
Fluid Approximation and other Methods

for Hard Combinatorial Optimization

Problems

Tal Raviv

Fluid Approximation and other Methods for Hard
Combinatorial Optimization Problems

Submitted in Partial Fulfillment of the

Requirements for the

Degree of Doctor of Philosophy

Tal Raviv

Submitted to the Senate of

the Technion - Israel Institute of Technology

Kislev, 5764 HAIFA November 2003

The Research Thesis Was Done Under The Supervision of Michal Penn and

Shmuel Onn in the Faculty of Industrial Engineering and Management.

My deepest gratitude to my wife Ravit and my parents Ayala and Michael for

supporting me along the way of completing this dissertation and for urging me to

start it in the first place.

Special thanks to Professor Michal Penn for being an extremely efficient, devoted

and pleasant advisor. From the joint work with Michal I learned how to conduct

scientific studies and how to publish them. The opportunities Michal created for me

are my spring board to academic career. I hope I will have the chance to continue

to cooperate with her in the years to come.

Thanks for Professor Shmuel Onn who adopted me right from my first semester

at the Technion. I learned a lot from my work with him and enjoyed it very much.

Thanks for professor Gideon Weiss from the University of Haifa for his valuable

comments regarding this dissertation.

Finally, thanks for Professors Boaz Golany, Moshe Kress, Avishay Mandelbaum

and Reuven Rubinstein and from Technion and to Professor Gideon Weiss from The

University of Haifa. The scientific collaboration with them during my years at the

Technion was an enriching experience.

THE GENEROUS FINANCIAL HELP OF THE TECHNION IS GRATEFULLY

ii

ACKNOWLEDGED.

iii

Contents

Abstract 1

Notations and Abbreviations 3

1 Introduction 4

1.1 Fluid Approximation . 4

1.2 The Quality Control Configuration Problem 5

1.3 The Maximum Profit Job Shop Problem 6

1.4 Separation Index of Sets . 7

I Manufacturing System Problems 9

2 Fluid Approximation Model for the Quality Control Station Con-

figuration Problem 10

2.1 Problem Definition and Fluid Relaxation 12

2.2 Analyzing and Optimizing the Fluid system 14

2.3 Approximation Scheme for the Fluid Problem 24

2.4 Adapting the fluid Solution to the Discrete System 32

2.5 Limited Work In Process . 35

2.6 Numerical Results . 39

2.7 Discussion . 42

Appendix - Demonstration of Algorithm 44

3 Solving the Quality Control Station Configuration with Holding

Costs 47

3.1 Problem Definition and Notations . 49

iv

3.2 Analyzing a Given QCS System . 50

3.3 An Optimal QCS Configuration for a Given Arrival Rate 52

3.4 Parametric QCS Problem . 57

3.5 Numerical Results . 64

3.5.1 The Efficiency of the Algorithms 65

3.5.2 Insensitivity of the Total WIP to the Arrival Process 66

3.5.3 Comparison of the Exact and Approximate Solutions 69

3.6 Discussion . 71

4 Long Run Maximum Profit Job Shop Problem 74

4.1 Problem Definition and Fluid Relaxation 76

4.2 Adapting the Fluid Solution to the Discrete System 78

4.3 Upper Bounds on The Lateness . 83

4.4 FBDR and Cyclic Schedules . 89

4.5 Transient Phases . 94

4.6 Numerical Example . 95

4.7 Numerical Study . 98

4.8 Discussion . 100

II The Separation Index Problem 103

5 Separation Index of Sets - Bounds, Algorithms and Complexity 104

5.1 Basic concepts and notations . 106

5.2 Upper Bounds on the Separation Index 110

5.3 Lower bounds for the IP-Separation index 114

5.4 Computability . 117

5.5 Computational Complexity . 117

5.6 Examples of IP-Separation index for some Families of sets 124

5.7 Discussion and Further Research . 127

Bibliography 128

v

List of Figures

2.1 An example of a 5-piecewise linear homogenous function 20

2.2 Maximization of PWLH functions example 20

2.3 The function g∗1(x, 0) (example) . 46

3.1 An illustration of the functions C(Y, a) 56

3.2 WIP levels assuming Poisson and deterministic arrival processes . . . 69

5.1 Example of separation by convex hull 108

5.2 A C5 graph with 3 coloring (colors in parentheses) 121

vi

List of Tables

2.1 Performances of the Dynamic Programming and MIP Algorithms . . 41

3.1 The running times of Algorithm 3.4.1 66

3.2 Total level of WIP for the Poisson and the deterministic arrival processes 68

3.3 A comparison between Algorithm 3.3.1 and by Nelson et al. procedure 70

4.1 Sample data of small maximum profit job shop problem 95

4.2 Upper bounds on the maximum lateness 96

4.3 Actual required safety stocks . 97

4.4 Average number of products per cycle 100

4.5 Upper bound for Safety Stock vs. actual requirements of safety stocks 101

vii

Abstract

This dissertation consists of two parts. The first part deals with two problems

related to manufacturing. Namely, optimal configuration of quality control stations

in a serial production line and long run profit maximization of a job shop system.

The second part deals with the separation problem.

The first part includes three chapters. In the first chapter we study unreliable

serial production lines with known failure probabilities for each operation. Each

such production line consists of a series of stations; existing machines and optional

quality control stations (QCS). Our aim is to decide where and if to install the QCSs

on the line, so as to maximize the expected net profit per time unit from the system.

Following some recent studies, where a fluid approach was used to solve combi-

natorial optimization problems (mainly scheduling problems), we extend the set of

such problems and use the fluid view to analyze and optimize the performance of a

QCS system.

We use two methods: mixed integer programming and dynamic programming

to solve the fluid counterpart of the QCS problem. Numerical experiments were

conducted to demonstrate and compare the practical efficiency of these methods.

As observed, the dynamic programming approach is more efficient than the MIP

approach. The computational complexity of both methods is unknown. We then

present a fully polynomial-time approximation scheme for the problem that uses a

simpler dynamic program as a subroutine.

Finally we show how to use the solutions of the fluid counterpart problem to

obtain optimal solutions for the discrete QCS problem where inventory costs are

not taken into account. Furthermore, we show how the fluid approach can be used

to construct approximation methods for the more general case where inventory costs

are incorporated in the model.

In the second chapter we extend the QCS model to include work in process

holding cost, arbitrary revenue function and capital cost of QCSs. We present a

practical method to approximate the solution of very large instances of the prob-

lem using branch and bound strategy with the developed dynamic programming

procedure as a subroutine.

The last chapter in the first part uses the fluid approximation approach to solve

1

the problem of constructing an optimal product mix and cyclic dispatching rule

simultaneously in order to maximize the long run average profit per time unit ob-

tained from a given job shop system. A fluid counterpart model is presented and

solved as a simple linear program model. A dispatching rule based on the fluid

solution is presented and proved to be optimal once sufficient safety stocks are pro-

vided. Methods to calculate and reduce the minimum required safety stock are then

presented.

The second part of the dissertation includes a single chapter which deals with

the following problem: Given a pair of disjoint subsets S and T of some universe U ,

construct a collection of rules that for any given point p in U determine whether or

not p is close to S and far from T in some sense. One can study this problem in

two different levels: providing these rules for some collections of sets; and designing

a mechanism that constructs such a collection automatically for any given set.

Applications of this problem arise in the design of decision support systems for

medical diagnostic, risk assessment of credit and others. Various methodologies for

dealing with this problem have been considered in the literature, including statistics,

neural networks, Logical Data Analysis and others.

In this chapter we present a different approach, based on the construction of a

system of linear equalities and inequalities to separate the sets. In many cases this

method allows a description of complex sets using a small number of equalities and

inequalities.

Each of the four chapters is a self contained and is to be submitted for publication

separately.

2

Notations and Abbreviations

bxc The floor function of x

dxe The ceiling function of x

⊗ The outer product of vectors of the same dimension if A = u⊗ v

then Aij = uivj

〈·, ·〉 The inner product of two matrices of the same dimensions

〈U, V 〉 ≡ ∑
i,j Ui,j · Vi,j

Ad The set of all vectors of d elements over A

aff(S) The affine hull of a set S

conv(S) The convex hull of a set S

DP Dynamic Program

ei The ith standard unit vector in an Euclidean real space of a known dimension

G/G/1 A queueing system with a single server, arbitrary arrival process and

arbitrary processing time distribution

LP Linear Program

MIP Mixed Integer Program

M/M/1 A queueing system with a single server, Poisson arrival process and

exponential processing time distribution

P (A) The power set of a set A i.e., the collection of all subsets of A

QCS Quality Control Station(s)

QCi The QCS located immediately after the ith machine in the line.

R The set of real numbers

R+ (R−) The set of non-negative (non-positive)

WIP Work In Process

Z The set of integers

Z+ (Z−) The set of non-negative (non-positive)

3

Chapter 1

Introduction

This dissertation consists of two parts. The first part deals with two problems related

to manufacturing. Namely, optimal configuration of quality control station in a

serial production line and long run profit maximization of a job shop system. The

second part deals with the separation problem. Here we present some background

and literature survey for the methods we used and for the problems studied.

1.1 Fluid Approximation

Many systems in the fields of manufacturing, transportation and data communica-

tion can be considered as discrete flow control systems, e.g., systems consisting of

a network and some distinct objects that should be transferred along the network

according to some rules. Often, optimization problems related to these systems are

NP-Hard. For example, many scheduling problems are such problems and are well

known for their intractability.

Given a discrete flow control system, its fluid counterpart system can be defined

by relaxing the discrete nature of its objects and adjusting some of the rules that

control the movements of the objects within the system. The fluid counterpart

system, if properly designed, may imitate quite accurately the discrete one. Since the

continuous nature of the fluid systems makes them easier to analyze and optimize,

it might be useful to construct such a system whenever one wishes to devise a

method to evaluate or optimize a discrete flow system. This construction may lead

to efficient exact approximation or heuristics procedures and sometimes even to an

4

efficient optimization algorithms.

The fluid approximation view is extensively used for analyzing queueing sys-

tems, see for example Chen and Mandelbaum [9]. However, only recently it has

been used for combinatorial optimization problems. In particular this approach was

previously used to tackle the High Multiplicity Job Shop Problem by Bertsimas and

Gammarnik [5], by Boudoukh, Penn and Weiss [7]; by Dai and Weiss [13]; Bertsi-

mas and Sethuraman [6] and by Penn and Raviv [32]. Bertsimas and Gammarnik

also studied a Packet Routing Problem. Penn and Raviv [33] considered a Vehicle

Routing Problem.

Here we extend the set of combinatorial optimization problems solved by the

fluid approach by studying the Quality Control Station Configuration Problem (in

Chapter 2) and to the Maximum Profit Job Shop Problem (in Chapter 4).

1.2 The Quality Control Configuration Problem

It is well observed in the literature that incorporating inspection stations into multi-

stage production systems exert influence on the final cost and the quality of the final

product. Models and optimization algorithms for the problem of installing inspection

stations is dated back to 1965, see Lindsay and Bishop [25]. A survey on the problem

of optimal allocation of quality control stations (sometimes referred as inspection

station) in multi-stage systems, appears in Raz [34]. For more recent studies focused

on systems with imperfect inspection facilities, see for example [35], for study on

systems allowing rework and repair see [42] and for finite planning horizon look at

[23].

To the best of our knowledge, all previous studies considered the effect of the

inspection procedure on the average cost per product and overlooked its important

effect on the line throughput. In fact, most studies explicitly or implicitly, assume

a unit processing time in each of the machines and inspections facilities along the

production line. Hence, under the unit processing time assumption, the first machine

is always a bottleneck station and so installing additional quality control stations

(QCS) can not increase the throughput of the system.

Furthermore, it turns that the quality control station configuration substantially

affects the quantity of work in process within the system and thus the actual costs.

5

This phenomenon was first pointed out in a descriptive manner by Drezner, Gurnani

and Akella [19] but was never incorporated into an optimization algorithm.

The first two chapters of this dissertation extend the QCS models studied in the

literature and propose methods to solve them. In Chapter 2, we present a version

of the problem where the aim is to obtain a maximum profit per time unit. This

objective captures the effect of the QCS configuration on the line throughput.

This model is extended in the second chapter. In addition this model allows

arbitrary revenue function.

In Chapter 3 we define and solve a QCS Configuration model of a serial produc-

tion line where holding cost of work in process as well as capital costs are considered.

We present a method to analyze and optimize the performance of such a system.

Two optimization problems are considered: Minimization of the expected opera-

tional cost under a given production rate and maximization of the expected profit

where a QCS configuration and an arrival rate are to be decided simultaneously. As

far as we know, this work presents the first attempt to optimize the QCS configu-

ration where throughput and WIP (work in process) are taken into account. Also,

we allow an arbitrary revenue function for the yield of this system.

1.3 The Maximum Profit Job Shop Problem

Here we consider a production model where many instances of a small amount of

product types are to be produced according to a Job Shop setting. The planner

has to determine simultaneously the production mix and the schedule in order to

maximize the expected steady state profit.

We open the discussion with a simplified version of the problem in which the

long run average gross profit per time unit is maximized. In this version we allow

the system to use arbitrarily large (finite) safety stocks. Consequently, a long ini-

tialization phase, to build this safety stocks, may be required. In addition, the size

of the system buffers and the average level of work in process may be large.

Ideally, one would like to maximize the net profit, where holding cost, space cost

(of the buffers) and delay cost (of the initialization phase) are considered. We could

not meet this ultimate goal. Instead, we suggest a three-step optimization process.

First, the gross profit is maximized, using a fluid approach. Then, the solution is

6

modified in order to construct a cyclic schedule with very short cycles that still

yields approximately optimal gross profit. It is shown numerically, on standard

bench mark problems, that a compromise of 1% on the optimality of the gross profit

enables the creation of very short and simple cyclic schedule. Once a short cycle

is constructed, it is possible to change its sequence. The sequence’s change should

not affects the cycle length but it may reduce the level of work in processes, buffers

spaces, required safety stocks or any weighted combination of the three. This last

phase can be carried out by standard scheduling and combinatorial optimization

techniques and is out of the scope of this paper.

1.4 Separation Index of Sets

A fundamental problem in automated data analysis is the following: given an uni-

verse U and a pair of disjoint sets S, T ⊂ U , construct a collection of rules that

for any given point p ∈ U determine whether or not p is close to S and far from T

in some sense. One can study this problem in two different levels: providing these

rules for some families of sets; and designing a mechanism that constructs such rules

automatically for any given set.

Application of such separation problems arise in the design of decision support

systems for medical diagnostic, risk assessment of credit and others. Consider for

example a data base containing the results of some set of tests conducted on 1000

patients, for systolic and diastolic blood pressure, heart rate, body temperature and

existence of proteins in the urine. Clearly, the results of the tests conducted on each

patient can be represented approximately by an integer vector with five elements.

Assume that these patients can be divided into set S and T of those who finally

developed a certain disease and those who did not, respectively. It is possible to

design a diagnostic expert system that can use this data set in order to devise a set

of rules that returns a positive answer when an input of a vector which is similar to

the members of S in some sense and negative otherwise.

Various methodologies were used for these problems including statistic and neu-

ral networks. For instance, the so called Logical Data Analysis (LDA) methodol-

ogy developed by Hammer [21] deals with logical methods for constructing boolean

function f : {0, 1}d → {0, 1} providing the separation. More recent work by Ekin,

7

Hammer and Kogan [16] tests the applicability of this method for decision support

systems.

In this paper we consider the use of a system of linear equalities and inequalities

rather than a logical function to separate the sets. In many cases this method allows

a description of complex sets using a small number of equalities and inequalities.

More importantly, we believe that in many real life applications this kind of rep-

resentation captures very well the essential nature of the problems since the set of

“positive points” tends to be in some sense “convex”.

For the medical diagnostic problem described above our method can provide a

polyhedra that contains all the vectors representing the positive (ill) patient and

none of those of the negative (healthy) patients.

The paper focuses on the problem of constructing a minimal linear system that

performs the separation (in a sense to be rigorously defined in the next section).

Clearly, using a small separation it is easy to check whether a given point belongs

to the set.

An additional benefit of having a finite set described by a compact system of

equalities and inequality is that one can use it to optimize any convex function over

the set. This can be carried out by various integer programming techniques such

as branch & bound, cutting schemes or Gröbner bases methods [37, 4]. Lovas̀ and

Schrijver [26] presented a cutting schemes in which a relaxation of the convex hull of

S, given by a set of n inequalities, is converted into a tighter description of conv(S)

with O(n2) number of inequalities. This operation if applied repeatedly returns the

inequalities description of conv(S). While some separation can be always obtained

merely from a membership oracle (see [31]), it is likely that an explicit system with

as few inequalities as possible will provide a better starting point for such a cutting

scheme.

8

Part I

Manufacturing System Problems

9

Chapter 2

Fluid Approximation Model for

the Quality Control Station

Configuration Problem

Many systems in the fields of manufacturing, transportation and data communica-

tion can be considered as discrete flow control systems, e.g., systems consisting of

a network and some distinct objects that should be transferred along the network

according to some rules. Often, optimization problems related to these systems are

NP-Hard. For example, many scheduling problems are such problems and are well

known for their intractability.

Given a discrete flow control system, its fluid counterpart system can be defined

by relaxing the discrete nature of the objects and adjusting some of the rules that

control the movements of the objects within the system. The fluid counterpart

system, if properly designed, may imitate quite accurately the discrete one. Since the

continuous nature of the fluid systems makes them easier to analyze and optimize,

it might be useful to construct such a system whenever one wishes to devise a

method to evaluate or optimize a discrete flow system. This construction may lead

to efficient approximation or heuristics procedures and sometimes even to an efficient

optimization algorithms.

The fluid approximation view is extensively used for analyzing queueing sys-

tems, see for example Chen and Mandelbaum [9]. However, only recently it has

been used for combinatorial optimization problems. In particular this approach was

10

previously used to tackle the High Multiplicity Job Shop Problem by Bertsimas and

Gammarnik [5], by Boudoukh, Penn and Weiss [7]; by Dai and Weiss [13]; Bertsi-

mas and Sethuraman [6] and by Penn and Raviv [32]. Bertsimas and Gammarnik

also studied a Packet Routing Problem. Penn and Raviv [33] considered a Vehicle

Routing Problem.

Here we extend the set of combinatorial optimization problems solved by the

fluid approach by studying the Quality Control Station Configuration Problem.

We model a serial production line where Quality Control Stations (QCS) are to be

installed along the line with the aim of maximizing the expected profit of the system.

We believe that such a model captures many real-life manufacturing situations. In

this paper we define and solve a fluid counterpart model of the QCS Configuration

problem. We present a method to analyze and optimize the performance of such a

system.

It is well observed in the literature that incorporating inspection stations into

multi-stage production systems exert influence on the final cost and the quality of

the final product. Models and optimization algorithms for the problem of installing

inspection stations is dated back to 1965, see Lindsay and Bishop [25]. A survey

on the problem of optimal allocation of inspection stations in multi-stage systems,

appears in Raz [34]. For more recent studies focused on systems with imperfect

inspection facilities, see for example [35], for study on systems allowing rework and

repair see [42] and for finite planning horizon look at [23].

However, to the best of our knowledge, all previous studies considered the effect

of the inspection procedure on the average cost per product and overlooked the

important effect of the inspection procedure on the line throughput. In fact most

studies explicitly or implicitly, assume a unit processing time to all of the machines

and inspections facilities along the production line. Under this assumption the first

machine is always a bottleneck in the system and thus no improvement in throughput

can be achieved by installing additional Quality Control Stations (QCS).

Performing quality inspections throughout a production or a service process may

save labor, materials and energy, helps to reduce the level of work in process and

increases the output rate of the system. On the other hand, quality control opera-

tions incur their own costs. Thus, it is desirable to design a quality control system

that maximizes the net profit of the system.

11

The procedures presented in this paper are based on a fluid view to analyze and

optimize the QCS configurations. In Section 2.1 we define the model and present a

fluid system that imitates the discrete one. In Section 2.2 we first study a simple

version of the fluid problem where the aim is to determine an optimal flow for a given

QCS configuration. For that problem we use Linear Programming to obtain the op-

timal profit per time unit. We then turn to the more general case where both QCS

configuration and flow rates are to be determined with the aim of profit maximiza-

tion. We formulate this problem as a compact mixed integer program (MIP) and as

a dynamic program (DP). Our MIP formulation uses a linear number of constraints

and variables with respect to the production line length. In Section 2.3 we present a

fully polynomial-time approximation scheme (FPTAS) for the fluid problem based

on a simplified version of the dynamic program algorithm and parametric optimiza-

tion approach. In Section 2.4 we show how the optimal solution of the fluid model

can be used to construct an optimal solution for the discrete model. In section 2.5

we show a method to approximate the optimal solution of the more general problem

where a limitation on the amount of work in process is introduced. In Section 2.6

we present the results of the numerical experiments we conducted to demonstrate

and compare the practical efficiency of both the MIP and DP algorithm presented

in Section 2.2. The DP method turns to be very fast and able to solve problems

with 200 machines in a fraction of a second and it out performs the MIP method.

We conclude (Section 2.7) with a discussion.

2.1 Problem Definition and Fluid Relaxation

Consider a serial production line with N machines, infinite number of identical

products to be produced, and with no limitation on the intermediate inventory levels.

That is, unlimited number of products that completed operation on a machine may

wait in a buffer in front of the next machine until being processed. Processing of

a product consists of a series of operations, each processed on a single machine.

For each product we assume operation i has a deterministic processing time xi and

a cost per product ci. These values are the same for all products. Operation i

performed on a non-defective product succeeds with a known probability pi and

fails with probability (1−pi). A product is considered defective if one or more of its

12

operations failed and non-defective otherwise. We use qij to denote the probability

that a product that left machine j as non-defective remains non-defective when it

leaves machine i. Clearly,

qij =

j∏

k=i+1

pk. (2.1)

Note that this is true even if the failure events are dependent across machines since pi

is the conditional probability of a successful operation given all previous operations

were successful. A quality control station (QCS) can be installed after each machine

and is capable of detecting any flaw caused by any of the previous operations. Once

a flaw is detected, the product is discarded from the line. The cost per operation of

a QCS, if installed at position i, (right after machine i) is c′i. The machines and the

QCSs are jointly referred in the sequel as stations. Each non-defective (defective)

finished product has its own revenue (loss) denoted by rG (rB). Our aim is to

maximize the expected net profit of the system, per time unit, by determining the

locations of the quality control stations and constructing a dispatching rule that

governs the operation of the system. A Dispatching rule is a set of rules by which

the timing of releasing jobs to stations are determined. A configuration is denoted

by the set Y of machines that are followed by a QCS; When it convenient and clear

from the context we refer to Y as a characteristic vector of this set. That is, Yi = 1

if a QCS is installed after machine i and Yi = 0 otherwise.

One intuitive such a dispatching rule is the greedy one, i.e., let each machine

starts processing the next job whenever it is ready and a job is available to be

processed in its buffer. Clearly in a serial production line with cost associated with

each operation and where the aim is to maximize the expected profit per time unit

the greedy rule is not optimal in general. For a serial production line, with no

QCSs, one needs to adjust the processing rate of all machines to the rate of the

slowest machine. QCSs allow machines located before the bottleneck machine to

work faster.

A fluid relaxation of this problem is to allow each product to be divided into

infinitesimally small fractions (molecules). Different fractions of the same product

can be processed by different machines. The processing cost and the expected pro-

cessing times of each product-fraction is proportional to its size. The failure and

the actual processing time of each product-fraction is independent random variables

13

for all other fractions of the same product. That is, by the law of large number, the

total processing times of all the fractions of a single product on a station equals the

expected processing time on this station and a constant portion of the fraction is

discarded at each QCS. The net revenue from all the fractions representing a single

product is also a constant. That is, although each fraction behave in a stochastic

manner, the total cost at each station and the total revenue from the fluid flows out

of the system is determine deterministically by a dispatching rule / control policy.

The fluid counterpart problem can be defined as follows: a fluid material is to

be pumped into the fluid system instead of discrete objects. Machine i (QCi) of the

fluid system is capable of pumping one unit of volume, say liter, in xi (x′i) units of

time, and thus the maximum potential pumping rate of machine i is 1
xi

(1
x′i

) units of

volume per time unit. Each machine is a flow preserver. That is, the flow rate into

the machine must equal the flow rate out of it. In the QCSs, some of the fluid that

represents the defective product-fraction, leaks out. That is, if the inflow rate into

QCj is Fj, and the last QCS is installed after machine j then the outflow rate from

QCj is qij · Fj and the remaining fluid leaks out of the system via QCj.

A solution for the fluid system is given by the pair (F, Y), the flow rate through

each machine and the QCS configuration respectively. Li(Y) denotes the location

of the last QCS before machine i according to configuration Y . Our goal is to find a

feasible solution (F, Y) that maximizes the expected net profit of the system. Note

that the fluid system can operate optimally with no intermediate buffers at all. Also,

the performance of the discrete system is bounded above by the performance of its

fluid counterpart.

2.2 Analyzing and Optimizing the Fluid system

In this section we consider a fluid system. We first present a method to determine

the maximum feasible flow rate for a given system and QCS configuration and then

turn to the problem of determining optimal QCS configuration and optimal flow

rate simultaneously.

Given a QCS configuration Y , the following Linear Program finds a static flow

control that maximizes the expected profit from the system.

14

Linear Program 2.2.1 (optimal solution for the fluid system)

max FN

[
qLN (Y),NrG − (1− YN)(1− qLN (Y),N)rB

]−
N∑

i=1

Fi(ci + Yic
′
i) (2.2)

Subject to

Fi ≤ 1

xi

∀i = 1, ..., N (2.3)

Fi ≤ 1

x′i
∀i = 1, ..., N : Yi = 1 (2.4)

Fi+1 = Fi ∀i = 1, ..., N − 1 : Yi = 0 (2.5)

Fi+1 = qi,Li(Y)Fi ∀i = 1, ..., N − 1 : Yi = 1 (2.6)

Fi ≥ 0.

Observe that the variables F1, . . . , FN are linearly dependent and so,

Fi = F1qLi(Y),0 ∀i = 2, . . . , N (2.7)

Now the above Linear Program can be reformulates with a single variable F1.

Linear Program 2.2.2 (solution for the fluid system using one variable)

max F1

[
rGqN,0 − rB(1− YN)(1− qN,LN (Y))−

N∑
i=1

qLi(Y),0(ci + Yic
′
i)

]
(2.8)

Subject to

F1qLi(Y),0 ≤ 1

xi

i = 1, ..., N (2.9)

F1qLi(Y),0 ≤ 1

x′i
i = 1, ..., N : Yi = 1 (2.10)

F1 ≥ 0

If rGqN,0 − rB(1 − YN)(1 − qN,LN (Y)) −
∑N

i=1 qLi(Y),0(ci + Yic
′
i) ≤ 0, then the

optimal solution is to set F1 = 0. In such a situation, the expected profit from a

single product is negative and thus the best is not to produce at all. In the following,

we ignore this case and assume positive profits. Therefore, our aim is to find the

largest value of F1 that agrees with constraint (2.9) and (2.10) and hence solves LP

2.2.2. It is not difficult to see that the optimal solution is

15

F ∗
1 = min

i

{
1

qLi(Y),0 ·max(xi, Yi · x′i)
}

(2.11)

all other decision variables of LP 2.2.1, F2, ..., FN , can be easily calculated using

(2.7).

From (2.11) and (2.7) we conclude that for a given QCS configuration the com-

putational complexity of optimizing the expected net profit from the fluid system is

O(N). We turn now to discuss the more complicated problem of obtaining simulta-

neously an optimal QCS configuration and an inflow rate. We start by giving some

definitions.

Here Y is a binary vector of decision variables with the same meaning as before.

The decision variables FGi (FBi) denote the flow rate of the fluid representing

non-defective (defective) jobs into machine i. The problem of determining the QCS

configuration and flow rate in each station in order to maximize the net profit per

time unit obtained by the fluid system can be solved by the following Mixed Integer

Program:

Mixed Integer Program 2.2.3

max rG · FGN+1 − rB · FBN+1 −
N∑

i=1

[Ri + ci · (FBi + FGi)] (2.12)

subject to

FGi + FBi ≤ 1

xi

∀i = 1, . . . , N : xi ≥ x′i (2.13)

FGi + FBi ≤ 1

xi

+ Yi ·
(

1

x′i
− 1

xi

)
∀i = 1, . . . , N : xi < x′i (2.14)

FGi+1 = FGi · pi ∀i = 1, . . . , N (2.15)

FBi+1 ≥ (1− pi) · FGi + FBi − 1

xi

· Yi ∀i = 1, . . . , N (2.16)

Ri ≥ c′i · (FGi + FBi)− c′i
xi

· (1− Yi) ∀i = 1, . . . , N (2.17)

Yi ∈ {0, 1} ∀i = 1, . . . , N

FBi, FGi ≥ 0 ∀i = 1, . . . , N + 1

Ri ≥ 0 ∀i = 1, . . . , N

16

To simplify the notations we add a zero cost dummy machine N + 1. The flow

rate of defective and non-defective fluid into this machine represents the outflow of

these types of fluid from the system. The auxiliary variable Ri represents the cost

per time unit incurred by QCi if such a QCS is installed. Constraints (2.13) and

(2.14) assure that the actual flow through each station does not exceed its capacity.

