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Abstract 

The well-studied Test Collection Problem (TCP) selects a minimal set of binary tests 

needed to correctly classify the state of a system. This model has applications in various 

domains, such as the design of monitoring systems in engineering, communication and 

healthcare. In this paper, we define the Stochastic Test Collection Problem (STCP) that 

generalizes the TCP. While the original TCP assumes that each combination of the 

outputs of the tests can be mapped into a class, in the STCP, these combinations are 

mapped to probability distributions over the classes. Moreover, each test and each type 

of classification error is associated with some cost. The objective is to select a subset 

of tests that minimize the weighted sum of the tests’ costs and the expected cost of the 

classification errors. The STCP further generalizes the TCP by allowing general 

categorical results of the tests rather than binary ones. We apply three metaheuristic 

methods for the STCP, namely, Tabu Search (TS), Cross-Entropy (CE), and Binary 

Gravitational Search Algorithm (BGSA). These methods were tested on realistic and 

publicly available datasets and shown to be successful by comparing their solutions to 

the optimal ones obtained by an exhaustive search. The latter procedure requires 

tremendous computational effort and is therefore applicable only to relatively small 

instances of the problem. The solutions of larger instances, as obtained using the three 

heuristics methods, were also compared with each other. 
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1 Introduction 

Consider the following settings. One is given a set of feasible tests with categorical 

outputs and all possible combinations of these tests’ results for a population of tested 

subjects (e.g., patients). Each such combination of the tests’ results is called reading 

and is associated with a discrete probability distribution over a given finite (and 

typically small) set of classes (e.g., diagnoses). Each reading is also associated with a-

priori probability (i.e., relative frequency in the population). Each of the tests is 

associated with a testing cost and each possible type of classification error is associated 

with an error cost. A classification error type A-B is the error of classifying a subject 

as B, while it actually belongs to A. We refer to a subset of selected tests as a 

configuration. A possible combination of the results of a given configuration is called 

a signature. Clearly, given a small configuration, different readings may result in an 

identical signature and hence are indistinguishable. The question of adding additional 

tests in this case is economical – considering both the testing costs and the error costs 

as   signatures into a class with the goal of minimizing the sum of the expected 

classification errors and testing costs. The tradeoff between the two components of the 

objective function is straightforward, since often executing more tests (or more accurate 

and expensive ones) is likely to reduce the likelihood of classification errors and thus 

their excepted cost, but increase the total testing cost (e.g., adding more blood tests to 

improve the patient’s diagnosis). The challenge of (and the interest in) the problem 

stems from the fact that the classification can rarely be inferred from the signature of a 

single test. Instead, it is concluded from a combination of the results obtained from 

different tests – the signature – and even then there is a chance of error. A formal 

definition of the problem requires additional notation and is introduced in Section 2. 

The STCP generalizes the well-studied Test Collection Problem (TCP), as discussed 

in Garey and Johnson (1979), Halldórsson et al. (2001) and De Bontridder et al. (2003), 

to name only few examples. Most importantly, instead of a one-to-one relation between 

readings and classes, it allows a probabilistic many-to-many relation and thus enables 

various readings-to-class mappings, as often happens in reality. In such a case, often a 

deterministic diagnosis is impossible, hence the need to introduce the classification 

error cost into the objective function. Moreover, the original version of the TCP 

assumes that the cost of all the tests is identical, and this merely seeks to minimize the 

number of tests instead of the most cost-effective ones. Clearly, the TCP is a special 

case of the STCP, where each reading is associated deterministically with one class, the 

costs of all the tests are set to one, and the classification error costs are set to 

prohibitively large numbers (e.g., larger than the number of tests). Note that the TCP is 

known to be NP-Hard (Garey and Johnson, 1979) and APX-Hard (Halldórsson et al. 

2001, De Bontridder et al. 2003). Therefore, in this study we are not trying to generate 

an efficient, exact algorithm for the STCP, but we focus rather on effective heuristic 

methods to solve it. 

While the TCP, and its stochastic generalization presented here, can be well 

motivated by a medical testing problem (e.g., selecting the most cost-effective panel of 

routine medical tests), equivalent problems may occur when monitoring any complex 

system; for example, water networks, manufacturing plants, greenhouse facilities, 

vehicles and, naturally, the human body. Modern monitoring systems often comprise 

many sensors connected to a central processing unit that detects and classifies the 
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current state of the system. It is often the case that the information obtained from the 

sensors is noisy and cannot be mapped deterministically to a single class. A major task 

in the design phase of these systems is to select a subset of sensors with a minimal cost 

out of potentially very large (and expensive) sets.  

To be comparable with the error costs, the testing cost, in our context, is the cost of 

using the sensor for a single reading. For example, the cost associated with the 

installation of the sensors should be amortized in terms of a single usage, the equivalent 

of performing one test.   

The STCP extends a previous problem introduced by Bertolazzi et al. (2016) and 

studied by Douek-Pinkovich et al. (2019) that generalizes the TCP by introducing costs 

for the sensors (tests). Many authors have studied various applications of the test 

collection problem, some of them using terminology and formulations that differ 

somewhat from ours. Such applications include sensor placement for structure, e.g., in 

Kammer (1991), Sela et al. (2016); robotics, e.g., in Hovland and McCarragher (1997); 

energy consumption strategies, e.g., in Slijepcevic and Potkonjak (2001); medical 

diagnosis, e.g., in Wendt and Potkonjak (2011); process monitoring, e.g., in Bacher and 

Ben-Gal (2017), among others. 

In this paper, we apply three metaheuristic methods to solve the STCP, namely, 

Tabu Search (TS), Cross-Entropy (CE), and Binary Gravitational Search Algorithm 

(BGSA). We also solve a few small instances of the problem by enumerating all the 

possible testing configurations and evaluate their solutions in order to obtain an optimal 

benchmark solution to evaluate the proposed heuristic algorithms. 

Tabu Search (TS) is a well-studied and frequently used metaheuristic proposed by 

Glover (1989) as a general extension of classical local search techniques to overcome 

local optimum convergences. TS uses ‘intelligence’ to direct the iterative search in a 

prospective and promising direction. The effectiveness of TS depends on how adaptive 

memory is used to direct the exploration process. The power of the methodology is 

illustrated, for example, by Cangalovic et al. (1996), who applied TS to a combinatorial 

assignment problem. Drezner et al. (2001) and Pacheco et al. (2009) used TS to select 

a subset of descriptive variables that yields the greatest percentage of hits in a regression 

model. This method was successfully applied in corporate bankruptcy predictions, 

credit scoring and other forecasting applications.  

The Cross-Entropy (CE) method comprises of a suite of techniques and algorithms 

for rare-event simulation, importance sampling and combinatorial optimization 

problems (COP). The method was first introduced by Rubinstein (1997) for the efficient 

estimation of rare event probabilities in stochastic networks. It was later recognized that 

one can also apply it to (heuristically) solve hard combinatorial optimization problems, 

such as the traveling salesman and max-cut (see Rubinstein and Kroese, 2004, and De 

Boer et al., 2005). Moreover, the CE method was successfully applied to stochastic 

optimization problems. For example, Alon et al. (2005) successfully implemented the 

CE method in the buffer allocations problem.  

The Gravitational Search Algorithm (GSA) is a heuristic solution method 

introduced by Rashedi et al. (2009) and inspired by the law of gravity and mass 

interactions. In this algorithm, the search agents represent a collection of masses, and 

their interactions are based on the Newtonian laws of gravity and motion. The method 

was extended to solve combinatorial optimization problems with binary variables by 
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Rashedi et al. (2010). The extended version is referred to as the Binary Gravitational 

Search Algorithm (BGSA). Papa et al. (2011) combined the BGSA with a classifier 

method to provide a fast and accurate framework for feature selection. The BGSA was 

also applied to nonlinear optimization problems, such as the optimal power flow 

problem, as seen in Duman et al. (2012).  

