 

proposed method can still find solutions in a reasonable time for a design problem that 

needs to be solved once in a lifetime of the system. 

Table 10 shows that the TS significantly reduces the number of pixels (tests) needed. 

For each color level, the error probabilities decrease slightly when the input cost of the 

errors increases. The smallest error probability is obtained with infinity error cost and 

naturally requires using all the 784 tests. This is clearly the lower bound on the 

obtainable error probability. However, one can observe that it is only slightly smaller 

than the error probability that can be obtained when using a significantly smaller 

number of tests. Expectedly, as the grayscale levels of the images decrease, more pixels 

are required to identify the digits since the images become more distorted.   

As Gruber et al. (2021) kindly made their data available to us, in an additional 

experiment, we reduced the noise over their MNIST dataset, by using distribution over 

the classes that are closer to the undistorted ones. In this case, the lower bound on the 

obtainable error probability is less than 0.1, and the TS error probability (with an error 

cost matrix of 900 on the two-color levels data) is 0.118. Thus, this experiment shows 

that relying on 20 pixels is enough for a reduced error probability settings, that is close 

to the lower bound. 

As indicated above, note that reducing the images' classification error in a noisy 

environment by properly analyzing a limited number of pixels can be related to the 

growing field of adversarial learning. In particular, it was found that despite the fact 

that Deep Neural Networks (DNN) are significantly good classifiers, these models are 

not typically robust (Szegedy et al., 2013). That is, by introducing a small perturbation 

to the model input, the model classification could change significantly. It has been 

shown that an accurate DNN model can be fooled into misclassifying typical data points 

by introducing a human-indistinguishable perturbation of the original inputs. Therefore, 

securing a correct classification by protecting a limited number of pixels (tests in our 

case) can be a relevant application to the proposed STCP in future research. Such a 

direction could also include the analysis of fewer inputs on Generative Adversarial 

Network (GAN) in the field of computer vision for image synthesis. Related research 

in this direction includes, for example, Cheng et al. (2020) that analyzed different 

variants of GAN for image generation on the MNIST dataset and evaluated results 

based on classification accuracy, as well as Huang et al. (2015) that proposed a learning 

method that attempts to minimize misclassification errors against the adversary.  
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Table 10: Result Summary for the noisy MNIST dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3 A comparison between the STCP and the TCP 

This subsection addresses one of the merits of the STCP model by comparing its 

configurations to the ones obtained from the GTCP model. Recall that the GTCP does 

not allow classification errors and thus, focuses on problem instances that can (with a 

sufficient number of tests) be classified deterministically. Therefore, each reading is 

mapped to a unique class with probability 1. Yet, even for such instances, it may be 

desired to allow a small probability of errors because often it is cheaper to absorb the 

error cost and save on the testing costs. 

For a comparison between the two models, we adapted the datasets used in Douek-

Pinkovich et al. (2020) that are available in the UCI repository. We set the cost of each 

sensor (test) to 1, so the value of the solution of the GTCP is the minimal number of 

sensors that are sufficient to map the readings deterministically to their classes. For the 

input of the STCP, we used the same sensor costs. In addition, we created three error 

cost matrices denoted by Λ𝑙𝑜𝑤, Λ𝑚𝑒𝑑, Λℎ𝑖𝑔ℎ.  The elements of these matrices have fixed 

positive values except the diagonal, where the elements are zeros. The fixed values of 

the positive elements are selected based on the other parameters of the instances. 

For each dataset, we estimated the prior probabilities of the classes and the readings 

based on their frequency in the input data. We solved the STCP using the exact method 

presented in this paper and the GTCP instances using an exact method presented in 

Douek-Pinkovich et al. (2020). The experiment consists of 21 problem instances based 

on seven different UCI datasets with three different error cost matrices each. We  

limited the running time of our algorithm to 24 hours for each instance. If the algorithm 

did not converge within this period, we report the best-found solution and mark the 

instance with an asterisk (*). 

Error cost 

matrix 
Parameters 

TS  

2 color-levels 4 color-levels 8 color-levels 

900 

Error probability 0.1751 0.1742 0.1736 

Number of tests 19 11 10 

# of iterations until the best solution 90/90 40/90 17/90 

Solution time (sec.) 80,136 157,300 80,171 

1800 

Error probability 0.1738 0.1735 0.1736 

Number of tests 21 12 10 

# of iterations until the best solution 59/90 17/90 17/90 

Solution time (sec.) 105,260 168,490 83,068 

66/90 

Error probability 0.1735 0.1735 0.1737 

Number of tests 22 12 10 

# of iterations until the best solution 79/90 17/90 66/90 

Solution time (sec.) 110,860 189,400 149,840 

∞ Error probability (Lower Bound) 0.1734 0.1734 0.1734 
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Let us note that in the experimental setting presented above, the solutions of the 

GTCP are always feasible for the STCP and have the same objective function value. 

