
1

The Stochastic Test Collection Problem:

Modeling and Solution Approaches

Yifat Douek-Pinkovich, Irad Ben-Gal, Tal Raviv

Department of Industrial Engineering, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978,

Israel

E-mail: yifatdouek@gmail.com, bengal@tauex.tau.ac.il, talraviv@tauex.tau.ac.il

November 2019

Abstract

The well-studied Test Collection Problem (TCP) selects a minimal set of binary tests

needed to correctly classify the state of a system. This model has applications in various

domains, such as the design of monitoring systems in engineering, communication and

healthcare. In this paper, we define the Stochastic Test Collection Problem (STCP) that

generalizes the TCP. While the original TCP assumes that each combination of the

outputs of the tests can be mapped into a class, in the STCP, these combinations are

mapped to probability distributions over the classes. Moreover, each test and each type

of classification error is associated with some cost. The objective is to select a subset

of tests that minimize the weighted sum of the tests’ costs and the expected cost of the

classification errors. The STCP further generalizes the TCP by allowing general

categorical results of the tests rather than binary ones. We apply three metaheuristic

methods for the STCP, namely, Tabu Search (TS), Cross-Entropy (CE), and Binary

Gravitational Search Algorithm (BGSA). These methods were tested on realistic and

publicly available datasets and shown to be successful by comparing their solutions to

the optimal ones obtained by an exhaustive search. The latter procedure requires

tremendous computational effort and is therefore applicable only to relatively small

instances of the problem. The solutions of larger instances, as obtained using the three

heuristics methods, were also compared with each other.

Keywords: Combinatorial optimization, The test collection problem, Cross-entropy,

Tabu search, Binary gravitational search algorithm

mailto:bengal@tauex.tau.ac.il
mailto:talraviv@tauex.tau.ac.il

2

1 Introduction

Consider the following settings. One is given a set of feasible tests with categorical

outputs and all possible combinations of these tests’ results for a population of tested

subjects (e.g., patients). Each such combination of the tests’ results is called reading

and is associated with a discrete probability distribution over a given finite (and

typically small) set of classes (e.g., diagnoses). Each reading is also associated with a-

priori probability (i.e., relative frequency in the population). Each of the tests is

associated with a testing cost and each possible type of classification error is associated

with an error cost. A classification error type A-B is the error of classifying a subject

as B, while it actually belongs to A. We refer to a subset of selected tests as a

configuration. A possible combination of the results of a given configuration is called

a signature. Clearly, given a small configuration, different readings may result in an

identical signature and hence are indistinguishable. The question of adding additional

tests in this case is economical – considering both the testing costs and the error costs

as signatures into a class with the goal of minimizing the sum of the expected

classification errors and testing costs. The tradeoff between the two components of the

objective function is straightforward, since often executing more tests (or more accurate

and expensive ones) is likely to reduce the likelihood of classification errors and thus

their excepted cost, but increase the total testing cost (e.g., adding more blood tests to

improve the patient’s diagnosis). The challenge of (and the interest in) the problem

stems from the fact that the classification can rarely be inferred from the signature of a

single test. Instead, it is concluded from a combination of the results obtained from

different tests – the signature – and even then there is a chance of error. A formal

definition of the problem requires additional notation and is introduced in Section 2.

The STCP generalizes the well-studied Test Collection Problem (TCP), as discussed

in Garey and Johnson (1979), Halldórsson et al. (2001) and De Bontridder et al. (2003),

to name only few examples. Most importantly, instead of a one-to-one relation between

readings and classes, it allows a probabilistic many-to-many relation and thus enables

various readings-to-class mappings, as often happens in reality. In such a case, often a

deterministic diagnosis is impossible, hence the need to introduce the classification

error cost into the objective function. Moreover, the original version of the TCP

assumes that the cost of all the tests is identical, and this merely seeks to minimize the

number of tests instead of the most cost-effective ones. Clearly, the TCP is a special

case of the STCP, where each reading is associated deterministically with one class, the

costs of all the tests are set to one, and the classification error costs are set to

prohibitively large numbers (e.g., larger than the number of tests). Note that the TCP is

known to be NP-Hard (Garey and Johnson, 1979) and APX-Hard (Halldórsson et al.

2001, De Bontridder et al. 2003). Therefore, in this study we are not trying to generate

an efficient, exact algorithm for the STCP, but we focus rather on effective heuristic

methods to solve it.

While the TCP, and its stochastic generalization presented here, can be well

motivated by a medical testing problem (e.g., selecting the most cost-effective panel of

routine medical tests), equivalent problems may occur when monitoring any complex

system; for example, water networks, manufacturing plants, greenhouse facilities,

vehicles and, naturally, the human body. Modern monitoring systems often comprise

many sensors connected to a central processing unit that detects and classifies the

3

current state of the system. It is often the case that the information obtained from the

sensors is noisy and cannot be mapped deterministically to a single class. A major task

in the design phase of these systems is to select a subset of sensors with a minimal cost

out of potentially very large (and expensive) sets.

To be comparable with the error costs, the testing cost, in our context, is the cost of

using the sensor for a single reading. For example, the cost associated with the

installation of the sensors should be amortized in terms of a single usage, the equivalent

of performing one test.

The STCP extends a previous problem introduced by Bertolazzi et al. (2016) and

studied by Douek-Pinkovich et al. (2019) that generalizes the TCP by introducing costs

for the sensors (tests). Many authors have studied various applications of the test

collection problem, some of them using terminology and formulations that differ

somewhat from ours. Such applications include sensor placement for structure, e.g., in

Kammer (1991), Sela et al. (2016); robotics, e.g., in Hovland and McCarragher (1997);

energy consumption strategies, e.g., in Slijepcevic and Potkonjak (2001); medical

diagnosis, e.g., in Wendt and Potkonjak (2011); process monitoring, e.g., in Bacher and

Ben-Gal (2017), among others.

In this paper, we apply three metaheuristic methods to solve the STCP, namely,

Tabu Search (TS), Cross-Entropy (CE), and Binary Gravitational Search Algorithm

(BGSA). We also solve a few small instances of the problem by enumerating all the

possible testing configurations and evaluate their solutions in order to obtain an optimal

benchmark solution to evaluate the proposed heuristic algorithms.

Tabu Search (TS) is a well-studied and frequently used metaheuristic proposed by

Glover (1989) as a general extension of classical local search techniques to overcome

local optimum convergences. TS uses ‘intelligence’ to direct the iterative search in a

prospective and promising direction. The effectiveness of TS depends on how adaptive

memory is used to direct the exploration process. The power of the methodology is

illustrated, for example, by Cangalovic et al. (1996), who applied TS to a combinatorial

assignment problem. Drezner et al. (2001) and Pacheco et al. (2009) used TS to select

a subset of descriptive variables that yields the greatest percentage of hits in a regression

model. This method was successfully applied in corporate bankruptcy predictions,

credit scoring and other forecasting applications.

The Cross-Entropy (CE) method comprises of a suite of techniques and algorithms

for rare-event simulation, importance sampling and combinatorial optimization

problems (COP). The method was first introduced by Rubinstein (1997) for the efficient

estimation of rare event probabilities in stochastic networks. It was later recognized that

one can also apply it to (heuristically) solve hard combinatorial optimization problems,

such as the traveling salesman and max-cut (see Rubinstein and Kroese, 2004, and De

Boer et al., 2005). Moreover, the CE method was successfully applied to stochastic

optimization problems. For example, Alon et al. (2005) successfully implemented the

CE method in the buffer allocations problem.

The Gravitational Search Algorithm (GSA) is a heuristic solution method

introduced by Rashedi et al. (2009) and inspired by the law of gravity and mass

interactions. In this algorithm, the search agents represent a collection of masses, and

their interactions are based on the Newtonian laws of gravity and motion. The method

was extended to solve combinatorial optimization problems with binary variables by

4

Rashedi et al. (2010). The extended version is referred to as the Binary Gravitational

Search Algorithm (BGSA). Papa et al. (2011) combined the BGSA with a classifier

method to provide a fast and accurate framework for feature selection. The BGSA was

also applied to nonlinear optimization problems, such as the optimal power flow

problem, as seen in Duman et al. (2012).