Constraint (2.15) is used to coordinate the flow rate of non-defective fluid through

each pair of consecutive machines. Constraint (2.16) assures that FB receives a

proper value in the following way. If machine i is not immediately preceded by a

QCS, then the flow of defective fluid via this machine equals to the flow of defective

fluid in the preceding machine (i − 1) plus the fluid that got damaged in machine

i. If machine i is located right after a QCS, then the minimization will draw FB to

zero. Constraint (2.17) forces Ri to obtain the cost per time unit incurred by the

QCS, and again the optimization makes it zero if no QCS is installed at position i.

This is a compact Mixed Integer Program with only N binary variables, 2N + 2

continuous variables and 5N constraints. Due to our computational experiments

such a program can be solved for fairly large systems in few minutes (see Section

2.6).

Note that by constraint (2.15) all variables FG1, ..., FGN are linearly dependent

and so could be replaced by a single variable. However, running numerical exam-

ples on CPLEX 8.0 shows that this modified formulation is much more sensitive to

rounding errors; these errors worse both the accuracy of the solution obtained and

the running time.

We turn now to show a dynamic programming procedure that solves the fluid

problem. This method turns to perform significantly faster as observed by our com-

putational experiments. In addition, it is used as a basis for various approximation

methods as described in the next sections.

The dynamic programming procedure consists of N steps, starting from the last

step and proceeds backward. For each i, in step i we determine the optimal value

of Yi as a function of two state variables. Our state variables are:

Li - The position of the last QCS installed before machine i. Li ∈ {0, ..., i − 1}
with Li = 0 indicating that no QCS was installed before machine i.

17

Fi - The flow rate into machine i.

The function gi(Fi, Li; Yi) defined below, represents the profit from the sub-

system that consists of machines {i, ..., N}, with Fi as the flow rate into machine

i, and Li as the location of the previous QCS before i. Note that Li controls the

percentage of the defective material into machine i in this flow. Recall that if Yi = 1

then a QCS is installed right after machine i and otherwise, if Yi = 0, then no QCS

is installed.

Algorithm 2.2.4 The QCS Dynamic Programming Algorithm

Input: A QCS problem given by (p,x,x′, c, c′, rG, rB)

The function gi is constructed by the following recursive relation:

gi(Fi, Li; Yi) =

{
−Fi · (ci + c′i · Yi) + g∗i+1 (Fi+1(Fi, Li, Yi), Li+1(Li, Yi)) Fi ∈ [0, ai(Yi)]

−∞ otherwise

(2.18)

with

ai(Yi) =

{
1
xi

Yi = 0

min (1
xi

, 1
x′i

) Yi = 1

and with the following transitions functions:

Fi+1(Fi, Li, Yi) =

{
Fi Yi = 0

Fi · qi,Li
Yi = 1

(2.19)

and

Li+1(Li, Yi) =

{
Li Yi = 0

i Yi = 1.
(2.20)

Observe that the flow rate into machine i + 1 equals the flow into machine i if no

QCS is installed at position i. Otherwise, if a QCS is installed, the flow rate into

machine i + 1 equals the flow rate into machine i times qi,Li
. That is, qi,Li

is the

proportion of fluid that flow through QCi without being discarded.

The function g∗i is constructed by

g∗i (Fi, Li) = max
Yi

gi(Fi, Li; Yi). (2.21)

18

The optimal decision at each step i (whether to install a QCS at position i or not)

is determined by

Y ∗
i (Fi, Li) = argmaxYi

gi(Fi, Li; Yi). (2.22)

The rate of the raw material into the first machine is then determined by

max
F1

g∗1(F1, 0). (2.23)

The special structure of g∗ (see below) makes this last optimization problem trivial.

The initial conditions for step N are:

gN(FN , LN ; YN) =

{
T (FN , LN , YN) FN ∈ [0, 1

xN
]

−∞ otherwise
(2.24)

with

T (F, L, Y) = F · [rG · qN,L + (1− Y) · rB · (1− qN,L)− (cN + c′N · Y)]. ¤

In the Appendix we demonstrate the performance of this DP algorithm on a

simple four machines problem.

The structure of the function g∗, as in (2.21) is discussed below. The observations

made here are used for the development of our approximation method in the next

section.

Definition 2.2.1 For two sets of k rational numbers a1, a2, . . . , ak with ai 6= ai+1

for all i ∈ 1, ..., k − 1 and 0 < u1 < u2 < · · · < uk, the following function

f(x) =





a1 · x x ∈ [0, u1]

a2 · x x ∈ (u1, u2]
...

ak · x x ∈ (uk−1, uk]

−∞ otherwise

(2.25)

is called a k-piecewise linear homogeneous function, abbreviated k-PWLH.

Figure 2.1 demonstrates Definition 2.2.1. The following simple lemmas on PWLH

functions are needed in the sequel, their proofs are omitted.

Lemma 2.2.2 If f1(x) and f2(x) are two k1 and k2-PWLH functions, then the

function g(x) = max {f1(x), f2(x)} is a k-PWLH function with k ≤ k1 + k2.

19

0 5 10 15 20 25 30 35 40 45 50

−5

0

5

10

15

20

25

Figure 2.1: An example of a 5-piecewise linear homogenous function with u1 =

5, u2 = 10, u3 = 20, u4 = 32, u5 = 50, a1 = −1, a2 = 1, a3 = 1.1, a4 = 0.7, a5 = 0.4.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5

3

3.5

Figure 2.2: A 5-PWLH function obtained from the maximum of 2-PWLH and 3-PWLH functions.

The left chart shows two functions. f1 is a 2-PWLH function represented by the dotted lines and

f2 is a 3-PWLH function represented by the dashed lines. The right chart illustrates the function

f(x) = max {f1(x), f2(x)} which is a 5-PWLH function.

Figure 2.2 demonstrates Lemma 2.2.2.

Lemma 2.2.3 If f1(x) and f2(x) are two k-PWLH functions defined on the same

set of intervals, then the functions g(x) = max{f1(x), f2(x)} and h(x) = f1(x) +

f2(x) are m-PWLH functions with m ≤ k.

Lemma 2.2.4 Consider a k-PWLH function f1(x) and a 1-PWLH function f2(x),

then the function f1(x) + f2(x) is an m-PWLH function with m ≤ k.

20

Recall that the function obtains a value of minus infinity “outside” its domain

and thus the actual domain of the summed function f1(x)+f2(x) is the intersection

of the actual domain of both f1 and f2.

Lemma 2.2.5 For any Li, the function g∗i (Fi, Li) is a k-PWLH function of Fi with

k ≤ 2N−i.

Proof. We prove this lemma by induction. Consider the function g∗N(FN , LN).

For any given value of LN this function is obtained as the maximum of the two

1-PWLH functions, gN(FN , LN ; 0) and gN(FN , LN ; 1) defined on the same interval

[0, 1
xN

]. So by Lemma 2.2.3 the function g∗N is a 1-PWLH function and thus the

basis step is proved. We continue with the induction step. Recall that,

g∗i (Fi, Li) = max
Yi∈{0,1}

gi(Fi, Li; Yi). (2.26)

Note that the function (2.26) is obtained as a maximization of the functions

gi(Fi, Li; 0) =

{
−Fi · ci + g∗i+1 (Fi, Li) Fi ∈ [0, 1

xi
]

−∞ otherwise,
(2.27)

and

gi(Fi, Li; 1) =

{
−Fi · (ci + c′i) + g∗i+1 (Fi · qi,Li

, i) Fi ∈ [0, min(1
xi

, 1
x′i

)]

−∞ otherwise.
(2.28)

Observe that, by our induction hypothesis, both functions, (2.27) and (2.28),

obtained as a sum of a 1-PWLH function [Fi · ci or Fi · (ci + c′i)] and a k-PWLH

function with k ≤ 2N−(i+1) (the function g∗i+1) and so by Lemma 2.2.4 both are

k-PWLH with k ≤ 2N−(i+1). Now since the function g∗i (Fi, Li) (2.26) obtained as

a maximization of these two function, Lemma 2.2.2 implies that g∗ is a k-PWLH

functions with k ≤ 2 · 2N−(i+1) = 2N−i. ¥

Propsition 2.2.6 The complexity of algorithm 2.2.4 is at most O(2N).

Proof. Clearly the time and space complexity of calculating the functions g∗(Fi, Li)

and storing them in the dynamic programming tables depend linearly on the num-

ber of pieces. Thus the overall complexity of our algorithm depends linearly on the

total number of pieces in all of these functions.

21

Now, by Lemma 2.2.5 the total number of pieces is bounded above by

N∑
i=1

i · 2N−i = O(2N). (2.29)

¥

However, the complexity of Algorithm 2.2.4 is not clear yet. We believe that our

upper bound is either not tight or that it is attained only in some “pathological”

cases. This because the functions g∗(Fi, Li) admit additional structure. The number

of pieces of the g∗i functions in our numerical study (see Section 2.6) was fewer than

2N . In fact, it never exceeded 4 ·N in single function.

The DP approach has additional virtue over the MIP approach. Note that once

the DP tables in the backward iteration are constructed one can use them to perform

sensitivity analysis on the relations between the output rate of our system and the

profit. Observe that for a given output rate Fn, the corresponding profit is just

g∗1
(

FN

qN,0
, 0

)
. This kind of analysis can be useful if the market price depends on

the production rate (e.g., our firm admits a monopolistic power). Lemma 2.2.7

to follow implies that the expected profit per item is a non-increasing function of

the production rate. Note that this property is stronger than decreasing marginal

profit. For our case the marginal profit is strictly negative at each break point ui

and constant everywhere else.

Lemma 2.2.7 For any Li the function g∗i (Fi, Li) is a k-PWLH function with a list

of decreasing slopes (a1, . . . , ak), that is a1 > a2 > · · · > ak.

Proof. We prove the lemma by a backward induction on the index i (actually,

the induction is on m, with i = N −m). Clearly the lemma holds for N since this

function is a 1-PWLH. Now, assume the lemma holds for i + 1, then for given Li

and Yi the function gi(Fi, Li; Yi) is obtained by a summation of a 1-PWLH function

with Fi ∈ [0, v] and a k-PWLH function for some k. Thus,

gi(Fi, Li; Yi) =





(a + a1) · Fi Fi ∈ [0, u1]

(a + a2) · Fi Fi ∈ (u1, u2]
...

(a + ar) · Fi Fi ∈ (ur−1,min(ur, v)]

−∞ otherwise.

(2.30)

22

Note that the pieces of gi admit the same boundaries as the first r pieces of

g∗i+1 with r being the index of the first piece for which ur ≥ v or r = k if no such

piece exists. Clearly, the function gi maintains the property of decreasing slopes.

Now, the function g∗i (Fi, Li) is the maximum of the two functions gi(Fi, Li; 0) and

gi(Fi, Li; 1) both admit the property of decreasing slopes. Let a1, ..., ak and u1, ..., uk

be the corresponding slopes and boundaries of g∗.

Now, any piece in g∗ is associated with a piece in gi(Fi, Li; 0) or in gi(Fi, Li; 1).

We denote the slopes of gi(Fi, Li; y) by ay
1, ..., a

y
k. Consider a pair of consecutive

pieces in g∗ denoted by j and j + 1. Either both pieces are associated with a pair of

consecutive pieces in the same function or each piece is associated with a different

function.

In the first case, assume the pieces j and j+1 are associated with pieces l and l+1

of the function gi(Fi, Li; y) then by the first part of our proof aj = ay
l > ay

l+1 = aj+1.

In the second case, assume without loss of generality that piece j is associated

with piece l of the function gi(Fi, Li; 0) and piece j +1 is associated with piece m of

the function gi(Fi, Li; 1). By the first part of this proof, a1
m−1 > a1

m, but since piece

j is associated with piece l of gi(Fi, Li; 0), a0
l > a0

m−1 and so aj = a1
l > a1

m = aj+1

and we are done. ¥

Observed that g∗(x, Li) ≤ 0 if and only if the function slope at x is non-positive.

This is since any piece of g is homogeneous and the function is defined for non-

negative values of x. Also, Lemma 2.2.7 implies that if g∗i (x, Li) is non-positive

for some x, then for any x′ > x the value of g∗i (x
′, Li) remains non-positive. The

above two observations imply the following. Let (ui, ui+1) be the first segment with

non-positive slope. Then piece i+1 and all its following pieces, can be omitted from

g∗ (implying the values returned by this function being −∞) without affecting the

optimal solution achieved by Algorithm 2.2.4. Furthermore, due to the monotonic

structure of g∗i (Fi, Li), as characterized in Lemma 2.2.7, it can be replaced by a

simpler function g∗∗i (Fi, Li) that contains the pieces up to the global maximum of

g∗i (Fi, Li) and obtains the value of−∞ elsewhere. Clearly when maximizing g∗(F1, 0)

over F1, at the first step [see (2.23)], we need to check the values of the function

only at the break points u1, u2, ..., uk. We select one with the highest value ai · ui or

decide to produce nothing if all values are negative. It is not difficult to see that g∗1

23

can be replaced by g∗∗1 . The following proposition extends the above remark to any

g∗i .

Propsition 2.2.8 Replacing the functions g∗i (·) by g∗∗i (·) in Algorithm 2.2.4 keeps

the set of optimal solutions unchanged.

Proof. Consider the decision taken at any forward i > 1 step of the algorithm.

The decision is done based on Fi, the flow rate obtained from the previous step, and

Li, the location of the previous QCS. Note that once the QCSs were set for positions

between 1 and i−1 then for all j < i , Fj is an increasing function of Fi. We denote

this function by Fj(·). Now, if u∗i is the global maximum of g∗i (x, Li) for a given Li,

then in order to prove the proposition we need to show that Fi ≤ u∗i . Assume by

contradiction that Fi > u∗i . Clearly Fj(Fi) > Fj(u
∗
i) and thus,

g∗i (Fi)−
i−1∑
j=1

Fj(Fi) · (cj + c′j · Yj) < g∗i (u
∗
i)−

i−1∑
j=1

Fj(u
∗
i) · (cj + c′j · Yj)

where the left hand side is the value of the solution assuming a flow rate of Fi into

machine i and the right hand side is the same with a flow rate of u∗i . Thus, the

optimal value of Fi obtained by our procedure can not be greater than u∗i . We

conclude that the flow rate determined at each forward step is at most the one that

maximizes g∗ and so all pieces right to the maximum can be eliminated.¥

Using proposition 2.2.8 one can reduce the size of the dynamic programming

tables by omitting all the pieces right to the global maximum and thus reducing

computation times. The value of the function for all points greater than this point

is set to −∞. Our numerical experiments indicate a significant reduction of compu-

tational times and memory usage achieved by this insight.

2.3 Approximation Scheme for the Fluid Problem

Recall that the complexity status of the fluid problem presented in Section 2.2 is

still unknown. However, our numerical studies presented in Section 2.6 shows that

randomly generated large instances of the problem can be solved in very short time

by our dynamic programming algorithm presented in the previous section. In this

24

section a fully polynomial-time approximation scheme (FPTAS) for the fluid QCS

problem is presented. For definition and discussion of FPTAS see for example, [3].

We note that the QCS fluid problem is in “a good company” of more generic flow

problems for which the complexity status is yet unclear but exact algorithms that

perform well on test problems as well as FPTAS were introduced. For example, the

optimal control of fluid networks. See Weiss [40], and Fleischer and Sethuraman [17]

for an exact algorithm and the FPTAS respectively.

We start with few notations. Let f be a flow into the system. f is said to be

feasible for a given QCS configuration Y if it is a solution for Linear Program 2.2.2

with Y . If f is not feasible for any configuration then f is said to be an infeasible

flow. Clearly, the domain of a feasible flow is bounded above by 1
x1

as the fluid rate

into the system can not exceed the processing rate of the first machine. Note that,

for a given QCS configuration the expected profit from a unit of fluid is constant and

independent of the inflow rate. Let us denote this value by V (Y). QCS configuration

Y is said to be optimal for f if amongst all feasible configurations for f , Y maximizes

V (·). Such an optimal configuration is denoted by Y ∗(f). In case of several optimal

configurations, one is taken arbitrarily. By convention, for infeasible flow f , Y ∗(f)

is the Null configuration and V (Null) = −∞.

The maximal profit from a given inflow rate is denoted by P ∗(f) ≡ f ·V (Y ∗(f)).

The domain of P ∗(·) is the set of all feasible flows in a system with a QCS installed

after each machine. We denote the problem of calculating P ∗(f) by QCS(f). Solving

QCS(f) is essentially finding the optimal configuration Y ∗(f). While there is some

interest in the problem QCS(f) by itself, we show that it can be used as a basis for

an efficient approximation algorithm for the general fluid QCS problem discussed in

the previous section. This problem can be rephrased in terms of QCS(f) as

max
f

P ∗(f) (2.31)

and so P ∗(f) ≡ g∗1(f, 0) with g∗ as defined in (2.21).

We turn now to present a dynamic programming algorithm that solves QCS(f)

in O(N2).

Algorithm 2.3.1 The QCS(f) Dynamic Programming Algorithm

Input: A QCS model (p,x,x′, c, c′, rG, rB) and an inflow rate f .

Here we use a single state variable Li that represents the location of the last QCS

25

before machine i; and a single decision binary variable Yi which is whether to install

a QCS after machine i or not. Note that the inflow rate into each station can be

calculated from f and Li. The function hi(Li; Yi) is the optimal value of the rest of

the line (revenue minus all expenses in machines {i + 1, . . . , N} assuming (Li, Yi).

It is recursively constructed as follow:

hi(Li; Yi) =

{
−f · qLi,0 · (ci + c′i · Yi) + h∗i+1 (Li+1(Li, Yi)) f · qLi,0 ∈ [0, 1

xi
]

−∞ otherwise

(2.32)

with the following transitions function:

Li+1(Li, Yi) =

{
Li Yi = 0

i Yi = 1.
(2.33)

The initial condition for hN is

hN(LN ; YN) =

{
T (LN , YN) f · qLN ,0 ∈ [0, 1

xN
]

−∞ otherwise
(2.34)

with

T (L, Y) = qL,0 · f · [rG · qN,L − (1− Y) · rB · (1− qN,L)− (cN + c′N · Y)].

The function h∗i is constructed by

h∗i (Li) = max
Yi

hi(Li; Yi). (2.35)

If at any stage h∗i (Li) = −∞ for Li = 0, . . . , i− 1 then the algorithm can be stopped

and declare that no ”profitable configuration exists for inflow rate f”. The optimal

decision at each step i (whether to install a QCS at position i or not) is determined

by

Y ∗
i (Li) = argmaxYi

hi(Li; Yi). (2.36)

¥

Note that once the flow rate into the first machine in the line is known, the flow of

the non defective products through each machine is known. Thus, only the location

26

of the previous QCS is needed as a state variable in our dynamic programming

formulation.

In the sequel we made the standard assumption that real numbers can be stored

in a constant memory space and arithmetic and comparison operations on reals take

constant time.

Propsition 2.3.1 The time and memory complexity of Algorithm 2.3.1 algorithm

is O(N2).

Proof. At any stage i the function hi(Li; Yi) is calculated in a constant number

of operations for two possible values of Yi ({0, 1}) and for i possible values of Li

({0, . . . , i− 1}). Thus, there are 2N(N + 1) such calculations in total. The forward

iterations, to determine the optimal configuration, clearly takes O(N). Hence, the

overall time complexity of the procedure is O(N2). The results of each stage i are

stored in i reals [h∗i (Li)] and i boolean variables [Y ∗
i (Li)] and thus the total memory

complexity is O(N2) as well. Also note that before starting to run the dynamic pro-

gramm proper, the values of qij should be calculated. This can be done in O(N2)

using the recursion formula qi,j = qi−1,jpi. The space required to store the table is

clearly O(N2). ¥

In the sequel we explore some properties of the function V (Y ∗(f)) that leads to an

approximation scheme for the problem of determining optimal QCS configuration

and optimal flow simultaneously. Recall that this problem is denoted the QCS

problem.

Lemma 2.3.2 For any 0 ≤ f1 ≤ f2 the inequality V (Y ∗(f1)) ≥ V (Y ∗(f2)) holds.

Proof. Note that P ∗(f) ≡ g∗1(f, 0) = f · V (Y ∗(f)) and so our result follows

directly from Lemma 2.2.7 ¥

The economic interpretation of Lemma 2.3.2 is that our system admits non-

increasing marginal profit which is a common phenomenon when a production takes

place using scarce resources.

Lemma 2.3.3 Consider an inflow rate f1 and its optimal QCS configuration Y ∗(f1).

Assume f2 > f1 and f2 is a feasible inflow rate for the configuration Y ∗(f1) then

Y ∗(f1) is also optimal for f2.

27

Proof. By Lemma 2.3.2, V (Y ∗(f1)) ≥ V (Y ∗(f2)) . By the fact that Y ∗(f1) is

feasible for f2 it follows that V (Y ∗(f1)) ≤ V (Y ∗(f2)). Thus V (Y ∗(f1)) = V (Y ∗(f2))

and the optimality of Y ∗(f1) for f2 follows. ¥

Lemma 2.3.4 For any QCS problem, V
(
Y ∗(1

maxixi
)
)

= V (Y ∗(f)) for all f ∈
[0, 1

maxixi
].

Proof. First recall that P ∗(f) is a PWLH function and V (Y ∗(f)) is piecewise

constant. Thus, there exists an ε > 0 such that V (Y ∗(ε)) = V (Y ∗(f) for all f ∈ [0, ε].

Now, for any flow rate f ≤ 1
maxixi

any QCS configuration is feasible, and in partic-

ular Y ∗(ε) and so by Lemma 2.3.3, Y ∗(ε) is also optimal for f . ¥

A simple consequence of Lemma 2.3.4 and Lemma 2.3.2 is that the optimal flow

rate is either zero or at least the rate of the slowest machine (1
maxixi

). This actually

proves the following,

Propsition 2.3.5 If the first machine in the line is the slowest one then Algorithm

2.3.1 with flow rate 1
x1

solves the QCS problem (of determining QCS configuration

and flow rate simultaneously).

That is, this special case can be solved in O(N2) time. Later on we shall see

that this case is of a particular interest.

Lemma 2.3.6 Let f1 > 0 be a feasible inflow rate into the first machine, then for

any f2 > f1, P ∗(f2) ≤ f2

f1
· P ∗(f1)

Proof. First note that P ∗(f) ≡ g∗1(f, 0) = f · V (Y ∗(f)). Now by Lemma 2.2.7

V (Y ∗(f2)) ≤ V (Y ∗(f1)) and our result follows by substituting V (Y ∗(f)) = P ∗(f)
f

in

both sides. ¥

Clearly, the inflow rate into the system is bounded above by 1
x1

. Thus the segment

[0, 1
x1

] contains all feasible flow rates. Let us define the following finite subset of this

segment F = { 1
maxixi

· (1
1−δ

)i|i = 0, . . . , blog 1
1−δ

(maxixi

x1
)c} ∪ {0, 1

x1
}.

In the following we denote the value of an optimal solution of the QCS problem

at hand by OPT .

28

Propsition 2.3.7 Let f ∈ F be an inflow rate with P ∗(f) ≥ P ∗(f ′) for all f ′ ∈ F .

Then, P ∗(f) ≥ (1− δ) ·OPT .

Proof. If the optimal flow rate is zero then OPT = 0 and the proposition trivially

holds. For the non trivial case. let z∗ be an optimal flow rate. Note that z∗ ≥ 1
maxixi

this since by Lemma 2.3.4, V
(
Y ∗(1

maxixi
)
)

= V (Y ∗(f)) for all f ∈ [0, 1
maxixi

]. Now,

let f ′ be the largest point in F such that f ′ ≤ z∗. Note that there must be such

a point in F since 1
maxixi

∈ F . Let f ′′ the smallest point in F such that f ′′ ≥ z∗.

If f ′ = f ′′ then z ∈ F and we are done. Otherwise, by the construction of F ,

f ′′ ≤ f ′
(1−δ)

. Now by Lemma 2.3.6, OPT = P ∗(z∗) ≤ f ′′
f ′ P

∗(f ′) ≤ 1
1−δ

P ∗(f ′) and so

P ∗(f ′) ≥ (1− δ) ·OPT . ¥

Algorithm 2.3.2 Approximation Algorithm for the QCS Fluid Problem

Input: A QCS problem given by (p,x,x′, c, c′, rG, rB) and a required relative error δ.

Let MaxProfit = 0;

Set f = 1
maxixi

;

While f < 1
x1

do

Calculate Y ∗(f) and V (Y ∗(f)) using Algorithm 2.3.1;

If f · V (Y ∗(f)) > MaxProfit then

Let MaxProfit = f · V (Y ∗(f));

Let BestConfiguration = Y ∗(f);

Let f = f · 1
1−δ ;

End Do;

If MaxProfit > 0 then

Return BestConfiguration;

Else

Return ”No profitable configuration exists”;

The approximation guarantee ALG ≥ (1 − δ) · OPT is obtained directly from

Proposition 2.3.7. Algorithm 2.3.2 consists of about log 1
1−δ

(maxixi

x1
) = log1−δ(

x1

maxixi
)

calls to the O(N2) Algorithm 2.3.1 and thus its complexity is

O

(
N2 · log1−δ

(
x1

maxi xi

))
.

29

Now clearly this complexity is polynomially bounded in the input size (when 1/δ

considered part of the input) and thus Algorithm 2.3.2 is a FPTAS. Clearly, the

memory complexity of 2.3.2 is O(N2) since the memory used by each call to Algo-

rithm 2.3.1 can be reused.

Below we suggest an enhanced version Algorithm 2.3.2 that takes advantage of

the special structure of the piecewise homogeneses function P ∗(f) to improve the

running time of the algorithm for most instances although it does not affect the

worst case computational complexity.

Algorithm 2.3.3 Enhanced Approximation Algorithm for the QCS Fluid Problem

Input: A QCS problem given by (p,x,x′, c, c′, rG, rB) and required relative error δ.

Let MaxProfit = 0;

Set f = 1
maxixi

;

While f < 1
x1

do

Calculate Y ∗(f) and V (Y ∗(f)) using Algorithm 2.3.1;

If V (Y ∗(f)) ≤ 0 Then Exit Loop;

Let Y = Y ∗(f);

Let f be the maximum feasible flow for configuration Y [Obtained by (2.11)];

If f · V (Y ∗(f)) > MaxProfit then

Let MaxProfit = f · V (Y ∗(f));

Let BestConfiguration = Y ∗(f);

Let f = max
(
f, MaxProfit

V (Y ∗(f))

)
· 1

1−δ ;

End Do;

If MaxProfit > 0 then

Return BestConfiguration;

Else

Return ”No profitable configuration exists”;

Note that the distance between each pair of consecutive inflow rates for which we

calculate the optimal QCS configuration is generally larger in the enhanced version

of the algorithm and thus in most cases less calls to Algorithm 2.3.1 are required.

This is achieved by,

1. Once the optimal configuration for each tested flow is calculated, (2.11) is used

to obtain the maximum feasible flow for this configuration. This flow is then

used as a start point for the next iteration. Note that by doing so we also

enhanced the accuracy of the algorithm.

30

2. We use the fact that the slope of the objective function is non-increasing to

obtain an upper bounds on the optimal solution for some interval that follows

the segment under consideration. The segment length is “stretched” to cover

all points for which the upper bound can be applied.

We now propose two modifications of Algorithm 2.3.1 which may shorten its

running time and memory requirements, although does not affect our worst case

analysis of O(N2). Both take advantage of the fact that the algorithm is called

numerous times by Algorithm 2.3.2 (and Algorithm 2.3.3) with the same system

but with different values of f . First note that the qij matrix remains constant

during all the iterations of Algorithm 2.3.2 and thus can be calculated and stored

once for the whole process. Second, for each step i, it is possible to a-priori eliminate

some of the possible values of the state variable Li based on the model data. That is,

it is possible to say that the last QCS must be install in the positions {Li, . . . , i−1}
for some 0 ≤ Li ≤ i (with Li = 0 indicates that there are no restrictions on the

place of the last QCS and it might be the case that there is no QCS at all prior to

machine i). One method to construct Li is to use the following local consideration:

if (1− qij) · ci > c′i−1 then Li ≥ j +1. This since if no QCS is installed after machine

j, then it worth to install a QCS at machine i−1 only to save the expenses incurred

by defective jobs in machine i. Also it is clear that Li ≥ Li−1. Now we can use the

following recursion formula,

Li = max

{
Li−1, max

j

({j : (1− qij) · ci > c′i−1} ∪ {0}
)}

starting with L1 = 0. It is easy to see that the time complexity of this recursive

process carried out for each i = 1, . . . , N is O(N2) and that additional O(N2)

integers should be stored. Now, once Li is known, the value of h∗i (Li) can be

calculated only for Li ∈ {Li, . . . , i − 1} instead of Li ∈ {0, . . . , i − 1}. Note that

this modification may be also applied for Algorithm 2.2.4 described in the previous

section.