Therefore, the optimal solution values of the GTCP can be considered as upper bounds 

to the optimal solution of the STCP. 

In Table 11, we present the result of this experiment. A summary of the datasets is 

presented in the four first columns. In the next column, we present the solution value 

of the GTCP, which is, in this case, the number of selected tests. Columns 4-6 of the 

table show the fixed positive values in Λ𝑙𝑜𝑤, Λ𝑚𝑒𝑑, Λℎ𝑖𝑔ℎ. In the last three columns, we 

present the testing cost and error probability under each of the three error cost matrices 

of the STCP model.  Note that the error probability in our setting can be obtained as the 

ratio between the expected classification error cost of the solution and the value of the 

positive elements in the error cost matrices. 

As expected, when the values of the fixed positive elements of the error cost matrix 

are high enough, the solutions of the STCP and GTCP coincide because the optimal 

solution is to avoid classification errors completely. This outcome can be achieved by 

selecting the same set of tests as in the GTCP. In fact, we selected the positive fixed 

values of Λℎ𝑖𝑔ℎ to be high enough to assure such an outcome. For lower error costs, it 

is more profitable to absorb some errors with small probabilities and to save on the 

tests. When the positive fixed values of Λ are low enough, it is optimal to use no tests 

at all. In this case, there is only one (empty) signature that is mapped to the class with 

the highest prior probability, and the error costs for all other classes are incurred. One 

can view the solutions for different error cost matrices as points on the efficiency 

frontier of a bi-objective problem where the goal is to minimize the testing cost and the 

expected error cost. Note that in the letter recognition instances with Λ𝑙𝑜𝑤 and Λ𝑚𝑒𝑑, 

optimal solutions could not be achieved within the 24-hour time limit, and thus we 

report there on the best-found solutions. 

 

Table 11: A comparison between the STCP with three levels of error costs and the TCP 

Dataset summary GTCP 

testing 

cost 

(number 

of tests) 

Error costs matrices 

(positive elements) 

STCP solution  

testing cost (error probability) 

Name Tests Readings 

 

Classes Λ𝑙𝑜𝑤  Λ𝑚𝑒𝑑 Λℎ𝑖𝑔ℎ Λ𝑙𝑜𝑤  Λ𝑚𝑒𝑑 Λℎ𝑖𝑔ℎ 

Monk 1 6 432 2 3 3 6 9 0 (.5000) 1 (.2500) 3 (0) 

Monk 2 6 432 2 6 9 18 27 0 (.3288) 0 (.3288) 6 (0) 

Monk 3 6 432 2 3 5 25 45 1 (.1940) 2 (.0276) 3 (0) 

Zoo 16 101 7 5 20 80 120 3 (.0495) 4 (.0099) 5 (0) 

Tic-tac-toe 9 958 2 8 20 120 240 0 (.3465) 7 (.0042) 8 (0) 

Chess 36 3,196 2 29 3000 6000 9000 24 (.0009) 25 (.0006) 29 (0) 

Mushrooms 21 8,124 2 4 150 300 450 2 (.0059) 2 (.0059) 4 (0) 

Letter 

recognition 

16 20,000 26 11 300 900 18000 8 (.0017)* 9 (.0004)* 11 (0) 

*The reported solutions are the best found within the 24-hour time limit.  

 

The results presented in Table 11 demonstrate the advantage of using the STCP 

model even when the reading can be mapped deterministically to classes. The model 

allows the planner to consider and address the trade-off between testing cost and the 

risk of errors rather than always choosing the expensive (and not necessarily feasible) 

alternative of avoiding classification errors at all costs. 
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7 Conclusions 

This paper introduces a practical problem whereby decisions about the test 

configuration must be made at the design phase of various systems and processes. The 

goal is to minimize the sum of the expected error cost associated with classification 

errors and the testing cost. The STCP is a generalization of the deterministic variant of 

the minimum TCP as well as the GTCP; both are known to be intractable. 

We present an exact solution method for the STCP based on an ILP with a large 

number of constraints that can be added as lazy constraints. The applicability of the 

solution is demonstrated using some instances adapted from the UCI repository. While 

this paper presents the first successful exact solution method for STCP, it is still not 

capable of consistently solving large instances with reasonable computational 

resources. Therefore, we also present three heuristic methods. Our numerical 

experiments show that the three proposed heuristic solution methods are all effective. 

Specifically, for a given budget of computational effort, the TS method appears to be 

superior to the CE and BGSA. However, since none of these methods consistently 

predominates the others, when computational resources are available, all the three 

methods as well as the lazy constraints should be applied if possible. We believe that 

this situation is common since the STCP model can be typically implemented within an 

offline long-term design problem. 

The STCP is related to the well-studied feature selection problem, and it may be the 

case that similar solution methods can be applied to it. However, solutions to the feature 

selection problem should be evaluated jointly using a classification method to examine 

their predictive power and control their sensitivity to overfitting and underfitting 

effects, which is a different objective than that of the STCP and left for future research.  
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