The Feature Selection (FS) problem is related to the STCP in the sense that in both 

problems, the goal is to select a set of characteristics of an object that enables its proper 

classification. However, the two methods differ in their objective and implementation. 

The STCP considers the tradeoff between the cost of the information obtained for the 

classification as well as the expected cost of misclassification. On the other hand, in 

feature selection, the goal is to select a subset of characteristics that minimizes the 

chances of misclassification due to overfitting or underfitting. Saeys et al. (2007) 

provided a basic taxonomy of feature selection techniques. 

In the naïve Bayes classification literature, Chai et al. (2004) studied the tradeoff 

between the costs of the tests and misclassification. They presented a greedy procedure 

in which one new test is selected at each step, based on its potential information gain 

and cost. The authors also extended this method to batch testing strategy, when several 

tests are performed at each step. Ling et al. (2004) used a similar approach in decision 

trees, where the goal is to minimize the expected total testing and misclassification 

costs.  

The contributions of this paper are in introducing the stochastic variant of the TCP 

and in presenting effective solution methods for it that follow some of the above 

approaches.  

The rest of the paper is organized as follows. In Section 2, we present some formal 

notation and mathematical formulation of the problem. In Section 3, we demonstrate 

the properties of the problem using a small illustrative example. Sensitivity analysis is 

carried out to demonstrate some counterintuitive properties of the problem and its 

optimal solutions. In Section 4, we present the heuristic methods to solve the STCP 

based on the TS, CE, and BGSA metaheuristics. In Section 5, our solution methods are 

tested and compared based on realistic data from the UCI Machine Learning Repository 

(Dua and Graff, 2019). Some concluding remarks are offered in Section 6. 

 

2 Notation and problem definition 

 

The mathematical formulation of the STCP is based the following notation. 

 

𝑁 Set of candidate tests available in a given system; the number of tests is 

denoted by 𝑛 = |𝑁|. 𝑆 ∈ 𝑁 is a subset of selected tests called configuration. 

𝑐𝑖 The cost of test 𝑖 for all 𝑖 ∈ 𝑁. 

𝑉𝑖 The set of outputs/results that can be obtained from test 𝑖. 

𝑅  The set of valid readings, 𝑅 ⊆ 𝑉1 × 𝑉2 × ⋯ × 𝑉𝑛; for each reading �̃� ∈ 𝑅 we 

refer to the result of the 𝑖𝑡ℎ test by �̃�𝑖.   

𝐾 The set of possible classes 𝐾 = {1, … , 𝑘}.  

𝜆𝑘𝑙 Misclassification error of type (𝑘, 𝑙), 𝑘, 𝑙 ∈ 𝐾, i.e., the cost of classifying an 

object as class 𝑙 while its true class is 𝑘.  
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𝑝(�̃�) The a-priory probability of obtaining the reading �̃� ∈ 𝑅. 

𝑝(𝑘|�̃�) The conditional probability of class 𝑘 ∈ 𝐾 given the reading �̃� ∈ 𝑅. 

 

Let us denote the a-priori probability of each class by  𝑝(k) and the conditional 

probability of each reading given a class by 𝑝(�̃�|k). These two probability values are 

thus related to each other by Bayes’ rule,  

 

 𝑝(k) =  ∑ 𝑝(k|�̃�)𝑝(�̃�)

�̃�∈𝑅

 (1)  

 
𝑝(�̃�|k) =

𝑝(k|�̃�)𝑝(�̃�)

𝑝(k)
 (2) 

For each configuration, 𝑆 ⊂ 𝑁, define 𝑅(𝑆) as the set of all its signatures, i.e., partial 

readings that can be obtained from the results of the selected tests. When the 

configuration is known, we denote the signature of �̃� by 𝐫. The signature 𝐫 ∈ 𝑅(𝑆) is a 

vector of dimension |𝑆|. For convenience, the elements, 𝑟𝑖, of the signature vectors, are 

indexed by the original indices of the tests in 𝑁. For example, if 𝑁 ={1,…,5} and  𝐫 ∈

𝑅({1,2,5}), then 𝐫 = (𝑟1, 𝑟2, 𝑟5). In this example, 𝑟5 is the third element of 𝐫. We denote 

the set of all the possible readings from which signature 𝐫 can be obtained when the 

configuration is 𝑆, by 𝑄(𝑆, 𝐫). That is, 𝑄(𝑆, 𝐫) = {�̃� ∈ 𝑅: �̃�𝑖 = 𝑟𝑖  ∀𝑖 ∈ 𝑆}. 

Next, for each configuration 𝑆 ⊂ 𝑁 and 𝐫 ∈ 𝑅(𝑆), it is possible to calculate the 

following three probability components: the probability of a signature given class 𝑘,

𝑝𝑆(𝐫|𝑘); the prior probability 𝑝𝑆(𝐫) of signature 𝐫 ∈ 𝑅(𝑆); and the a-posteriori 

probability 𝑝𝑆(𝑘|𝐫) that the class is 𝑘 ∈ 𝐾 given that the signature is 𝐫 ∈ 𝑅(𝑆). These 

probabilities can be calculated using Equations (3) -(5). For configuration 𝑆 the 

conditional probability of class 𝑘 when observing a signature 𝐫,  𝑝𝑆(𝑘|𝐫), is calculated 

in Equation (5)  using Bayes’ rule. 

 

 𝑝𝑆(𝐫|𝑘) = ∑ 𝑝(�̃�|𝑘)

�̃�∈𝑄(𝑆,𝐫)

 (3)  

 𝑝𝑆(𝐫) = ∑ 𝑝(�̃�)

�̃�∈𝑄(𝑆,𝐫)

=  ∑ 𝑝(𝑘) ⋅ 𝑝𝑆(𝐫|𝑘)

𝑘∈𝐾

 (4) 

 
𝑝𝑆(𝑘|𝐫) =

𝑝𝑆(𝐫|𝑘) ∙ 𝑝(𝑘)

𝑝𝑆(𝐫)
 (5) 

 

Consider a given configuration 𝑆 ⊂ 𝑁. The expected classification error cost for 

signature 𝐫 of 𝑆 if it is mapped to class 𝑙 is: 

 𝐸𝑆(𝐫|𝑙) =  ∑ 𝜆𝑘𝑙 ∙ 𝑝𝑆(𝑘|𝐫)

𝑘∈𝐾

 
 

(6) 

let 𝑙𝑆
∗: 𝑅(𝑆) ⟶ 𝐾 be a function that maps each possible signature of 𝑆 to a class that 

minimizes the expected classification error cost.  

 𝑙𝑆
∗(𝐫) = argmin

𝑙∈𝐾
{𝐸𝑆(𝐫|𝑙)} (7)  

 

The minimum expected classification error cost for signature 𝐫 is:  

 𝐸𝑆
∗(𝐫) = min

𝑙∈𝐾
{𝐸𝑆(𝐫|𝑙)}  (8) 
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Note that (7)  coincides with the “minimum Bayes risk decision rule,” as found in Duda 

et al. (2012).  

The STCP can now be formulated mathematically. Namely, given an instance of the 

problem [𝑁, 𝑅, 𝐾, p(�̃�), p(𝑘|�̃�), 𝛌, 𝐜], select a configuration 𝑆, such that the total 

expected classification error and tests costs is minimized,  

 
min
𝑆⊆𝑁

{ ∑ 𝑝𝑆(𝐫)𝐸𝑆
∗(𝐫)

𝐫∈𝑅(𝑆)

+ ∑ 𝑐𝑖

𝑖∈𝑆

} 
 

(9) 

Note that given the set of sensors, 𝑆, the set of signatures is uniquely defined by 𝑅(𝑆) 

and the optimal mapping of each signature to a class is give by (7). 