31

2.4 Adapting the fluid Solution to the Discrete

System

In the previous sections, we showed how an optimal QCS configuration can be found

for the fluid QCS system. In this section we show how the fluid view and the results

of the previous section can be used to solve the discrete problem. Throughout we

assume that the intermediate buffer spaces are unlimited and there are no holding

costs for the intermediate inventory. This assumption is somewhat relaxed in the

next section. Recall that we are interesting in a QCS configuration that maximizes

the expected profit per time unit in steady state.

For the discrete system we define the production rate of a station under some

dispatching rule to be the expected number of products that processed in a unit of

time. We continue to use Fi and Yi as in the discussion of the fluid system. Let F ′
i

denote the flow rate through QCi.

Definition 2.4.1 A dispatching rule for the discrete system is said to be stable if

for all i,

1. Fi = F ′
i whenever QCi is installed.

2. Fi = Fi−1 − Yi(1− qi−1,Li−1(Y))Fi−1

An optimal dispatching rule is one that maximizes the expected profit from the

system at a steady state.

Lemma 2.4.2 Any optimal dispatching rule is a stable one.

Proof. Consider a non-stable dispatching rule. Then at least one of the two

conditions of Definition 2.4.1 is violated. In such a case, it is possible to reduce the

rate of the first station in the pair (by inserting idle time) in order to coordinate it

with the next station. Such a modification will not affect the steady state departure

rate from the second station and thus admits no effect on the processing rate in all

other machines in the system and on the departure rate of the products from the

system. The only change to the total profit is that the average cost per time unit

incurred by the first station of the pair is reduced and so the total profit is increased.

Hence a non-stable rule can not be optimal. ¥

32

Propsition 2.4.3 The optimal profit at steady state of a discrete QCS system is

bounded above by the optimal profit of its fluid counterpart.

Proof. Consider a stable dispatching rule with the following production rates

F1, . . . , FN of all machines and QCSs respectively. Clearly, F1, . . . , FN must be a

feasible solution of Linear Program 2.2.1 and the objective function value of this

program is exactly the gross profit from the system (without fixed costs, which are

embedded for a given configuration and identical for both the fluid and discrete

systems). That is, the optimal solution of 2.2.1 is an upper bound for the optimal

solution of the discrete system for the given configuration. Now, since this is the

case for any given configuration, then the optimal profit of the fluid system is an

upper bound on the optimal profit of the discrete one. ¥

In the following we present an optimal dispatching rule for the discrete QCS

system. Our rule is based on the optimal solution of the fluid counterpart system.

Definition 2.4.4 (Fluid Based Dispatching Rule - FBDR) For a given QCS

system with configuration Y , let (F, Y) be a feasible solution of its fluid counterpart.

The FBDR is as follows: A token arrives at an infinite bucket every 1
F1

units of

time. Whenever the first machine is ready and there is at least one token in the

bucket, a token is taken out and the machine starts processing a new job. In all

other stations (machines and QCSs) operation starts whenever the station is ready

and a job is waiting in its buffer.

The token may be viewed as sufficient raw materials for the processing of a single

job. The FBDR is related to the fluid solution in the sense that a job enters the

first machine at time t only if at this time, the volume of fluid stuff that already

processed by the fluid counterpart system is at least as the number of jobs processed

by the first machine in the discrete system.

At first look, this on-line dispatching rule may seem strange since we force the

first machine to remain idle part of the time. If our objective function was to mini-

mize the makespan or the total completion time, this rule may produce a schedule

which is inferior to schedules with no inserted idle times. However, we seek a dis-

patching rule that maximizes the steady state expected net profit. If we enter jobs

to the system whenever the first machine is ready, that is on average every x1 units

33

of time where x1 ≤ 1
F1

, then we may deliver jobs in a rate that can not be handled

by the stations down the line. Since the output rate of the fluid system is an upper

bound on that of the discrete one, our system will be congested and the inventory

level in at least one of the buffers will grow indefinitely.

Theorem 2.4.5 Let Y be a QCS configuration of a serial production line and let F

be a feasible flow in its fluid counterpart with respect to Y . Then using FBDR yields

the same profit as using F in the fluid system. In particular if (F ∗, Y ∗) is an optimal

solution of the fluid counterpart system then using Y ∗ as the QCS configuration and

the FBDR, based on F as the dispatching rule, maximizes the expected profit per

time unit from the system.

Proof. To prove the theorem we show that the expected number of defective and

non-defective jobs carried by each station per time unit in the discrete system, is

the same as the flow rate of the corresponding flows in the fluid counterpart system.

Recall, that the optimal profit of the fluid system is an upper bound on the profit

of the discrete one. We prove the theorem by induction.

We cite a simple known fact from queuing theory stating that the departure rate

from a G/G/1 system is the minimum between the arrival and the service rates.

That is, in a tandem of servers where the arrival rate for all servers is lower than

their service rate then the actual processing rate of each server is equal to its arrival

rate.

Recall that xi stands for the expected processing time on machine i. Therefore,

since F1 ≤ 1
x1

, the expected total number of completed jobs in a line with a sin-

gle station is equal to the inflow rate F1. The expected number of non-defective

[defective] jobs is p1F1 [(1−p1)F1] as in the fluid system. This is our induction base.

Now, assume the theorem holds for a system with n stations (machines or QCSs)

then we show its correctness for an (n + 1)-stations system.

Under this induction hypothesis the departure rates of non-defective (defective)

products from station n is pnFGn (FBn + (1 − pn)FGn) if station n is a machine

and pnFBn (0) if it is a QCS. The arrival rate to machine n + 1 is the sum of these

rates (FGn + FBn). In both of these cases this is at most the service rate 1
xn+1

of

the next station in the line since (F1, . . . , FN) is a feasible solution for fluid problem.

¥

34

Note that our definition of stability is slightly weaker than the one generally

used in queueing theory. In particular we allow the arrival rate at any station to

be the same as its maximum potential processing rate. Consequently, the queues in

front of the bottleneck station will explode. This is still consistent with our problem

definition since we imposed no-restrictions on the amount of work-in-process in the

system and assume no holding cost for WIP (Work in Process). However, if the

FBDR is to be used in practice, it should be based on a flow rate which is slightly

less than the optimal solution of the fluid system. It is a challenge to calculate

analytically the average WIP for any such arrival rate. One may use simulation in

order to determine the maximum flow rate that will produce an acceptable level

of WIP in the system. Note that in general, the WIP level in a queueing system

operated under heavy traffic is very sensitive to the arrival rate and thus small

reduction of the arrival rate may be suffice for many practical purposes.

2.5 Limited Work In Process

In this section we study a special case of the QCS model for which the system can

produce optimal profit with very low level of work in process. Based on this case

we proposed an approximation procedure for the more general case. For that mater

we restrict our problem by requiring that the processing times of the machines and

the QCSs are deterministic.

For a given Configuration we divide the system into segments. Each segment

consists of a QCS and all the machines that precede it up to the previous QCS (not

inclusive). If the last station in the line is not a QCS then the last segment consists

of all the machines after the last QCS in the line. A segment is called ready if all its

stations are ready, and busy otherwise. We use x̃i to denote the processing time of

the slowest station of the ith segment and F̃i the denote the flow rate through the

segment in a a given solution. The following Synchronized Fluid Based Dispatching

Rule can be used for a system that admits the above conditions.

Definition 2.5.1 (Synchronized Fluid Based Dispatching Rule (SFBDR))

For a given QCS system with a configuration Y , let (F, Y) be a feasible solution of its

fluid counterpart. The SFBDR is as follows: A Token arrives at an infinite bucket

every 1
F1

units of time. If there is a token waiting in the bucket and the first segment

35

is ready; or if there is a job waiting to be processed in one of the intermediate buffers

before segment i and this segment is ready, then the following procedure is applied:

1. If there is a non-defective product on the last station of the segment (which is

a QCS) it moves to the buffer before the next segment.

2. All jobs on all other machines along the segment progress one station down-

stream.

3. A job is loaded on the first machine of the segment and operations start concur-

rently on all the stations along the segment. For the first segment, in addition,

a token is taken out of the bucket.

Note that once a job finishes its operation it waits on the machine until the next

cycle of the segment begins.

Clearly this policy requires buffers only between segments. Note however that

each station serves as a buffer for its following station when it is idle. During the

initialization phase, the system is gradually filled with products, one additional

station in each cycle. Cycles are triggered by the arrival of jobs (or token) to the

segment’s feeding buffer (bucket). If the segment is still busy with the previous

cycle, the jobs (tokens) are queued. We first show that this policy is optimal if there

are no limitations on the intermediate inventory.

Propsition 2.5.2 Let Y be a QCS configuration of a serial line with deterministic

processing times and let F be a feasible flow in its fluid counterpart with respect to

Y . Then using SFBDR yields the same profit as using F in the fluid system.

The proof of Proposition 2.5.2 is very similar to that of Theorem 2.4.5. Both

are proved by induction where here the induction is on the number of segments and

not on the number of machines. Note that each segment plays the same role as

a station in the previous proof and the segment rate equals the rate of its slowest

station. Indeed, according to SFBDR, if a product enters the first machine of the

segment, then a finished product is available in the last machine within 1
F̃i

units of

time (although a different job then the one entered) and the segment is ready to

accept a new job from its buffer. Thus, one can consider a segment as machine and

hence the similarity of the proofs.

36

SFBDR takes advantage of the deterministic processing times to coordinate the

operations of the stations along the segment and to reduce the number of niches

where intermediate inventory is stored. Next proposition indicates where further

reduction is applicable. Let Bi(t) be the inventory level, at time t, of the buffer that

precedes segment i. We first present the following simple lemma that is needed for

the proof of Proposition 2.5.4.

Lemma 2.5.3 Let tk(j) be the arrival time of the kth job at buffer Bj (the one that

feeds segment j). If tk+1(j)− tk(j) > x̃j for all k, then Bj(t) = 0 for all t.

Proof. It should be shown that the lemma holds for all k and times tk(j). Our

proof is by induction on k. Clearly at t1(j), when the first job arrives at the buffer,

segment j is ready and thus the job can be immediately taken out of the buffer.

Assume the same holds for time tk(j) (induction hypothesis). We now show that

this is also true for tk+1(j). First note that tk+1(j) ≥ tk(j) + x̃j−1 and that cycle

k starts at segment j no later than tk+1(j) − x̃j−1 (by our induction hypothesis,

all cycles up to k were started immediately as the job was available in their feeding

buffer). Thus, cycle k was finished by time tk+1(j) and so segment j was ready to ac-

cept the (k+1)th job immediately as it arrives to its feeding buffer at time tk+1(j). ¥

Note that tk(j) is defined only for indices of products k that actually reach

segment j and were not discarded from the line earlier. Clearly if job k was discarded

it does not add anything to the intermediate inventory down the stream.

Propsition 2.5.4 Let S be a system with deterministic processing times that op-

erates under the SFBDR. If, in S, there is a pair of a segments j < i for which

x̃j ≥ x̃i then Bi(t) = 0 at any time t.

Proof. Let h be the largest index of a segment such that j ≤ h < i and x̃h ≥ x̃i.

We first argue that the time between any two consecutive arrivals of jobs to buffer

m such that h < m ≤ i, is at least x̃h and that Bm(t) = 0 for all t. By Lemma

2.5.3 this is the case for segment h + 1, our induction base. Let us assume that

our argument holds for segment m and show that it holds for m + 1 as well. Note

that by the way we selected h, x̃m < x̃h and so by the second part of our induction

hypothesis each cycle on segment m starts exactly when a job arrives at buffer Bm

37

and exactly at these times jobs are transferred from segment m to buffer Bm+1 if not

discarded by a QCS. That is, the arrival time of the (k + l)th job to buffer Bm is at

most the arrival time of the kth job to buffer Bm+1 when l is the number of stations

in segment m, assuming no jobs were discarded by the QCS. Put it formally,

tk(m + 1) ≥ tk+l(m), (2.37)

and so it turns that

tk+1(m + 1)− tk(m + 1) ≥ tk+l+1(m)− tk+l(m) ≥ x̃h ≥ x̃m+1 (2.38)

for all k. The second inequality is due to the first part of our induction hypothesis.

We conclude that the inter arrival intervals of segment m + 1 are at least as long

as x̃m+1 and so whenever a job arrives at buffer Bm+1 it is taken immediately to be

processed by segment m + 1. Continue by induction until m = i and we are done.

¥

An important implication of Proposition 2.5.4 is that under SFBDR, if the first

segment is one of the slowest ones in a line with deterministic processing times, then

the level of the intermediate inventory is kept zero along the line. Thus, an optimal

solution for our original problem (with no limitation on the intermediate inventory)

can be achieved with no use of intermediate inventory at all.

Corollary 2.5.5 If the first machine is a slowest one, then an optimal solution of

the fluid QCS problem is also optimal for the discrete QCS problem with limited

sizes buffers or with holding costs of intermediate inventory taken into account.

Proof. If the first machine is a slowest one, then the first segment is always a

slowest segment under any QCS configuration, and thus the proof follows directly

from Proposition 2.5.4.¥

Note however that holding costs of jobs that are on stations and not in buffers

are not taken into account by the result of this corollary. Partial remedy for this

inaccuracy can be achieved by adding the holding costs to the operational costs of

the stations. This will not solve to problem completely, since we allow jobs to be

stored on idle machines.

38

Corollary 2.5.5 and the following lemma lead to a simple efficient approximation

algorithm for the bounded buffer version of our problem (Theorem 2.5.7).

Lemma 2.5.6 Increasing xi, the processing time of machine i, by a factor of δ > 1,

decreases the steady state expected profit of the system by a factor of 1
δ

at most.

Proof. By Equation (2.11), the inflow rate into the last segment F̃k can be re-

duced by at most a factor of δ when reducing the rate of one of the machines by the

same factor. Now since the net profit of a given QCS configuration as expressed in

(2.8) is a linear function of F̃K , the effect of this modification can be at most δ. ¥

Theorem 2.5.7 For any given QCS problem, if δ = x1

maxi xi
, then the problem can

be δ-approximate by an O(N2) algorithm.

Proof. The above approximation obtained by artificially enlarging the processing

time of the first machine to make it the slowest one, and then use Algorithm 2.2.4

to solve it. Note that by Proposition 2.3.5 its time complexity is O(N2) . ¥

2.6 Numerical Results

In this section we describe the numerical experiments that were carried out in order

to test the applicability of the exact dynamic programming Algorithm 2.2.4 and

Mixed Integer Programming formulation 2.2.3. We created 16 groups of instances;

each such group contains 50 data sets (800 instances in total). The groups differ

from each other by three criteria:

1. The system size. Production lines with n = 50, 100, 200, 400 machines were

tested.

2. The tendency of the processing rates along the line. For instances

denoted by R the expected processing times were sampled from a common

distribution (i.i.d) and for those denoted by I the expected processing were

generated in a way that insures strictly increasing tendency.

39

3. Success probabilities. Groups denoted by L posses relatively low failure

rates while H denote the high ones.

We used a Pentium 4, 2Ghz with 512Mb RAM runs under Windows 2000 as a

testing machines.

The Dynamic Programming algorithm was implemented in Microsoft Visual

C++ 6.0 with Algorithmic Solution library LEDA (see [28]). The Mixed Inte-

ger Programs were solved by state of the art MIP solver, CPLEX 8.0, on the same

computer.

The operation costs ci and c′i were randomly sampled from the set {1, ..., 10000}.
The high success probabilities (group L) were randomly sampled from the interval

[n−0.5
n

, 1], and the low success probabilities (group H) were chosen from the interval

[n−4
n

, 1]. All probabilities were rounded to 4 digits after the decimal point for the

50 and 100 machines problems and for 5 digits for the larger problems. For type

R the processing times xi of the machine operations were randomly chosen from

the set {1, ..., 1000}. For type I we chose x1 from the set {1, ..., 1000} and for all

other machines xi = dxi−1 · (1+Di)e and Di ∼ U [0, 1
n
], with the Di-s independently

generated for each instance. For all types, the revenue per non-defective product,

rG, was chosen from the interval [0.75C, 3.75C] where C =
∑n

i=1 ci∏n
i=1 pi

is the expected

profit per item if no QCSs are used. The revenue per defective product was selected

from [-0.5C,0]. Each of the 800 test problems was solved by the two versions of our

dynamic programming algorithm: The standard one, denoted by DP, and the one

based on the observation of Proposition 2.2.8 denoted by DP**.

For both DP and DP**: Table 2.1 presents:

1. The average total number of pieces summed over all the constructed functions

g∗(·) and g∗∗(·) in a solution of a single instance (column “# pieces”). Note

that the number of pieces fairly measures the memory usage of the algorithm.

2. The average CPU time (in seconds).

The last three columns contain the performances of CPLEX on our MIP formulation.

We set the time limit to 900 seconds for all instances. The first column, in the MIP

section, shows the average running times until a solution within 0.1% from optimum

is obtained. We consider such a gap as an exact solution for all practical purposes.

40

This average takes into account partial running times of the problems that exceeded

the time limit and thus aborted. The second column shows the percentage of the

problems (out of 50 in each class) that were solved in 900 sec. The last column

presents the average time needed for CPLEX to find a feasible solution within 2%

from a proven optimum.

Our test data sets are available for downloading from

“http://ie.technion.ac.il/∼talraviv/Publications”.

Class DP DP** MIP

Type Risk N Number of Time Number of Time Time % Time

pieces exact pieces exact approx. 0.1% solved approx. 2%

R H 50 5,984 0.02 3,099 0.02 0.32 100 0.05

R L 50 3,147 0.02 2,232 0.01 5.87 100 0.05

I H 50 14,341 0.03 6,395 0.02 0.36 100 0.09

I L 50 12,563 0.03 7,678 0.02 7.26 100 0.24

R H 100 29,279 0.11 15,356 0.09 14.44 100 0.18

R L 100 14,597 0.07 10,104 0.07 >702 40 0.28

I H 100 85,641 0.15 30,873 0.09 14.61 100 0.21

I L 100 94,895 0.23 51,024 0.15 >857 10 1.27

R H 200 147,355 0.63 75,431 0.38 >663 42 0.50

R L 200 70,302 0.51 47,046 0.38 >900 0 0.37

I H 200 623,179 1.21 203,462 0.53 >658 46 0.38

I L 200 738,225 2.00 352,313 1.10 >900 0 0.53

R H 400 726,590 6.13 355,843 4.72 >683 36 0.67

R L 400 318,780 5.37 207,142 4.62 >900 0 1.41

I H 400 4,550,716 8.49 1,454,590 3.31 >432 52 0.92

I L 400 5,790,973 23.11 2,394,068 7.51 >900 0 1.30

Table 2.1: Performances of the Dynamic Programming and MIP Algorithms

Table 2.1 shows that the Dynamic Programming Algorithm is significantly su-

perior to the Mixed Integer Programming approach if the problems are to be solved

to optimality. Nevertheless, if one is to solve the problem for a fairly large pro-

duction lines, with up to 100 machines, MIP is a reasonable approach, especially

since it is much easier to implement. Also, if an optimality tolerance of 2% is ac-

ceptable, then the MIP approach is extremely fast, even for larger problems, and

the average running time grows very slowly in the size of the problems. The table

also demonstrates the advantage of using the truncated version of the g∗ function

in the Dynamic Programming Algorithm. This advantage becomes more prominent

for harder and larger data sets.

41

An important observation obtained from our experiment is that the number of

pieces in each of the g∗ functions, created by the Dynamic Programming algorithm,

grows slowly with the number of machines. There is not a single problem, out of the

800 problems we tested, for which the number of these pieces in a single function

exceeds 3 times the number of machines. Recall that the theoretic bound we have so

far on this number is 2n. This phenomenon raises the conjecture that the number of

pieces is O(n) and hence the worst case running time of our Dynamic Programming

of O(n3).

For the Dynamic Programming Algorithm, the problems with increasing pro-

cessing times (group I), turn to be much harder in terms of computational time and

memory usage. This is due to the structure of the recursion function. If machine i

is slower than some of the machine following it, some of the pieces in the functions

gi are dropped because they relate to a larger flow rate than the maximum possible

rate of machine i. This is not the case if each machine is faster than its subsequent

ones. Our Numerical study confirms this observation. The running time of the MIP

is not significantly affected by this property.

On the other hand, the success probabilities seem to affect the MIP approach

more significantly. The problems with lower success probabilities, group L, turn to

be much harder to be solved by CPLEX than those of group H. We assume this is

due to numerical difficulties raised by the differences in the values of the variables

FGi that become larger as the pis become smaller.

2.7 Discussion

The paper demonstrates the usefulness of fluid approach in analyzing and optimiz-

ing serial production lines in large systems with similar items. Our research joins

a relatively new trend of applying fluid approximation methods for combinatorial

optimization problems and continues the legacy of its application in queueing theory.

Based on the solution for the fluid counterpart system and the token based dis-

patching rules it is proven that if the level of the intermediate inventory is unlimited,

then the steady state throughput of the discrete system and that of its fluid coun-

terpart are the same. In these cases, discrete systems can be optimized relatively

easy. This observation is similar to our results on vehicle routing (see [33]) and job

42

shop problems See Chapter 4 of this dissertation.

For the limited intermediate inventory with deterministic processing times we

showed that, based on the fluid counterpart system and the fluid based dispatching

rule, if the first machine is the slowest one then the optimal configurations for the

discrete and the fluid systems coincide. This last observation is the basis for our

δ-approximation algorithm for the general case, where δ is the ratio between the

processing time of the first machine and that of the slowest one. We believe it is

a challenging task to develop other approximation methods that do not depend on

processing times.

We proposed two methods for solving the fluid system, one that is based on

Mixed Integer Formulation and the other on Dynamic Programming. Our Dynamic

Programming Algorithm is a Mixed Dynamic Programming Algorithm as continues

and discrete state variables are used. Although we did not prove a polynomial

running time of the Dynamic Programming Algorithm, our numerical experiments

on large systems led us to conjecture that this complexity is O(n3). The MIP

formulation is a practical choice for small systems or if compromise in optimality is

acceptable. Since in real life problems the data is probably noisy, such a compromise

is reasonable.

Although we study here the steady state performances of some discrete systems,

we believe that the method is also well suited for high multiplicity problems where

a large finite number of products are to be produced, and the goal is to minimize

the completion time.

A simple extension to our model is to include fixed costs of the QCSs, such as

capital and maintenance associated with each installed QCS. Let fi stands for such a

cost for QCSi. Then, in the MIP formulation we simply subtract the term
∑n

i=1 fiYi

from the objective function. The Dynamic Programming Algorithm can be adapted

for this extension by slightly modifying the recursion formula as follows (2.18),

gi(Fi, Li; Yi) =

{
−Fi · (ci + c′i · Yi)− Yifi + g∗i+1 (Fi+1(Fi, Li, Yi), Li+1(Li, Yi)) Fi ∈ [0, 1

xi
]

−∞ otherwise

Similar modification can be applied to the recursion formula (2.32) of the QCS(f)

Dynamic Programming Algorithm in order to introduce capital cost for the solution

of this model. Note however that our approximation scheme in Algorithm

43

very easily as well. Clearly, the relation between the optimal solution of the fluid

system and discrete one remains unchanged for both of these extensions.

There is an extensive literature on the Buffer Allocation Problem (BAP) see for

example [39, 18, 2]. In this problem one has to determine an optimal allocation

of a given number of buffer spaces to niches in order to maximize throughput. A

natural extension of the BAP is to perform buffer allocation concurrently with QCS

configuration in order to maximize the total net profit. Standard heuristic methods

may be used to search for a “good” combination. If one considers the case of

deterministic processing times, then by Proposition 2.5.4 the search space may be

reduced by eliminating all the solutions with buffers which are not right after a QCS

or at the end of the segment with a slower segment upstream.

The model presented in this paper can be extended to capture a variety of possi-

ble additional configurations in manufacturing environments such as allowing sample

inspection of jobs, re-work, breakdowns of machines and for other manufacturing

environments such as job shop, assembly lines, multi-stage shop, etc. In addition,

the idea presented here can be adapted for other areas as determining optimal nodes

for performing integrity checks along a communication network.

Appendix - Demonstration of Algorithm 2.2.4

Consider a serial production line with four machines with the following parameters:

M1 M2 M3 M4

xi 2 3 4 5

x′i 1 1 1 1

pi 0.9 0.8 0.9 0.95

ci 1 2 3 2

c′i 2 3 3 5

In addition, the revenue (loss) obtained from delivering a non-defective (defec-

tive) product is 50 (30). First we use pi and (2.1) to calculate the matrix qij.

44

j = 0 j = 1 j = 2 j = 3 j = 4

i = 0 1 - - - -

i = 1 0.9 1 - - -

i = 2 0.72 0.8 1 - -

i = 3 0.648 0.72 0.9 1 -

i = 4 0.6156 0.684 0.855 0.95 1

First we construct the function g∗4(F4, L4).

L4 g4(F4, L4; 0) g4(F4, L4; 1) g∗4 (F4, L4) Y ∗4 (F4, L4)

0 F4 [50 · 0.6156− 30 · (1− 0.6156)− 2] F4 [50 · 0.6156− 7] 23.78F4 1

= 17.248F4 = 23.78F4 F4 ∈ [0, 0.2]

1 F4 [50 · 0.684− 30 · (1− 0.684)− 2] F4 [50 · 0.684− 7] 27.2F4 1

= 22.72F4 = 27.2F4 F4 ∈ [0, 0.2]

2 F4 [50 · 0.855− 30 · (1− 0.855)− 2] F4 [50 · 0.855− 7] 36.4F4 0

= 36.4F4 = 35.75F4 F4 ∈ [0, 0.2]

3 F4 [50 · 0.95− 30 · (1− 0.95)− 2] F4 [50 · 0.95− 7] 44F4 0

= 44F4 = 40.5F4 F4 ∈ [0, 0.2]

Equipped with g∗4 and Y ∗
4 we are ready to calculate g∗3 and Y ∗

3 in the following step.

L3 g3(F3, L3; 0) g3(F3, L3; 1) g∗3 (F3, L3) Y ∗3 (F3, L3)

0 −3F3 + 23.78F3 = 20.78F3 −6F3 + 0.648 · 44F3 = 22.512F3 22.512F3 for F3 ∈ [0, 0.25] 1

F3 ∈ [0, 0.2] F3 ∈ [0, 0.25]

1 −3F3 + 27.2F3 = 24.2F3 −6F3 + 0.72 · 44F3 = 25.68F3 25.68F3 for F3 ∈ [0, 0.25] 1

F3 ∈ [0, 0.2] F3 ∈ [0, 0.25]

2 −3F3 + 36.4F3 = 33.4F3 −6F3 + 0.9 · 44F3 = 33.6F3 33.6F3 for F3 ∈ [0, 0.2222] 1

F3 ∈ [0, 0.2] F3 ∈ [0, 0.2222]

We turn to calculate g∗2 and Y ∗
2 .

L2 g2(F2, L2; 0) g2(F2, L2; 1) g∗2 (F2, L2) Y ∗2 (F2, L2)

0 20.512F2 for F2 ∈ [0, 0.25] −5F2 + 0.72 · 33.6F2 = 19.192F2 20.512F2 for F2 ∈ [0, 0.25] 0

for F2 ∈ [0, 0.3086] 19.192F2 for F2 ∈ (0.25, 0.3086] 1

1 23.68F2 for F2 ∈ [0, 0.25] −5F2 + 0.8 · 33.6F2 = 21.88F2 23.68F2 for F2 ∈ [0, 0.25] 0

for F2 ∈ [0, 0.2778] 21.88F2 for F2 ∈ (0.25, 0.2778] 1

Finally g∗1 and Y ∗
1 are calculated.