The Feature Selection (FS) problem is related to the STCP in the sense that in both

problems, the goal is to select a set of characteristics of an object that enables its proper

classification. However, the two methods differ in their objective and implementation.

The STCP considers the tradeoff between the cost of the information obtained for the

classification as well as the expected cost of misclassification. On the other hand, in

feature selection, the goal is to select a subset of characteristics that minimizes the

chances of misclassification due to overfitting or underfitting. Saeys et al. (2007)

provided a basic taxonomy of feature selection techniques.

In the naïve Bayes classification literature, Chai et al. (2004) studied the tradeoff

between the costs of the tests and misclassification. They presented a greedy procedure

in which one new test is selected at each step, based on its potential information gain

and cost. The authors also extended this method to batch testing strategy, when several

tests are performed at each step. Ling et al. (2004) used a similar approach in decision

trees, where the goal is to minimize the expected total testing and misclassification

costs.

The contributions of this paper are in introducing the stochastic variant of the TCP

and in presenting effective solution methods for it that follow some of the above

approaches.

The rest of the paper is organized as follows. In Section 2, we present some formal

notation and mathematical formulation of the problem. In Section 3, we demonstrate

the properties of the problem using a small illustrative example. Sensitivity analysis is

carried out to demonstrate some counterintuitive properties of the problem and its

optimal solutions. In Section 4, we present the heuristic methods to solve the STCP

based on the TS, CE, and BGSA metaheuristics. In Section 5, our solution methods are

tested and compared based on realistic data from the UCI Machine Learning Repository

(Dua and Graff, 2019). Some concluding remarks are offered in Section 6.

2 Notation and problem definition

The mathematical formulation of the STCP is based the following notation.

𝑁 Set of candidate tests available in a given system; the number of tests is

denoted by 𝑛 = |𝑁|. 𝑆 ∈ 𝑁 is a subset of selected tests called configuration.

𝑐𝑖 The cost of test 𝑖 for all 𝑖 ∈ 𝑁.

𝑉𝑖 The set of outputs/results that can be obtained from test 𝑖.

𝑅 The set of valid readings, 𝑅 ⊆ 𝑉1 × 𝑉2 × ⋯ × 𝑉𝑛; for each reading �̃� ∈ 𝑅 we

refer to the result of the 𝑖𝑡ℎ test by �̃�𝑖.

𝐾 The set of possible classes 𝐾 = {1, … , 𝑘}.

𝜆𝑘𝑙 Misclassification error of type (𝑘, 𝑙), 𝑘, 𝑙 ∈ 𝐾, i.e., the cost of classifying an

object as class 𝑙 while its true class is 𝑘.

5

𝑝(�̃�) The a-priory probability of obtaining the reading �̃� ∈ 𝑅.

𝑝(𝑘|�̃�) The conditional probability of class 𝑘 ∈ 𝐾 given the reading �̃� ∈ 𝑅.

Let us denote the a-priori probability of each class by 𝑝(k) and the conditional

probability of each reading given a class by 𝑝(�̃�|k). These two probability values are

thus related to each other by Bayes’ rule,

 𝑝(k) = ∑ 𝑝(k|�̃�)𝑝(�̃�)

�̃�∈𝑅

 (1)

𝑝(�̃�|k) =

𝑝(k|�̃�)𝑝(�̃�)

𝑝(k)
 (2)

For each configuration, 𝑆 ⊂ 𝑁, define 𝑅(𝑆) as the set of all its signatures, i.e., partial

readings that can be obtained from the results of the selected tests. When the

configuration is known, we denote the signature of �̃� by 𝐫. The signature 𝐫 ∈ 𝑅(𝑆) is a

vector of dimension |𝑆|. For convenience, the elements, 𝑟𝑖, of the signature vectors, are

indexed by the original indices of the tests in 𝑁. For example, if 𝑁 ={1,…,5} and 𝐫 ∈

𝑅({1,2,5}), then 𝐫 = (𝑟1, 𝑟2, 𝑟5). In this example, 𝑟5 is the third element of 𝐫. We denote

the set of all the possible readings from which signature 𝐫 can be obtained when the

configuration is 𝑆, by 𝑄(𝑆, 𝐫). That is, 𝑄(𝑆, 𝐫) = {�̃� ∈ 𝑅: �̃�𝑖 = 𝑟𝑖 ∀𝑖 ∈ 𝑆}.

Next, for each configuration 𝑆 ⊂ 𝑁 and 𝐫 ∈ 𝑅(𝑆), it is possible to calculate the

following three probability components: the probability of a signature given class 𝑘,

𝑝𝑆(𝐫|𝑘); the prior probability 𝑝𝑆(𝐫) of signature 𝐫 ∈ 𝑅(𝑆); and the a-posteriori

probability 𝑝𝑆(𝑘|𝐫) that the class is 𝑘 ∈ 𝐾 given that the signature is 𝐫 ∈ 𝑅(𝑆). These

probabilities can be calculated using Equations (3) -(5). For configuration 𝑆 the

conditional probability of class 𝑘 when observing a signature 𝐫, 𝑝𝑆(𝑘|𝐫), is calculated

in Equation (5) using Bayes’ rule.

 𝑝𝑆(𝐫|𝑘) = ∑ 𝑝(�̃�|𝑘)

�̃�∈𝑄(𝑆,𝐫)

 (3)

 𝑝𝑆(𝐫) = ∑ 𝑝(�̃�)

�̃�∈𝑄(𝑆,𝐫)

= ∑ 𝑝(𝑘) ⋅ 𝑝𝑆(𝐫|𝑘)

𝑘∈𝐾

 (4)

𝑝𝑆(𝑘|𝐫) =

𝑝𝑆(𝐫|𝑘) ∙ 𝑝(𝑘)

𝑝𝑆(𝐫)
 (5)

Consider a given configuration 𝑆 ⊂ 𝑁. The expected classification error cost for

signature 𝐫 of 𝑆 if it is mapped to class 𝑙 is:

 𝐸𝑆(𝐫|𝑙) = ∑ 𝜆𝑘𝑙 ∙ 𝑝𝑆(𝑘|𝐫)

𝑘∈𝐾

(6)

let 𝑙𝑆
∗: 𝑅(𝑆) ⟶ 𝐾 be a function that maps each possible signature of 𝑆 to a class that

minimizes the expected classification error cost.

 𝑙𝑆
∗(𝐫) = argmin

𝑙∈𝐾
{𝐸𝑆(𝐫|𝑙)} (7)

The minimum expected classification error cost for signature 𝐫 is:

 𝐸𝑆
∗(𝐫) = min

𝑙∈𝐾
{𝐸𝑆(𝐫|𝑙)} (8)

6

Note that (7) coincides with the “minimum Bayes risk decision rule,” as found in Duda

et al. (2012).

The STCP can now be formulated mathematically. Namely, given an instance of the

problem [𝑁, 𝑅, 𝐾, p(�̃�), p(𝑘|�̃�), 𝛌, 𝐜], select a configuration 𝑆, such that the total

expected classification error and tests costs is minimized,

min
𝑆⊆𝑁

{ ∑ 𝑝𝑆(𝐫)𝐸𝑆
∗(𝐫)

𝐫∈𝑅(𝑆)

+ ∑ 𝑐𝑖

𝑖∈𝑆

}

(9)

Note that given the set of sensors, 𝑆, the set of signatures is uniquely defined by 𝑅(𝑆)

and the optimal mapping of each signature to a class is give by (7).

3 Motivating example

Let us demonstrate the problem by the following small example. Consider a medical

testing system comprising three potential tests aimed at detecting a viral disease. Each

test produces a binary result, i.e., the result of medical test 𝑖 may be either

𝑉𝑖 = 0 or, 1. The input of this instance in terms of the notation presented in Section 2

is:

𝑁 {1,2,3}

𝑐𝑖 [2, 0.5, 0.5]

𝑉𝑖 {0,1} for 𝑖 = 1,2,3; the result of each test can be either 0 or 1.