 

3 Motivating example 

Let us demonstrate the problem by the following small example. Consider a medical 

testing system comprising three potential tests aimed at detecting a viral disease. Each 

test produces a binary result, i.e., the result of medical test 𝑖 may be either  

𝑉𝑖 = 0 or, 1. The input of this instance in terms of the notation presented in Section 2 

is: 

𝑁 {1,2,3} 

𝑐𝑖 [2,  0.5,  0.5] 

𝑉𝑖 {0,1} for 𝑖 = 1,2,3;  the result of each test can be either 0 or 1. 

𝑅  𝑉1 × 𝑉2 × 𝑉3; all possible combinations of the tests results. See also the first 

group of columns in Table 1. 

𝐾 {Negative, Positive} 

𝜆𝑘𝑙 [
0 50

50 0
]; i.e., both false-positive and false-negative costs are equal to 50. 

𝑝(�̃�) See the second group of columns of Table 1. 

𝑝(𝑘|�̃�) See the third group of columns of Table 1. 

 

Table 1: Valid readings �̃� ∈ 𝑅, the probabilities 𝑝(�̃�), 𝑝(�̃�|𝑘), and 𝑝(𝑘|�̃�). 

Test Readings, 𝑅   
𝑝(�̃�) 

 𝑝(�̃�|𝑘)  𝑝(𝑘|�̃�) 

Test 1 Test 2 Test 3   Negative Positive  Negative Positive 

0 0 0  0.067  0.035 0.105  0.289 0.711 

0 0 1  0.119  0.015 0.245  0.070 0.930 

0 1 0  0.105  0.105 0.105  0.550 0.450 

0 1 1  0.135  0.045 0.245  0.183 0.817 

1 0 0  0.097  0.140 0.045  0.792 0.208 

1 0 1  0.080  0.060 0.105  0.411 0.589 

1 1 0  0.251  0.420 0.045  0.919 0.081 

1 1 1  0.146  0.180 0.105  0.677 0.323 

 
 

In this small example, the solution can be readily calculated by an exhaustive search of 

all 23 = 8 possible test configurations. The value of each subset S is calculated by 

enumerating all the signatures in 𝑅(𝑆). An example of such calculations for the 

configuration 𝑆 = {1,2} is described in Table 2. First, the set of all signatures obtained 

from the subset S is shown in the first group of columns in Table 2. Next, for each 

signature 𝐫 ∈ 𝑅(𝑆) and each diagnosis 𝑘 ∈ 𝐾, the probabilities 𝑝𝑆(𝐫|𝑘), 𝑝𝑆(𝐫), and 
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𝑝𝑆(𝑘|𝐫) are calculated using (3) -(5) and are shown in the second, third, and fourth 

group of columns, respectively. Now, the expected error cost of diagnosing 𝑙 while the 

true diagnosis is 𝑘 can be seen in the fifth group of columns and is calculated when 𝑙 is 

decided, i.e., 𝐸𝑆(𝐫|𝑙), as given in (6)(6). Equation (7) shows the diagnosis that 

minimizes the expected classification error cost for signature 𝐫 (sixth group of 

columns). Its expected classification error cost is given by (6)and can be seen in the 

seventh group of columns. Multiplying the minimum expected classification error cost 

by the probability of obtaining each signature 𝐫 ∈ 𝑅(𝑆) can be seen in the eighth group 

of columns. The sum of this column is 12.25, which denotes the expected classification 

error cost for the subset as given by the first addend of (9). The second addend of (9) 

indicates the cost of the tests, which is 2.5. Thus, the expected total cost of the subset 

𝑆 = {1,2} is 14.75.  

 

Table 2: Calculating the expected total cost for 𝑆 = {1,2} 

 

 

 

In Table 3, for each possible configuration (given in the first column), we present the 

expected classification error cost (second column), the tests cost (third column), and 

the expected total cost, which is the error cost plus the tests cost (in the fourth column). 

One can observe that the configuration {1,2,3}, i.e., using all the tests, is the one that 

minimizes the cost function (9) with a value of 14.01. 

 

  

Test1 Test2 Negative Positive Negative Positive   = Negative   = Positive

0 0 0.05 0.35 0.19 0.15 0.85 42.57 7.43 Positive 7.43 1.38

0 1 0.15 0.35 0.24 0.34 0.66 32.81 17.19 Positive 17.19 4.13

1 0 0.2 0.15 0.18 0.62 0.38 19.01 30.99 Negative 19.01 3.38

1 1 0.6 0.15 0.40 0.83 0.17 8.49 41.51 Negative 8.49 3.38

12.25

2.5

14.75Expected total cost:
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Table 3: The expected classification error, tests cost, and expected total cost of each 

configuration 

Configuration 
Expected 

classification 
error cost 

Testing cost Total cost 

{1,2,3} 11.01 3 14.01 
{1,2} 12.25 2.5 14.75 
{1,3} 12.25 2.5 14.75 
{2,3} 15.00 1 16.00 
{1} 12.25 2 14.25 
{2} 18.13 0.5 18.63 
{3} 15.00 0.5 15.50 
{ } 22.50 0 22.50 

 

Interestingly, the second best configuration is {1}. Adding tests 2 or 3, i.e., using the 

configurations {1,2} or {1,3}, results in the same classification error cost as {1} but at 

a higher testing cost. This demonstrates the complex structure of the problem and the 

fact that a simple greedy or local search heuristic is unlikely to solve it. 

Numerical analysis of the optimal decision, as a function of the classification error 

costs (false positive, 𝜆𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒,𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, and false negative, 𝜆𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒,𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) is 

presented in Figure 1. In this figure, the colors denote the optimal configuration. The 

vertical black line illustrates the changes in the optimal configuration when the false-

negative error cost ranges from 0 to 100 and the cost of the false-positive error is fixed 

at 35. As seen, the optimal decision can be very sensitive to changes in this parameter. 

The expected classification error when performing all the tests is always smaller then 

performing other combinations. However, the optimal decision takes into account the 

tradeoff between the expected classification error and the cost of the tests. 

 
Figure 1: An optimal configuration as a function of the false positive and false negative costs. 

Another analysis is performed to test how changes in the prior probabilities 𝐩(𝑘) 

affect the optimal decision. The results are shown in Figure 2. The parameter 

𝑝(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) changes along the horizontal axis; note that 𝑝(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) = 1 −

𝑝(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒). The rest of the parameters are fixed to their values, as in the original 

example. It is clear that when 𝑝(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) = 1 or 𝑝(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) = 0, i.e., when the 

{3} 

{2,3} 
{1} 

{1,3} {1,2,3} 

{1,3} 

{No tests} 
{2,3} 

{No tests} 
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diagnosis is always negative or always positive, the solution is trivial: tests are not 

required. The number of sensors increases as the entropy of the classes increases.  

  

 

Figure 2: The optimal subset of tests (configuration) as a function of the probability of 

diagnoses. For example, for P(Negative)=0.3 the optimal configuration is {1,3}.  

 

Note again that this problem could be solved by optimality using an exhaustive 

search, which is valid when the number of tests is small. However, since the number of 

configurations grows exponentially with the number of tests, the problem quickly 

becomes computationally intractable in the number of tests. Therefore, effective 

heuristic solution methods for solving the problem are required and are presented in the 

next section.  