L1 g1(F1, L1; 0) g1(F1, L1; 1) g∗1 (F1, L1) Y ∗1 (F1, L1)

0 19.512F1 for F1 ∈ [0, 0.25] −3F1 + 0.9 · 23.68F1 = 18.312F1 19.512F1 for F1 ∈ [0, 0.25] 0

18.192F1 for F1 ∈ (0.25, 0.3086] for F1 ∈ [0, 0.2778] 18.312F1 for F1 ∈ (0.25, 0.2778] 1

16.69F1 for F1 ∈ (0.2778, 0.3086] 18.192F1 for F1 ∈ (0.2778, 0.3086] 0

Now, the optimal values of Y1 and F1 are founded from the last table by checking

the value of g∗1(F1, 0) at the end of the pieces. In this case g∗1 obtains its maximum at

the end of the third piece at the point F1 = 0.3086. g∗1(0.3086, 0) = 18.192 ·0.3086 =

5.614 and so Y ∗
1 = 0. Substitute the values of Y ∗

1 and F1 recursively in the functions

g∗2, g
∗
3, g

∗
4 we obtain Y ∗

2 = 1, Y ∗
3 = 1, Y ∗

4 = 0. So the optimal expected profit per time

unit from the system is 5.614 and it is obtained if QCSs are installed at positions 2

and 3. Note that if we wish to operate the system without intermediate inventory

45

at all, the processing time of the first machine should be artificially increased to

5, that is, a feeding rate of F1 = 0.2. For this case we shall have a profit of

0.2 · 19.512 = 3.9024. The optimal configuration for this case is to have a single

QCS between the third and fourth machines. Note that while the approximation

ratio guaranteed for this problem by our method is 2/5 = 0.4, in this case we can

bound the ratio further to 3.9024/5.614 ≈ 0.7.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

1

2

3

4

5

6

Flow rate into first machine

P
ro

fit
 p

er
 u

ni
t o

f t
im

e

Figure 2.3: The function g∗1(x, 0). The solid (dotted) lines represent the pieces in

which the optimal decision for the first step is (not) to install a QCS after the first

station. It is easily observed that the optimal decision for the first step is not to

install a QCS after the first machine.

46

Chapter 3

Solving the Quality Control

Station Configuration with

Holding Costs

It is well observed in the literature that incorporating inspection stations into multi-

stage production systems exert influence on the final cost and the quality of the final

product. Models and optimization algorithms for the problem of installing inspection

stations is dated back to 1965, see Lindsay and Bishop [25]. A survey on the problem

of optimal allocation of quality control stations (sometimes referred as inspection

station) in multi-stage systems, appears in Raz [34]. For more recent studies focused

on systems with imperfect inspection facilities, see for example [35], for study on

systems allowing rework and repair see [42] and for finite planning horizon look at

[23].

However, to the best of our knowledge, all previous studies considered the effect

of the inspection procedure on the average cost per product and overlooked its

important effect on the line throughput. In fact, most studies explicitly or implicitly,

assume a unit processing time in each of the machines and inspections facilities along

the production line. Hence, under the unit processing time assumption, the first

machine is always a bottleneck station and so installing additional quality control

stations (QCS) can not increase the throughput of the system.

Furthermore, it turns that the quality control station configuration substantially

affects the quantity of work in process within the system and thus the actual costs.

47

This phenomenon was first pointed out in a descriptive manner by Drezner, Gurnani

and Akella [19] but was never incorporated into an optimization algorithm.

In this paper we define and solve a QCS Configuration model of a serial pro-

duction line where QCSs are to be installed along the line, and present a method

to analyze and optimize the performance of such a system. Two optimization prob-

lems are considered: Minimization of the expected operational cost under a given

production rate and maximization of the expected profit where a QCS configuration

and an arrival rate are to be decided simultaneously. As far as we know, this work

presents the first attempt to optimize the QCS configuration where throughput and

WIP are taken into account. We believe that such a model captures many real-life

manufacturing situations.

The cost minimization problem is solved using a polynomial time dynamic pro-

gramming algorithm assuming exponentially distributed processing times and Pois-

son arrival process of jobs into the system. The profit maximization problem is

approximated under the same assumptions using a branch and bound strategy that

employs the dynamic programming algorithm as a subroutine. The main contri-

butions of this paper are the following. Formulating a cost minimization problem

under a certain throughput requirement and incorporating holding costs in the ob-

jective function. In addition, formulating a profit maximization problem for under

the same Markovian assumption coupled with a general revenue function. Also, And

presenting efficient algorithms for solving the above problems.

In Section 3.1 the cost minimization problem is defined. Section 3.2 is devoted

to the method of calculating the operational cost of a system with a given QCS con-

figuration. Section 3.3 presents a polynomial time dynamic programming algorithm

to obtain a minimal cost QCS configuration for a given pre-specified production

rate under the assumption of Poisson arrival process of jobs into the system and

exponential distribution of the processing times. In Section 3.4 we define the profit

maximization problem and present a branch and bound approximation strategy to

solve it. In Section 3.5 we present our numerical experiments that show the practical

efficiency of our algorithms. In addition, these experiments demonstrate that the

above method is a good heuristic for non-Poisson arrival processes and in particular

for the deterministic arrival process. which is a more applicable dispatching policy

for serial production lines.

48

3.1 Problem Definition and Notations

Consider a serial production line that consists of N machines. A stream of identical

jobs arrives at the first machine, according to some stationary stochastic process

with an average arrival rate of a. The jobs are then processed serially along the

line. Furthermore, come out of the system as finished products. Each machine

starts processing its next operation as soon as it turns ready and a job is available

in its feeding buffer. For each machine, the processing times of the jobs on that

machine are i.i.d random variables with a mean of xi. For machine i, for each i,

there is a known success probability pi, that a non-defective job that enters machine

i remains non-defective and a failure probability of (1 − pi) that it turns defective.

Any job that enters a machine as a defective one remains defective. The success and

the failure events on each machine are independent. Let qij, for i > j, denote the

probability that a non defective job leaving machine j remains non-defective after

leaving machine i. Here qi0 is the probability that a job remains non-defective by

the time it leaves machine i and qii = 1 by convention. Clearly for all i > j,

qij =
i∏

k=j+1

pk. (3.1)

A job is considered defective if one or more of its operations failed and non-defective

otherwise. A quality control station (QCS) can be installed after any machine and

is capable of detecting any flaw caused by any of the previous operations. A QCS

is installed after machine i is denoted by QCi; all the jobs that are being processed

by machine i must pass through it.

Two kinds of costs are taken into consideration, variable and capital (fixed) costs.

The variable cost of an operation carried on by machine i (QCi) is denoted by ci (c′i).

The capital (fixed) costs of the machines are considered as sunk costs and thus are

not incorporated in the cost function. The fixed costs of installed QCSs are denoted

by f ′i if QCi exists. f ′i stands for the capital cost per unit of time associated with

the installation of QCi (regardless of the number of jobs that are actually examined

by that control station). Each defective completed product that comes out of the

system causes a loss of rB. In addition, a holding cost of hi (h′i) is payed for every

time unit that a job is being processed or waits to be process on machine i (QCi).

We consider a minimization problem where the aim is to minimize the expected

49

cost per time unit at steady state by determining the number and the locations

of the installed quality control stations. In the sequel we also consider the a profit

maximization problem to be defined in Section 3.4.

Let Y denote a given QCS configuration. That is, Y represents the set of the

QCS’s locations Y ⊆ {1, . . . , N} or the characteristic (0-1) vector of this set with

Yi = 1 (Yi = 0) means that the configuration includes (does not include) QCi. For a

given configuration Y , let Li(Y) denote the location of the last QCS before machine

i, that is, Li(Y) = max{j < i : Yj = 1} with the convention that Li(Y) = 0 is to

say that no QCS is installed before position i.

The tuple (p,x,x′, c, c′, f ′,h,h′, rB) with an arrival rate of value a is refereed to

as a QCS(a) problem. A system compound of a QCS(a) and a given configuration

Y is denoted by (QCS(a),Y). Given a (QCS(a),Y) system, Ai(Y, a) is defined to be

the arrival rate of the jobs into machine i.

3.2 Analyzing a Given QCS System

In this section we study a given QCS system and find out the conditions, in terms

of the arrival rates, under which the QCS system is stable. In addition, under the

Poisson arrival process, we determine the operational cost of the system.

Definition 3.2.1 A (QCS(a),Y) system is said to be stable if the expected amount

of work in process in each of the system’s buffers converges to some constant as the

length of time the system operates goes to infinity.

Propsition 3.2.2 Let (QCS(a),Y) be a given system and assume the following in-

equalities hold

a · qLi(Y),0 <
1

xi

∀i = 1, ..., N (3.2)

and

Yi(a · qLi(Y),0) <
1

x′i
∀i = 1, ..., N, (3.3)

then the system is stable and for each i, Ai(Y, a) = a · qLi(Y),0.

Proof. It is clear that if and only if the arrival rate to each of the stations along

the line is less than its service rate, then the system is stable. Thus, showing that

under the proposition’s conditions, for each machine i (QCi), the arrival rate into

50

machine i (QCi) is a · qLi(Y),0, is suffice. The proof is by induction on the first i

machines along the line. Clearly, A1(Y, a) = a and since qL1(Y),0 = q0,0 = 1 it is

apparent that Ai(Y, a) = a · qL1(Y),0. Assume the proposition holds for the first

i machines. Note that in a stable G/G/1 system the steady state departure rate

equals the arrival rate. Thus, if a QCi is not installed, then Ai+1(Y, a) = Ai(Y, a)

and Li+1(Y) = Li(Y), implying that qLi+1(Y),0 = qLi(Y),0 and we are done. If QCi

exists, then it discards a portion of qi,Li(Y) of the jobs that enter machine i and so

Ai+1(Y, a) = qi,Li(Y) · qLi(Y),0 · a =
i∏

j=Li(Y)

pj ·
Li(Y)∏
j=0

pj · a = qi0 · a = qLi+1(Y),0 · a.

Note that Ai(Y, a) is also the arrival rate into QCi if QCi exists. ¥

Corollary 3.2.3 Given a (QCS(a), Y) then the system is stable if and only if

a < min

{
min

i

1

xi · qLi(Y),0

, min
i:Yi=1

1

x′i · qLi(Y),0

}
.

Note that Proposition 3.2.2 and its corollary need only the stationarity of the

arrival process. In what follows, in order to get stronger results, we further assume

that the arrival process is a Poisson process.

Lemma 3.2.4 Consider a given stable (QCS(a), Y) system with an exponentially

distributed processing and QCS service times, as well as a Poisson arrival process

to the first machine. Then, the arrival process into each of the machines and the

QCSs is also a Poisson arrival process.

Proof. A well known fact from queuing theory is that in a stable M/M/1 system

the departure process is also a Poisson process with the same arrival and departure

rates. Also, given a Poisson process with a rate of λ, and a random partitioning of

the Poisson process by selecting some of the basic events with probability p, and

not the others with probability 1 − p, results in a new Poisson process with a rate

of pλ. Applying these two simple facts iteratively on the machines and the QCSs

proves our claim. ¥

Using Lemma 3.2.4 for a given stable (QCS(a), Y) system, the expected total

cost for a job being processed by machine i and its following QCi can be easily

51

calculated as shown below. We denote these costs by Ci(Y, a) and C ′i(Y, a), respec-

tively. This calculation is based on the known fact that the expected waiting time

in a stable M/M/1 system with a service rate µ and an arrival rate λ, is 1/(µ− λ).

See for example [10].

Ci(Y, a) = ci +
hi

1
xi
− a · qLi(Y),0

(3.4)

C ′i(Y, a) = Yi

(
c′i +

h′i
1
x′i
− a · qLi(Y),0

)
. (3.5)

Hence, the expected operating cost of the system per time unit is given by

C(Y, a) ≡ a ·∑N
i=1 qLi(Y),0 · [Ci(Y, a) + C ′i(Y, a)] +

∑N
i=1 Yif

′
i

+(1− YN) · a · qLY (N),0 · (1− qN,LY (N)) · rB.
(3.6)

Note that Ci(Y, a) is defined for arrival rates a < (xi · qLi(Y),0)
−1, thus the queue

in front of machine i is finite. Similarly, the domain of C ′i(Y, a) whenever Yi = 1

is a < (x′i · qLi(Y),0)
−1, otherwise it is R+. Clearly, the domain of C(Y, a) is the

intersection of these domains. Note, however, that in some places, if no confusion

arises, we assume that all the three functions are defined over R+ and obtain the

value of ∞ outside their actual domains.

3.3 An Optimal QCS Configuration for a Given

Arrival Rate

In this section we turn to solve the combinatorial optimization problem of deter-

mining an optimal QCS configuration that minimizes the cost function over all 2N

possible configurations. In particular, we present a dynamic programming algorithm

that solves the problem in a time complexity of O(N2). The optimal value of this

optimization problem is denoted by

C∗(a) = min
Y ∈{0,1}N

C(Y, a)

and an optimal QCS configuration that materializes this cost is denoted by

Y ∗(a) = argminY ∈{0,1}N C(Y, a).

52

In fact, there might be more than one QCS configuration that minimizes the

expected cost, in such a case Y ∗(a) represents any arbitrarily chosen optimal con-

figuration. A brute force procedure for solving the problem is simply to enumerate

all possible configurations and calculate C(Y, a) for each one of them. Clearly, this

approach is not efficient and is applicable only for systems with a very few tens of

machines. Note, however, that in various industries, such as semiconductors and

automobile productions lines, lines that consist of hundreds of operations are fre-

quently used. We turn now to present the dynamic programming procedure.

Algorithm 3.3.1 The QCS(a) Dynamic Programming Algorithm

Input: A QCS(a) problem defined by (p,x,x′, c, c′, f ′,h,h′, rB) and an arrival

rate a.

The recursion function gi(Li; Yi) denotes the total cost that incurred by the tail of

the system that begins at machine i, assuming QCLi
is the last installed control

station before machine i, and given the existence (Yi = 1) or absence (Yi = 0) of

QCi. Here, Li is a state variable and Yi is a decision variable. For all

i = 1, . . . , N − 1, the function gi is constructed by the following recursive relation:

gi(Li; Yi) = a · qLi,0 ·
[
ci +

hi
1
xi
− a · qLi,0

+

(
c′i +

h′i
1

x′N
− a · qLi,0

)
· Yi

]
+ f ′iYi + g∗i+1 (Li+1(Li, Yi))

(3.7)

for a · qLi,0 ∈ [0, min{ 1
xi

, 1
x′i

+ (1− Yi) · ∞}), and gi(Li; Yi) = ∞ otherwise. We use

the following transitions function:

Li+1(Li, Yi) =

{
Li Yi = 0

i Yi = 1.
(3.8)

The initial condition for gN is

gN(LN ; YN) = a · qLN ,0 ·
[
ci + hN

1
xN

−a·qLN ,0
+

(
c′N +

h′N
1

x′
N
−a·qLN ,0

)
· YN

]
+

f ′NYN + (1− YN) · a · qLN ,0 · (1− qN,LN
) · rB

(3.9)

for a · qLN ,0 ∈ [0, min{ 1
xN

, 1
x′N

+ (1− YN) · ∞}) and gN(LN ; YN) = ∞ otherwise.

The function g∗i is constructed by

g∗i (Li) = min
Yi

gi(Li; Yi). (3.10)

53

If, at any stage, g∗i (Li) = ∞ for all Li = 0, . . . , i− 1, then the arrival rate a is not

feasible for the problem and the algorithm terminates. The optimal decision at

each step i (whether to install a QCS at position i or not) is determined by

Y ∗
i (Li) = argminYi

gi(Li; Yi). (3.11)

¥

Example 3.3.1 below demonstrates the use of Algorithm 3.3.1.

Example 3.3.1 Consider a serial production line with four machines, independent

success events and the following parameters:

M1 M2 M3 M4

xi 2 2 4 5

x′i 1 3 2 1

pi 0.9 0.8 0.9 0.95

ci 1 2 3 2

c′i 2 3 3 5

hi 0 0.08 0.07 0.10

h′i 0.06 0.08 0.08 0.10

f ′i 1 1 2 1

In addition, rB, the penalty for a defective product is 30 and the arrival rate a

is 0.22. We start with the preprocessing procedure of calculating the matrix qij by

using (3.1).

j = 0 j = 1 j = 2 j = 3 j = 4

i = 0 1 - - - -

i = 1 0.9 1 - - -

i = 2 0.72 0.8 1 - -

i = 3 0.648 0.72 0.9 1 -

i = 4 0.6156 0.684 0.855 0.95 1

First we construct the function g∗4(L4).

54

L4 g4(L4; 0) g4(L4; 1) g∗4 (L4) Y ∗4 (L4)

0 ∞ ∞ ∞ -

1 0.22 · 0.9
[
2 + 0.1

0.2−0.22·0.9 + (1− 0.684) · 30
]

0.22 · 0.9
[
2 + 0.1

0.2−0.22·0.9 + 5 + 0.1
1−0.22·0.9

]
+ 1 12.173 0

= 12.173 = 12.311

2 0.22 · 0.72
[
2 + 0.1

0.2−0.22·0.72 + (1− 0.855) · 30
]

0.22 · 0.72
[
2 + 0.1

0.2−0.22·0.72 + 5 + 0.1
1−0.22·0.72

]
+ 1 1.387 0

= 1.387 = 2.508

3 0.22 · 0.648
[
2 + 0.1

0.2−0.22·0.648 + (1− 0.95) · 30
]

0.22 · 0.648
[
2 + 0.1

0.2−0.22·0.648 + 5 + 0.1
1−0.22·0.648

]
+ 1 0.747 0

= 0.747 = 2.263

Equipped with g∗4 and Y ∗
4 we are ready to calculate g∗3 and Y ∗

3 in the following step.

L3 g3(L3; 0) g3(L3; 1) g∗3 (L3) Y ∗3 (L3)

0 .22 · 1
[
3 + 0.08

0.25−0.22·1
]

+∞ 0.22 ·
[
3 + 0.08

0.25−0.22 + 3 + 0.07
0.5−0.22

]
+ 2 + 0.747 4.709 1

= ∞ = 4.709

1 0.22 · 0.9
[
3 + 0.08

0.25−0.22·0.9

]
+ 12.173 0.22 · 0.9

[
3 + 0.08

0.25−0.22·0.9 + 3 + 0.07
0.5−0.22·0.9

]
+ 2 + 0.747 4.286 1

= 13.072 = 4.286

2 0.22 · 0.72
[
3 + 0.08

0.25−0.22·0.72

]
+ 1.387 0.22 · 0.72

[
3 + 0.08

0.25−0.22·0.72 + 3 + 0.07
0.5−0.22·0.72

]
+ 2 + 0.747 2.000 0

= 2.000 = 3.868

We turn to calculate g∗2 and Y ∗
2 .

L2 g2(L2; 0) g2(L2; 1) g∗2 (L2) Y ∗2 (L2)

0 0.22
[
2 + 0.08

0.5−0.22

]
+ 4.709 0.22 ·

[
2 + 0.08

0.5−0.22 + 3 + 0.08
0.333−0.22

]
+ 1 + 2.000 4.318 1

= 5.212 = 4.318

1 0.22 · 0.9
[
2 + 0.08

0.5−0.22·0.9

]
+ 4.286 0.22 · 0.9

[
2 + 0.08

0.5−0.22·0.9 + 3 + 0.08
0.333−0.22·0.9

]
+ 1 + 2.001 4.160 1

= 4.734 = 4.160

Finally g∗1 and Y ∗
1 are calculated.

L1 g1(L1; 0) g1(L1; 1) g∗1 (L1) Y ∗1 (L1)

0 0.22 ·
[
1 + 0

0.5−0.22

]
+ 4.318 0.22 ·

[
1 + 0

0.5−0.22 + 2 + 0.06
1−0.22

]
+ 1 + 4.16 4.538 0

= 4.538 = 5.837

Now, the optimal value obtained from the last table (describing g∗1(a)) is 4.538

with Y = (0, 1, 0, 0). In this case, the arrival rate into the first two machines and into

QC2 is 0.22, while the arrival rate into the last two machines is 0.22 · 0.72 = 0.1584.

Figure 3.1 illustrates the functions C(Y, a) for all possible QCS configurations

Y , and the function C∗(a) (in solid line) which is obtained as the minimization

of these functions. Observe that the domain of C∗(a) can be divided into several

segments, where each segment is associated with a certain configuration that is

optimal through. That is, in each such segment, the function C∗(a) coincides with

the function C(Y, a) for some constant Y . We further study the structure of these

functions in the next section.

In the sequel we assume that real numbers can be stored in a constant mem-

ory space and arithmetic and comparison operations on reals take constant time.

This assumption, although not accurate, is widely accepted since real numbers are

generally handled with limited accuracy by the computer.

55

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

10

12

14

16

18

Arrival Rate

T
ot

al
 C

os
t p

er
 U

ni
t

Figure 3.1: An illustration of the functions C(Y, a) (in dotted and dashed lines) for

all 16 possible QCS configurations of the problem described in Example 3.3.1. The

function C∗(a) (in solid line) is obtained by the minimization of these functions.

Propsition 3.3.2 The time and the memory complexity of Algorithm 3.3.1 is O(N2).

Proof. The preprocessing of calculating the values of qij takes O(N2) real arith-

metic operations. This can be done using the recursion formula qij = qi−1,jpi. At

any stage i, the function gi(Li; Yi) is calculated in a constant number of operations

for two possible values of Yi ({0, 1}) and for i possible values of Li ({0, . . . , i− 1}),
thus there are N · (N +1) such calculations in total. The stage of forward iterations,

to determine the optimal configuration, clearly takes O(N) and thus the overall time

complexity of the procedure is O(N2). The results of each stage i are stored in i

reals [g∗i (Li)] and i boolean variables [Y ∗
i (Li)] and thus the total memory complexity

is also O(N2). ¥

56

3.4 Parametric QCS Problem

In this section we extend the problem to capture the case when the arrival rate is

a decision variable rather than part of the input. Thus, our aim is to optimize the

QCS configuration and the production rate simultaneously. We consider a prob-

lem defined by (p,x,x′, c, c′, f ′,h,h′, rB) coupled with a revenue function r(x). The

function r(x) describes the expected revenue per time unit as a function of the de-

parture rate of the non-defective products from the last machine. If the firm plays in

a competitive market, then this function is linear and homogenous as the production

rate of the firm admits no influence on the market price. For the discussion below

we use the weak assumption that the revenue function is K-Lipschitz continuous

over the relevant domain. That is, it is continues and derivable almost every where

with its derivative bounded above by some finite constant K. This assumption is

not very restrictive since in general the total revenue is hardly fluctuated by small

changes in the supply.

Our extended parametric problem denoted by QCS is to determine the arrival

rate and the QCS configuration simultaneously in order to maximize the expected

profit per time unit from the system in steady state. For a given QCS configuration

Y and an arrival rate a, the total profit is,

P (Y, a) = r(qN,0 · a)− a ·∑N
i=1 qLi(Y),0 · [Ci(Y, a) + C ′i(Y, a)]−∑N

i=1 Yif
′
i

−(1− YN) · a · qLY (N),0 · (1− qN,LY (N)) · rB.
(3.12)

Now, the optimal profit for a given arrival rate a is just

P ∗(a) = r(qN,0 · a)− C∗(a)

and hence can be easily calculated using Algorithm 3.3.1. Therefore, our extended

parametric problem can be formulated as

max
a

P ∗(a) (3.13)

and in this form, it is reduced to an optimization problem in a single continues

variable. The “bad news” however are that generally P ∗(a) is not concave or uni-

modal and hence standard line search techniques will not solve (3.13). In the sequel

we explore some useful properties of C∗(a) and P ∗(a) that form the basis for our

approximation method.

57

Lemma 3.4.1 The function C∗(a) is continuous, piecewise convex and piecewise

derivable.

Proof. Recall that the function C∗(a) is obtained as a minimization over all

possible configurations of C(Y, a). Thus, it is suffice to show that C(Y, a) is convex,

continues and derivable with respect to a. Let us write this function explicitly

C(Y, a) ≡ a ·∑N
i=1 qLi(Y),0 · [Ci(Y, a) + C ′i(Y, a)] +

∑N
i=1 Yif

′
i

+(1− YN) · a · qLY (N),0 · (1− qN,LY (N)) · rB.

Thus, C(Y, a) is a sum of linear functions and the functions

Hi(Y, a) =
hi · qLi(Y),0 · a
qLi(Y),0 · a− 1

xi

and H′
i(Y, a) =

h′i · qLi(Y),0 · a
qLi(Y),0 · a− 1

x′i

.

Deriving Hi(Y, a) twice we obtain,

∂2Hi(Y, a)

∂a
=

2 qLi(Y),0 hi(
a qLi(Y),0 − 1

xi

)2 −
2 a qLi(Y),0 hi(

a qLi(Y),0 − 1
xi

)3 = − 2 qLi(Y),0 hi x
2
i(

a xi qLi(Y),0 − 1
)3 .

Since we are interested in stable systems, it follows from Corollary 3.2.3 that

the relevant arrival rates are those for which a · qLi(Y),0 < 1
xi

and a · qLi(Y),0 < 1
x′i

.

Thus, it is easy to see that the second derivative is positive for all a in the relevant

domain and the convexity of H is established. Now, since C(Y, a) is obtained as

a sum of derivable and convex functions it follows that it is convex and derivable.

The continuity of C∗(a) follows from the continuity of C(Y, a) for each possible

configuration.

Lemma 3.4.2 For any pair of points a1 ≥ a0 in the domain of C∗(a), if C∗(a) is

derivable at a1 then its derivative is bounded below by

∂C∗(a)

∂a
(a1) ≥

N∑
i=1





qi−1,0

(
ci +

hi

1
xi
− a0 · qi−1,0

)
+

a0 · hi · q2
i−1,0(

1
xi
− a0 · qi−1,0

)2





.

Proof. Let us write C∗(a1) explicitly in terms of the optimal configuration Y ∗(a1)

at a1,

58

C∗(a1) = a1 · qLN (Y ∗(a1)),0 · (1− qN,LN (Y ∗(a1))) · rB+

a1 ·
∑N

i=1 qLi(Y ∗(a1)),0 · [Ci(Y
∗(a1), a1) + C ′i(Y ∗(a1), a1)] +∑N

i=1 f ′iY
∗(a1)i.

Let us denote Y ≡ Y ∗(a1). Note that if C∗(a) is derivable at a1, then there is a

neighborhood of a1 for which Y remains an optimal configuration. Now,

∂C∗(a)
∂a

(a1) = qLN (Y),0 · (1− qN,LN (Y)) · rB+
∑N

i=1 qLi(Y),0

{
Ci(Y , a1) + a1

∂Ci(Y,a)
∂a

(a1)
}

+
∑N

i=1 qLi(Y),0

{
C ′i(Y , a1) + a1

∂C′i(Y,a)

∂a
(a1)

}

≥ ∑N
i=1 qLi(Y),0

{
Ci(Y , a1) + a1

∂Ci(Y,a)
∂a

(a1)
}

=
∑N

i=1

{
qLi(Y),0

(
ci + hi

1
xi
−a1·qLi(Y),0

)
+

a1·hi·q2
Li(Y),0(

1
xi
−a1·qLi(Y),0

)2

}

≥ ∑N
i=1

{
qi−1,0

(
ci + hi

1
xi
−a1·qi−1,0

)
+

a1·hi·q2
i−1,0(

1
xi
−a0·qi−1,0

)2

}

≥ ∑N
i=1

{
qi−1,0

(
ci + hi

1
xi
−a0·qi−1,0

)
+

a0·hi·q2
i−1,0(

1
xi
−a0·qi−1,0

)2

}

(3.14)

The first inequality is due to the facts that

qLN (Y),0 · (1− qN,LN (Y)) · rB ≥ 0

and {
C ′i(Y , a1) + a1

∂C ′i(Y , a)

∂a
(a1)

}
≥ 0

for all i. This is because C ′i(Y , a) is a non-negative and increasing function of a. The

second inequality in (3.14) is due to the fact that qLi(Y),0 ≥ qi−1,0, since Li(Y) ≤ i−1

for any configuration Y . Now it is apparent that the expression

q

(
ci +

hi

1
xi
− a1 · q

)
(3.15)

is non-decreasing in q within the relevant domain. To see why the expression

a1 · hi · q2
Li−1,0(

1
xi
− a1 · qLi−1,0

)2 (3.16)

59

is also non-decreasing, we derive it with respect to q and obtain

2 a2
1 hi q

2

(
1
xi
− a1 q

)3 +
2 a1 hi q(
1
xi
− a1 q

)2

which is also non-negative in the relevant domain of a and for all positive x and non-

negative h and q. The last inequality of (3.14) follows from the fact that expressions

(3.15) and (3.16) are also non-decreasing in a in the relevant domain; and a0 < a1. ¥

Clearly, the slope of the function P ∗(a1) for any point a1 > a0 is bounded above

by the Lipschitz constant K minus the lower bound obtained by Lemma 3.4.2 for

a0. We denote this upper bound by γa0 .

Corollary 3.4.3 For any pair of feasible arrival rates a1 < a2,

P ∗(a2) < P ∗(a1) + (a2 − a1) · γa1 .