𝑅 𝑉1 × 𝑉2 × 𝑉3; all possible combinations of the tests results. See also the first

group of columns in Table 1.

𝐾 {Negative, Positive}

𝜆𝑘𝑙 [
0 50

50 0
]; i.e., both false-positive and false-negative costs are equal to 50.

𝑝(�̃�) See the second group of columns of Table 1.

𝑝(𝑘|�̃�) See the third group of columns of Table 1.

Table 1: Valid readings �̃� ∈ 𝑅, the probabilities 𝑝(�̃�), 𝑝(�̃�|𝑘), and 𝑝(𝑘|�̃�).

Test Readings, 𝑅
𝑝(�̃�)

 𝑝(�̃�|𝑘) 𝑝(𝑘|�̃�)

Test 1 Test 2 Test 3 Negative Positive Negative Positive

0 0 0 0.067 0.035 0.105 0.289 0.711

0 0 1 0.119 0.015 0.245 0.070 0.930

0 1 0 0.105 0.105 0.105 0.550 0.450

0 1 1 0.135 0.045 0.245 0.183 0.817

1 0 0 0.097 0.140 0.045 0.792 0.208

1 0 1 0.080 0.060 0.105 0.411 0.589

1 1 0 0.251 0.420 0.045 0.919 0.081

1 1 1 0.146 0.180 0.105 0.677 0.323

In this small example, the solution can be readily calculated by an exhaustive search of

all 23 = 8 possible test configurations. The value of each subset S is calculated by

enumerating all the signatures in 𝑅(𝑆). An example of such calculations for the

configuration 𝑆 = {1,2} is described in Table 2. First, the set of all signatures obtained

from the subset S is shown in the first group of columns in Table 2. Next, for each

signature 𝐫 ∈ 𝑅(𝑆) and each diagnosis 𝑘 ∈ 𝐾, the probabilities 𝑝𝑆(𝐫|𝑘), 𝑝𝑆(𝐫), and

7

𝑝𝑆(𝑘|𝐫) are calculated using (3) -(5) and are shown in the second, third, and fourth

group of columns, respectively. Now, the expected error cost of diagnosing 𝑙 while the

true diagnosis is 𝑘 can be seen in the fifth group of columns and is calculated when 𝑙 is

decided, i.e., 𝐸𝑆(𝐫|𝑙), as given in (6)(6). Equation (7) shows the diagnosis that

minimizes the expected classification error cost for signature 𝐫 (sixth group of

columns). Its expected classification error cost is given by (6)and can be seen in the

seventh group of columns. Multiplying the minimum expected classification error cost

by the probability of obtaining each signature 𝐫 ∈ 𝑅(𝑆) can be seen in the eighth group

of columns. The sum of this column is 12.25, which denotes the expected classification

error cost for the subset as given by the first addend of (9). The second addend of (9)

indicates the cost of the tests, which is 2.5. Thus, the expected total cost of the subset

𝑆 = {1,2} is 14.75.

Table 2: Calculating the expected total cost for 𝑆 = {1,2}

In Table 3, for each possible configuration (given in the first column), we present the

expected classification error cost (second column), the tests cost (third column), and

the expected total cost, which is the error cost plus the tests cost (in the fourth column).

One can observe that the configuration {1,2,3}, i.e., using all the tests, is the one that

minimizes the cost function (9) with a value of 14.01.

Test1 Test2 Negative Positive Negative Positive = Negative = Positive

0 0 0.05 0.35 0.19 0.15 0.85 42.57 7.43 Positive 7.43 1.38

0 1 0.15 0.35 0.24 0.34 0.66 32.81 17.19 Positive 17.19 4.13

1 0 0.2 0.15 0.18 0.62 0.38 19.01 30.99 Negative 19.01 3.38

1 1 0.6 0.15 0.40 0.83 0.17 8.49 41.51 Negative 8.49 3.38

12.25

2.5

14.75Expected total cost:

8

Table 3: The expected classification error, tests cost, and expected total cost of each

configuration

Configuration
Expected

classification
error cost

Testing cost Total cost

{1,2,3} 11.01 3 14.01
{1,2} 12.25 2.5 14.75
{1,3} 12.25 2.5 14.75
{2,3} 15.00 1 16.00
{1} 12.25 2 14.25
{2} 18.13 0.5 18.63
{3} 15.00 0.5 15.50
{ } 22.50 0 22.50

Interestingly, the second best configuration is {1}. Adding tests 2 or 3, i.e., using the

configurations {1,2} or {1,3}, results in the same classification error cost as {1} but at

a higher testing cost. This demonstrates the complex structure of the problem and the

fact that a simple greedy or local search heuristic is unlikely to solve it.

Numerical analysis of the optimal decision, as a function of the classification error

costs (false positive, 𝜆𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒,𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, and false negative, 𝜆𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒,𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) is

presented in Figure 1. In this figure, the colors denote the optimal configuration. The

vertical black line illustrates the changes in the optimal configuration when the false-

negative error cost ranges from 0 to 100 and the cost of the false-positive error is fixed

at 35. As seen, the optimal decision can be very sensitive to changes in this parameter.

The expected classification error when performing all the tests is always smaller then

performing other combinations. However, the optimal decision takes into account the

tradeoff between the expected classification error and the cost of the tests.

Figure 1: An optimal configuration as a function of the false positive and false negative costs.

Another analysis is performed to test how changes in the prior probabilities 𝐩(𝑘)

affect the optimal decision. The results are shown in Figure 2. The parameter

𝑝(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) changes along the horizontal axis; note that 𝑝(𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) = 1 −

𝑝(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒). The rest of the parameters are fixed to their values, as in the original

example. It is clear that when 𝑝(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) = 1 or 𝑝(𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) = 0, i.e., when the

{3}

{2,3}
{1}

{1,3} {1,2,3}

{1,3}

{No tests}
{2,3}

{No tests}

9

diagnosis is always negative or always positive, the solution is trivial: tests are not

required. The number of sensors increases as the entropy of the classes increases.

Figure 2: The optimal subset of tests (configuration) as a function of the probability of

diagnoses. For example, for P(Negative)=0.3 the optimal configuration is {1,3}.

Note again that this problem could be solved by optimality using an exhaustive

search, which is valid when the number of tests is small. However, since the number of

configurations grows exponentially with the number of tests, the problem quickly

becomes computationally intractable in the number of tests. Therefore, effective

heuristic solution methods for solving the problem are required and are presented in the

next section.

4 Metaheuristics solution methods to the STCP

This section presents three possible methods to address the STCP based on the known

Tabu Search (TS), Cross-Entropy (CE), and Binary Gravitational Search Algorithm

(BGSA) metaheuristics. We report on all three methods since none of them

predominate. Note that the STCP is a long-term design problem, and thus the decision

maker may wish to apply all available methods and select the best solution obtained.

Recall that a solution to a problem is defined by the selected configuration, whereas

the mapping of each signature to a class is defined by (7). We denote a solution by the

characteristic vector 𝐱 of this set, i.e., 𝑥𝑖 = 1 if test 𝑖 is included and 0 otherwise. The

value of a solution, calculated as in (9), is denoted by 𝑔(𝐱).

4.1 The TS method

The TS method extends the basic local search techniques to facilitate the exploration of

the solution space beyond local optima. Once a local optimum is reached, the method

allows one to move to a new solution even if it is inferior. The TS method uses a tabu

list (TL) to disallow moves that cancel previous moves during several subsequent

iterations in order to escape a neighborhood of locally optimal solutions.

 1

2

3

10

The TS algorithm involves three main steps: (a) generate an initial solution and

initialize the TL to be empty, (b) explore the current solution’s neighborhood defined

by a set of candidate moves but excluding moves listed in the TL, and (c) move to the

best explored solution and add a new entry to TL to forbid the move that brings the

search back to the previous solution. If the TL is longer than a predefined length, the

algorithm removes its oldest entries. Steps (b) and (c) are repeated up to a predefined

number of iterations or until some other stopping criterion is satisfied.