4 Metaheuristics solution methods to the STCP  

This section presents three possible methods to address the STCP based on the known 

Tabu Search (TS), Cross-Entropy (CE), and Binary Gravitational Search Algorithm 

(BGSA) metaheuristics. We report on all three methods since none of them 

predominate. Note that the STCP is a long-term design problem, and thus the decision 

maker may wish to apply all available methods and select the best solution obtained. 

Recall that a solution to a problem is defined by the selected configuration, whereas 

the mapping of each signature to a class is defined by (7). We denote a solution by the 

characteristic vector  𝐱 of this set, i.e., 𝑥𝑖 = 1 if test 𝑖 is included and 0 otherwise. The 

value of a solution, calculated as in (9), is denoted by 𝑔(𝐱). 

 

4.1 The TS method 

The TS method extends the basic local search techniques to facilitate the exploration of 

the solution space beyond local optima. Once a local optimum is reached, the method 

allows one to move to a new solution even if it is inferior. The TS method uses a tabu 

list (TL) to disallow moves that cancel previous moves during several subsequent 

iterations in order to escape a neighborhood of locally optimal solutions. 

 1 

2 

3 
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The TS algorithm involves three main steps: (a) generate an initial solution and 

initialize the TL to be empty, (b) explore the current solution’s neighborhood defined 

by a set of candidate moves but excluding moves listed in the TL, and (c) move to the 

best explored solution and add a new entry to TL to forbid the move that brings the 

search back to the previous solution. If the TL is longer than a predefined length, the 

algorithm removes its oldest entries. Steps (b) and (c) are repeated up to a predefined 

number of iterations or until some other stopping criterion is satisfied. 

 In our implementation, the initial solution is the empty set (𝐱 = 𝟎). Given a current 

solution 𝐱, its value is evaluated with respect to all possible readings as explained and 

demonstrated in Sections 2 and 3. The neighborhood of 𝐱, 𝑁(𝐱) is defined by three 

types of moves: add one test that is not included in the current solution, remove one test 

from the current solution, and swap a test from the current solution with one that is not 

included. The set of neighboring solutions induced by each type of the above-mentioned 

moves are denoted by 𝐴(𝐱), 𝑅(𝐱), and 𝑆(𝐱), respectively, thus 𝑁(𝐱) = 𝐴(𝐱) ∪  𝑅(𝐱) ∪

𝑆(𝐱). Note that |𝐴(𝐱) + 𝑅(𝐱)| = 𝑛 and |𝑆(𝐱)| ≤
1

4
𝑛2. Each entry in the tabu list consist 

of one or two tests that should not be added or removed from the solution as long as the 

entry remains in the list. Add and remove operations add entries with a single test and 

the swap operation adds an entry with a pair of tests. One is forbidden for removal and 

the other for appending. If a candidate move involves a test in the tabu list, then its 

respective solution is excluded from the neighborhood. We denote this reduced 

neighborhood by 𝑁′(𝐱). In our implementation we use a stopping criterion based on the 

total number of iterations in order to allow a fair comparison with other methods, but 

other criteria used in the literature may apply. The main algorithm is outlined as a 

pseudocode in Figure 3. 

 

Figure 3: Pseudocode of the TS algorithm 
 

Initialized   

Set 𝐱, 𝐱∗ and 𝑇𝐿 as empty 

Set 𝑣∗ = 𝑔(𝐱) 

Repeat 

 Set 𝑣 = ∞ 

For each 𝐱′ in 𝑁′(𝐱)  

Set 𝑣′ = 𝑔(𝐱′) 

If 𝑣′ < 𝑣 then  

𝑣 = 𝑣′ 

𝐲 = 𝐱′  

Let 𝑚 be the test(s) by which 𝐱 and 𝐲 differ 

Set 𝐱 = 𝐲  

If 𝑣 < 𝑣∗ then 𝐱∗ = 𝐱 and 𝑣∗ = 𝑣 

Append m as an entry to the TL  

If |𝑇𝐿| is greater than the maximal tabu length, remove its first entry 

Until a pre-determined number of iterations is performed 

Return 𝐱∗, 𝑣∗. 
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4.2 The CE Method  

The CE algorithm involves iterative steps whereby each iteration can be broken down 

into three main phases: (a) generate a random population of solutions using a specified 

probabilistic selection rule; (b) evaluate the value of each of the generated solutions; 

and (c) update the probabilistic selection rule for the next iteration based on the best 

solutions (called the elite set) and iterate until some stopping criterion is satisfied.  

At each iteration we generate 𝑤 solutions using a multi-Bernoulli distribution with 

success probabilities 𝐩 = (𝑝1, … , 𝑝𝑛), i.e., 𝐱 = ( 𝑥1, … , 𝑥𝑛 ) such that 𝑥𝑖~𝐵𝑒𝑟( 𝑝𝑖). We 

initialize the probabilities with 𝑝𝑖 = 0.5, for all 𝑖, and update all these probabilities at 

step (c) of each iteration. In a given iteration of the CE, we use 𝐱𝑖
(𝑗)

 to denote the 𝑖th 

test in solution 𝑗, while 𝐱(𝑗) ∈ {0,1}n is a binary vector that represents solution 𝑗. The 

probabilities 𝑝𝑖 are updated at the end of each iteration based on the best 𝜌𝑤 solutions 

(called the elite set) and subject to exponential smoothing with a weight parameter 𝛼 ∈

[0,1]. The parameter 𝜌 ∈ (0,1) defines the relative size of the elite set; recall that 𝑤 is 

the number of solutions that we generate at each iteration. 𝑤 and 𝜌 are selected such 

that 𝑤𝜌 is an integer. Previous studies used 𝜌 = 0.1, i.e., the top ten percent solutions 

are taken as the elite set. We follow this line. The indices of the solutions in the elite 

set of iteration 𝑡 are denoted by ℰ𝑡. The parameters of the multi-Bernoulli distribution 

are updated as follows:  

𝑞𝑡,𝑖 =

∑ 𝕀
{𝐱𝑖

(𝑗)
=1}𝑗∈ℰ𝑡

𝜌𝑤
 ,     𝑖 = 1, … 𝑛 (10) 

where 𝕀{⋅} is an indicator function defined as follows: 

𝕀{𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛} = {
1, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

That is, 𝑞𝑡,𝑖 is the proportion of the solutions that include test 𝑖 in the elite set of iteration 

𝑡. The following exponential smoothing formula is then used to update 𝐩𝑡 

 

 𝑝𝑡,𝑖 = 𝛼𝑞𝑡,𝑖 + (1 − 𝛼)𝑝𝑡−1,𝑖 ,    𝑖 = 1, … 𝑛 (11) 

 

We use exponential smoothing to prevent the premature convergence of  p𝑡,𝑖 to 0 or 1. 

It has been empirically shown, e.g., by Alon et al. 2005, that a value of 𝛼 between 0.7 ≤

𝛼 ≤ 0.9 often gives the best results. In this study, we use 𝛼 = 0.8. 

Several types of stopping criteria have been used in the literature, such as i) Stop 

when the worst solution in the elite set does not change for a predefined number of 

consecutive iterations; ii) Stop when all the elements of 𝐩𝑡 are close enough to 0 or 1 

and thus no new solutions are likely to be generated; and iii) Stop after a predefined 

number of iterations or computation time. Clearly, combinations of the above may also 

apply. In our implementation we use the third stopping criterion to enable a fair 

comparison with other heuristics given a similar computational effort. 