Based on Corollary 3.4.3 and on Algorithm 3.3.1 we present below Algorithm

3.4.1 which is a branch and bound approximation procedure for solving the paramet-

ric QCS problem. LetA > 0 andR ≥ 0 be the desired absolute and relative optimal-

ity errors respectively. That is, if the value of the optimal solution is OPT then our

algorithm terminates with a solution which is at least min {OPT · (1−R), OPT −A}.
Algorithm 3.4.1 uses the following data structure to represent any segment of

possible arrival rates. Each such segment is characterized by the following properties:

StartPoint, EndPoint, Profit, UpperBound and Recalc. The boundaries of the

segment are stored in StartPoint and EndPoint. The profit from using an optimal

configuration with respect to the arrival rate that equals StartPoint, is stored in

Profit. The auxiliary flag, Recalc, marks whether the value of Profit was already

calculated by calling Algorithm 3.3.1.

Starting with a data structure called list that contains at the beginning a single

segment of all feasible arrival rates, the algorithm repeatedly removes a segment

from the list and calculates the optimal profit assuming the arrival rate equals the

start point of the removed segment. Then, based on Corollary 3.4.3, it calculates

upper bounds on the profit for the first and the second half of the segment. These

two segments are added to the list only if their upper bounds are greater than the

best known solution plus the allowed error.

60

Algorithm 3.4.1 The QCS branch and Bound Procedure

Input: a QCS problem (p,x,x′, c, c′, f ′,h,h′, rB , r(x)), optimality errors A and R
Segment.StartPoint ← 0; Segment.EndPoint ← 1

x1
;

Segment.Profit ← 0;

Segment.Recalc ← True

Segment.UpperBound ← γ0
x1

;

Set List empty;

Add Segment to List;

Let BestKnownProfit = 0;

While List not empty Do

Remove from List an item with the largest UpperBound and store it in Segment;

If Segment.Recalc Then

Calculate profit and Optimal Configuration at StartPoint using Algorithm 3.3.1

and store in Segment.Profit and Y, respectively;

Segment.Recalc ← False;

If Segment.Profit > BestKnownProfit Then

BestKnownProfit ← Segment.Profit; BestKnownConfig ← Y ;

Remove from List all items with UpperBound ≤
min(BestKnownProfit · (1 +R), BestKnownProfit +A);

Segment.UpperBound ← Profit + γStartPoint · (EndPoint− StartPoint);

If Segment.UpperBound >

min(BestKnownProfit · (1 +R), BestKnownProfit +A) Then

Segment1.StartPoint ← (Segment.EndPoint + Segment.StartPoint)/2;

Segment1.EndPoint ← Segment.EndPoint;

Segment1.UpperBound ← Segment.UpperBound;

Segment1.Recalc ← True;

Add Segment1 to List;

Segment.EndPoint ← (Segment.EndPoint + Segment.StartPoint)/2;

Segment.UpperBoound ← Segment.Profit + (EndPoint− StartPoint) · γStartPoint;

If Segment.UpperBound >

min(BestKnownProfit · (1 +R), BestKnownProfit +A) Then

Add Segment to List;

End Do;

61

Algorithm 3.4.1 maintains a list of active segments which are continues subsets of

the set of feasible rates. For each segment in the list, the start point, the end point,

an upper bound on the expected profit from the system with arrival rates within the

segment, an upper bound on the slope of P ∗(a), and the optimal profit at the start

point are kept. The list of active segments is sorted according to the segments upper

bounds (implemented as a skip list so insertion takes O(log n) and all other relevant

operations take O(1), see [28]). We start with a list that consists of a single active

segment that contains all feasible rates, say [0, 1
x1

], and an upper bound of ∞. At

each iteration, our algorithm removes from the list a segment with the largest upper

bound and then computes the expected profit at the start point of the removed

segment using Algorithm 3.3.1. Based on this value, a tighter upper bound relative

to this segment is calculated using Corollary 3.4.3. If the obtained upper bound

on the profit is smaller than the minimum value between the best known solution

plus A and the best known solution times (1 + R), then the segment is discarded

from further consideration. If the solution at the start point is greater than the

best known solution then it is stored as the new best known solution. The segment

is then divided into two sub-segments of identical length. These two segments are

returned to the list of active segments. The first segment of the two is stored with

a new and reduced upper bound, using the fact that it is shorter. The second seg-

ment is stored with the upper bound calculated for the segment that was removed

from the list. Whenever the best known solution is updated, the list is cleaned from

segments with upper bounds which are within the allowed error from the current

best known solution. The process terminates when the list is empty. ¥

Theorem 3.4.4 Algorithm 3.4.1 terminates in a finite number of iterations and

achieves an approximate solution of value min {OPT −A, OPT · (1−R)}.

Proof. To see the termination of the algorithm observe that at any step of the

algorithm, a segment is removed from the list and two, one or none new segments

of half length of the removed one, are added to the list. So clearly, the lengths of

the segments added to the list gradually decrease by at least half each iteration.

62

We show that no segment of length shorter than A
2γ0

can be added to the list, and

thus, at some point, the list becomes empty and the algorithm stops. Consider a

step in which the algorithm processes a segment of length l ≤ A
γ0

, say the segment

[a0, a0+ l]. At this point, the value of P ∗(a0), was already evaluated and thus P ∗(a0)

is not greater than the value of the current ”best known solution”. The slope of the

segment is not greater than γ0 and so the value at any point within the segment is

not greater than P ∗(a0)+ l · γ0 ≤ P ∗(a0)+A and thus no halves of this segment are

added to the list. Hence, at some step, all segments in the list must be shorter than
A
γ0

and the algorithm terminates. Clearly, from the above discussion, the algorithm

terminates with the required approximate solution. ¥

Note that at the worst case our branch and bound procedure calls Algorithm

3.3.1, γ0

x1A times. Our numerical tests presented in Subsection 3.5.1 shows that

instances up to thousand machines can be approximated with a relative error of 1%

in very few seconds.

Remark 3.4.5 If the absolute error is set to A = 0, then the theoretic convergence

of Algorithm 3.4.1 can not be guaranteed regardless of the magnitude of R. This

is because if the optimal profit is of value zero and the bound on the slope of the

function obtained by Corollary 3.4.3 is strictly positive at some neighborhood of

the optimal arrival rate, then the stopping condition of the algorithm never holds

for A = 0. However, this has no practical implication since there is always some

absolute error allowed by the floating point accuracy of the computer.

Remark 3.4.6 Note that although throughout this paper we assumed the Poison

arrival process, the developed methods produce good approximate solution (in the

heuristic sense) to other arrival processes. This phenomenon is indicated in the

literature and was also observed by our numerical experiments as described in the

next section. It is widely believed that in a tandem of N stations, if the arrival

process is stationary and ergodic with a rate of α and the system is stable, then the

departure process from the nth station converges to a Poisson process with a rate of

α as n → ∞. This conjecture is known as Reiman and Simon conjecture and was

partially proved by Mountford and Prabhakar [29] for the case of identical stations.

Further more, a simulation study conducted by Suresh and Whitt [38] indicates that

63

the convergence rate, in terms of the number of machines in the tandem, is fairly

high if the arrival process admits low variability and in particular when the arrival

process is deterministic (e.g., the inter-arrival times between any successive arrivals

are constant).

3.5 Numerical Results

Our study consists of three sets of experiments described in the subsections below.

In 3.5.1 we test the applicability of Algorithms 3.3.1 and 3.4.1 for very large instances

of the problem. We solved instances with 1000 machines in a very short time. In

3.5.2 and 3.5.3 we check the assumption that large instances of the problem are not

that sensitive to the type of the arrival process but rather to its rate. In particular,

we examine this assumption for the deterministic arrival process. In 3.5.2 we show

that for given configuration and arrival rate, the average amount of work in process

is similar for the Poisson and the deterministic arrival processes. Recall that we

denote an arrival process deterministic if the times between any successive arrivals

are constant. Note that, for a fixed arrival rate, the arrival process affects the WIP

and thus if the WIP is similar for both cases, then the total operational costs per

time unit are also similar. In 3.5.3 we show that the optimal QCS configuration

for a Poisson process remains nearly optimal when the Poisson arrival process is re-

placed by deterministic one of the same rate. We compare the results obtained from

Algorithm 3.3.1 with the simulation results of all 2N possible QCS configurations.

For obvious reasons, this experiment is restricted to short production lines. We have

tested it on eight machines lines. The created test problem instances differed by the

following three criteria:

1. Success probabilities: Groups denoted by L possess relatively low success

probabilities while H denotes those possess high ones. The success probabilities

of the ’H’ instances were generated such that qN,0 =
∏N

i=1 pi ≈ 0.8 and for the

’L’ instances it is qN,0 ≈ 0.4.

2. Tendency of the processing rates along the line: For instances denoted

by R the expected processing times were sampled from a common distribution

(i.i.d) and for those denoted by I, the expected processing times were generated

64

in a way that insures strictly increasing processing times in i, the index of the

station.

3. Tendency of the holding costs along the line: In problems denoted by

R, the holding costs h and h′ were taken from a common distribution (i.i.d)

for all stations and for those denoted by I (D) the holding costs were generated

to be monotonously increasing (decreasing) in i, the machine index.

There are 12 combinations of these criteria. A problem instance is denoted

by three letters and the number of machines. For example, a problem denoted by

HRD100 is one with High success probabilities, arbitrary Random processing times,

Decreasing holding costs and 100 machines. We believe that these 12 combinations

represent variety of systems that can be found in reality. Note that we did not

include in our data set problems with decreasing processing times. Such systems

are in general easier to analyze since their bottleneck machine is always the first one

and thus the QCS configuration admits no effect on the line throughput.

3.5.1 The Efficiency of the Algorithms

In order to check the applicability of our Algorithm 3.4.1 we randomly generated

600 instances with 1000 machines each. The instances are divided into 12 groups as

described above (50 systems in each group). For each system we constructed two

revenue functions. One is a linear homogenous function r(x) = α · x and one is a

non-linear of the shape r(x) = β
√

x. The constants α and β were randomly selected

in a manner that assures the existence of a profitable solution; this, in order to avoid

trivial instances of the problem. Our algorithm was applied for these 1200 problems;

the running times in seconds and the number of iterations (calls to Algorithm 3.3.1)

were collected. Statistics results of this experiment are presented in Table 3.1. The

relative optimality error was set to 0.001 (0.1%) and the absolute optimality gap

was set to 0 (which practically means that the absolute error is set to the numerical

accuracy of the computer).

The algorithm was implemented in Microsoft Visual C++ with LEDA (see [28])

on an Intel Pentium 4, 2Ghz CPU with 512Mb RAM. The source code and data set

are available from our site http://ie.technion.ac.il/∼talraviv/Publications.

65

Linear r(x) = C · x Concave r(x) = C ·
√

(x)

Model Average Worst Average # Average Worst Average #

time time iterations time time iterations

LII1000 0.997 1.673 8.54 3.667 4.567 30.46

LID1000 1.076 1.783 8.70 3.896 4.596 31.14

LIR1000 1.024 1.562 8.44 3.767 4.507 30.52

LRI1000 2.004 2.604 12.00 4.542 6.069 32.60

LRD1000 1.937 2.774 11.44 4.562 5.498 33.06

LRR1000 1.986 2.603 11.82 4.542 5.758 32.52

HII1000 1.716 2.413 11.94 4.640 5.438 35.54

HID1000 1.711 2.494 12.26 4.717 5.978 36.64

HIR1000 1.751 2.473 12.10 4.740 5.899 36.10

HRI1000 1.973 3.265 12.46 4.561 5.508 33.86

HRD1000 1.913 2.864 12.50 4.581 5.739 34.36

HRR1000 1.928 2.834 12.42 4.489 5.398 33.62

Table 3.1: The average and worst case running times of Algorithm 3.4.1 in seconds and

the average number of calls to Algorithm 3.3.1 are presented for the two different revenue

functions.

From Table 3.1 it is apparent that Algorithms 3.3.1 and 3.4.1 can be employed

to solve efficiently the problems presented in the paper under diverse sets of condi-

tions and for any reasonable size. In particular, we believe that 1000 machines is a

reasonable upper bound on the size of serial production lines encountered in real life

and the relative optimality guarantee of 0.1% is in most cases more accurate than

the problem parameters. Note that Algorithm 3.3.1 is a subroutine called numerous

times in the solution process of Algorithm 3.4.1. Thus, the problem of determining

an optimal QCS configuration for a given arrival rate in a thousand machines line

is solved within a fraction of a second.

3.5.2 Insensitivity of the Total WIP to the Arrival Process

Recall that in Remark 3.4.6 we argued that in long production lines, the optimal

configuration for a system with a Poisson arrival process is likely to be optimal, or

66

near optimal, for other arrival processes of the same rate. Also, by flow conservation,

it is clear that at steady state the arrival rate of jobs into each station is not affected

by the type of the arrival process but only by its rate. Thus, the only component of

the cost affected by the arrival process is the holding cost of the work in process. Here

we use simulation to demonstrate the fact that in long production lines, replacing

the Poisson arrival process by a deterministic one, admits only a minor effect on the

expected level of work in process and thus on the total cost per time unit.

We constructed 12 instances of 100 machines each, one for each of the categories

described at the beginning of this section. The data set is available from our site. For

each of these instances, we calculated a tight upper bound λmax on the arrival rate

using Corollary 3.2.3 and assuming all QCSs are installed. We used the dynamic

programming Algorithm 3.3.1 to find the optimal QCS configurations, assuming

Poisson arrival process for three different arrival rates, 0.5λmax (Light), 0.8λmax

(Medium) and 0.95λmax (High). We then used simulation to evaluate the average

amount of work in process at steady state, assuming deterministic arrival process in

the same rates.

For our 36 test problems, the average level of the WIP in the deterministic

arrival case, was about 83-92% of the expected level of the Poisson arrival case,

as shown in the right most column of Table 3.2. As expected, it is apparent from

the table that the levels of WIP are lower for the deterministic arrival process as

compare to Poisson process. This is due to the larger variability of the Poisson

Process as compare to the deterministic one. Note that for a given system, the

ratio between the two WIP levels for Poisson and deterministic arrival process is

not very sensitive to the arrival rate and to the specific QCS configuration. This

important observation makes possible the use of an optimal solution of the Poisson

arrival case as an approximate solution for the deterministic one in the parametric

QCS problem.

Figure 3.2 demonstrates the similarity in WIP levels of the systems with Poisson

and the deterministic arrival processes. We consider the problem HRR100 shown

in Table 3.2, with a medium arrival rate and an optimal QCS configuration for this

rate (under the Poisson arrival process). We simulated the same system with a

67

Problem Arrival Poisson QCSs locations Deterministic Ratio

Rate Expected WIP (optimal for Poisson arrivals) Average WIP

LII100 Light 83.500 {9, 19, 28, 40, 48, 62, 75, 88} 73.1563±0.234881 0.876

LII100 Medium 251.349 {4, 9, 13, 19, 27, 34, 40, 48, 58, 66, 75, 88} 215.948±0.933386 0.859

LII100 Heavy 546.464 {4, 7, 9, 13, 19, 26, 31, 36, 44, 52, 58, 62, 68, 75, 80, 88, 93} 454.764±2.89178 0.832

LID100 Light 84.725 {8, 19, 29, 40, 53, 63, 74, 88} 73.054±0.227335 0.862

LID100 Medium 251.494 {7, 16, 19, 26, 36, 45, 53, 63, 74, 83, 92} 213.251±1.09989 0.848

LID100 Heavy 545.095 {4, 7, 10, 16, 20, 26, 31, 36, 40, 45, 53, 59, 66, 74, 79, 88, 92} 451.915±2.86822 0.829

LIR100 Light 84.711 {16, 26, 41, 48, 61, 70, 88} 72.3496±0.224759 0.854

LIR100 Medium 252.344 {7, 13, 20, 26, 31, 41, 49, 54, 61, 70, 79, 88} 213.644±1.09059 0.847

LIR100 Heavy 544.479 {4, 7, 11, 16, 20, 26, 31, 36, 44, 49, 54, 59, 65, 73, 79, 88, 93} 451.495±2.99134 0.829

LRI100 Light 26.810 {9, 21, 27, 44, 54, 66, 78, 89} 23.2582±0.05171 0.868

LRI100 Medium 57.929 {9, 14, 21, 27, 35, 44, 54, 59, 66, 73, 81, 89} 50.2465±0.16899 0.867

LRI100 Heavy 92.249 {1, 6, 11, 14, 21, 27, 35, 44, 54, 59, 66, 73, 81, 89} 78.6892±0.41424 0.853

LRD100 Light 26.955 {13, 27, 44, 54, 61, 69, 81, 89} 23.3166±0.04993 0.865

LRD100 Medium 58.155 {9, 14, 21, 27, 44, 54, 61, 69, 81, 89} 49.8765±0.15807 0.858

LRD100 Heavy 92.630 {1, 5, 11, 14, 21, 27, 44, 54, 61, 69, 81, 89} 78.5607±0.42037 0.848

LRR100 Light 26.540 {12, 21, 26, 44, 59, 69, 81} 23.0335±0.04873 0.869

LRR100 Medium 57.833 {9, 14, 21, 26, 44, 59, 69, 81, 84} 49.5396±0.16372 0.857

LRR100 Heavy 92.493 {1, 6, 11, 14, 21, 27, 44, 54, 59, 69, 81, 92} 78.0101±0.3817 0.843

HII100 Light 72.318 {22, 50, 69} 65.6968±0.12966 0.908

HII100 Medium 202.430 {22, 36, 54, 69, 81} 183.648±0.6844 0.907

HII100 Heavy 397.066 {8, 22, 36, 51, 60, 69, 81, 91} 357.881±2.1994 0.901

HID100 Light 72.074 {32, 50, 69} 65.6725±0.12118 0.911

HID100 Medium 202.339 {16, 34, 50, 69, 82} 183.575±0.601957 0.907

HID100 Heavy 396.768 {16, 34, 46, 60, 69, 81, 91} 354.541±2.04448 0.894

HIR100 Light 72.141 {15, 37, 54, 81} 66.1531±0.12889 0.917

HIR100 Medium 201.893 {16, 37, 54, 66, 81} 183.02±0.672422 0.9071

HIR100 Heavy 396.545 {15, 27, 37, 49, 62, 72, 81, 91} 358.81±2.05424 0.905

HRI100 Light 39.911 {6, 18, 34, 50, 65, 85} 36.3588±0.05524 0.911

HRI100 Medium 100.139 {10, 18, 34, 50, 65, 75, 85} 90.8305±0.2501 0.907

HRI100 Heavy 192.310 {2, 6, 14, 18, 24, 35, 48, 57, 65, 75, 85, 89} 172.365±1.18 0.896

HRD100 Light 39.866 {10, 18, 34, 48, 75, 89} 36.2967±0.05183 0.910

HRD100 Medium 100.007 {2, 10, 18, 34, 44, 50, 65, 75, 85, 89} 91.0597±0.27339 0.911

HRD100 Heavy 192.270 {2, 8, 14, 18, 24, 34, 44, 48, 57, 65, 75, 85, 89} 171.986±1.1113 0.895

HRR100 Light 39.544 {10, 24, 34, 48, 63, 75, 82} 36.4027±0.05455 0.921

HRR100 Medium 99.586 {10, 24, 34, 48, 57, 63, 75, 82, 90} 91.2471±0.28752 0.916

HRR100 Heavy 191.904 {2, 10, 14, 24, 35, 48, 57, 65, 75, 85, 90} 172.534±1.2376 0.899

Table 3.2: A comparison between the expected total level of WIP for the Poisson

and the deterministic arrival processes. For the deterministic case, the average total

WIP level was estimated using simulation and is presented within a 95% confidence

interval. The ratio between the two levels is presented in the right most column.

deterministic arrival process to estimate the expected WIP in each of the system’s

stations. We then compare these values with the expected WIP level in the system

with a Poisson arrival process (calculated analytically). In Figure 3.2 the ratio

between these two values is plotted against the station index (either machine or

QCS). It is apparent from the graph that for stations located at the beginning of

the line the ratio fluctuates widely while for further on stations it tends to stabilize

close to unity.

68

10 20 30 40 50 60 70 80 90 100
0.5

0.6

0.7

0.8

0.9

1

1.1

Station number (including QCSs)

R
at

io

Figure 3.2: The ratio between the WIP levels assuming Poisson and deterministic

arrival processes of the same rate.

3.5.3 Comparison of the Exact and Approximate Solutions

As mentioned above, we believe that optimal QCS configurations for the Poisson

arrival process frequently remain optimal or near optimal for non-Poison arrival

processes and in particular for the deterministic arrival process as defined above. In

this section we supply further numerical support for this assumption.

Twelve systems of eight machines each based on our 12 categories described at

the beginning of this section were constructed. Each problem was solved, using

Algorithm 3.3.1 for three different arrival rates. The arrival rates were selected

in order to cover diverse sets of conditions, according to the following method.

Corollary 3.2.3 was used to obtain λmax, an upper bound on the feasible arrival rates

assuming all eight QCSs are installed. The following arrival rates λlow = 0.5λmax,

λmed = 0.8λmax and λhigh = 0.95λmax were considered.

The procedure recently proposed by Nelson et al. [30] was used to obtain a

near optimal configuration for the problem with deterministic arrival process. This

procedure finds, with a pre-specified probability (1−α), a solution which is optimal

or within a pre-specified Indifference Zone from the optimum. We applied the above

procedure with an indifference zone of 2% and α = 0.05. It should be noted that

Nelson et al. procedure is practical only for very small instances of our problem

since the procedure repeatedly runs numerous simulation sessions for each of the

69

exponentially many possible configurations. In our case, each of the eight machines

problem with the above confidence level and indifferent zone, took several minutes

to solve.

For the optimal solutions, those obtained by Algorithm 3.3.1 and by Nelson’s pro-

cedure, further simulations under the deterministic arrival process were conducted,

and an estimator of their expected cost with a relative confidence interval of 0.1%

was obtained.

Table 3.3 compares the solutions obtained by Algorithm 3.3.1 with those obtained

by Nelson et al. method where both used for the problem with deterministic arrival

process. The values in the “ratio” columns were calculated as follow,

100×
(

Optimal profit of a solution obtained by Nelson procedure

Optimal profit of a solution obtained by Algorithm 3.3.1
− 1

)
.

Prob- Low Rate (0.5λmax) Medium Rate (0.8λmax) High Rate (0.95λmax)

lem Ratio Optimal Configuration Ratio Optimal Configuration Ratio Optimal Configuration

DP 3.3.1 Nelson DP 3.3.1 Nelson DP 3.3.1 Nelson

LII8 - 00010001 - 01010101 1.7% 11111101 11110101

LID8 - 00100001 0.4% 01010001 00110001 - 11111001

LIR8 -1.1% 00100001 00100011 - 00100101 - 10101011

LRI8 -0.0% 01000001 00100001 -0.4% 01000001 00100001 -0.0% 00100001 00010001

LRD8 -1.2% 00100001 01000001 -1.3% 00100001 01000001 -0.1% 00010001 01010001

LRR8 - 01000001 - 01000001 - 01000001

HII8 - 00000001 -0.2% 00010001 01000011 - 01010010

HID8 - 00000000 -1.2% 00100000 0000000 - 00100100

HIR8 - 00000010 - 00000010 - 00100010

HRI8 -1.1% 00000001 00000010 - 00000010 - 00000010

HRD8 - 00000010 - 00000010 - 00000010

HRR8 -1.6% 00000010 00000001 -2.4% 00000010 00000001 -0.3% 00000010 00000011

Table 3.3: A comparison between the profit and the QCS configurations for the eight machines

system obtained by Algorithm 3.3.1 and by Nelson et al. procedure.

From Table 3.3 it is apparent that for our 36 test problems, Algorithm 3.3.1

returns solutions which are either optimal or very close to optimal. The differences

between the solutions obtained by both methods can be partly explained by the

estimation error.

Recall that the total costs of a given system under Poisson arrival process and

under deterministic one differs only in the holding costs. Thus, for low holding costs

it is not surprising that the optimal solutions are similar for both cases. In order

to show that the above phenomenon holds also for relatively high holding costs we

examined the proportion of holding costs relative to the total expenses. We observed

that for the instances presented in Table 3.3 holding costs were on the average 26.1%

70

of the total expense with a range of 10.2% to 48.2%. We conclude that our method

works well even if holding costs are a substantial part of the total costs.

3.6 Discussion

In this paper we presented a dynamic programming algorithm and a branch and

bound strategy to solve the problem of determining an optimal QCS configura-

tion along a serial production line. Two versions of this problem were considered.

Namely, minimization of the cost per time unit under a given production rate and

maximization of the profit where the QCS configuration and the production rate are

to be selected simultaneously.

Note that in the minimization problem the production rate is defined by the

number of jobs arrive at the first machine per time unit. However, this is completely

equivalent to define the rate in terms of non-defective products completed products

delivered for the system. This is because the ratio between the departure rate of

non-defective products out of the system and the arrival rate of jobs into the system

(given by qN,0) is uniquely determined by the success probabilies and is not affected

by the QCS configuration.

We point out that the model discussed in this paper, as oppose to previous studies

in the literature, captures the effect of the inspection process on the line throughput

and on the level of work in process. We suggest the following managerial insights,

1. Installing additional QCS may increase the line throughput by reducing the

load caused by defective products on bottleneck machines.

2. The effect of installing additional QCSs on the WIP level, assuming fixed

production rate, is determined by two conflicting factors. The reduction of

the load on the machines and QCSs toward the end of the line obtained by

installing additional QCSs, reduces the queues in front of these stations and

thus reduces the expected WIP there. On the other hand, an additional QCS

hads its own queue and processing time which increases the total expected WIP

level in the system. It is not possible to make a general statement whether the

former or the later factor governs. It is a challenge to theoretically analyze

the connection between these two conflicting factors for some special cases.

71

3. In many cases, QCSs installed before loaded machines increase the through-

put and reduce the WIP while a QCS installed after the slowest machine in

the line has no effect on the throughput and only minor effect on the WIP level.

Throughout the analytical part of the paper we assumed that the arrival process

of jobs into the system is Poisson. This assumption is not suitable for most real life

production environments where the jobs are dispatched into the system by a decision

of the system operator. We used numerical experiments to demonstrate that the

Poisson arrival assumption leads to near optimal solutions also for deterministic

arrival processes. This is true at least for small instances of the problem, for which

we were able to estimate the optimal solutions by enumerative method. However,

we expect the method to be even more accurate for larger instances since the arrival

process into each machine i stochastically approach Poisson process as i →∞. See

the discussion on Reiman and Simon conjecture in Remark 3.4.6 above.

In addition to the Poisson arrival assumption the following assumptions were

made:

1. Idleness policy: Each machine starts an operation whenever it becomes

ready and a job is available in its buffer. Note that this rule is not necessarily

an optimal policy, especially if holding costs vary along the line.

2. Random variables: The operations’ failures on each machine are indepen-

dent across jobs. This assumption may not hold in various cases when the

failures depend on the state of the machine or other external factors such as

dusty environment.

3. Inspection Policy: Once a QCi is installed, it inspects all the jobs that

depart from machine i. Note that this policy may be sub-optimal even under

the assumption that the failures events on each machine are independent. In

particular, for slow QCSs it might be better to inspect subsets of the jobs, so

part of the benefit from inspecting is gained without creating a new bottleneck

in the system. In general, the decision whether to check a job or not should

be made on-line, based on the buffers state along the line.

4. Perfect Inspections: We assume a perfect inspection process. In practice

72

two types of errors may occur: A defective job may not be identified as such

and a non-defective job may be rejected as defective one. In addition, in some

cases, the inspection operation itself may damage the product.

Relaxing the above assumptions is an important direction for further research.

However, despite of the assumptions mentioned above we believe that our model

is useful for designing Quality Control Systems. In particular, we feel that the

understanding of the various factors influencing the system performance, and the

insights gained by our analysis, are of much importance for further research on this

applicable problem.

Note that although our aim in this study was to optimize the steady state per-

formances of the systems, we believe that the method is also well suited for high

multiplicity problems where a large but finite number of identical or similar prod-

ucts are to be produced, and the goal is to minimize the total cost or maximize

the total profit. The model presented in this paper can be extended to capture a

variety of manufacturing environments such as allowing repairs, reworks, machine

breakdowns and for other manufacturing environments such as job shop, assembly

lines, multi-stage shop, etc. In addition, the ideas presented here can be adapted

for other areas such as determining optimal nodes for performing integrity checks

along a communication network or during a long service process.