 In our implementation, the initial solution is the empty set (𝐱 = 𝟎). Given a current

solution 𝐱, its value is evaluated with respect to all possible readings as explained and

demonstrated in Sections 2 and 3. The neighborhood of 𝐱, 𝑁(𝐱) is defined by three

types of moves: add one test that is not included in the current solution, remove one test

from the current solution, and swap a test from the current solution with one that is not

included. The set of neighboring solutions induced by each type of the above-mentioned

moves are denoted by 𝐴(𝐱), 𝑅(𝐱), and 𝑆(𝐱), respectively, thus 𝑁(𝐱) = 𝐴(𝐱) ∪ 𝑅(𝐱) ∪

𝑆(𝐱). Note that |𝐴(𝐱) + 𝑅(𝐱)| = 𝑛 and |𝑆(𝐱)| ≤
1

4
𝑛2. Each entry in the tabu list consist

of one or two tests that should not be added or removed from the solution as long as the

entry remains in the list. Add and remove operations add entries with a single test and

the swap operation adds an entry with a pair of tests. One is forbidden for removal and

the other for appending. If a candidate move involves a test in the tabu list, then its

respective solution is excluded from the neighborhood. We denote this reduced

neighborhood by 𝑁′(𝐱). In our implementation we use a stopping criterion based on the

total number of iterations in order to allow a fair comparison with other methods, but

other criteria used in the literature may apply. The main algorithm is outlined as a

pseudocode in Figure 3.

Figure 3: Pseudocode of the TS algorithm

Initialized

Set 𝐱, 𝐱∗ and 𝑇𝐿 as empty

Set 𝑣∗ = 𝑔(𝐱)

Repeat

 Set 𝑣 = ∞

For each 𝐱′ in 𝑁′(𝐱)

Set 𝑣′ = 𝑔(𝐱′)

If 𝑣′ < 𝑣 then

𝑣 = 𝑣′

𝐲 = 𝐱′

Let 𝑚 be the test(s) by which 𝐱 and 𝐲 differ

Set 𝐱 = 𝐲

If 𝑣 < 𝑣∗ then 𝐱∗ = 𝐱 and 𝑣∗ = 𝑣

Append m as an entry to the TL

If |𝑇𝐿| is greater than the maximal tabu length, remove its first entry

Until a pre-determined number of iterations is performed

Return 𝐱∗, 𝑣∗.

11

4.2 The CE Method

The CE algorithm involves iterative steps whereby each iteration can be broken down

into three main phases: (a) generate a random population of solutions using a specified

probabilistic selection rule; (b) evaluate the value of each of the generated solutions;

and (c) update the probabilistic selection rule for the next iteration based on the best

solutions (called the elite set) and iterate until some stopping criterion is satisfied.

At each iteration we generate 𝑤 solutions using a multi-Bernoulli distribution with

success probabilities 𝐩 = (𝑝1, … , 𝑝𝑛), i.e., 𝐱 = (𝑥1, … , 𝑥𝑛) such that 𝑥𝑖~𝐵𝑒𝑟(𝑝𝑖). We

initialize the probabilities with 𝑝𝑖 = 0.5, for all 𝑖, and update all these probabilities at

step (c) of each iteration. In a given iteration of the CE, we use 𝐱𝑖
(𝑗)

 to denote the 𝑖th

test in solution 𝑗, while 𝐱(𝑗) ∈ {0,1}n is a binary vector that represents solution 𝑗. The

probabilities 𝑝𝑖 are updated at the end of each iteration based on the best 𝜌𝑤 solutions

(called the elite set) and subject to exponential smoothing with a weight parameter 𝛼 ∈

[0,1]. The parameter 𝜌 ∈ (0,1) defines the relative size of the elite set; recall that 𝑤 is

the number of solutions that we generate at each iteration. 𝑤 and 𝜌 are selected such

that 𝑤𝜌 is an integer. Previous studies used 𝜌 = 0.1, i.e., the top ten percent solutions

are taken as the elite set. We follow this line. The indices of the solutions in the elite

set of iteration 𝑡 are denoted by ℰ𝑡. The parameters of the multi-Bernoulli distribution

are updated as follows:

𝑞𝑡,𝑖 =

∑ 𝕀
{𝐱𝑖

(𝑗)
=1}𝑗∈ℰ𝑡

𝜌𝑤
 , 𝑖 = 1, … 𝑛 (10)

where 𝕀{⋅} is an indicator function defined as follows:

𝕀{𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛} = {
1, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

That is, 𝑞𝑡,𝑖 is the proportion of the solutions that include test 𝑖 in the elite set of iteration

𝑡. The following exponential smoothing formula is then used to update 𝐩𝑡

 𝑝𝑡,𝑖 = 𝛼𝑞𝑡,𝑖 + (1 − 𝛼)𝑝𝑡−1,𝑖 , 𝑖 = 1, … 𝑛 (11)

We use exponential smoothing to prevent the premature convergence of p𝑡,𝑖 to 0 or 1.

It has been empirically shown, e.g., by Alon et al. 2005, that a value of 𝛼 between 0.7 ≤

𝛼 ≤ 0.9 often gives the best results. In this study, we use 𝛼 = 0.8.

Several types of stopping criteria have been used in the literature, such as i) Stop

when the worst solution in the elite set does not change for a predefined number of

consecutive iterations; ii) Stop when all the elements of 𝐩𝑡 are close enough to 0 or 1

and thus no new solutions are likely to be generated; and iii) Stop after a predefined

number of iterations or computation time. Clearly, combinations of the above may also

apply. In our implementation we use the third stopping criterion to enable a fair

comparison with other heuristics given a similar computational effort.

A pseudocode that describes our CE algorithm is presented in Figure 4.

12

Figure 4: Pseudocode of the CE algorithm

4.3 The Binary Gravitational Search Algorithm (BGSA) Method

The Binary Gravitational Search Algorithm (BGSA) is a relatively recent metaheuristic

inspired by the Newtonian law of gravitation and motion. Solutions are represented by

vectors and considered as objects (also called agents), and their position in a

multidimensional space is determined by the elements of these vectors. The mass of

each solution is determined by its objective function value. At each iteration of the

algorithm, the position and velocity of each object is updated based on its current

position, mass and velocity as well as those of the other objects. The mass of each

object/solution is then updated based on the values of solutions in the population. The

process is repeated until all the objects are merged into one or more heavy objects or

another stopping criterion is met.

For the implementation of the BGSA for the STCP, consider an initial set of 𝑤

solutions each represented by a vector 𝐱(𝑗) ∈ {0,1}𝑛 for 𝑗 = 1,2, … , 𝑤; we refer to each

coordinate of these vectors 𝑥𝑖
(𝑗)

 as the position of 𝑗th solution in the 𝑖th dimension. These

values are updated from iteration to iteration and we use 𝐱(𝑗)(𝑡) to denote the position

of the solution at iteration 𝑡 of the algorithm. Let us further define

𝑏𝑒𝑠𝑡(𝑡) = min
𝑗∈{1,…,𝑤}

𝑔 (𝐱(𝑗)(𝑡))

𝑤𝑜𝑟𝑠𝑡(𝑡) = max
𝑗∈{1,…,𝑤}

𝑔 (𝐱(𝑗)(𝑡)).

Based on these values we can calculate a normalized measure of each solution 𝑗

𝑞𝑗(𝑡) =
𝑔 (𝐱(𝑗)(𝑡)) − 𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)

Next, the mass of each solution 𝑗 is updated as follows:

𝑀𝑗(𝑡) =
𝑞𝑗(𝑡)

∑ 𝑞𝑗′(𝑡)𝑤
𝑗′=1

. (12)

At a specific time 𝑡, the force acting on agent 𝑗1 from agent 𝑗2 is defined as follows:

Initialized 𝐩 such that all test probabilities are equal to 0.5.