A pseudocode that describes our CE algorithm is presented in Figure 4. 
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Figure 4: Pseudocode of the CE algorithm 

 

4.3 The Binary Gravitational Search Algorithm (BGSA) Method 

The Binary Gravitational Search Algorithm (BGSA) is a relatively recent metaheuristic 

inspired by the Newtonian law of gravitation and motion. Solutions are represented by 

vectors and considered as objects (also called agents), and their position in a 

multidimensional space is determined by the elements of these vectors. The mass of 

each solution is determined by its objective function value. At each iteration of the 

algorithm, the position and velocity of each object is updated based on its current 

position, mass and velocity as well as those of the other objects. The mass of each 

object/solution is then updated based on the values of solutions in the population. The 

process is repeated until all the objects are merged into one or more heavy objects or 

another stopping criterion is met. 

For the implementation of the BGSA for the STCP, consider an initial set of 𝑤 

solutions each represented by a vector 𝐱(𝑗) ∈ {0,1}𝑛 for 𝑗 = 1,2, … , 𝑤; we refer to each 

coordinate of these vectors 𝑥𝑖
(𝑗)

 as the position of 𝑗th solution in the 𝑖th dimension. These 

values are updated from iteration to iteration and we use 𝐱(𝑗)(𝑡) to denote the position 

of the solution at iteration 𝑡 of the algorithm. Let us further define 

𝑏𝑒𝑠𝑡(𝑡) = min
𝑗∈{1,…,𝑤}

𝑔 (𝐱(𝑗)(𝑡))  

𝑤𝑜𝑟𝑠𝑡(𝑡) = max
𝑗∈{1,…,𝑤}

𝑔 (𝐱(𝑗)(𝑡)).  

Based on these values we can calculate a normalized measure of each solution 𝑗  

𝑞𝑗(𝑡) =
𝑔 (𝐱(𝑗)(𝑡)) − 𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)
 

 

Next, the mass of each solution 𝑗 is updated as follows:  

𝑀𝑗(𝑡) =
𝑞𝑗(𝑡)

∑ 𝑞𝑗′(𝑡)𝑤
𝑗′=1

. (12) 

 

At a specific time 𝑡, the force acting on agent 𝑗1 from agent 𝑗2 is defined as follows:  

Initialized 𝐩 such that all test probabilities are equal to 0.5. 

Set 𝑣∗ = ∞ 

Repeat 

For j = 1 to w  

 Generate solution 𝐱(𝑗) such that 𝑥𝑖
(𝑗)

~𝐵𝑒𝑟(𝑝𝑖) 

 Sort the solutions in 𝐱 in non-decreasing order of 𝑔(𝐱(𝑗))     

 Let x[1], x[2], … be the solutions in their sorted order 

If 𝑔൫𝐱([1])൯ < 𝑣∗ 

 𝑣∗ =  𝑔൫𝐱([1])൯ and 𝑥∗ = 𝐱([1]) 

 Update 𝐩 using (11) 

Until a pre-determined number of iterations is performed   

Return 𝐱∗, 𝑣∗ 
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𝐹𝑖
(𝑗1,𝑗2)

(𝑡) = 𝐺0 (1 −
𝑡

𝑇
)

𝑀𝑗1
(𝑡) ⋅ 𝑀𝑗2

(𝑡)

∑ |𝑥
𝑖′

(𝑗1)
(𝑡) − 𝑥

𝑖′

(𝑗2)
|𝑛

𝑖′=1 + 𝜀
(𝑥𝑖

(𝑗2)
(𝑡) − 𝑥𝑖

(𝑗1)
), 

 

where 𝐺0 is a gravitational constant, 𝑇 is the total number of planned iterations for the 

algorithm and 𝜀 is a small positive constant. Using some preliminary experiments, we 

set 𝐺0 = 0.01𝑇 and 𝜀 = 2.2 × 10−16. 

Next, we find an elite set 𝐸𝑡 comprising the best solutions at iteration 𝑡 and generate 

random numbers 𝑝𝑗(𝑡)~𝑈[0,1] for each 𝑗 ∈ 𝐸𝑡. The cardinality of the 𝐸𝑡 is set to ⌈𝜌𝑡𝑤⌉ 

where 𝜌𝑡 linearly decreases from iteration to iteration according to the following 

formula: 

𝜌𝑡 = 1 −
𝑡

𝑇
(1 − 𝜌𝑇), 

where 𝜌𝑇 is a parameter of the algorithm, while in our experiment we used 𝜌𝑇 = 0.02. 

Next, we define the force that acts on solution 𝑗 in dimension 𝑖 at iteration 𝑡 by: 

𝐹𝑖
(𝑗)(𝑡) =  ∑ 𝑝𝑗′𝐹𝑖

൫𝑗,𝑗′൯
(𝑡)

𝑗′∈𝐸𝑡∖{𝑗}

. 
 

In such a way, at the initial stage all solutions apply pressure on each other, and as the 

iterations progress, only the few best solutions affect all the others. Now, according to 

the law of motion, the acceleration of a solution 𝑗 at iteration 𝑡 in dimension 𝑖 is given 

by: 

𝑎𝑖
(𝑗)

(𝑡) =  
𝐹𝑖

(𝑗)(𝑡)

𝑀𝑗(𝑡)
 (13) 

The velocity of an agent is considered as a random fraction of its current velocity added 

to its acceleration: 

𝑣𝑖
(𝑗)(𝑡) = 𝜋𝑗(𝑡) ⋅ 𝑣𝑖

(𝑗)(𝑡 − 1) + 𝑎𝑖
(𝑗)(𝑡 − 1), (14) 

where 𝑣𝑖
(𝑗)(0) is initialized to zero and  𝜋𝑗(𝑡) is drawn from  𝑈[0,1]. Moreover, to 

increase the chance of convergence, the velocity is limited by some parameter 𝑣𝑚𝑎𝑥. 

That is, |𝑣𝑖
(𝑗)

| < 𝑣𝑚𝑎𝑥. We followed (Rashedi et al., 2010) and set 𝑣𝑚𝑎𝑥 = 6. Based on 

the velocity in each dimension, 𝑖, we flip the position of each agent, 𝑗, between 0 and 1 

with probability |𝑡𝑎𝑛ℎ (𝑣𝑖
(𝑗)(𝑡))| and leave it as 𝑥𝑖

(𝑗)
(𝑡) otherwise.  

 

𝑥𝑖
(𝑗)

(𝑡 + 1) = {
1 − 𝑥𝑖

(𝑗)
(𝑡), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  |𝑡𝑎𝑛ℎ (𝑣𝑖

(𝑗)(𝑡))|

𝑥𝑖
(𝑗)

(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(15) 
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The BGSA algorithm is outlined as a pseudocode in Figure 5. 

Figure 5: Pseudocode of the BGSA algorithm 

 

4.4 Caching 

Recall that calculating the value, 𝑔(𝐱), for each solution with a given configuration 

requires evaluating the signatures of all the readings, which is a computationally 

demanding task. Indeed, almost all the running time of the three heuristics described 

above is spent on these value evaluations. In some situations, the same solutions may 

be required multiple times in the same run of the algorithm. To avoid repeated 

calculations, we store the value of each calculated solution in a hash table that is indexed 

by the binary representation of the solution. When the algorithms require the value of 

𝐱 they first check if it already exists in the table. If it exists, the value is retrieved; 

otherwise the solution is evaluated and its value is stored in the table. This mechanism 

significantly reduces the running time of all three heuristics and is especially effective 

in the last iterations of the two randomized heuristics, namely, the CE and BGSA. In 

our experiments we managed a different cache for each algorithm in order to properly 

benchmark them, but in practice the same cache can be used by different algorithms 

that may be run in parallel or sequentially to obtain the best solution. 