73

Chapter 4

Long Run Maximum Profit Job

Shop Problem

Many systems in the fields of manufacturing, transportation and data communi-

cation can be considered as discrete flow control systems, e.g., systems consist of

a network and some distinct objects that should be transferred along its arcs ac-

cording to some rules. Often, optimization problems related to these systems are

NP-Hard. For example, many scheduling problems are such problems and are well

known for their intractability. Surprisingly, it turns out that in a way, large instances

of this kind of problems are not so difficult to approximate using fluid approximation

techniques.

Given a discrete flow control system, its fluid counterpart system can be defined

by relaxing the discrete nature of the objects, that is allowing each discrete object

to be divided into infinitesimally small fractions. Since the continuous nature of the

fluid systems make them easier to analyze and optimize, it is often useful to construct

such a system whenever one wishes to devise a method for evaluation or optimization

of the discrete flow system. This construction may lead to efficient approximation or

heuristics procedures and in some cases even to an efficient optimization algorithms.

The fluid view is extensively used for analyzing queueing systems, see for example

Chen and Mandelbaum [9], and Dai and Weiss [12]. However, only recently it

has been used for solving combinatorial optimization problems. In particular this

approach was previously used to tackle the High Multiplicity Job Shop Problem

by Bertsimas and Gammarnik [5], by Boudoukh, Penn and Weiss [7]; by Dai and

74

Weiss [13]; Bertsimas and Sethuraman [6]. Bertsimas and Gammarnik also studied

a Packet Routing Problem. Penn and Raviv [33] considered a Vehicle Routing

Problem.

Here we consider a production model where many instances of a small amount

of product types are to be produced according to a Job Shop setting. The planner

has to determine simultaneously the production mix and the schedules in order to

maximize the expected steady state profit.

We open the discussion with a simplified version of the problem in which the

long run average gross profit per time unit is maximized. In this version we allow

the system to use arbitrarily large (finite) safety stocks. Consequently, a long ini-

tialization phase, to build this safety stocks, may be required. In addition, the size

of the system buffers and the average level of work in process may be large.

Ideally, one would like to maximize the net profit, where holding cost, space cost

(of the buffers) and delay cost (of the initialization phase) are considered. We could

not meet this ultimate goal. Instead, we suggest a three phase optimization process.

At the first step, the gross profit is minimized, using a fluid approach. At the second

phase the solution is modified in order to construct a cyclic schedule with very short

cycles that still yields approximately optimal gross profit. We show numerically, on

standard bench mark problems, that a compromise of 1% on the optimality of the

gross profit enables the creation of very short and simple cyclic schedule. Once a

short cycle is constructed, it is possible to sequence it in a manner that minimizes

the measures of holding costs, buffers spaces, required safety stocks or any weighted

combination of the three. This last phase can be carried out by standard scheduling

and combinatorial optimization techniques and is out of the scope of this paper.

The rest of this paper is organized as follow: In Section 4.1 we define the problem

and formulate a fluid relaxation of it. In Section 4.2 we construct a dispatching rule

based on the fluid solution and prove its optimality. In section 4.3 we provide an

upper bound on the difference between to the total number of products produced

in the discrete system and the amount of fluid flows out of the fluid one. In Section

4.4 we explore the cyclic nature of the obtained schedule and show how to construct

an approximately optimal schedules with a simple cycle structure. In section 4.5 we

discuss a method to initialize the system and to adjust it to modification in optimal

production mix. Some of the concepts presented in the paper are demonstrated

75

using a numerical example in Section 4.6 and their practicality is supported by an

extensive numerical experiments reported in Section 4.7. We conclude by conducting

a short discussion and drawing few directions for further research in Section 4.8.

4.1 Problem Definition and Fluid Relaxation

Our aim is to operate a job shop system in a manner that maximizes its operational

profit. We first define two types of such profit.

Definition 4.1.1 (Gross operational profit) . The gross operational profit per

product is the total revenue for the product minus direct costs associated with its

production such as materials, labor and energy. Throughout we assume that this

profit per product is a constant regardless of the quantities of products produced.

That is, the gross operational profit from the system is proportional to the number

and types of products.

Definition 4.1.2 (Net operational profit) The net operational profit from the

system is its gross operational profit minus the following additional costs:

1. Holding costs - alternative cost of work in process.

2. Space cost - alternative cost of the space allocated for the system buffers

3. Delay cost - alternative cost of the time required for the initialization phase.

The terminology used above is precisely defined below. These three types of costs are

interrelated but not necessarily proportional to each other.

In the sequel we omit the word “operational” when referring to gross and net

operational profit since we only consider these kinds of profit.

In this paper we take the following three-step approach. First, the gross profit

is minimized, using a fluid approach. Then, the solution is modified in order to

construct a cyclic schedule with very short cycles that still yields approximately

optimal gross profit. It is shown on numerically, on standard bench mark problems,

that a compromise of 1% on the optimality of the gross profit enables the creation

of very short and simple cyclic schedule. Once a short cycle is constructed, it is

76

possible to change its sequence. The sequence’s change should not affects the cycle

length but it may reduce the level of work in processes, buffers spaces, required

safety stocks or any weighted combination of the three. This last phase can be

carried out by standard scheduling and combinatorial optimization techniques and

is out of the scope of this paper.

Consider the following Job Shop like problem: Let M be a set of different ma-

chines and R a set of product types. The production process of a product of type

r consists of a series of Kr operations that should be carried out on the machines

according to a given order. We refer to this order as the product route. We allow

reentrant route, that is, a route may visit the same machine several times. The oth

operation of route r is denoted by (r, o) and the time needed to carry out operation

(r, o) is Tr,o. The machine that carry out operation (r, o) is denoted by M(r, o)

Let σi denote the set of operations carried out by machine i. σ(r, o) ≡ σM(r,o) and

σ(r, o)− ≡ σ(r, o) \ {(r, o)}. As in the classic Job Shop problem, each machine may

work on a single job (product instance) at a time and a job may be processed by a

single machine at a time. We consider non-preemptive policy, that is, an operation

can not be aborted before it is finished. Each completed product of type r yields

a gross profit of Pr. Without loss of generality we assume Pr > 0 since otherwise

products of type r will not be produced at all. The aim is to select a subset of

products and to construct a schedule that maximizes the total average gross profit

per time unit achieved if the system is to be operated indefinitely.

The fluid counterpart of our system is defined as follows: Machine i is represented

by pump i and route r by a pipe that traverses the pumps according to route r.

Each unit of fluid in a pipe represents a single job. The maximum rate in which

pump i can draw fluid from a pipe entrance is 1
Tr,o

assuming it devotes all its effort to

this buffer. However a pump may divide its effort among several entering pipes. For

example, if a pump devotes α of its effort to (r, o) then the inflow from this entrance

is limited to α
Tr,o

. We associate a gross profit of Pr with each unit of volume of fluid

coming out of pipe r. The aim is to maximize the average gross profit of the system

for a unit of time. Note that this description is equivalent to allowing each product

to be divided into infinitesimal fractions and allow fractions of the same product to

be concurrently processed by different machines.

77

The net profit of the fluid system equals its gross profit. The fluid system use no

WIP and thus of no holding cost occurs; It uses no buffers and thus have no space

costs; and it needs no initialization phase and thus admit no delay cost.

The solution to the fluid problem is given by the following simple Linear Program:

Linear Program 4.1.1

max
R∑

r=1

Prxr

∑

(r,o)∈σi

Troxr ≤ 1 ∀i = 1, ..., M (4.1)

xr ≥ 0 ∀r = 1, ..., R.

Here xr denotes the flow rate via pipe r. We shall see that valuable information

can be derived from an optimal solution of Linear Program 4.1.1. This information

can be helpful when seeking for an optimal solution of the more interesting discrete

system.

4.2 Adapting the Fluid Solution to the Discrete

System

In this section we present a method to build an infinite schedule for the discrete

system based on the optimal solution of its fluid counterpart. Our schedule consists

of two phases: The initialization phase and the regular phase. The initialization

phase is finite and its schedule can be described as a solution of a standard job-shop

problem. Once the initialization phase is over, all the machines become ready. The

regular phase can be described by a dispatching rule, that is, a method to decide for

each machine what to do whenever it turns ready.

In the discrete system each operation (r, o) for o = 2, ..Kr is associated with a

buffer. Each such buffer contains all the jobs that have already finished operation

(r, 0−1) but not yet started operation (r, o). Let B(r,o)(t) denote the number of jobs

in buffer (r, o) at time t.

The purpose of the initialization phase, in our proposed method, is to fill the

buffers with large enough quantity of work in process in order to allow smooth

78

operation of the system during the regular phase with respect to our dispatching

rule. That is, to enable the operation of the dispatching rule in such a manner that

it never tries to dispatch a job that is not available in its buffer. The level of work

in process accumulated in the buffers at the end of the initialization phase is called

safety stock. The two related problems of how to calculate the minimum level of

safety stock required for our dispatching rule and how to construct the schedule of

the initialization phase accordingly, are discussed later on. For now we use the term

sufficient safety stock, as if these problems already resolved. Below we discuss the

dispatching rule for the regular phase. We use the argument t to denote the time

passed since the beginning of this phase. Thus, the level of the safety stock used is

Bro(0). Let Dr,o(t) denote the total number of operations of type (r, o) completed

by time t.

Recall that in the fluid counterpart system each operation (r, o) is being processed

in a constant rate xr and thus during t units of time, t · xr units of volume goes

through the pipe associated with route r.

Definition 4.2.1 The lateness of operation (r, o) at time t is Lro(t) = t · xr −
Dro(t). It represents the difference between the volume of the fluid that moved along

route r by time t in the fluid system and the number of jobs that completed operation

(r, o) by time t in the discrete system.

We are now ready to present the dispatching rule that governs the operation of the

system during the regular phase.

Definition 4.2.2 (FBDR - Fluid based dispatching rule) At any given time

t, if machine i is idle and max(r,o)∈σi
Lro(t) ≥ 0, then process a job from buffer (r, o)

with maximum value of Lro(t). Otherwise, machine i stays idle until the situation

is changed. Ties are broken in favor of operations with larger value xr and if few

operations have equal value of xr by lexicographic order of (r, o).

Propsition 4.2.3 Consider a discrete system working indefinitely according to FBDR.

At any time t when operation of type (r, o) is not being processed there is a finite

constant γro, independent of t, such that Lro(t) ≤ γro.

In the next section we establish an upper bound on γro, which indirectly proves

Proposition 4.2.3. Theorems 4.2.6, 4.2.5 and 4.2.9, in the sequel, shows the virtues

of FBDR.

79

Lemma 4.2.4 Consider a discrete system working indefinitely according to FBDR.

At any time t we have Lro(t) < γro + xrTro. That is, the lateness of operation (r, o)

is at most γro + xrTro.

Proof. By Proposition 4.2.3 this is a true whenever the operation is not being

processed. Consider a time t when operation (r, o) is being processed and assume

the processing was started at time t0. Then

Lro(t) = txr −Dro(t).

Now, clearly Dro(t) = Dro(t0) and so

Lro(t) = toxr −Dro(0) + (t− t0)xr < Lro(t) + xrTro.

The last inequality is due the fact that t− t0 < Tro. ¥

Theorem 4.2.5 If a system is scheduled according to FBDR, then a safety stock of

bγr,o−1 + 1c jobs in buffer (r, o), for each (r, o), suffices.

Proof. We prove the theorem by showing that when using FBDR and allowing

negative levels of stock in the system’s buffers, if Bro(0) = dγr,o−1e then Bro(t) ≥ 0

for all t. The number of jobs in buffer (r, o) at time t is

Bro(t) ≥ Bro(0) + D(r,o−1)(t)−Dr,o(t).

Note that this is an inequality rather than equality since while operation (r, o) is

being processed the number of jobs that were taken from the buffer exceeds Dro(t)

by one. By the definition of the lateness,

Bro(t) ≥ Bro(0) + D(r,o−1)(t)− txr + txr −Dr,o(t) = Bro(0)− Lr,o−1(t) + Lr,o(t).

Now consider R, the set of points of time when the machine σ(r, o) is ready and

an operation (r, o) is about to be dispatched. For these times we have Lr,o(t) ≥ 0

and so,

Bro(t) ≥ Bro(0)− Lr,o−1(t).

In order to have a job available for this operation it must be the case that Bro(t) ≥
1. Now, by proposition 4.2.3, Lr,o−1(t) ≤ γr,o−1 and so if Bro(0) = bγr,o−1 + 1c then

Bro(t) ≥ bγr,o−1 + 1c − γr,o−1 > 0.

80

Now since Bro(t) is integer we have

Bro(t) ≥ 1.

¥

Theorem 4.2.5 established the proper definition of the term sufficient safety stock

by showing that there is always a finite level of initial stock that allows the system

to operate indefinitely under FBDR.

Theorem 4.2.6 Using FBDR relative to x, a solution of Liner Program 4.1.1, with

sufficient safety stocks and for t units of time, the average gross profit per time unit

of the discrete system converges to the gross profit per time unit of the fluid one as

t →∞.

Proof. It is enough to show that by time t, the number of products of each type

completed by the discrete system is within a constant of the amount of fluid that

flowed out of the corresponding pipe in the fluid system. The difference between

these two values is Lr,Kr(t) = txr −Dr,Kr(t), which is bounded above by a constant

as showed in Proposition 4.2.3 and Lemma 4.2.4, plus some finite time needed to

carry out the initialization phase.¥

Lemma 4.2.7 Assume a system operates according to FBDR with sufficient safety

stocks. Then, at any given time t and for any operation (r, o), the following inequality

holds

Lr,o(t) ≥ −1 + xrTro.

Proof. First note that Lr,o(t) decreases by one each time when an operation

(r, o) is completed and increases everywhere else. That is, Lr,o(t) achieves its global

minimum either when an operation of type (r, o) finishes its processing or at t = 0

(Lr,o(0) = 0). Hence, it is enough to prove the inequality at these termination points

when an operation is completed. Assume an instance of operation (r, o) that starts

at time t0, then its lateness is Lr,o(t0) ≥ 0. The operation is finished at time t0 +Tr,o

where Dr,o(t0 + Tro) = Dr,o(t0) + 1 and so

Lro(t0 + Tro) = (t0 + Tro)xr − (Dr,o(t0) + 1) = Lro(t0)− 1 + xrTro ≥ −1 + xrTro.

81

The last inequality is due to the fact that under FBDR, jobs are dispatched only if

Lr,o(t0) ≥ 0. Also note that by constraint (4.1) it is always true that xrTro−1 ≤ 0. ¥

In particular since xr > 0 for any product type r that is produced we have that

Lro(t) > −1.

Propsition 4.2.8 Using FBDR with sufficient safety stock implies that the amount

of work in process of jobs that already completed operation (r, o − 1) but yet not

finished operation (r, o) is bounded above by

Br,o(t) ≤ Br,o(0) + 1 + bγr,o − xrTr,o−1c

where Bro(o) is the amount of safety stock used.

Proof. Consider the number of jobs in buffer (r, o) at time t,

Br,o(t) ≤ Br,o(0) + Dr,o−1(t)−Dr,o(t).

(sharp inequality occurs only when operation (r, o) is being processed). Now, by the

definition of the lateness Dro(t) = t · xr − Lro(t) and so,

Br,o(t) ≤ Br,o(0) + [t · xr − Lr,o−1(t)]− [t · xr − Lr,o(t)]

Br,o(t) ≤ Br,o(0)− Lr,o−1(t) + Lr,o(t).

By Lemma 4.2.7, Lr,o−1(t) ≥ −1 + xrTr,o−1 and by Proposition 4.2.3, Lr,o(t) ≤ γr,o.

Hence,

Br,o(t) ≤ Br,o(0) + 1 + γr,o − xrTr,o−1.

Now, since both Br,o(t) and Br,o(0) must be integers

Br,o(t) ≤ Br,o(0) + 1 + bγr,o − xrTr,o−1c.

¥

The following proposition shows that in long routes the total WIP level of prod-

ucts from each type, at any given time, can be bounded above approximately by the

amount of required safety stock for that route.

82

Propsition 4.2.9 The maximum total levels of WIP, along all buffers and machines

of a given route r while using FBDR, is bounded above by

1 + bγr,Krc+
Kr∑
o=2

Bro(0). (4.2)

Proof. First observe that at any given time, the number of products along each

route r equals the number of products in the system at the beginning of the regular

phase (safety stock) plus the number of products that started their first operation

since the beginning of the phase, minus the number of products that completed their

last operation. That is

Kr∑
o=2

Bro(t) ≤
Kr∑
o=2

Bro(0) + Dr,1(t) + 1−Dr,Kr(t).

and so

Kr∑
o=2

Bro(t) ≤
Kr∑
o=2

Bro(0)− Lr,1(t) + 1 + Lr,Kr(t).

Now, since the total WIP level of a route increases only when a job starts being

processed on the first machine and at such times Lr,1(t) ≥ 0 and since Lr,Kr(t) ≤
γr,Kr we have

Kr∑
o=2

Bro(t) ≤ +1 + γr,Kr +
Kr∑
o=2

Bro(0).

Now, (4.2) follows from the fact that the total number of products is in integer. ¥

It is worth to stress here that the actual required safety stock and buffers’ size for

each operation when using FBDR is generally significantly lower than the bounds

presented here. Thus, the best way to calculate the safety stock requirements is by

numerical means described and demonstrated in Sections 4.4, 4.6 and 4.7.

4.3 Upper Bounds on The Lateness

The bounds, presented in the previous section, on the required safety stock and the

maximum level of work in process are given in terms of an upper bound on the

83

lateness denoted by γr,o. In proposition 4.2.3 we stated that γro is finite. Here we

pay the debet of proving this statement by presenting some upper bounds on this

constant. In Proposition 4.3.1 we provide an upper bound on the lateness. We then

present a tighter, and more complex, upper bound in Proposition 4.3.6.

We start with few definitions. Let x = (x1, . . . , xR) be the solution of the fluid

problem obtained from Linear Program 4.1.1. Consider a given operation (r, o)

carried out by machine M(r, o). Let us denote by σfast(r,o) the set of all operations

carried out by this machine with a production rate of at least xr and by σslow(r,o) the

set of the rest of the operations. That is, σfast(r,o) ≡ {(l, u) ∈ σ(r, o) : xl ≥ xr} and

σslow(r,o) ≡ σ(r, o) \ σfast(r,o). We use the notation σfast(r,o)− ≡ σfast(r,o) \ {(r, o)}.
Now the main result of this section is

Propsition 4.3.1 Assume a system scheduled according to FBDR. Then, at any

given time t when M(r, o) is ready, the lateness is bounded above by

Lro(t) ≤
∑

(l,u)∈σfast(r,o)−
[
Tlu − (xl − xr)T

2
l,u

]
+

∑
(l,u)∈σslow(r,o)(Tl,u − xlT

2
l,u)∑

(l,u)∈σfast(r,o) Tlu

≡ γ∗ro.

The proof of this Proposition follows from the following two lemmas.

Lemma 4.3.2 Consider a job shop scheduled according to FBDR. Assume a pair of

operations types (l, u) and (r, o), both processed on the same machine and xl ≥ xr.

Then, at time t, Ll,u(t) ≥ Lr,o(t)− 1 + (xl − xr)Tl,u.

Proof. let us define the function

∆L(t) ≡ Ll,u(t)− Lr,o(t)

∆L(t) = t(xl − xr)−Dl,u(t) + Dr,o(t)

Now since xl−xr ≥ 0 then the only time when Dl,u(t) increases is when operation

(l, u) is completed and thus, these are the only points of time when ∆L(t) decreases.

Hence, local minima points can be found only at these times. Assume t0 is such

a time and so at time t0 − Tl,u the processing of the operation started. Since the

operations are scheduled according to FBDR, ∆L(t0 − Tl,u) ≥ 0. Now

∆L(t0) = ∆L(t0 − Tl,u)− 1 + (xl − xr)Tl,u ≥ −1 + (xl − xr)Tl,u

and we are done. ¥

84

Lemma 4.3.3 Consider a discrete system with sufficient safety stock. Then,at any

given time t, when machine i is ready, we have
∑

(r,o)∈σi
Lr,o(t)Tro ≤ 0.

Proof. We first show that the lemma holds whenever the machine is idle for some

time. Assume by contradiction that at time t machine i is idle and
∑

(r,o)∈σi
Lr,o(t)Tro >

0. Then, there is at least one operation (r, o) ∈ σi such that Lro(t) > 0. Now since

the system operates under FBDR, the machine should have been started to perform

operation (r, o). Note also that while operation (r, o) is not being processed Lro(t)

is a continuous increasing function of t. Thus, at any time when a machine switch

from idleness to busyness, it begins to process an operation with Lro(t) = 0.

Assume a time t2 when the machine is ready but not idle. That is an operation

just finished on the machine and the machine is about to process its next operation.

Let t1 denote the last time when the machine switched from idleness to busyness. If

no such point in time exists, let t0 be the starting time of the regular phase. Now,

∑

(r,o)∈σi

Dr,o(t2) · Tr,o −
∑

(r,o)∈σi

Dr,o(t1) · Tr,o = t2 − t1. (4.3)

since the machine was busy throughout the time interval [t1, t2]. On the other hand

by constraint (4.1) we have

t2 ·
∑

(r,o)∈σi

xr · Tr,o − t1 ·
∑

(r,o)∈σi

xr · Tr,o ≤ t2 − t1. (4.4)

Subtracting (4.3) from (4.4) we obtain

∑

(r,o)∈σi

Lro(t2)Tro −
∑

(r,o)∈σi

Lro(t1)Tro ≤ 0

Now, by the first part of this proof
∑

(r,o)∈σi
Lro(t1) = 0 and so

∑

(r,o)∈σi

Lro(t2)Tro ≤ 0.

¥

Proof of Proposition 4.3.1: by Lemma 4.3.3 for any given time t,

∑

(r,o)∈σi

Lr,o(t)Tro ≤ 0.

85

Thus, for operation (r, o),

∑

(l,u)∈σ(r,o)−
Llu(t)Tlu ≤ −Lr,o(t)Tro. (4.5)

Now (4.5) can be written as

∑

(l,u)∈σfast(r,o)−
Llu(t)Tlu +

∑

(l,u)∈σslow(r,o)

Llu(t)Tlu ≤ −Lr,o(t)Tro.

Now, by Lemma 4.2.7, Llu(t) ≥ xlTlu− 1 and by Lemma 4.3.2 all the operations

(l, u) ∈ σfast(r,o) admit Ll,u(t) ≥ Lr,o(t)− 1 + (xl − xr)Tl,u Hence,

∑

(l,u)∈σfast(r,o)−
[Lr,o(t)− 1 + (xl − xr)Tl,u]Tlu +

∑

(l,u)∈σslow(r,o)

[xlTlu − 1]Tlu ≤ −Lr,o(t)Tro

∑

(l,u)∈σfast(r,o)

Lr,o(t)·Tlu ≤
∑

(l,u)∈σfast(r,o)−

[
Tlu − (xl − xr)T

2
l,u

]
+

∑

(l,u)∈σslow(r,o)

(Tl,u−xlT
2
l,u).

Thus,

Lro(t) ≤
∑

(lu)∈σfast(r,o)− [Tlu − (xl − xr)T
2
lu] +

∑
(lu)∈σslow(r,o)(Tlu − xlT

2
lu)∑

(lu)∈σfast(r,o) Tlu

≡ γ∗ro.

(4.6)

¥

Remark 4.3.4 Note that γ∗ro does not depend on t. Moreover, a simpler but less

tight version of the bound given in (4.6) is

Lr,o(t) ≤
∑

(lu)∈σ(r,o)− Tlu∑
(lu)∈σfast(r,o) Tlu

≤
∑

(lu)∈σ(r,o)− Tlu

Tro

. (4.7)

That is, the lateness can be bounded above by a constant which is independent of

the optimal solution of Linear Program 4.1.1.

In the sequel we further study the function Lro(t) to obtain a tighter upper

bound on it.

86

Lemma 4.3.5 Consider a subset S ⊆ σi of operation types carried out by machine i,

{O1, O2, ..., O|S|}. Let r(Oj) denote the route to which Oj belongs. Assume, without

loss of generality, that the operations are ordered such that xr(O1) ≥ xr(O2) ≥ · · · ≥
xr(O|S|). Then, at any given time t0 when machine i is ready, the following inequality

holds
|S|∑
j=1

LOj
(t0) · TOj

≥
|S|∑
j=1

TOj

(
−1 + xr(Oj)

j∑

l=1

TOl

)
.

Proof. Consider a time t0 when the machine is ready. Assume first that by

time t0 at least one instance of each operation in S was already processed. Let us

denote by Q1 the last operation type from S processed before time t0, its distinct

predecessor from S by Q2 and so on up to Q|S|. Note that between the end time

of operation Qj+1 and the start time of operation Qj we allow the processing of

operations not in S, idle times or processing of operations Ql with l < j. Recall

that since all the jobs are dispatched by FBDR, then LQj
(t) ≥ 0 at time t when

operation Qj starts. Thus, at time t0 we have,

LQ1(t0) ≥ −1 + xr(Q1)TQ1

LQ2(t0) ≥ −1 + xr(Q2)(TQ1 + TQ2)
...

LQ|S|(t0) ≥ −1 + xr(Q|S|)(TQ1 + TQ2 + · · ·+ TQ|S|)

This is due to the fact that since the last time operation Qi started, its lateness

was decreased by one (upon its completion) and increased in a rate of xr(Qi) for at

least TQ1 + · · ·+ TQi
units of time. Now by multiplying each inequality i by TQi

we

obtain,

LQ1(t0) · TQ1 ≥ −TQ1 + xr(Q1)TQ1TQ1

LQ2(t0) · TQ2 ≥ −TQ2 + xr(Q2)TQ2(TQ1 + TQ2)
...

LQ|S|(t0) · TQ|S| ≥ −TQ|S| + xr(Q|S|)TQ|S|(TQ1 + TQ2 + · · ·+ TQ|S|).

87

To complete the proof we show that the sum of the expressions on the right hand

side
|S|∑
j=1

−TQj
+ xr(Qj)TQj

(TQ1 + TQ2 + · · ·+ TQj
) (4.8)

is minimized if xr(Q1) ≥ xr(Q2) ≥ · · · ≥ xr(Q|S|). Assume by contradiction that

this is not the case. That is, there is at least one pair Qj and Qj+1 such that

xr(Qj) < xr(Qj+1) and let us see how (4.8) is affected by swapping the order of these

two operations. The difference caused by the replacement is

−xr(Qj)TQj
(TQ1 + TQ2 + · · ·+ TQj

) + xr(Qj+1)TQj+1
(TQ1 + TQ2 + · · ·+ TQj−1

+ TQj+1
)

−xr(Qj+1)TQj+1
(TQ1 + TQ2 + · · ·+ TQj+1

) + xr(Qj)TQj
(TQ1 + TQ2 + · · ·+ TQj+1

)

= TQj
TQj+1

(xr(Qj) − xr(Qj+1)).

Now, by our assumption xr(Qj) < xr(Qj+1) and hence swapping Oj and Oj+1 decreases

the sum and the presumed minimality of the order is contradicted. Also note that

if xr(Qj) = xr(Qj+1), replacing them does not affect the sum.

Finally, we note that this lower bound holds also for the case when the first

instance of some operation types was not yet processed. In this case their lateness

is greater than zero. This is not less than their contribution to the lower bound if

the operations are ordered in decreasing order of their rates. ¥

Using Lemma 4.3.5 we can provide a tighter upper bound than the one presented

in Proposition 4.3.1.

Propsition 4.3.6 Consider an operation (r, o) and let O1, ..., O|σslow(r,o)| be a list of

operations performed by M(r, o) with xr(Oj) < xr. Assume the list O1, ..., O|σslow(r,o)|
is ordered by the non-increasing values of xr(O)s. Then,

Lro(t) ≤
∑

(lu)∈σfast(r,o)− [Tlu − (xl − xr)T
2
lu] +

∑|σslow(r,o)|
j=1 TOj

(
1− xr(Oj)

∑j
l=1 TOl

)
∑

(lu)∈σfast(r,o) Tlu

≡ γ∗∗ro

(4.9)

Proof. As in the proof of 4.3.1 we have,

88

Lr,o(t)Tro +
∑

(l,u)∈σfast(r,o)−
Llu(t)Tlu +

∑

(l,u)∈σslow(r,o)

Llu(t)Tlu ≤ 0. (4.10)

Now by Lemma 4.3.2,

∑

(l,u)∈σfast(r,o)−
Ll,u(t)Tlu ≥

∑

(l,u)∈σfast(r,o)−

[Lr,o(t)Tlu − Tlu + (xl − xr)T
2
l,u

]

and by Lemma 4.3.5

∑

(l,u)∈σslow(r,o)

Llu(t) · Tlu ≥
|σslow(r,o)|∑

j=1

TOj

(
−1 + xr(Oj)

j∑

l=1

TOl

)
.