Set 𝑣∗ = ∞

Repeat

For j = 1 to w

 Generate solution 𝐱(𝑗) such that 𝑥𝑖
(𝑗)

~𝐵𝑒𝑟(𝑝𝑖)

 Sort the solutions in 𝐱 in non-decreasing order of 𝑔(𝐱(𝑗))

 Let x[1], x[2], … be the solutions in their sorted order

If 𝑔൫𝐱([1])൯ < 𝑣∗

 𝑣∗ = 𝑔൫𝐱([1])൯ and 𝑥∗ = 𝐱([1])

 Update 𝐩 using (11)

Until a pre-determined number of iterations is performed

Return 𝐱∗, 𝑣∗

13

𝐹𝑖
(𝑗1,𝑗2)

(𝑡) = 𝐺0 (1 −
𝑡

𝑇
)

𝑀𝑗1
(𝑡) ⋅ 𝑀𝑗2

(𝑡)

∑ |𝑥
𝑖′

(𝑗1)
(𝑡) − 𝑥

𝑖′

(𝑗2)
|𝑛

𝑖′=1 + 𝜀
(𝑥𝑖

(𝑗2)
(𝑡) − 𝑥𝑖

(𝑗1)
),

where 𝐺0 is a gravitational constant, 𝑇 is the total number of planned iterations for the

algorithm and 𝜀 is a small positive constant. Using some preliminary experiments, we

set 𝐺0 = 0.01𝑇 and 𝜀 = 2.2 × 10−16.

Next, we find an elite set 𝐸𝑡 comprising the best solutions at iteration 𝑡 and generate

random numbers 𝑝𝑗(𝑡)~𝑈[0,1] for each 𝑗 ∈ 𝐸𝑡. The cardinality of the 𝐸𝑡 is set to ⌈𝜌𝑡𝑤⌉

where 𝜌𝑡 linearly decreases from iteration to iteration according to the following

formula:

𝜌𝑡 = 1 −
𝑡

𝑇
(1 − 𝜌𝑇),

where 𝜌𝑇 is a parameter of the algorithm, while in our experiment we used 𝜌𝑇 = 0.02.

Next, we define the force that acts on solution 𝑗 in dimension 𝑖 at iteration 𝑡 by:

𝐹𝑖
(𝑗)(𝑡) = ∑ 𝑝𝑗′𝐹𝑖

൫𝑗,𝑗′൯
(𝑡)

𝑗′∈𝐸𝑡∖{𝑗}

.

In such a way, at the initial stage all solutions apply pressure on each other, and as the

iterations progress, only the few best solutions affect all the others. Now, according to

the law of motion, the acceleration of a solution 𝑗 at iteration 𝑡 in dimension 𝑖 is given

by:

𝑎𝑖
(𝑗)

(𝑡) =
𝐹𝑖

(𝑗)(𝑡)

𝑀𝑗(𝑡)
 (13)

The velocity of an agent is considered as a random fraction of its current velocity added

to its acceleration:

𝑣𝑖
(𝑗)(𝑡) = 𝜋𝑗(𝑡) ⋅ 𝑣𝑖

(𝑗)(𝑡 − 1) + 𝑎𝑖
(𝑗)(𝑡 − 1), (14)

where 𝑣𝑖
(𝑗)(0) is initialized to zero and 𝜋𝑗(𝑡) is drawn from 𝑈[0,1]. Moreover, to

increase the chance of convergence, the velocity is limited by some parameter 𝑣𝑚𝑎𝑥.

That is, |𝑣𝑖
(𝑗)

| < 𝑣𝑚𝑎𝑥. We followed (Rashedi et al., 2010) and set 𝑣𝑚𝑎𝑥 = 6. Based on

the velocity in each dimension, 𝑖, we flip the position of each agent, 𝑗, between 0 and 1

with probability |𝑡𝑎𝑛ℎ (𝑣𝑖
(𝑗)(𝑡))| and leave it as 𝑥𝑖

(𝑗)
(𝑡) otherwise.

𝑥𝑖
(𝑗)

(𝑡 + 1) = {
1 − 𝑥𝑖

(𝑗)
(𝑡), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 |𝑡𝑎𝑛ℎ (𝑣𝑖

(𝑗)(𝑡))|

𝑥𝑖
(𝑗)

(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(15)

14

The BGSA algorithm is outlined as a pseudocode in Figure 5.

Figure 5: Pseudocode of the BGSA algorithm

4.4 Caching

Recall that calculating the value, 𝑔(𝐱), for each solution with a given configuration

requires evaluating the signatures of all the readings, which is a computationally

demanding task. Indeed, almost all the running time of the three heuristics described

above is spent on these value evaluations. In some situations, the same solutions may

be required multiple times in the same run of the algorithm. To avoid repeated

calculations, we store the value of each calculated solution in a hash table that is indexed

by the binary representation of the solution. When the algorithms require the value of

𝐱 they first check if it already exists in the table. If it exists, the value is retrieved;

otherwise the solution is evaluated and its value is stored in the table. This mechanism

significantly reduces the running time of all three heuristics and is especially effective

in the last iterations of the two randomized heuristics, namely, the CE and BGSA. In

our experiments we managed a different cache for each algorithm in order to properly

benchmark them, but in practice the same cache can be used by different algorithms

that may be run in parallel or sequentially to obtain the best solution.

Initialized

𝑣∗ = ∞

Draw initial population of 𝑤 solutions 𝐱(𝑗), 𝑗 = 1,2, … , 𝑤

Repeat

Set = ∞, 𝑤𝑜𝑟𝑠𝑡 = −∞

For j = 1 to w

Evaluate 𝑔൫𝐱(𝑗)൯

 If 𝑔൫𝐱(𝑗)൯ < 𝑏𝑒𝑠𝑡

 𝑏𝑒𝑠𝑡 = 𝑔൫𝐱(𝑗)൯

 If 𝑔൫𝐱(𝑗)൯ > 𝑤𝑜𝑟𝑠𝑡

 𝑤𝑜𝑟𝑠𝑡 = 𝑔൫𝐱(𝑗)൯

Calculate 𝑀𝑗 // See (12)

Calculate 𝑎(𝑗) // See (13)

Calculate 𝐯(𝑗) // See (14)

Update 𝐱(𝑗) // See (15)

If 𝑔൫𝐱(𝑗)൯ < 𝑣∗

 𝑣∗ = 𝑔൫𝐱(𝑗)൯ and 𝑥∗ = 𝐱(𝑗)

Until it reaches the pre-determined number of iterations, 𝑇

Return the best solution 𝐱(𝑗)

15

5 Experimental results

In this section, we evaluated the effectiveness of the algorithms presented in Section 4.

The algorithms were implemented in MATLAB 2018b. The testing environment was

an eight-core Intel i7-4790 3.60 GHz CPU, 32 GB of RAM running under Windows 7,

64 bit.

For the evaluation of the algorithms presented above, we used representative

datasets from the UCI Machine Learning Repository (Dua and Graff, 2019) with up to

8,124 readings and 68 tests. In some of the datasets, we removed tests and readings to

eliminate missing values. Moreover, tests with numerical values were discretized by

dividing their values into quintiles or quartiles (depending on the number of readings).

Using this data, we estimated the prior probabilities of the classes and the readings

as well as the conditional probability of each class given a reading. Our algorithms were

tested with respect to these estimated probabilities.

For each dataset, we used three test cost vectors: one with a fixed (unit) cost per test

and two with randomly generated values as described below. Lastly, three classification

error cost matrices were created for each combination of dataset and cost vector. All

cleaned and processed input data of our experiment are available as an electronic

appendix to this paper. In total, the test contained 45 problem instances based on five

different UCI datasets.

In Table 4 we show the number of tests, type of test values (continuous or discrete),

discretization level (in the case of continuous test values), number of readings and

number of classes in the datasets. The information in the table refers to the cleaned data

after removing some tests and readings to eliminate the missing values.

Table 4: Characteristics of the five datasets used in the experiments.