 
 

Initialized  

𝑣∗ = ∞ 

Draw initial population of 𝑤 solutions 𝐱(𝑗), 𝑗 = 1,2, … , 𝑤 

Repeat   

Set = ∞, 𝑤𝑜𝑟𝑠𝑡 = −∞ 

For j = 1 to w  

Evaluate 𝑔൫𝐱(𝑗)൯ 

 If 𝑔൫𝐱(𝑗)൯ < 𝑏𝑒𝑠𝑡 

  𝑏𝑒𝑠𝑡 = 𝑔൫𝐱(𝑗)൯ 

 If 𝑔൫𝐱(𝑗)൯ > 𝑤𝑜𝑟𝑠𝑡  

  𝑤𝑜𝑟𝑠𝑡 = 𝑔൫𝐱(𝑗)൯ 

Calculate 𝑀𝑗    // See (12) 

Calculate 𝑎(𝑗)  // See (13) 

Calculate 𝐯(𝑗)  // See (14) 

Update 𝐱(𝑗)     // See (15) 

If 𝑔൫𝐱(𝑗)൯ < 𝑣∗ 

  𝑣∗ =  𝑔൫𝐱(𝑗)൯ and 𝑥∗ = 𝐱(𝑗) 

Until it reaches the pre-determined number of iterations, 𝑇 

Return the best solution 𝐱(𝑗) 
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5 Experimental results 

In this section, we evaluated the effectiveness of the algorithms presented in Section 4. 

The algorithms were implemented in MATLAB 2018b. The testing environment was 

an eight-core Intel i7-4790 3.60 GHz CPU, 32 GB of RAM running under Windows 7, 

64 bit.  

For the evaluation of the algorithms presented above, we used representative 

datasets from the UCI Machine Learning Repository (Dua and Graff, 2019) with up to 

8,124 readings and 68 tests. In some of the datasets, we removed tests and readings to 

eliminate missing values. Moreover, tests with numerical values were discretized by 

dividing their values into quintiles or quartiles (depending on the number of readings).   

Using this data, we estimated the prior probabilities of the classes and the readings 

as well as the conditional probability of each class given a reading. Our algorithms were 

tested with respect to these estimated probabilities. 

For each dataset, we used three test cost vectors: one with a fixed (unit) cost per test 

and two with randomly generated values as described below. Lastly, three classification 

error cost matrices were created for each combination of dataset and cost vector. All 

cleaned and processed input data of our experiment are available as an electronic 

appendix to this paper. In total, the test contained 45 problem instances based on five 

different UCI datasets. 

In Table 4 we show the number of tests, type of test values (continuous or discrete), 

discretization level (in the case of continuous test values), number of readings and 

number of classes in the datasets. The information in the table refers to the cleaned data 

after removing some tests and readings to eliminate the missing values.  

 

Table 4: Characteristics of the five datasets used in the experiments. 

Dataset Tests Test value 

type 

Discretization Readings Classes 

Wine 12 Continuous Quintiles 6,463 7 

Thyroid 21 Continuous Quintiles 3,103 5 

Mushrooms 21 Discrete - 8,124 2 

Cortex nuclear 68 Continuous Quartiles 1,077 8 

Molecular biology 60 Discrete  - 3,190 3 

 

The Wine Dataset from UCI includes two tables, related to red and white wine 

samples as described in Cortez et al. (2009). We followed Kaggle (Parmar, 2018) and 

used a merged version of this dataset where the type of the wine was added as a new 

feature. The class in this dataset is the wine quality score represented by a numerical 

value in the range 3-9. The classification error matrix is based on the distance between 

the classified quality and the true quality (a Toeplitz matrix with values in the range 0-

6). The (𝑖, 𝑗) element of the Toeplitz matrix represents the absolute difference between 

the two classes. An error cost matrix that is proportional to the Toeplitz matrix reflects 

the fact that greater errors are costlier. Specifically, we created one matrix that is 20 

times the Toeplitz matrix and one that is 30 times that matrix.  

In the Thyroid Dataset there are five classes: four related to pathological conditions 

and one (negative) related to a healthy one. We created two matrices that assign a high 
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cost to a false negative diagnosis, a low one to a false positive diagnosis, and medium 

values to the misdiagnosis of a pathological condition. 

In the Mushrooms Dataset, each reading should be classified as toxic or nontoxic. 

The classification matrices were constructed to reflect the fact that a false negative error 

(classifying a toxic mushroom as an edible one) is much more expensive or dangerous 

than a false positive error. 

In the Cortex Nuclear Dataset, the classes are described by three binary features that 

define the eight classes. We constructed error cost matrices based on the Hamming 

distance of this binary description of the class; i.e., the distance can be zero, one, two 

or three. The matrices were created by multiplying these distances by 100 and by 200.  

The Molecular Biology Dataset contains DNA sequences of 60 nucleotides (each 

nucleotides is a test, in our terminology). Each sequence belongs in one of three classes 

(exon-intron, intron-exon, or neither). For this dataset, we used three fixed classification 

error matrices with three different values (low, medium, high). 

Our experiment is full factorial. That is, we tested all combinations of the three test 

cost vectors and three classification error cost matrices – nine runs for each of the five 

datasets.  

For each dataset, we created one fixed test cost vector and two random cost vectors 

that were drawn from 𝑁(1,0.1) and from 𝑈(0,2). The Thyroid Dataset from UCI 

included one test cost vector that we used in our experiment after normalizing it to make 

its mean equal one. In this instance, we used it instead of the cost vector with normally 

distributed values.  

For each dataset, we created three error cost matrices based on particular dataset 

characteristics. All these error cost matrices have zeros on their diagonal and values off 

the diagonal, as described in Table 5.   

 

Table 5: Description of the classification error cost matrices. 

Dataset Error cost matrix 1 Error cost matrix 2 Error cost matrix 3 

Wine 20 × Toeplitz matrix 

{0,..,6}  

30 × Toplitz matrix 

{0,..,6} 

50 at each element off the 

diagonal 

Thyroid 1500 to false negative  

600 to false positive 

1200 other errors 

3000 to false negative  

1200 to false positive 

2400 other errors 

1500 at each element off the 

diagonal 

Mushrooms* 300 to false positive, 

500 to false negative 

100 to false positive, 

400 to false negative 

50 to false positive, 

700 to false negative 

Cortex 

Nuclear 

100 × 

ℎ𝑎𝑚𝑚𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

200 ×

 ℎ𝑎𝑚𝑚𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

300 at each element off the 

diagonal 

Molecular 

Biology** 

30 at each element off the 

diagonal 

60 at each element off the 

diagonal 

120 at each element off the 

diagonal 

* In the Mushrooms Dataset, the error cost matrix 3 is not fixed. 

** In the Molecular Biology Dataset, all error cost matrices are fixed. 

 

We conducted some preliminary experiments to decide upon some of the parameters 

of the algorithm and discovered that the CE works well with iterations of 20𝑛 solutions 

and typically converges before the 50th iteration. We found that the best number of 

solutions per iteration in BGSA is not affected by the number of tests and that the 

algorithm works well with 100 solutions per iteration. To make a fair comparison 
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between these two methods, we set the number of iterations in BGSA to 10𝑛. This 

allowed us to keep the total number of evaluated solutions to approximately 1000n in 

both methods. Note, however, that in both cases many of the solutions were sampled 

more than once and could be retrieved from the cash rather than actually being 

evaluated. Since the TS is a much faster heuristic, we run it with a limit of 90 iterations 

but repeat each run three times with tabu list lengths of 0, 2, and 4 while keeping the 

hash table that stores the cache from iteration to iteration. Note that setting the tabu 

length to 0 is equivalent to a naïve local search, which typically terminates with a locally 

optimal solution in less than 90 iterations. The reported solution values for the TS are 

the best out of the three. We note no single alternative list length predominates the 

other. The solution times reported for the TS are the sums of the times of the three runs 

with the different tabu lengths. All the other tuning parameters of the heuristics methods 

are specified in Section 4.  