Now substituting the left hand side of the last two inequalities in (4.10) we get

Lr,o(t)
∑

(l,u)∈σfast(r,o)

Tlu +
∑

(l,u)∈σfast(r,o)−

[−Tlu + (xl − xr)T
2
l,u

]
+

|σslow(r,o)|∑
j=1

TOj

(
−1 + xr(Oj)

j∑

l=1

TOl

)
Llu(t)Tlu ≤ 0.

Finally, (4.9) is obtained by a simple algebraic manipulation. ¥

Using the same notations as in Proposition 4.3.6, it is easy to see that,

|σslow(r,o)|∑
j=1

TOj

(
1− xr(Oj)

j∑

l=1

TOl

)
≤

∑

(l,u)∈σslow(r,o)

(Tl,u − xlT
2
l,u)

Thus, γ∗∗ro is a tighter upper bound then γ∗ro.

4.4 FBDR and Cyclic Schedules

In this section we show that during the regular phase, a system ran by FBDR, repeats

the sequence of its operations every finite time. Then, we use this observation to

build a near optimal schedule with a simple structure. Such a schedule can be

further refine to improve the secondary objectives of reducing the required safety

stocks and WIP.

89

Definition 4.4.1 Cyclic Schedule: A schedule is called cyclic if there are con-

stants t0 and d such that at any time t ≥ t0 the system status is the same as in t+d

and the number of operations finished during the time interval (t0, t0 + d] equals the

number of operations finished during the time interval (t0 + n · d, t0 + (n + 1) · d]

for any positive integer n. All times are specified with respect to the beginning of

the regular phase. By a system status we refer to the operations being processed by

the machines, the time passed since the beginning of these operations and the buffers

content. The constant d is the cycle length.

Propsition 4.4.2 The schedule obtained by applying FBDR with sufficient safety

stock is a cyclic one.

Proof. Let t0 be the starting time of the regular phase and let d be a common

denominator of x1, ..., xR, where x = (x1, ..., xR) is a solution of Linear Program

4.1.1. We first show that at time n · d, with any nonnegative integer n, all machines

are ready to accept their next operation. That is, the machine status is the same in

t0. Note that for all r, the (n · d · xr + 1)th operation cannot starts time n · d. This

is since if Dro(t) = (n · d · xr) for t < nd then Lro(t) < 0 and in such a case the

next instance would not be dispatched by FBDR. That is, for all operations (r, o),

Lro(nd) ≥ 0. On the other hand, by Lemma 4.3.3 we have that
∑

(r,o)∈σi
Lr,o(t)Tro ≤

0 and so it must be the case that Lro(nd) = 0 for all operations. We see that by

time nd the (ndxr)
th operation already completed while the (ndxr + 1)th not yet

started. This is true for all operations and thus at this time the machine is ready.

Second, since Lro(n · d) = Lro((n + 1) · d) = 0 for all integers n (established by

the first part of this proof), then the number of operations of type (r, o) processed

by the system during the time interval [n · d, (n + 1) · d] must be xr · d and since

this is true for all the operations along route r, then the number of products entered

buffer (r, o) from the machine that carry out operation (r, o− 1) is the same as the

number of products taken out of the buffer by the machine that carry out operation

(r, o). Hence, Bro(n · d) = Bro((n + 1) · d) for all positive integers n. ¥

Corollary 4.4.3 The cycle length of a system controlled by FBDR is the minimal

common denominator of the flow rates x1, ..., xR.

90

Observation 4.4.4 If the system is controlled by FBDR and d is the cycle length,

then the number of operations of type (r, o) performed in a cycle is d · xr. We use

the notation Jr = d · xr for the number of operations per cycle.

Once identifying the cyclic nature of the schedules created by FBDR, we can sim-

ulate our system for a single cycle in order to calculate the exact minimal amount of

safety stocks and buffers sizes required. We start the simulation with zero level safety

stock but allowing the buffer level to be negative throughout the cycle. The safety

stock required for each buffer is the absolute value of the smallest level reached

in this buffer throughout the cycle. If such a safety stock level is used then the

maximum WIP level throughout the cycle can be obtained by subtracting the min-

imum (negative) WIP level from the maximum WIP level in the simulation. This

maximum level of WIP determines the space needed to be allocated for the system

buffers. Note that the term ”simulation” is somewhat misleading in this context;

Recall that we are simulating the operation of a deterministic system - so this is

not a monte-carlo simulation.

Note also that our schedule remains optimal under any modification of the se-

quence and the timing of the operations within the cycle, as long as the number of

operations of each type and the cycle length are not modified. Thus one can use the

rich body of literature on cyclic scheduling, see for example [22], [24], [7] and [20]

in order to “improve” the schedule in terms of required safety stocks and average

amount of WIP.

However, a barrier to apply such an approach in practice is that a cycle may

consist of arbitrarily large number of operations. Thus, it is generally too costly

to conduct a simulation of a cycle. Also, Optimization of the cycle sequence is

prohibitively hard for such long cycles. In the sequel we present a method to build

near optimal cycles with few operations.

Consider an optimal solution xr of Linear Program 4.1.1. A feasible cycle of

length at most T can be constructed according to such a solution by modifying Jr

to be

J ′r = bT · xrc. (4.11)

The newly constructed cycle is of length

d′ = max
i

∑

(r,o)∈σi

TroJ
′
r ≤ T

91

and the flow rate in the corresponding fluid system

x′r =
J ′r
d′

. (4.12)

Observe that x′r is a feasible solution to Linear Program 4.1.1 and hence we can use

it to control the discrete one using FBDR.

Propsition 4.4.5 Let δ(T) denote the ratio between the solution obtained by 4.12

and the optimal fluid solution, then

δ(T) ≥ 1−
∑R

r=1 Pr · Ixr>0

T ·∑R
r=1 Prxr

.

Proof. The average gross profit for a time unit obtained by applying the modified

solution obtained by (4.12) is

R∑
r=1

Pr · bT · xrc
d′

≥
R∑

r=1

Pr · bT · xrc
T

and the average gross profit per time unit obtained from the original optimal fluid

solution is
R∑

r=1

Pr · xr.

Hence,

δ(T) ≥
∑R

r=1 Pr · bT · xrc
T ·∑R

r=1 Pr · xr

≥
∑R

r=1 Pr · (T · xr − I{xr>0})

T ·∑R
r=1 Pr · xr

= 1−
∑R

r=1 Pr · I{xr>0}
T ·∑R

r=1 Prxr

(4.13)

¥

Corollary 4.4.6 An approximation factor of δ is obtained by constructing a cycle

of length

T =

∑R
r=1 Pr · I{xr>0}

(1− δ)
∑R

r=1 Prxr

.

We described above a rounding procedure of the optimal solution of the fluid

system. Using this procedure one can build shorter cycles with gross profit that

yields a profit within any prespecified gap from optimum. One can get even shorter

cycles for the same compromise on optimality of the profit using the following Mixed

Integer Program.

92

Mixed Integer Program 4.4.1

min
∑
r∈R

Krjr

∑

(r,o)∈σi

Trojr ≤ d ∀i ∈ M

∑
r∈R

Prjr ≥
(∑

r∈R

Prxr

)
δ · d

d ≥ ε

j ∈ ZR
+, d ∈ R

Here we use xr, the optimal solution of Linear Program 4.1.1, as data. The first

constraint assures that the length of the cycle chosen is enough to perform all the

operations on each of the machines. The second constraint assures that the ratio

between the average gross profit of the constructed cycle (
∑

r∈R Prjr/d) and the

profit of its fluid counterpart system (
∑

r∈R Prxr) is at least δ. The third constraint

is aim to eliminate the solution d = 0 and jr = 0 for all r. This solution implies

an undefined profit’s ratio of 0/0. The constant ε can be any small enough positive

number. To improve numerical stability it is better to use as large as possible ε and

so we set ε = minr maxi

∑
(r,o)∈σi

Tro. Clearly, the length of any nonempty cycle is

larger than the time it takes to process the maximum length operation in at least

one of the routes and in particular the route that minimize this value. Note that

if xr = 0 for all r then it is unworthy to produce anything. In this case the right

hand side of the second constraint of the mixed integer program vanished and so

the solution is Jr = 0 for all r and d = ε.

Alternatively the objective function could have been to minimize the cycle time

d. However, since we want to obtain cycles that are as easy as possible to describe

and analyze numerically, it seems more beneficial to have the “shortest” cycle in

terms of operations and not in terms of units of time.

Using the solution of Mixed Integer Program 4.4.1 a new δ−approximate solution

of the fluid problem with x′r = jr/d is constructed to be used as basis for FBDR.

Note that 4.4.1 is a very lean mixed integer program with only |R| integer decision

variables and |M |+1 constraints. Our numerical experiments show that this program

can be solved for problems with few tens of routes using commercial solver in very

93

short time. Clearly the cycle created by Corollary 4.4.6 is a feasible solution for

Mixed Integer Program 4.4.1 (with d = T and jr = Jr) and hence generally it

contains more operations.

Finally we note that Mixed Integer Program 4.4.1 admits a feasible solution

for any value of δ ≤ 1 and in particular letting d be the common denominator

of x1, ..., xR and jr = xr · d as in the proof of Proposition 4.4.2 is always a feasible

solution. Nevertheless, using values of δ very closed to unity, say 1−10−5, may result

in computational instability caused by the actual floating point representation used

by the solver.

4.5 Transient Phases

In real life systems the optimal product mix is changed from time to time due to

changes in the products prices, raw material and other production costs, techno-

logical changes and other factors. Adjusting the system to new product mix and

in particular performing initialization phase is discussed in this section. Clearly, it

is desirable to perform the transition phase in the shortest possible time and then

return to regular phase in which the system attains its upper bound performances

as its fluid counterpart. A special case of the transition phase is the initialization

phase discussed above.

The transient phase problem is equivalent to the classical job shop problem

and thus intractable. For small enough systems with small safety stocks it might

be possible to use exact optimization or approximation methods described in the

literature of the classical job-shop problem. For the sake of completeness of this

paper, we present a fluid heuristic toward this problem.

We use Sro to denote the required safety stock for the new optimal or approximate

product mix as obtained by the methods described in the previous section. Let B′
r,o

denote the number of jobs pending in buffer (r, o) or on the machine that performs

operation (r, o − 1) at the time when the transient phase begins. The number of

operations of type (r, o) needed to be preformed in the transient phase is

Mro = max

{
max

k=2,...,o

(
o∑

l=k

(B′
r,l − Sr,l)

)
, max
k=o+1,...,Kr

(
k∑

l=o+1

(Sr,l −B′
r,l)

)
, 0

}
.

94

Where Dr,o(t) denote the number of operations (r, o) started since the beginning of

the phase.

Consider now the following greedy heuristic for the transient phase problem: at

any time t when a machine becomes ready and a job of type (r, o) with Dro(t)
Mro

< 1

is available in one or more of its buffers, process the one with the smallest value

of Dro(t)
Mro

. If no such a job is available, the machine stays idle until the situation is

changed. Ties are broken in favor of jobs with smaller o and smaller r (in this order).

The phase is ended when Dro(t)
Mro

= 1 for all the operations on all the machines.

4.6 Numerical Example

In this section we demonstrate some of the concepts presented in this paper on a

small 4-4-4 job shop problem with the parameters listed in Table 4.1.

product product processing times product

number path M1 M2 M3 M4 price

1 2 → 3 → 1 → 4 4 7 12 15 27

2 1 → 4 → 3 → 2 11 14 15 10 70

3 4 → 3 → 2 → 1 7 15 12 8 44

4 3 → 2 → 4 → 1 13 10 12 15 51

Table 4.1: Sample data of small maximum profit job shop problem with four product

types each consists of 4 operations on 4 different machines.

Solving Linear Program 4.1.1 for this problem returns

x = (0.00000000001890, 0.00671140988385, 0.03355704684015, 0.04026845574536)

with the objective function value of about 4.02685. This result can be taken as is in

order to operate the system under FBDR. Observe that very small number of jobs

of types 1 are going to be produced while about 8% of the produced products are

going to be of type 2, 42% of type 3 and 50% are of type 4. In order to operate the

system with this solution one can obtain the required safety stocks by employing

the results of Proposition 4.3.1 and Proposition 4.3.6. Consider for example the

maximum lateness of the third operation of product type 4 carried out by machine

4. This value determines the required safety stocks for the next operation in the

95

route, carried out by machine 1. We first demonstrate the calculation of the bound

obtained by Proposition 4.3.6 employing the formula

γ∗∗ro =

∑
(lu)∈σfast(r,o)− [Tlu − (xl − xr)T

2
lu] +

∑|σslow(r,o)|
j=1 TOj

(
1− xr(Oj)

∑j
l=1 TOl

)
∑

(lu)∈σfast(r,o) Tlu

Here O1 = (1, 4), O2 = (2, 2) and O3 = (3, 1) we get

γ∗∗4,3 =
T1,4 − x1T

2
1,4 + T2,2 − x2T1,4(T1,4 + T2,2) + T3,1 − x3T3,1(T1,4 + T2,2 + T3,1)

T4,3

≈ 1.46.

We conclude that the safety stock needed for operation (4, 4) is at most 2. In Table

4.2 we present the upper bound γ∗∗ro for all operations,

product Operation Number

number o=1 o=2 o=3 o=4

r=1 0.57 0.54 0.62 0.50

r=2 0.55 0.68 0.67 0.58

r=3 1.96 1.59 1.16 1.30

r=4 2.74 2.57 2.43 1.46

Table 4.2: Upper bounds on the maximum lateness for all the operations

The Safety stock needed for each buffer (r, o) in order to operate the system

smoothly is bγr,o−1 + 1c.
The common denominator of the values xr presented above is clearly huge. As

discussed in Section 4.4 it might be better to use a slightly different solution of Linear

Program 4.1.1 with x′rs that admit much smaller common denominator and yield

schedules with shorter cycle times. One approach is to use the result of Corollary

4.4.6. Assume we agree to obtain a schedule that guarantee an average gross profit

per time unit which is at least δ = 0.99 of the optimal one. We first calculate an

upper bound on the cycle length, in time units, T .

T =

∑R
r=1 Pr · I{xr>0}

(1− δ)
∑R

r=1 Prxr

=
27 + 69 + 44 + 51

0.01 · (27 · x1 + 69 · x2 + 44 · x3 + 51 · x3)
≈ 4768.

Then we create the cycle structure:

J1 = bx1·T c = 0, J2 = bx2·T c = 32, J3 = bx3·T c = 159, J4 = bx4·T c = 191.

96

Now the actual cycle length is d = maxi

∑
(lu)∈σi

TluJr = 4745 with machine 4 as

the bottleneck machine (that is maxargi

∑
(lu)∈σi

TluJr = 4). Finally in order to

apply FBDR we calculate the flow rate of each machine x1 = 0, x2 = 32/4745, x3 =

159/4745, x4 = 191/4745. The expected net profit per time unit from this solution

is
∑4

r=1 Jr · Pr ≈ 4.0261 which is very close to the expected gross profit from the

optimal production mix of about 4.0268.

Alternative approach is to run Mixed Integer Program 4.4.1 to find the shortest

possible cycle that guarantee approximation ratio of say δ = 0.99. For our demon-

stration problem the solution for this program is J1 = 0, J2 = 1, J3 = 2, J4 = 2 the

cycle time for this case is d = 65 and the expected gross profit per time unit is about

4.0154 which is approximately 0.997 of the optimal solution. The advantage of the

schedule produced by this method is that it consists of very short cycles. The safety

stocks required for this schedule are easily calculated by simulating the system with

empty initial buffer and allowing the stock level to be negative. Table 4.3 presents

the actual required safety stocks for the problem presented in Table 4.1.

product Operation number Products

number o=2 o=3 o=4 per Cycle

r=1 - - - 0

r=2 0 1 1 1

r=3 0 1 1 2

r=4 1 1 1 2

Table 4.3: Actual required safety stocks for the problem described in Table 4.1 with

a cycle obtained by MIP 4.4.1 with δ = 0.99.

.

Note that the average required safety stocks here are about 0.77 as compare to

an average of 1.75 obtained by the upper bound on γ presented in Table 4.2. In

larger examples this difference tends to be even larger as shown in Table 4.5 at the

next section.

97

4.7 Numerical Study

In this section we demonstrate the practicality of the methods described in the paper

using some famous benchmark job-shop problems extended with a list of prices of

the products. We constructed two 10x10 and four 20x20 test problems based on

[1] (denoted by ’abz5’ and ’abz6’) and [41] (denoted by ’yn1’,...,’yn4’). The test

data sets were downloaded from OR-Lib at “http://mscmga.ms.ic.ac.uk/jeb/orlib/-

jobshopinfo.html”. In addition, since all OR-Lib problems are of non re-entrant lines

while our approach treats re-entrant lines as well, we generated new three problem

instances. These problem instances are denoted by ’pr1’,’pr2’ and ’pr3’. They are

all re-entrant and consist of 10 machines, 20 product types and each product route

consists of 40 operations each. The processing times of all the operations of these

three instances were sampled uniformly from the sets {10, . . . , 49}, {1, . . . , 99} and

{1, . . . , 999} respectively.

Finally we “cooked” an extreme example, denoted by ’ext’ in order to reveal one

of the weaknesses of our method. Half of the jobs in ’ext’ are “light” ones and half are

“heavy”. The processing times of all the operations of the light jobs are uniformly

sampled from the set {1, . . . , 10} while the processing times of all operations of the

heavy jobs are uniformly sampled from the set {990, . . . , 999}. As we expected this

kind of problems does not fit the fluid approach very well. This is since during the

processing of a heavy job many light jobs are accumulated in the buffer in front of

the machine processing this job. Our numerical tests demonstrate that.

For each of these ten job shop problems we randomly generated 20 profit vectors.

A profit vector assigns a gross profit per product for each product type. The profits

were taken from Normal distributed with mean µr =
∑Kr

o=1 Tro and σ2 equals the

variance of the processing times over all the operations in the route, rounded to the

nearest integer. By using prices proportional to the total processing times of the

jobs we created instances with many product types involved in the optimal product

mix. We did it in order to avoid trivial cases where most of the products are not

produced.

For each of the 200 test problems we constructed four approximate fluid based

solutions. Two solutions are based on Corollary 4.4.6 with an approximation ratio

of δ = 0.99 and δ = 0.999 and two were obtained by a solution of MIP 4.4.1 with

98

the same approximation ratio. The MIPs were solved using CPLEX 8.0 on a mobile

Pentium III, 1GHz with 384Mb RAM. The solution times of the programs solved

ranged from fraction of second to about 200 seconds on the worst case out of the 400

problems that were solved. The solution times of the programs with δ = 0.999 were

significantly longer than these of the programs with δ = 0.99 although the number

of variables and constraints is the same. Our test data is available from our site at

“http://iew3.technion.ac.il/∼talraviv/Publications”.

Table 4.4 presents the average number of products per cycle for each of the four

types of the approximate solution. Column 2 indicates the dimensions of the problem

in triplet (#machines - #products types - #operations in each route). In column 3

the range of the processing times for all operation is presented. Columns 4-5 present

the average number of products in a cycle constructed according to Corollary 4.4.6.

The total number of products is then obtained by the summation of Jr. In columns

6-7 we present the number of products per cycle obtained using MIP 4.4.1. Note

that we present the cycle length in terms of the number of products, and not the

number of operations, in order to make a fair compression between problems with

short and long routes.

The cycles obtained by MIP 4.4.1 are about 100 times shorter than those created

according to Corollary 4.4.6. Also, note that in both solutions approach some of the

product types was not produced in the optimal solution (that is, Jr > 0).

We simulated the cyclic schedules obtained by Corollary 4.4.6 and by Mixed

Integer Program 4.4.1 with δ = 0.99. The safety stocks, buffer sizes and the average

levels of WIP for each operation required by both methods are compared.

Each line in Table 4.5 summarizes the 20 experiments we conducted for each

job shop problem (with 20 different profit vectors). In column 2 the average upper

bound on the required safety stocks is presented. In columns 3-5 we present the

average required safety stocks per operation, the average buffer size required and

the average WIP per operation for the cyclic schedules constructed using Corollary

4.4.6. In columns 6-8 the same is presented for schedule constructed using MIP

4.4.1. All values are averages over all operations in the 20 instances.

It is clear from Table 4.5 that in most cases the approximated fluid schedules

constructed by both methods require small safety stock and work in process. This

is true for all of our examples expect for the ’ext’. Indeed, we expect the fluid

99

Problem Problem Tro Corollary 4.4.6 MIP 4.4.1

name size Range δ = 0.99 δ = 0.999 δ = 0.99 δ = 0.999

1 2 3 4 5 6 7

abz5 10-10-10 50-99 918 9206 9 40

abz6 10-10-10 20-98 926 9290 20 135

yn1 20-20-20 10-49 1980 19872 32 230

yn2 20-20-20 10-49 1881 18864 24 163

yn3 20-20-20 10-49 2002 20081 27 198

yn4 20-20-20 10-49 1927 19329 27 188

pr1 10-20-40 11-49 1953 19572 25 172

pr2 10-20-40 2-99 1987 19908 24 181

pr3 10-20-40 2-997 1926 19298 26 169

ext 10-10-10 1-999 50492 504947 979 2320

Table 4.4: Average number of products per cycle using the cycles constructed by

Corollary 4.4.6 and by Mixed Integer Program 4.4.1 with various approximation

ratios.

approach to be useful whenever a large number of similar items are to be treated.

In ’ext’ problem the light jobs are significantly different from the heavy ones and thus

many light jobs are queued in the buffers whenever a heavy job is being processed.

The theoretical bounds on the maximum lateness and, as result, on the minimum

required safety stocks, buffer sizes and average level of WIP are significantly larger

than their actual values when using the approximate solution obtained by both

methods.

The schedule constructed using MIP 4.4.1 dominates those created based on

Corollary 4.4.6 by all three criteria. We assume that this is due to the fact that

significantly shorter cycles are constructed by this method and thus there is a smaller

chance for synchronization problem to happen (e.g very large value of Lro at some

times throughout the cycle).

4.8 Discussion

In this paper we show how to construct a dispatching rule that asymptotically max-

imizes the average gross profit per time unit. The rule is based on the optimal

100

Problem Average Corollary 4.4.6 MIP 4.4.1

name dγroe SST Buffers WIP SST Buffers WIP

1 2 3 4 5 6 7 8

abz5 2.49 1.18 1.87 0.98 0.85 1.13 0.68

abz6 2.72 1.01 1.81 0.89 0.83 1.23 0.72

yn1 3.57 0.93 1.75 0.87 0.77 1.20 0.72

yn2 3.34 0.95 1.72 0.86 0.80 1.16 0.72

yn3 3.68 0.93 1.73 0.86 0.81 1.21 0.74

yn4 3.39 0.96 1.73 0.88 0.74 1.14 0.69

pr1 3.48 0.99 1.95 0.97 0.75 1.30 0.73

pr2 3.69 0.99 1.97 0.97 0.71 1.29 0.70

pr3 3.75 0.97 1.88 0.94 0.80 1.44 0.78

ext 121.76 16.81 34.14 16.59 10.72 21.16 10.52

Table 4.5: Upper bound for Safety Stock vs. actual requirements of safety stocks,

buffers size and average WIP for schedules constructed by Corollary 4.4.6 and MIP

4.4.1 with gross profit approximation guarantee of δ = 0.99.

solution of fluid relaxation of the problem. The created schedule consists of a finite

initialization phase, where safety stocks are built, and an infinite regular operation

phase. Throughout the regular operation the system delivers an optimal average

gross profit per time unit. By the term gross profit we refer to the fact that initial-

ization costs and work in process holding costs are not charged.

The disadvantage of this asymptotically optimal solution is that it requires arbi-

trarily high level of safety stocks. Thus, the initialization phase may take longtime,

the expected WIP and the required buffer spaces may be large. We indirectly treat

these points in the second phase of our method where we build nearly optimal sched-

ule (in terms of gross profit) which consists of short cycles. Such cycles require less

safety stocks. Also, one can adjust the internal sequence of the cycles to further

reduce the safety stocks.

We are aware that this three-step approach may lead to suboptimal solutions

but we note that our method is a practical way to attack this intractable problem.

We show the applicability of this method on 200 test problems. We used standard

OR-Lib benchmark problems and composed in addition harder test problems with

reentrant lines. One can use these problems instances as a test bed for further

101

research.

We noted that in most of our test problems the cycle created by MIP 4.4.1

consists of few operations. Therefore, it is possible to improve the sequence of

the cycle, to reduce safety stocks and WIP, using exact combinatorial optimization

methods such as integer programming.

One possible direction for further research is to devise methods to improve the

sequence of the cycles obtained by Mixed Integer Program 4.4.1. Such methods

can be based on exact combinatorial optimization techniques (for example, integer

programming) or on heuristic search method.

We note that our method can be easily extended to flex-shop, a generalization of

job shop in which each product can be produced using some different routes. For this

case we simply represent each route as a distinct product, solve Linear Program 4.1.1

and proceed as usual. It is also easy to extend our method to different production

regimes such as assembly lines, multistage shops and others.

Other possible extension is to use FBDR as an online rule for stochastic systems

with random processing times as well as machine failures, as proposed in [7]. For such

systems the fluid counterpart system can be built based on the expected processing

times and expected operational times of the machines. The basic difficulty in this

case is that the schedule is not cyclic and no sufficient amount of safety stocks that

guarantee a smooth operation of the system can be calculated.

102

Part II

The Separation Index Problem

103

Chapter 5

Separation Index of Sets - Bounds,

Algorithms and Complexity

A fundamental problem in automated data analysis is the following: given an uni-

verse U and a pair of disjoint sets S, T ⊂ U , construct a collection of rules that

for any given point p ∈ U determine whether or not p is close to S and far from T

in some sense. One can study this problem in two different levels: providing these

rules for some families of sets; and designing a mechanism that constructs such rules

automatically for any given set.

Application of such separation problems arise in the design of decision support

systems for medical diagnostic, risk assessment of credit and others. Consider for

example a data base containing the results of some set of tests conducted on 1000

patients, for systolic and diastolic blood pressure, heart rate, body temperature and

existence of proteins in the urine. Clearly, the results of the tests conducted on each

patient can be represented approximately by an integer vector with five elements.

Assume that these patients can be divided into set S and T of those who finally

developed a certain disease and those who did not, respectively. It is possible to

design a diagnostic expert system that can use this data set in order to devise a set

of rules that returns a positive answer when an input of a vector which is similar to

the members of S in some sense and negative otherwise.

Various methodologies were used for these problems including statistic and neu-

ral networks. For instance, the so called Logical Data Analysis (LDA) methodol-

ogy developed by Hammer [21] deals with logical methods for constructing boolean

104

function f : {0, 1}d → {0, 1} providing the separation. More recent work by Ekin,

Hammer and Kogan [16] tests the applicability of this method for decision support

systems.

In this paper we consider the use of a system of linear equalities and inequalities

rather than a logical function to separate the sets. In many cases this method allows

a description of complex sets using a small number of equalities and inequalities.

More importantly, we believe that in many real life applications this kind of rep-

resentation captures very well the essential nature of the problems since the set of

“positive points” tends to be in some sense “convex”.

For the medical diagnostic problem described above our method can provide a

polyhedra that contains all the vectors representing the positive (ill) patient and

none of those of the negative (healthy) patients.

The paper focuses on the problem of constructing a minimal linear system that

performs the separation (in a sense to be rigorously defined in the next section). In

particular we are interested in the special case of separating some set S ∈ {0, 1}d

from its complement. Clearly, if a small representation is obtained it is easy to check

whether a given point belongs to the set.

An additional benefit of having a finite set described by a compact system of

equalities and inequalities is that one can use it to optimize any convex function over

the set. This can be carried out by various integer programming techniques such

as branch & bound, cutting schemes or Gröbner bases methods [37, 4]. Lovas̀ and

Schrijver [26] presented a cutting schemes in which a relaxation of the convex hull of

S, given by a set of n inequalities, is converted into a tighter description of conv(S)

with O(n2) number of inequalities. This operation if applied repeatedly returns the

inequalities description of conv(S). While some separation can be always obtained

merely from a membership oracle (see [31]), it is likely that an explicit system with

as few inequalities as possible will provide a better starting point for such a cutting

scheme.

In section 5.1 the basic concepts of Separation and Separation Index are pre-

sented and some essential notations are introduced. In section 5.2 we provide some

upper bounds for the Separation index of binary sets. A lower bound on the sepa-

ration index of a set based on some combinatorial properties is presented in Section

5.3. The computability of the problem is demonstrated through an Integer Program-

105

ming formulation in Section 5.4. In Section 5.5 proofs for the hardness of various

versions of the separation index problem are given. In section 5.6 examples of the

minimal representation of some sets are given.

5.1 Basic concepts and notations

Throughout we assume that all sets are finite subsets of some universe U ⊆ Zd.