Dataset Tests Test value

type

Discretization Readings Classes

Wine 12 Continuous Quintiles 6,463 7

Thyroid 21 Continuous Quintiles 3,103 5

Mushrooms 21 Discrete - 8,124 2

Cortex nuclear 68 Continuous Quartiles 1,077 8

Molecular biology 60 Discrete - 3,190 3

The Wine Dataset from UCI includes two tables, related to red and white wine

samples as described in Cortez et al. (2009). We followed Kaggle (Parmar, 2018) and

used a merged version of this dataset where the type of the wine was added as a new

feature. The class in this dataset is the wine quality score represented by a numerical

value in the range 3-9. The classification error matrix is based on the distance between

the classified quality and the true quality (a Toeplitz matrix with values in the range 0-

6). The (𝑖, 𝑗) element of the Toeplitz matrix represents the absolute difference between

the two classes. An error cost matrix that is proportional to the Toeplitz matrix reflects

the fact that greater errors are costlier. Specifically, we created one matrix that is 20

times the Toeplitz matrix and one that is 30 times that matrix.

In the Thyroid Dataset there are five classes: four related to pathological conditions

and one (negative) related to a healthy one. We created two matrices that assign a high

16

cost to a false negative diagnosis, a low one to a false positive diagnosis, and medium

values to the misdiagnosis of a pathological condition.

In the Mushrooms Dataset, each reading should be classified as toxic or nontoxic.

The classification matrices were constructed to reflect the fact that a false negative error

(classifying a toxic mushroom as an edible one) is much more expensive or dangerous

than a false positive error.

In the Cortex Nuclear Dataset, the classes are described by three binary features that

define the eight classes. We constructed error cost matrices based on the Hamming

distance of this binary description of the class; i.e., the distance can be zero, one, two

or three. The matrices were created by multiplying these distances by 100 and by 200.

The Molecular Biology Dataset contains DNA sequences of 60 nucleotides (each

nucleotides is a test, in our terminology). Each sequence belongs in one of three classes

(exon-intron, intron-exon, or neither). For this dataset, we used three fixed classification

error matrices with three different values (low, medium, high).

Our experiment is full factorial. That is, we tested all combinations of the three test

cost vectors and three classification error cost matrices – nine runs for each of the five

datasets.

For each dataset, we created one fixed test cost vector and two random cost vectors

that were drawn from 𝑁(1,0.1) and from 𝑈(0,2). The Thyroid Dataset from UCI

included one test cost vector that we used in our experiment after normalizing it to make

its mean equal one. In this instance, we used it instead of the cost vector with normally

distributed values.

For each dataset, we created three error cost matrices based on particular dataset

characteristics. All these error cost matrices have zeros on their diagonal and values off

the diagonal, as described in Table 5.

Table 5: Description of the classification error cost matrices.

Dataset Error cost matrix 1 Error cost matrix 2 Error cost matrix 3

Wine 20 × Toeplitz matrix

{0,..,6}

30 × Toplitz matrix

{0,..,6}

50 at each element off the

diagonal

Thyroid 1500 to false negative

600 to false positive

1200 other errors

3000 to false negative

1200 to false positive

2400 other errors

1500 at each element off the

diagonal

Mushrooms* 300 to false positive,

500 to false negative

100 to false positive,

400 to false negative

50 to false positive,

700 to false negative

Cortex

Nuclear

100 ×

ℎ𝑎𝑚𝑚𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

200 ×

 ℎ𝑎𝑚𝑚𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

300 at each element off the

diagonal

Molecular

Biology**

30 at each element off the

diagonal

60 at each element off the

diagonal

120 at each element off the

diagonal

* In the Mushrooms Dataset, the error cost matrix 3 is not fixed.

** In the Molecular Biology Dataset, all error cost matrices are fixed.

We conducted some preliminary experiments to decide upon some of the parameters

of the algorithm and discovered that the CE works well with iterations of 20𝑛 solutions

and typically converges before the 50th iteration. We found that the best number of

solutions per iteration in BGSA is not affected by the number of tests and that the

algorithm works well with 100 solutions per iteration. To make a fair comparison

17

between these two methods, we set the number of iterations in BGSA to 10𝑛. This

allowed us to keep the total number of evaluated solutions to approximately 1000n in

both methods. Note, however, that in both cases many of the solutions were sampled

more than once and could be retrieved from the cash rather than actually being

evaluated. Since the TS is a much faster heuristic, we run it with a limit of 90 iterations

but repeat each run three times with tabu list lengths of 0, 2, and 4 while keeping the

hash table that stores the cache from iteration to iteration. Note that setting the tabu

length to 0 is equivalent to a naïve local search, which typically terminates with a locally

optimal solution in less than 90 iterations. The reported solution values for the TS are

the best out of the three. We note no single alternative list length predominates the

other. The solution times reported for the TS are the sums of the times of the three runs

with the different tabu lengths. All the other tuning parameters of the heuristics methods

are specified in Section 4.

For each of the 5 × 3 × 3 combinations of datasets, error cost matrices and test cost

vectors we applied the three heuristic methods. For the smaller instances (Wine,

Thyroid, and Mushrooms) we also computed the exact optimal solution by enumerating

all the 2𝑛 possible combinations of the tests. This process was much more competently

demanding than any of our methods and is clearly not applicable to cases with larger

instances. In Table 6 we present the results for these smaller datasets.

For each run, the solution value is presented first and optimal ones are in boldface.

Next, the two components of the solution values are listed – the expected error cost and

the tests cost. In addition, the iteration number when the best solution is first found and

the solution times in seconds are displayed.

In Table 7, the same results are reported for the larger datasets, namely, Molecular

Biology and Cortex Nuclear. Here, we could not compute the exact solution using an

exhaustive enumeration and thus the solution values in bold are the best we could find

using the three heuristic methods.

It is apparent from Tables 6 and 7 that none of the three solution methods

consistently provides a better solution than the others. All instances of the three smaller

datasets were solved to optimality using both CE and BGSA and the TS, while missing

the optimal solutions occurred in only one case out of the 27. Compared with the brute

force approach of enumerating all the solutions, the computational effort required by

all three methods is negligible when the number of tests grows. For example, for the

Thyroid and Mushrooms instances there are over two million possible configurations,

but less than 2,500, 6,000, and 15,000 of them were explored by the TS, CE and BGSA,

respectively.

In the larger datasets, the TS provided the best solutions in 15 out of 18 instances

and missed the best solution within a small margin of up to 1.5%. In these datasets the

CE and BGSA found the best solutions in 8 and 7 cases, respectively.

18

Table 6: Results summary for Wine, Thyroid, and Mushrooms datasets.

*except in the Thyroid dataset, where the cost vector was taken from UCI

Test

cost

vector

Error

cost

matrix

Parameters

Wine Thyroid Mushrooms

TS BGSA CE TS BGSA CE TS BGSA CE

fixed 1

Solution value 11.602 11.602 11.602 17.058 17.058 17.058 4 4 4

Expected error cost 4.602 4.602 4.602 7.058 7.058 7.058 0

0 0

Tests cost 7 7 7 10 10 10 4 4 4

of iterations until best solution 10/90 2/120 3/50 12/90 106/210 10/50 6/90 66/210 11/50

Solution time (sec.) 19.2 108.2 64.4 32.3 191.9 103.0 22.7 188.1 56.1

fixed 2

Solution value 13.765 13.765 13.765 23.762 23.762 23.762 3.591 3.591 3.591

Expected error cost 5.765 5.765 5.765 22.762 22.762 22.762 0.591 0.591 0.591

Tests cost 8 8 8 1 1 1 3 3 3

of iterations until best solution 10/90 4/120 4/50 13/90 124/210 10/50 4/90 132/210 10/50

Solution time (sec.) 36.7 107.4 62.3 38.5 183.8 96.9 17.3 180.2 54.3

fixed 3

Solution value 15.388 15.388 15.388 23.568 23.568 23.568 3.295 3.295 3.295

Expected error cost 7.388 7.388 7.388 22.568 22.568 22.568 0.295 0.295 0.295

Tests cost 8 8 8 1 1 1 3 3 3

of iterations until best solution 10/90 11/120 4/50 13/90 115/210 10/50 4/90 98/210 9/50

Solution time (sec.) 32.7 108.7 61.4 26.4 192.6 89.7 15.2 175.1 58.0

Normal* 1

Solution value 11.691 11.691 11.691 40.122 39.609 39.609 4.014 4.014 4.014

Expected error cost 4.601 4.601 4.601 40.122 37.609 37.609 0.217 0.217 0.217

Tests cost 7.090 7.090 7.090 0 2 2 3.797 3.797 3.797

of iterations until best solution 8/90 4/120 4/50 1/90 102/210 9/50 5/90 110/210 13/50