For each of the 5 × 3 × 3 combinations of datasets, error cost matrices and test cost 

vectors we applied the three heuristic methods. For the smaller instances (Wine, 

Thyroid, and Mushrooms) we also computed the exact optimal solution by enumerating 

all the 2𝑛 possible combinations of the tests. This process was much more competently 

demanding than any of our methods and is clearly not applicable to cases with larger 

instances. In Table 6 we present the results for these smaller datasets. 

For each run, the solution value is presented first and optimal ones are in boldface. 

Next, the two components of the solution values are listed – the expected error cost and 

the tests cost. In addition, the iteration number when the best solution is first found and 

the solution times in seconds are displayed.  

In Table 7, the same results are reported for the larger datasets, namely, Molecular 

Biology and Cortex Nuclear. Here, we could not compute the exact solution using an 

exhaustive enumeration and thus the solution values in bold are the best we could find 

using the three heuristic methods.    

It is apparent from Tables 6 and 7 that none of the three solution methods 

consistently provides a better solution than the others. All instances of the three smaller 

datasets were solved to optimality using both CE and BGSA and the TS, while missing 

the optimal solutions occurred in only one case out of the 27. Compared with the brute 

force approach of enumerating all the solutions, the computational effort required by 

all three methods is negligible when the number of tests grows. For example, for the 

Thyroid and Mushrooms instances there are over two million possible configurations, 

but less than 2,500, 6,000, and 15,000 of them were explored by the TS, CE and BGSA, 

respectively.  

In the larger datasets, the TS provided the best solutions in 15 out of 18 instances 

and missed the best solution within a small margin of up to 1.5%. In these datasets the 

CE and BGSA found the best solutions in 8 and 7 cases, respectively. 
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Table 6: Results summary for Wine, Thyroid, and Mushrooms datasets. 

*except in the Thyroid dataset, where the cost vector was taken from UCI 

Test 

cost 

vector 

Error 

cost 

matrix 

Parameters 

Wine Thyroid Mushrooms 

TS BGSA CE TS BGSA CE TS BGSA CE 

fixed 1 

Solution value 11.602 11.602 11.602 17.058 17.058 17.058 4 4 4 

Expected error cost 4.602 4.602 4.602 7.058 7.058 7.058 0 

 
 

0 0 

Tests cost 7 7 7 10 10 10 4 4 4 

# of iterations until best solution 10/90 2/120 3/50 12/90 106/210 10/50 6/90 66/210 11/50 

Solution time (sec.) 19.2 108.2 64.4 32.3 191.9 103.0 22.7 188.1 56.1 

fixed 2 

Solution value 13.765 13.765 13.765 23.762 23.762 23.762 3.591 3.591 3.591 

Expected error cost 5.765 5.765 5.765 22.762 22.762 22.762 0.591 0.591 0.591 

Tests cost 8 8 8 1 1 1 3 3 3 

# of iterations until best solution 10/90 4/120 4/50 13/90 124/210 10/50 4/90 132/210 10/50 

Solution time (sec.) 36.7 107.4 62.3 38.5 183.8 96.9 17.3 180.2 54.3 

fixed 3 

Solution value 15.388 15.388 15.388 23.568 23.568 23.568 3.295 3.295 3.295 

Expected error cost 7.388 7.388 7.388 22.568 22.568 22.568 0.295 0.295 0.295 

Tests cost 8 8 8 1 1 1 3 3 3 

# of iterations until best solution 10/90 11/120 4/50 13/90 115/210 10/50 4/90 98/210 9/50 

Solution time (sec.) 32.7 108.7 61.4 26.4 192.6 89.7 15.2 175.1 58.0 

Normal* 1 

Solution value 11.691 11.691 11.691 40.122 39.609 39.609 4.014 4.014 4.014 

Expected error cost 4.601 4.601 4.601 40.122 37.609 37.609 0.217 0.217 0.217 

Tests cost 7.090 7.090 7.090 0 2 2 3.797 3.797 3.797 

# of iterations until best solution 8/90 4/120 4/50 1/90 102/210 9/50 5/90 110/210 13/50 

Solution time (sec.) 25.8 105.4 60.3 2.4 60.9 22.4 23.0 178.3 78.0 

Normal* 2 

Solution value 13.881 13.881 13.881 60.991 60.991 60.991 3.895 3.895 3.895 

Expected error cost 5.765 5.765 5.765 27.071 27.071 27.071 0.098 0.098 0.098 

Tests cost 8.116 8.116 8.116 33.920 33.920 33.920 3.797 3.797 3.797 

# of iterations until best solution 9/90 1/120 4/50 13/90 129/210 13/50 5/90 119/210 13/50 

Solution time (sec.) 28.9 106.7 59.4 20.6 129.4 70.0 11.0 168.6 68.0 

Normal* 3 

Solution value 15.504 15.504 15.504 40.122 40.122 40.122 3.846 3.846 3.846 

Expected error cost 7.388 7.388 7.388 40.122 40.122 40.122 0.049 0.049 0.049 

Tests cost 8.116 8.116 8.116 0 0 0 3.797 3.797 3.797 

# of iterations until best solution 10/90 8/120 5/50 1/90 72/210 12/50 6/90 113/210 11/50 

Solution time (sec.) 17.9 110.4 62.5 3.0 55.0 21.7 10.9 174.3 68.3 

Uniform 1 

Solution value 12.369 12.369 12.369 15.790 15.790 15.790 2.235 2.235 2.235 

Expected error cost 5.471 5.471 5.471 8.121 8.121 8.121 0.492 0.492 0.492 

Tests cost 6.898 6.898 6.898 7.669 7.669 7.669 1.743 1.743 1.743 

# of iterations until best solution 8/90 1/120 4/50 12/90 131/210 11/50 6/90 128/210 10/50 

Solution time (sec.) 33.2 94.4 55.9 36.4 177.5 95.0 11.2 198.6 65.1 

Uniform 2 

Solution value 15.004 15.004 15.004 22.159 22.159 22.159 2.137 2.137 2.137 

Expected error cost 7.288 7.288 7.288 21.743 21.743 21.743 0.394 0.394 0.394 

Tests cost 7.716 7.716 7.716 0.416 0.416 0.416 1.743 1.743 1.743 

# of iterations until best solution 9/90 10/120 5/50 13/90 119/210 12/50 6/90 105/210 9/50 

Solution time (sec.) 22.7 103.7 60.0 33.5 184.5 93.0 7.2 174.6 64.5 

Uniform 3 

Solution value 16.974 16.974 16.974 22.183 22.183 22.183 2.038 2.038 2.038 

Expected error cost 7.426 7.426 7.426 21.767 21.767 21.767 0.295 0.295 0.295 

Tests cost 9.548 9.548 9.548 0.416 0.416 0.416 1.743 1.743 1.743 

# of iterations until best solution 11/90 8/120 4/50 13/90 128/210 7/50 9/90 143/210 12/50 

Solution time (sec.) 28.5 100.7 60.2 20.8 187.3 95.8 13.4 170.0 60.3 
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Table 7: Results summary for Cortex Nuclear and Molecular Biology datasets. 