Solution time (sec.) 25.8 105.4 60.3 2.4 60.9 22.4 23.0 178.3 78.0

Normal* 2

Solution value 13.881 13.881 13.881 60.991 60.991 60.991 3.895 3.895 3.895

Expected error cost 5.765 5.765 5.765 27.071 27.071 27.071 0.098 0.098 0.098

Tests cost 8.116 8.116 8.116 33.920 33.920 33.920 3.797 3.797 3.797

of iterations until best solution 9/90 1/120 4/50 13/90 129/210 13/50 5/90 119/210 13/50

Solution time (sec.) 28.9 106.7 59.4 20.6 129.4 70.0 11.0 168.6 68.0

Normal* 3

Solution value 15.504 15.504 15.504 40.122 40.122 40.122 3.846 3.846 3.846

Expected error cost 7.388 7.388 7.388 40.122 40.122 40.122 0.049 0.049 0.049

Tests cost 8.116 8.116 8.116 0 0 0 3.797 3.797 3.797

of iterations until best solution 10/90 8/120 5/50 1/90 72/210 12/50 6/90 113/210 11/50

Solution time (sec.) 17.9 110.4 62.5 3.0 55.0 21.7 10.9 174.3 68.3

Uniform 1

Solution value 12.369 12.369 12.369 15.790 15.790 15.790 2.235 2.235 2.235

Expected error cost 5.471 5.471 5.471 8.121 8.121 8.121 0.492 0.492 0.492

Tests cost 6.898 6.898 6.898 7.669 7.669 7.669 1.743 1.743 1.743

of iterations until best solution 8/90 1/120 4/50 12/90 131/210 11/50 6/90 128/210 10/50

Solution time (sec.) 33.2 94.4 55.9 36.4 177.5 95.0 11.2 198.6 65.1

Uniform 2

Solution value 15.004 15.004 15.004 22.159 22.159 22.159 2.137 2.137 2.137

Expected error cost 7.288 7.288 7.288 21.743 21.743 21.743 0.394 0.394 0.394

Tests cost 7.716 7.716 7.716 0.416 0.416 0.416 1.743 1.743 1.743

of iterations until best solution 9/90 10/120 5/50 13/90 119/210 12/50 6/90 105/210 9/50

Solution time (sec.) 22.7 103.7 60.0 33.5 184.5 93.0 7.2 174.6 64.5

Uniform 3

Solution value 16.974 16.974 16.974 22.183 22.183 22.183 2.038 2.038 2.038

Expected error cost 7.426 7.426 7.426 21.767 21.767 21.767 0.295 0.295 0.295

Tests cost 9.548 9.548 9.548 0.416 0.416 0.416 1.743 1.743 1.743

of iterations until best solution 11/90 8/120 4/50 13/90 128/210 7/50 9/90 143/210 12/50

Solution time (sec.) 28.5 100.7 60.2 20.8 187.3 95.8 13.4 170.0 60.3

19

Table 7: Results summary for Cortex Nuclear and Molecular Biology datasets.

Test cost

vector

Error

cost

matrix

Parameters

Cortex nuclear Molecular biology

TS BGSA CE TS BGSA CE

fixed 1

Solution value 7.371 7.650 8.093 7.103 7.969 7.828

Expected error cost 0.371 0.650 0.093 3.103 0.969 0.828

Tests cost 7 7 8 4 7 7

of iterations until best solution 9/90 642/680 45/50 5/90 569/600 49/50

Solution time (sec.) 261.6 357.8 315.3 405.6 1561.0 1342.0

fixed 2

Solution value 7.743 8.371 8.371 8.282 8.395 8.357

Expected error cost 0.743 0.371 0.371 0.282 0.395 0.357

Tests cost 7 8 8 8 8 8

of iterations until best solution 9/90 674/680 33/50 23/90 521/600 46/50

Solution time (sec.) 264.7 357.7 320.7 1230.0 1571.0 1417.5

fixed 3

Solution value 8 8.836 8.279 8.564 8.978 8.865

Expected error cost 0 0.836 0.279 0.564 0.978 0.865

Tests cost 8 8 8 8 8 8

of iterations until best solution 10/90 650/680 42/50 23/90 565/600 20/50

Solution time (sec.) 269.3 357.4 322.8 1230.7 1562.6 1456.3

Normal 1

Solution value 6.852 7.353 6.747 6.760 6.760 6.760

Expected error cost 0.464 0.372 0.464 0.903 0.903 0.903

Tests cost 6.388 6.981 6.283 5.857 5.857 5.857

of iterations until best solution 10/90 645/680 42/50 29/90 558/600 41/50

Solution time (sec.) 169.1 354.2 312.5 528.8 1539.6 1192.8

Normal 2

Solution value 7.056 7.293 7.458 7.189 7.189 7.189

Expected error cost 0.185 0.186 0.371 0.470 0.470 0.470

Tests cost 6.871 7.107 7.087 6.719 6.719 6.719

of iterations until best solution 40/90 659/680 50/50 32/90 581/600 36/50

Solution time (sec.) 194.4 354.4 322.2 702.7 1564.3 1374.6

Normal 3

Solution value 7.087 7.771 7.274 7.675 7.660 7.652

Expected error cost 0 0 0 0.790 0.941 0.753

Tests cost 7.087 7.771 7.274 6.885 6.719 6.899

of iterations until best solution 86/90 645/680 49/50 43/90 570/600 40/50

Solution time (sec.) 292.3 350.4 320.5 980.4 1541.2 1396.3

Uniform 1

Solution value 2.224 2.224 2.224 1.758 1.758 1.758

Expected error cost 0.186 0.186 0.186 0.301 0.301 0.301

Tests cost 2.038 2.038 2.038 1.457 1.457 1.457

of iterations until best solution 30/90 615/680 37/50 13/90 526/600 31/50

Solution time (sec.) 169.3 341.6 277.2 214.1 1467.9 1082.7

Uniform 2

Solution value 2.307 2.295 2.307 1.969 1.969 1.969

Expected error cost 2.094 0 2.094 0.151 0.151 0.151

Tests cost 0.213 2.295 0.213 1.818 1.818 1.818

of iterations until best solution 21/90 609/680 39/50 15/90 534/600 29/50

Solution time (sec.) 258.8 342.0 292.0 623.0 1465.9 1099.6

Uniform 3

Solution value 2.295 2.307 2.307 2.119 2.119 2.119

Expected error cost 0 2.094 2.094 0.301 0.301 0.301

Tests cost 2.295 0.213 0.213 1.818 1.818 1.818

of iterations until best solution 50/90 620/680 30/50 16/90 533/600 33/50

Solution time (sec.) 303.4 340.0 290.6 690.0 1468.0 1126.5

20

We further observed that the best solutions in almost all the runs of the three

methods were found in an early iteration (relative to the number of allowed iterations),

which implies that with the other tuning parameters used, our stopping criteria were

correct, although it may be the case that other criteria could save computation time

without scarifying quality. Lastly, it seems that in most of the case the TS outperforms

the two other heuristics in terms of computation time. However, we comment that since

the STCP is a long-run design problem, a good practice would be to apply all the known

heuristics, or to use complete enumeration when the number of tests is small enough.

In Table 8, we present some aggregated statistics that measure the success of our

caching mechanism for the three solution methods. In the first row, we present the

average number of solutions that are evaluated for each of the nine instances. In the

second row, we present the average number of times when the required solution could

be obtained from the hash table (cache hits) and thus, there was no need to reevaluate

it. The ratio between the number of cache hits and the total number of scanned solutions

(actually evaluated and retrieved from the cache) is presented in the third row, entitled

“Frac. hits rate”. In the fourth row, we present the ratio between the number of evaluated

solutions and the number of all the possible ones.

It can be seen that for all the three algorithms, the hash table is beneficial, especially

in instances with a small number of tests. When the number of tests grows, the hash

table is effective mostly for the TS algorithm that searches in previous good solutions

but not so much for the BGSA and CE. We note that for all the three methods, the

fraction of evaluated solutions approaches zero as the number of tests grows. Given

that all three algorithms spend very most of their computation time in the evaluation of

solutions, this implies that their solution time is much shorter than the time needed for

complete enumeration.

Table 8: Statistics of the caching mechanism

Solution

method
Measure Wine Thyroid Mushrooms

Cortex

nuclear

Molecular

biology

 # Tests 12 21 21 68 60

TS

of evaluations

of cache hits

Frac. hits rate

Frac evaluated

558

4,055

0.88

0.14

1,685

16,664

0.91

0.0008

2,329

15,208

0.87

0.0011

50,047

68,128

0.58

1.7 × 10−16

29,062

62,248

0.68

2.5 × 10−14

BGSA

of evaluations

of cache hits

Frac. hits rate

Frac evaluated

2,376

9,624

0.80

0.58

13,101

7,899

0.38

0.0062

13,989

7,011

0.33

0.0067

64,136

3,864

0.06

2.2 × 10−16

56,346

3,654

0.06

4.9 × 10−14

CE

of evaluations

of cache hits

Frac. hits rate

Frac. evaluated

1,342

10,658

0.89

0.33

5,858

15,142

0.72

0.0028

6,007

14,993

0.71

0.0029

63,769

4,231

0.06

2.2 × 10−16

52,298

7,702

0.13

4.5 × 10−14

6 Conclusions

This paper introduces a practical problem whereby decisions must be made in the

design phase of various systems and processes. The aim is to minimize the sum of the

expected error cost associated with classification errors and the testing cost. The STCP

is a generalization of the deterministic variant of the minimum TCP, which is already

21

highly intractable but our numerical experiments show that the three proposed solution

methods are effective. Specifically, for a given budget of computational effort, the TS

method appears to be superior to the CE and BGSA. However, since none of these

methods consistently predominates, when computational resources are available, all the

three methods should be applied, as the STCP is typically a long-term decision.

For large instances, the effectiveness of the three methods presented cannot be

evaluated in terms of optimality gap, since an optimal solution cannot be calculated.

Thus, an interesting direction for future research is to develop an exact method that

solves the problem or at least creates good lower bounds for it.

The STCP is related to the well-studied feature selection problem and it may be the

case that similar solution methods can be applied to it. However, solutions to the feature

selection problem should be evaluated jointly using a classification method to examine

their predictive power and control their sensitivity to overfitting, which is a different

objective than that of the STCP.

Acknowledgment: The first author of this paper was partially supported by a

scholarship from the Shlomo-Shmeltzer Institute. The research was partially supported

by the Koret’s Digital Living 2030 Grant.

References

Alon, G., Kroese, D. P., Raviv, T., & Rubinstein, R. Y. (2005). Application of the

cross-entropy method to the buffer allocation problem in a simulation-based

environment. Annals of Operations Research, 134(1), 137-151.

Bacher, M., & Ben-Gal, I. (2017). Ensemble-Bayesian SPC: Multi-mode process

monitoring for novelty detection. IISE Transactions, 49(11), 1014-1030.

Bertolazzi, P., Felici, G., Festa, P., Fiscon, G., & Weitschek, E. (2016). Integer

programming models for feature selection: New extensions and a randomized solution

algorithm. European Journal of Operational Research, 250(2), 389-399.

Cangalovic, M. M., Kovacevic-Vujcic, V. V., Ivanovic, L., Drazic, M., & Asic, M.

D. (1996). Tabu search: A brief survey and some real-life applications. Yugoslav

journal of operations research, 6(1), 5-18.

Chai, X., Deng, L., Yang, Q., & Ling, C. X. (2004, November). Test-cost sensitive

naive bayes classification. In Fourth IEEE International Conference on Data Mining

(ICDM'04) (pp. 51-58). IEEE.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and Reis, J. (2009). Modeling wine

preferences by data mining from physicochemical properties. In Decision Support

Systems, Elsevier, 47(4):547-553.

De Boer, P. T., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. (2005). A tutorial on

the cross-entropy method. Annals of operations research, 134(1), 19-67.

22

De Bontridder, K. M., Halldórsson, B. V., Halldórsson, M. M., Hurkens, C. A.,

Lenstra, J. K., Ravi, R., & Stougie, L. (2003). Approximation algorithms for the test

cover problem. Mathematical Programming, 98(1-3), 477-491.

Douek-Pinkovich, Y., Ben-Gal, I., and Raviv, T. (2019). The generalized test

collection problem. Working paper.

Drezner, Z., Marcoulides, G. A., & Hoven Stohs, M. (2001). Financial applications

of a tabu search variable selection model. Journal of Applied Mathematics and Decision

Sciences, 5(4), 215-234.

Dua, D. and Graff, C. (2019). UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of

Information and Computer Science.

Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification. John Wiley

& Sons.

Duman, S., Güvenç, U., Sönmez, Y., & Yörükeren, N. (2012). Optimal power flow

using gravitational search algorithm. Energy Conversion and Management, 59, 86-95.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness.

Glover, F. (1989). Tabu search—part I. ORSA Journal on computing, 1(3), 190-206.

Halldórsson, B. V., Halldórsson, M. M., & Ravi, R. (2001, August). On the

approximability of the minimum test collection problem. In European Symposium on

Algorithms (pp. 158-169). Springer, Berlin, Heidelberg.

Hovland, G. E., & McCarragher, B. J. (1997, April). Dynamic sensor selection for

robotic systems. In Robotics and Automation, 1997. Proceedings., 1997 IEEE

International Conference on (Vol. 1, pp. 272-277). IEEE.

 Kammer, D. C. (1991). Sensor placement for on-orbit modal identification and

correlation of large space structures. Journal of Guidance, Control, and

Dynamics, 14(2), 251-259.

Ling, C. X., Yang, Q., Wang, J., & Zhang, S. (2004, July). Decision trees with

minimal costs. In Proceedings of the twenty-first international conference on Machine

learning (p. 69). ACM.

Pacheco, J., Casado, S., & Núñez, L. (2009). A variable selection method based on

Tabu search for logistic regression models. European Journal of Operational

Research, 199(2), 506-511.

Papa, J. P., Pagnin, A., Schellini, S. A., Spadotto, A., Guido, R. C., Ponti, M., ... &

Falcão, A. X. (2011, May). Feature selection through gravitational search algorithm.

http://www.eng.tau.ac.il/~talraviv/Publications/GTCP_Sep2019.pdf
http://archive.ics.uci.edu/ml

23

In Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International

Conference on (pp. 2052-2055). IEEE.

Parmar R. (2018). Wine quality. https://www.kaggle.com/rajyellow46/wine-

quality#winequalityN.csv.

Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: a gravitational

search algorithm. Information sciences, 179(13), 2232-2248.

Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2010). BGSA: binary

gravitational search algorithm. Natural Computing, 9(3), 727-745.

Rubinstein, R. Y. (1997). Optimization of computer simulation models with rare

events. European Journal of Operational Research, 99(1), 89-112.

Rubinstein, R.Y. and D.P. Kroese. (2004). The Cross-Entropy Method: A Unified

Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine

Learning. Springer-Verlag, New York

Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques

in bioinformatics. bioinformatics, 23(19), 2507-2517.

Sela Perelman, L. S., Abbas, W., Koutsoukos, X., & Amin, S. (2016). Sensor

placement for fault location identification in water networks: A minimum test cover

approach. Automatica, 72, 166-176.

Slijepcevic, S., & Potkonjak, M. (2001). Power efficient organization of wireless

sensor networks. In Communications, 2001. ICC 2001. IEEE International Conference

on (Vol. 2, pp. 472-476). IEEE.

Wendt, J. B., & Potkonjak, M. (2011, October). Medical diagnostic-based sensor

selection. In Sensors, 2011 IEEE (pp. 1507-1510). IEEE.

https://www.kaggle.com/rajyellow46/wine-quality#winequalityN.csv
https://www.kaggle.com/rajyellow46/wine-quality#winequalityN.csv