Test cost 

vector 

Error 

cost 

matrix 

Parameters 

Cortex nuclear Molecular biology 

TS BGSA CE TS BGSA CE 

fixed 1 

Solution value 7.371 7.650 8.093 7.103 7.969 7.828 

Expected error cost 0.371 0.650 0.093 3.103 0.969 0.828 

Tests cost 7 7 8 4 7 7 

# of iterations until best solution 9/90 642/680 45/50 5/90 569/600 49/50 

Solution time (sec.) 261.6 357.8 315.3 405.6 1561.0 1342.0 

fixed 2 

Solution value 7.743 8.371 8.371 8.282 8.395 8.357 

Expected error cost 0.743 0.371 0.371 0.282 0.395 0.357 

Tests cost 7 8 8 8 8 8 

# of iterations until best solution 9/90 674/680 33/50 23/90 521/600 46/50 

Solution time (sec.) 264.7 357.7 320.7 1230.0 1571.0 1417.5 

fixed 3 

Solution value 8 8.836 8.279 8.564 8.978 8.865 

Expected error cost 0 0.836 0.279 0.564 0.978 0.865 

Tests cost 8 8 8 8 8 8 

# of iterations until best solution 10/90 650/680 42/50 23/90 565/600 20/50 

Solution time (sec.) 269.3 357.4 322.8 1230.7 1562.6 1456.3 

Normal 1 

Solution value 6.852 7.353 6.747 6.760 6.760 6.760 

Expected error cost 0.464 0.372 0.464 0.903 0.903 0.903 

Tests cost 6.388 6.981 6.283 5.857 5.857 5.857 

# of iterations until best solution 10/90 645/680 42/50 29/90 558/600 41/50 

Solution time (sec.) 169.1 354.2 312.5 528.8 1539.6 1192.8 

Normal 2 

Solution value 7.056 7.293 7.458 7.189 7.189 7.189 

Expected error cost 0.185 0.186 0.371 0.470 0.470 0.470 

Tests cost 6.871 7.107 7.087 6.719 6.719 6.719 

# of iterations until best solution 40/90 659/680 50/50 32/90 581/600 36/50 

Solution time (sec.) 194.4 354.4 322.2 702.7 1564.3 1374.6 

Normal 3 

Solution value 7.087 7.771 7.274 7.675 7.660 7.652 

Expected error cost 0 0 0 0.790 0.941 0.753 

Tests cost 7.087 7.771 7.274 6.885 6.719 6.899 

# of iterations until best solution 86/90 645/680 49/50 43/90 570/600 40/50 

Solution time (sec.) 292.3 350.4 320.5 980.4 1541.2 1396.3 

Uniform 1 

Solution value 2.224 2.224 2.224 1.758 1.758 1.758 

Expected error cost 0.186 0.186 0.186 0.301 0.301 0.301 

Tests cost 2.038 2.038 2.038 1.457 1.457 1.457 

# of iterations until best solution 30/90 615/680 37/50 13/90 526/600 31/50 

Solution time (sec.) 169.3 341.6 277.2 214.1 1467.9 1082.7 

Uniform 2 

Solution value 2.307 2.295 2.307 1.969 1.969 1.969 

Expected error cost 2.094 0 2.094 0.151 0.151 0.151 

Tests cost 0.213 2.295 0.213 1.818 1.818 1.818 

# of iterations until best solution 21/90 609/680 39/50 15/90 534/600 29/50 

Solution time (sec.) 258.8 342.0 292.0 623.0 1465.9 1099.6 

Uniform 3 

Solution value 2.295 2.307 2.307 2.119 2.119 2.119 

Expected error cost 0 2.094 2.094 0.301 0.301 0.301 

Tests cost 2.295 0.213 0.213 1.818 1.818 1.818 

# of iterations until best solution 50/90 620/680 30/50 16/90 533/600 33/50 

Solution time (sec.) 303.4 340.0 290.6 690.0 1468.0 1126.5 
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We further observed that the best solutions in almost all the runs of the three 

methods were found in an early iteration (relative to the number of allowed iterations), 

which implies that with the other tuning parameters used, our stopping criteria were 

correct, although it may be the case that other criteria could save computation time 

without scarifying quality.  Lastly, it seems that in most of the case the TS outperforms 

the two other heuristics in terms of computation time.  However, we comment that since 

the STCP is a long-run design problem, a good practice would be to apply all the known 

heuristics, or to use complete enumeration when the number of tests is small enough. 

In Table 8, we present some aggregated statistics that measure the success of our 

caching mechanism for the three solution methods. In the first row, we present the 

average number of solutions that are evaluated for each of the nine instances. In the 

second row, we present the average number of times when the required solution could 

be obtained from the hash table (cache hits) and thus, there was no need to reevaluate 

it. The ratio between the number of cache hits and the total number of scanned solutions 

(actually evaluated and retrieved from the cache) is presented in the third row, entitled 

“Frac. hits rate”. In the fourth row, we present the ratio between the number of evaluated 

solutions and the number of all the possible ones.  

It can be seen that for all the three algorithms, the hash table is beneficial, especially 

in instances with a small number of tests. When the number of tests grows, the hash 

table is effective mostly for the TS algorithm that searches in previous good solutions 

but not so much for the BGSA and CE. We note that for all the three methods, the 

fraction of evaluated solutions approaches zero as the number of tests grows.  Given 

that all three algorithms spend very most of their computation time in the evaluation of 

solutions, this implies that their solution time is much shorter than the time needed for 

complete enumeration.  

 

Table 8: Statistics of the caching mechanism  

Solution 

method 
Measure Wine Thyroid Mushrooms 

Cortex 

nuclear 

Molecular 

biology 

 # Tests 12 21 21 68 60 

TS 

# of evaluations 

# of cache hits 

Frac. hits rate 

Frac evaluated 

558 

4,055 

0.88 

0.14 

1,685 

16,664 

0.91 

0.0008 

2,329 

15,208 

0.87 

0.0011 

50,047 

68,128 

0.58 

1.7 × 10−16 

29,062 

62,248 

0.68 

2.5 × 10−14 

BGSA 

# of evaluations 

# of cache hits 

Frac. hits rate 

Frac evaluated 

2,376 

9,624 

0.80 

0.58 

13,101 

7,899 

0.38 

0.0062 

13,989 

7,011 

0.33 

0.0067 

64,136 

3,864 

0.06 

2.2 × 10−16 

56,346 

3,654 

0.06 

4.9 × 10−14 

CE 

# of evaluations 

# of cache hits 

Frac. hits rate 

Frac. evaluated 

1,342 

10,658 

0.89 

0.33 

5,858 

15,142 

0.72 

0.0028 

6,007 

14,993 

0.71 

0.0029 

63,769 

4,231 

0.06 

2.2 × 10−16 

52,298 

7,702 

0.13 

4.5 × 10−14 

 

6 Conclusions 

This paper introduces a practical problem whereby decisions must be made in the 

design phase of various systems and processes. The aim is to minimize the sum of the 

expected error cost associated with classification errors and the testing cost. The STCP 

is a generalization of the deterministic variant of the minimum TCP, which is already 
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highly intractable but our numerical experiments show that the three proposed solution 

methods are effective. Specifically, for a given budget of computational effort, the TS 

method appears to be superior to the CE and BGSA. However, since none of these 

methods consistently predominates, when computational resources are available, all the 

three methods should be applied, as the STCP is typically a long-term decision. 

For large instances, the effectiveness of the three methods presented cannot be 

evaluated in terms of optimality gap, since an optimal solution cannot be calculated. 

Thus, an interesting direction for future research is to develop an exact method that 

solves the problem or at least creates good lower bounds for it. 

The STCP is related to the well-studied feature selection problem and it may be the 

case that similar solution methods can be applied to it. However, solutions to the feature 

selection problem should be evaluated jointly using a classification method to examine 

their predictive power and control their sensitivity to overfitting, which is a different 

objective than that of the STCP.  
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