The universe will be clear for the context and often we take U = {0, 1}d. Let

[n] ≡ {1, . . . , n}. For any pair of vectors, x > y means that x is point-wise greater

than y i.e., ∀i : xi > yi. Vectors and matrices appear in boldface font while scalar

appears in italic font.

For a given hyperplane X = {x ∈ Rn : ax = b} with a ∈ Rn and b ∈ R+ we

denote the open half-space X = {x ∈ Rn : ax > b} by X>. We use similar notation

for X< and for closed half-spaces X≤ and X≥.

For a function, not necessarily bijective, f : X → Y , and y ∈ Y , we set f−1(y) ≡
{x : f(x) = y}.

ei stands for the ith standard unit vector in Euclidean real space. The outer

product of an ordered pair u, v of vectors is the matrix u⊗ v whose (i, j)th entry is

uivj. The inner product of two matrices U, V of the same dimensions is 〈U, V 〉 ≡
∑

i,j Ui,j · Vi,j.

We use conv(S) to denote the convex hull of S and aff(S) stand for its affine

hull.

Definition 5.1.1 A Separation of an ordered pair of sets (S, T) is a system of

linear weak inequalities Ax ≤ b and equalities Aeqx = beq such that S ⊂ {x :

Ax ≤ b,Aeqx = beq} and T ∩ {x : Ax ≤ b,Aeqx = beq} = ∅.

Propsition 5.1.2 An (S, T)-separation exists if and only if conv(S) ∩ T = ∅.

Proof. Clearly if conv(S) ∩ T = ∅ then hyperplane representation of conv(S) is

one possible separation. Conversely, recall that conv(S) is the minimal convex-hull

containing all points of S. Hence, the solution set of any system of equalities and

inequalities valid for all points of S contains conv(S) and so if a separation exists

no point t ∈ T belongs to conv(S). ¥

106

Definition 5.1.3 The Separation Index of an ordered pair of sets (S, T), denoted

by sep(S, T), is the number of inequalities in a minimal separation. If no separation

exists then by convention sep(S, T) = ∞. A pair of sets (S, T) is said to be separable

sep(S, T) < ∞.

Later, in Theorem 5.1.9, we show that any separation can be replaced by an

equivalent separation with a single equality and the same set of inequalities. There-

fore, the more interesting question is how many inequalities are required.

Propsition 5.1.4 For any pair of sets (S, T) we have sep(S, T) = 0 if and only if

aff(S) ∩ T = ∅.

Proof. The affine hull of S can be defined by a system equalities. If it is disjoint

from T then no inequalities are needed to carry out the separation.¥

Propsition 5.1.5 For any pair of sets (S, T) we have sep(S, T) = 1 if and only if

conv(S) ∩ conv(aff(S) ∩ T) = ∅ and aff(S) ∩ T 6= ∅.

Proof. All point of T outside aff(S) can be eliminated by equalities so inequal-

ities are only needed to separate S from the set aff(S) ∩ T . The fact that a single

hyperplane separates two nonempty sets if and only if their convex hulls are disjoint

follows directly from the basic separation Theorem (See for example [36]). ¥

Propsition 5.1.6 For a pair of sets (S, T) we have sep(S, T) ≤ 1 if and only if in

the optimal solution of the following Linear Program ε > 0.

Linear Program 5.1.1

max ε

as ≤ b ∀s ∈ S

at ≥ b + ε ∀t ∈ T ∩ aff(S)

a ∈ Rd b, ε ∈ R

107

Proof. For an optimal solution (a∗, b∗, ε∗) if ε∗ > 0 then the separation can be

carried out by a∗x ≤ b∗ and a system of equalities that defines aff(S). Conversely,

if the a∗x ≤ b∗ is such a separating inequality then (a∗, b∗, min{a∗t− b∗ : t ∈ T}) is

a feasible solution for Linear Program 5.1.1 with ε > 0. ¥

Now, since checking whether all points t ∈ T belong to aff(S) can be carried

out in polynomial time of |T | it follows that deciding sep(S, T) = 1 can be done

in polynomial time (of |S| + |T |). We shall later see that for any k ≥ 2 deciding

sep(S, T) ≤ k is NP-Complete.

One immediate candidate for (S, T) separation is the hyperplanes description

(H-Representation) of conv(S). For any separable sets this is indeed a valid sepa-

ration. However, in general there are separations with fewer inequalities than the

H-Representation. Figure 5.1 demonstrates this statement. The black points in the

figure represent the points of S and the white ones represent the points of S̄. The

octagon is the convex hull of S while the rhombus represents a possible separation

with half the number of inequalities.

Figure 5.1: The black points represent a set S ⊂ {0, . . . , 5}2 and the white ones are T . The

Octagon is the H-Representation of the set while the rhombus represents another IP-separation

with only four inequalities.

Another example is provided by the set of characteristic vectors of all cuts (in

edges) of the complete graph Kn. Denote this set by Cn ⊂ {0, 1}(n
2) and consider

its separation from the set C̄n ≡ {0, 1}(n
2) \ Cn. Deza and Deza [14] showed that for

108

K7 the number of facets of conv(C7) is 116,764. In Theorem 5.2.1.b we show that

the Separation index of any binary set is bounded above by |S|. For this particular

case, the number of cuts in K7 graph is only 27−1 = 64. Moreover, in example 5.6.8

we show that sep(Cn, C̄n) ≤ n(n− 1).

For a given set S let us denote its complement in U by S̄ = U \ S. We now

define a useful special cases of separation and separation index:

Definition 5.1.7 An (S, S̄)-separation is called an IP-separation of S .

We use the term IP-separation due the fact that such a system of equalities and

inequalities can be used in an Integer Programming formulation.

Definition 5.1.8 The separation index of S from S̄ is called the IP-Separation

Index of S. It is denoted by such that ip(S) = sep(S, S̄).

We conclude this section by giving a motivation for measuring the separation

only by the number of inequalities (and not counting the equalities). It is clear that

the number of equalities needed is at most d. We now show that it always can be

shrunk even to one. The next theorem extends a result of Bradley [8].

Theorem 5.1.9 Let S and T be bounded sets in Zd If aff(S) ∩ T = ∅ then a single

equality that holds for every point in S and violated for any point in T exists.

Proof. Clearly aff(S) can be presented by a system of linear equalities

aff(S) ≡ {x : Ax = b} (5.1)

with A ∈ Zm×d, b ∈ Zm and m ≤ d. For each row Ai let ai ≡ min{Aix : x ∈ S ∪ T}
and q = 1 + max{Aix− ai : i = 1, ..., m, x ∈ S ∪ T}. Consider the following set

X ≡ {x :
m∑

i=1

(Aix− ai)q
i−1 =

m∑
i=1

(bi − ai)q
i−1}. (5.2)

The claim that S ⊆ X follows from the fact that (5.2) can be obtain by subtracting

ai and multiplying by qi−1 both sides of each row i in the system of (5.1) and then

summing all its equations.

It is left to show that X ∩ T = ∅. Consider a point t ∈ T . Let us construct the

vector y, z ∈ Zm such that yi = Ait − ai and zi = bi − ai for all i. Now since t

109

violates at least one inequality in (5.2) then y 6= z. Note that by the constriction

all elements of yi, zi ∈ {0, . . . , q − 1} and the two vectors can be seen as a represen-

tation of the non-negative integer numbers
∑d

i=1 yiq
i−1 and

∑d
i=1 ziq

i−1 in basis q.

Now, since a non-negative integer admit a unique representation in any basis then

the fact that y 6= z implies that the equation of (5.1) does not holds and so t /∈ X. ¥

A simple consequence of Theorem 5.1.9 is that any S, T separation, in particular

one with minimum number of inequalities, can be transformed into a system with

a single equality and the same inequalities. From this reason we ignore the number

of equalities when measuring the “size” of a separation. The task of constructing

an the affine hull is as easy as solving a system of linear equalities. Hence, in the

sequel, in order to simplify notation, we assume T ⊂ aff(S).

5.2 Upper Bounds on the Separation Index

In this section we focus on binary sets S ⊆ {0, 1}d (so the universe is now throughout

U = {0, 1}d).

Theorem 5.2.1 For any disjoint S, T ⊂ {0, 1}d the separability index is bounded

above by :

(a) sep(S, T) ≤ |T |

(b) sep(S, T) ≤ |S|

The proof of the above theorem is constructive, and produces a separation with

up to min(|T |, |S|) inequalities.

Proof of part (a) of Theorem 5.2.1. For v ∈ {0, 1}d, let supp(v) ≡ {i ∈ [n] : vi 6=
0} be its support. It is not hard to verify that an (S, T) separation is provided by,



x ∈ {0, 1}d :

∑

i6∈supp(v)

xi +
∑

i∈supp(v)

(1− xi) ≥ 1, v ∈ T



 (5.3)

¥

110

Clearly, there is no symmetry between the two claims of Theorem 5.2.1 and in

general sep(S, T) 6= sep(T, S). The proof for (b) evolves from a series of lemmas

and an algorithm.

Lemma 5.2.2 For a given set A ⊆ {0, 1}d and k ∈ {0, 1} let us denote

A(k) = {x ∈ {0, 1}d−1 : ∃y ∈ A : (xi = yi ∀i = 1..d− 1, yd = k)}

Then, for any non-empty sets (S, T) the inequality sep(S, T) ≤ sep(S(0), T(0)) +

sep(S(1), T(1)) holds.

Proof. Let us define Ã(k) = {x ∈ A : xd = k} for k ∈ {0, 1} and use a similar

notation for T̃k. If the following system of inequalities

a0
11x1 + · · ·+ a0

1,d−1xd−1 ≥ b0
1

...

a0
m1x1 + · · ·+ a0

m,d−1xd−1 ≥ b0
m

(5.4)

is an (S(0), T(0)) separation then it is also (S̃(0), T̃(0)) separation. The following system

is also an (S̃(0), T̃(0)) separation

a0
11x1 + · · ·+ a0

1,d−1xd−1 +
(
b0
1 −

∑
i:a0

1,i<0 a0
1,i

)
xd ≥ b0

1

...

a0
m1x1 + · · ·+ a0

m,d−1xd−1 +
(
b0
m −

∑
i:a0

m,i<0 a0
m,i

)
xd ≥ b0

m

(5.5)

but note that all the points of S̃(1) ∪ T̃(1) are valid for this system. Note that in case

T(0) = ∅ then (5.4) and (5.5) are empty systems. Similarly, the separation of S(1)

from T(1) can be transformed to to the following separation of S̃(1) from T̃(1).

a1
11x1 + · · ·+ a1

1,d−1xd−1 +
(
b1
1 −

∑
i:a1

1,i<0 a1
1,i

)
(1− xd) ≥ b1

1

...

a1
m1x1 + · · ·+ a1

m,d−1xd−1 +
(
b1
m −

∑
i:a1

m,i<0 a1
m,i

)
(1− xd) ≥ b1

m.

(5.6)

This system is valid for all points S̃(1), T̃(0) and S̃(0) but violated by all points of

T̃(1). Now, the joint system (5.5) and (5.6) is an (S, T) separation. ¥

The following lemma uses the same notations as in Lemma 5.2.2,

111

Lemma 5.2.3 for any non-empty set S, with S(i) 6= ∅ and S(j) = ∅ the inequality

sep(S, T) ≤ sep(S(i), T(i)) holds for all sets T .

Proof. Assume, w.l.g., that i = 0. Consider a pair of sets (S, T), assume that

S(1) = ∅ and that (5.4) is an (S(0), T(0)) separation then

a1
11x1 + · · ·+ a1

1,d−1xd−1 −
(
b1
1 −

∑
i:a1

1,i>0 a1
1,i

)
xd ≥ b1

1

...

a1
m1x1 + · · ·+ a1

m,d−1xd−1 +
(
b1
m −

∑
i:a1

m,i>0 a1
m,i

)
xd ≥ b1

m

is an (S, T) separation. ¥

The following algorithm produces a separation of the set S with at most |S|
inequalities and leads to the proof of Theorem 5.2.1.b .

Algorithm 5.2.1 Create a separation

Input: A pair of sets S, T ∈ {0, 1}d.

Output: An (S, T)-separation with at most |S| inequalities.

step 1 : Check if it is possible to separate S from T by a single inequality (using

Linear Program 5.1.1 for example). If the answer is “yes” return the

inequality and quit. For empty T return empty system of inequalities.

step 2 : Divide S and T into S(0), S(1), T(0), T(1) ∈ {0, 1}d−1. Recursively apply the

Algorithm for (S0, T0) and (S1, T1) and merge the output of both problems as

described in the proof of Lemma 5.2.2 and Lemma 5.2.3.

Propsition 5.2.4 Algorithm 5.2.1 stops with a valid (S, T)-separation.

Proof. Observe that for any pair of disjoint sets S, T ∈ {0, 1}1, sep(S, P) ≤ 1.

Thus, in our algorithm after at most d recursive calls the stopping condition in the

first step holds. ¥

Proof of Theorem 5.2.1 part (b) . Each time Algorithm 5.2.1 stops at step 1 and

return an inequality a non empty subset of S is eliminated from further considera-

tion. In step 2 no additional inequalities are produced. Thus, the total number of

112

inequalities can not exceed |S|. ¥

Corollary 5.2.5 For any set S ⊆ {0, 1}d we have the bound ip(S) ≤ 2d−1

Proof. Immediate by |S| + |S| = 2d, ip(S) = sep(S, S̄) ≤ |S| and ip(S) =

sep(S, S̄) ≤ |S| ¥

We shall see in Example 5.3.9 that this is an attainable upper bound.

Should algorithm 5.2.1 be used as a heuristic method to obtaining a “small

as possible” separation, some refinements may be done to improve performances.

First, note that Linear Program 5.1.1 always terminates with a feasible solution. It

is possible to use this solution to construct a primal feasible solutions for the Linear

Problems of (S0, T0) and (S1, T1). The former is obtained simply by deleting ad

from the solution and the latter is obtained by replacing b by b−ad and deleting ad.

Hence, it is possible to save time by re-optimizing 5.1.1 at each iteration instead of

solving it from scratch. Second, recall that we do not actually look for an optimal

solution of 5.1.1, just one with positive ε. Hence, the optimization process can be

stopped once such value is obtained. Finally, there are methods to find a separat-

ing inequality other than linear programming. For example the method based on

threshold graphs presented in [11] produce a valid inequality with 0− 1 coefficients.

Its time complexity in terms of our problem input is only O(d2 ·min(|S|, |T |)). Note

that because of the 0 − 1 restriction this method can not guarantee to find a sep-

arating inequality whenever it exists. However, it will always find a separation in

iterations where |S(k)| = 1 which is enough for the termination of our algorithm with

at most |S| inequalities.

It is not easy to extend the constructive proof of 5.2.1.a from binary to general

sets in Zd. However, we can do it in a non constructive way.

Propsition 5.2.6 Consider a pair of finite and separable sets S, T ∈ Zd. Then

sep(S, T) ≤ |T |.

Proof. Assume by contradiction that A is a minimum set of inequalities that

separates S from T and |A| > |T |. Let us label each point t ∈ T by the lowest

113

index of inequalities in A that it violates. So we get a function f : T → A. Now

since |A| > |T | there must be at least one inequality a ∈ A such that f−1(a) = ∅.
Clearly A remain a valid separation after dropping this inequality and hence the

contradiction. ¥

5.3 Lower bounds for the IP-Separation index

In this section we show how to decompose the problem of determining the Separation

index of binary sets into several sub problems and a lower bound on ip(S) is then

derived.

We first present some definitions. Let us define the Hamming distance between

the points q and s as d1(q, s) ≡
∑d

i=1 |qi − si|. Note that for q, s ∈ {0, 1}d this

is exactly the number of coordinates in which s and q differ. A pair of points

q, s ∈ {0, 1}d said to be adjacent if d1(q, s) = 1.

Definition 5.3.1 The Hamming graph H(S) of a set S ⊆ {0, 1}d is defined by the

vertex set V ≡ S and edge set E ≡ {{q, s} ⊆ S : d1(q, s) = 1}.

Definition 5.3.2 [Total a-Order] Consider a given vector a ∈ Rd and a pair of

vectors x,y ∈ Rd. We say that x is an a-predecessor of y (denoted x ≺a y)

if ax < ay or ax = ay and x is a lexicographic predecessor of y (that is for the

minimum coordinate index i in which x and y differs xi < yi). If for all y ∈ S \{x}
the vector x admits y ≺a x then x is the a-maximum of S

Lemma 5.3.3 For a point s ∈ {0, 1}d either s is an a-maximum of {0, 1}d or a

point q exist such that d1(s,q) = 1 and s ≺a q.

Proof. Assume by contradiction that for some point x ∈ S and for any s ∈ {q ∈
S : d1(x, q) = 1}, s ≺a x and that x∗ 6= x is the a-maximum point. Define the set of

coordinates K = {i : xi 6= x∗i }. If ∃i ∈ K such that ai 6= 0 then one of the following

must holds for at least one i ∈ K.

• xi = 0 and ai > 0

• xi = 1 and ai < 0

114

Now, it is easy to see that by toggling xi (that is, let xi = 1 − xi) we obtain a

new point y with d1(x, y) = 1 and x ≺a y; A contradiction.

If no such a coordinate exist, i.e ai = 0 for all i ∈ K then it is clear that ax = ax∗

and ∃i ∈ K such xi = 0 because x∗ Âlex x, and so by toggling this coordinate we

get a new point y such that d1(x, y) = 1 and x ≺a y. This is again a contradiction. ¥

Lemma 5.3.4 For any a ∈ Rd and b ∈ R the Hamming graph H(Q) of the set

Q = {x ∈ {0, 1}d : ax > b} is connected.

Proof. We argue that for any pair of points x,y ∈ Q there is an x − y path in

H(Q). To see this it is enough to show that for any x ∈ Q if x∗ is an a-maximum

point then there is a x− x∗ path in H(Q).

It is clear that x∗ ∈ Q (providing that Q is non-empty). Now if x 6= x∗ then by

Lemma 5.3.3 there must be a point y in its neighborhood {q ∈ {0, 1} : d(x, q) = 1}
such that x ≺a y more over y ∈ Q since ay ≥ ax > b then y ∈ Q. Now add the

edge (x,y) to our x− x∗ path. Applying this procedure iteratively until we end in

x∗ (recall that Q is finite). ¥

Lemma 5.3.5 For any collection of n sets Si ⊂ {0, 1}d the following inequality

holds

ip

(
n⋂

i=1

Si

)
≤

n∑
i=1

ip(Si)

Proof. Combining all the separation of S1, . . . , Sn from their complements is a

separation of
⋂n

i=1 Si from its complement. ¥

Now, we are ready to prove the main statement of this section that provides us

with a lower bound for ip(S).

Theorem 5.3.6 Consider a set S and a partition of S̄ into k distinct subsets

(Q1, . . . , Qk) such that any Qi induces a maximal connected component of H(S̄).

Then IP-Separation index is given by ip(S) =
∑k

i=1 ip(Q̄i).

115

Proof. First note that ip(S) ≤ ∑k
i=1 ip(Q̄i). This is since {Qi} is a partition of

S̄ and the claim follows by Lemma 5.3.5.

Now to prove that ip(S) ≥ ∑k
i=1 ip(Q̄i) it suffices to prove that any inequality

that is valid for for S and violated by at least one point x ∈ Qi is valid for any point

y ∈ Qj for any i 6= j. Assume by contradiction that a ∈ IRd and b ∈ IR exist such

that S ⊆ {x : ax ≤ b} and x,y ∈ {x : ax > b} such that x ∈ Qi and y ∈ Qj. Now

by lemma 5.3.4 both x and y belongs to the same connected component, and the

contradiction follows. ¥

For a given set S let us denote the number of the connected components of H(S̄)

by #C(S). We point out that the relevant number of connected components in the

Hamming graph of S̄ even if S̄ contains points not in the affine hull of S.

Theorem 5.3.7 The IP-Separation index of a given set S ⊆ {0, 1}d is bounded

below by #C(S).

Proof. For a given IP-Separation let us divide the set of points in S̄ into max-

imal connected component in H(S̄). Now for each such a components Q, we have

ip(Q) ≥ 1 and so by Theorem 5.3.6 ip(S) ≥ #C(S) ¥

A special case of a connected component is an Isolated point, i.e, a component

that contains a single point.

Corollary 5.3.8 If every point of S̄ is an isolated point in H(S̄) then ip(S) =

|S̄ ∩ aff(S)|

Proof. By Theorem 5.2.1.a ip(S) ≤ |S̄∩aff(S)| for any set and by Theorem 5.3.6

ip(S) ≥ #C(S̄) = |S̄ ∩ aff(S)| ¥

Example 5.3.9 [Parity set] Consider the set of points S ⊂ {0, 1}d such that for any

x ∈ S, |supp(x)| is an even number. Clearly each point in S̄ is an isolated one and

aff(S̄) = {0, 1}d. Hence, by Corollary 5.3.8, ip(S) = |S̄| = 2d−1. This demonstrates

the fact that the upper bound of Corollary 5.2.5 is attainable.

116

5.4 Computability

In this short section we demonstrate the fact that the Separation Index of any pair of

separable sets is computable. We do it by formulating a mixed integer program that

admits a solution with positive value if and only if sep(S, T) ≤ m. The separation

index can be obtained by solving the problem for m = 1, 2, . . . , min(|S|, |T |) and

until a positive optimal solution is obtained. Recall that by Theorem 5.2.1 the

separation index is bounded above by |S| and |T |.

Mixed Integer Program 5.4.1 (Deciding sep(S, T) ≤ m)

ε∗m = max ε (5.7)

s ·Ai − bi ≤ 0 ∀s ∈ S, i ∈ [m] (5.8)

t ·Ai − bi ≥ ε− (1− yit) ∀t ∈ T, i ∈ [m] (5.9)
m∑

i=1

yit ≥ 1 ∀t ∈ T (5.10)

y ∈ {0, 1}|T |×m

A ∈ Rm×d b ∈ Rm ε ∈ R

Propsition 5.4.1 With Mixed Integer Program 5.4.1 we have sep(S, T) ≤ m if

and only if ε∗m > 0. In this case a separation with m inequalities is given by {x :

Ax ≤ b}.

Proof. Constraint (5.8) assures that the obtained system is valid for any point

s ∈ S. Constraint (5.9) assures that if ε > 0 then for any yit = 1 the ith constraint

in the obtained system is violated by all t ∈ T . Note that it is always possible to

scale Ax ≤ b such that the gap between the left hand side and the right hand side

is at most 1 for any point t ∈ T . By constraint (5.10), at least one inequality in the

obtained system must be violated for any point t ∈ T . ¥

5.5 Computational Complexity

In this section we study the computational complexity of the separation index and

the ip-separation index problems and show that both problems are hard for NP .

117

The complexity proof of the separation problem is carried out by a two steps

reduction. We first define a variant of the separation problem, with inequalities

only, and show that it can be reduced into the separation problem. Then we show

that the hyper graph colorability problem can be reduced into this problem. We start

with the following definition,

Definition 5.5.1 An inequalities separation of a pair of sets is a separation

consists of inequalities only. The inequalities separation index (denoted by

sep∗(S, P)) is the minimum number of inequalities in such a separation.

Propsition 5.5.2 If sep(S, T) ≥ 2 then sep(S, T) = sep∗(S, P)

Proof. First, note then any inequalities separation is also a separation and thus

sep∗(S, T) ≥ sep(S, T). Conversely, if the minimal separation admits no inequality

then it is also an inequality separation so consider a minimal separation with two

inequalities or more and some equalities. By Theorem 5.1.9 we know that the

equalities can be replaced by a single equality. Hence, it enough to consider a

separation of the following shape,

a11x1 + · · ·+ a1,dxd ≤ b1

a21x1 + · · ·+ a2,dxd ≤ b2

...

am1x1 + · · ·+ am,dxd ≤ bm

aeq
1 x1 + · · ·+ aeq

d xd = beq.

(5.11)

Now we see that such a separation is equivalent to following inequalities separation

a11x1 + · · ·+ a1,dxd + M · (aeq
1 x1 + · · ·+ aeq

d xd − beq) ≤ b1

a21x1 + · · ·+ a2,dxd −M · (aeq
1 x1 + · · ·+ aeq

d xd − beq) ≤ b2

...

am1x1 + · · ·+ am,dxd ≤ bm,

(5.12)

where M is large constant. Clearly for any point in aff(S) we have aeq
1 + · · ·+aeq

d xd−
beq = 0 and thus the separation between S and aff(S) ∩ T is carried out as before.

For points in T \aff(S) either aeq
1 + · · ·+aeq

d xd− beq > 0 or aeq
1 + · · ·+aeq

d xd− beq < 0

and so for large enough constant M either the first or the second inequalities is

violated. Hence, sep∗(S, T) ≤ sep(S, T) is also established and we are done. ¥

118

Propsition 5.5.3 If sep∗(S, T) ≥ 3 then sep(S, T) = sep∗(S, P)

Proof. Assume by contradiction sep∗(S, T) ≥ 3 and sep∗(S, T) > sep(S, T). In

such as case, by Proposition 5.5.2 we that sep(S, T) ≤ 1. Consider such a separation

a11x1 + · · ·+ a1,dxd ≤ b1

aeq
1 x1 + · · ·+ aeq

d xd = beq.
(5.13)

Than it is equivalent to the following inequality separation

a11x1 + · · ·+ a1,dxd + M · (aeq
1 x1 + · · ·+ aeq

d xd − beq) ≤ b1

aeq
1 x1 + · · ·+ aeq

d xd ≥ beq.
(5.14)

with only two inequalities and hence the contradiction. ¥

Theorem 5.5.4 For any fixed k ≥ 2, deciding whether sep(S, T) ≤ k for a given

pair of sets S, T ⊂ Zd is NP-Complete.

Proof. Let H = (V,F) be a k-uniform hyper-graph with V = [n] and F ⊆ (
V
k

)

(that is, each element F ∈ F is a subset F ⊆ V such that |F | = k). Construct two

sets of matrices

S ≡
{

sF,j ≡
(∑

i∈F

ei

)
⊗ ej : F ∈ F , j ∈ [k]

}
⊂ {0, 1}n×k

T ≡
{

ti ≡ ei ⊗
(

k∑
j=1

ej

)
: i ∈ [n]

}
⊂ {0, 1}n×k.

In this proof we use bold lower case letters for vectors and matrices and upper case

letters for sets of matrices. Recall that the chromatic number of a hyper-graph H,

denoted by χ(H), is the smallest number of colors needed to color its vertices such

that no hyper-edge is monochromatic.

Now, our proof follows from the fact that sep∗(S, T) = χ(H). To see this,

suppose X is an hyperplane in Rn×k such that S ⊂ X≤. Consider an edge F ∈ F
then

1

k

k∑
j=1

sF,j =
1

k

∑
i∈F

k∑
j=1

ei ⊗ ej =
1

k

∑
i∈F

ti

is a common point in conv(S) and conv(T). Thus, {ti : i ∈ F} * X> and the same

holds for each edge F ∈ F .

119

Now, suppose X1, . . . , Xc are hyperplanes separating T from S with c = sep(S, T).

Define a map x : [n] → [c] to be x(i) = min{j ∈ [c] : ti ∈ X>
j }. We see that x is a

coloring of H. Thus χ(H) ≤ sep∗(S, T).

Conversely, suppose x : [n] → [c] is a coloring of H. For all r ∈ [c] put

hr =


 ∑

i∈x−1(r)

ei


⊗

(
k∑

j=1

ej

)
∈ {0, 1}n×k

We claim that the system of inequalities in matrices q ∈ Rn×k

< hr,q > ≤ k − 1 ∀r ∈ [c] (5.15)

separates T from S. Indeed for all i ∈ [r], F ∈ F and t ∈ [k],

〈hr, sF,t〉 =

〈 ∑

i∈x−1(r)

k∑
j=1

ei ⊗ ej,
∑
s∈F

es ⊗ et

〉
=

∑

i∈x−1(r)

k∑
j=1

∑
s∈F

〈ei, es〉 · 〈ej, et〉 = |x−1(r) ∩ F | ≤ k − 1.

The last inequality is due to the fact that x is a coloring of H. On the other hand

for each i ∈ [n] let r ≡ x(i) and we get,

〈hr, ti〉 =

〈 ∑

t∈x−1(r)

k∑
j=1

et ⊗ ej, ei ⊗
k∑

s=1

es

〉
=

∑

t∈x−1(r)

k∑
j=1

k∑
s=1

〈et, ei〉 · 〈ej, es〉 = k,

So ti violates (5.15). Thus sep(S, T) ≤ c = χ(H). We conclude that χ(H) =

sep∗(S, T).

The reduction of the decision problem sep∗(S, T) ≤ k into sep(S, T) ≤ k is done

as follows: If sep(S, T) ≥ 2 then by Proposition 5.5.2 sep∗(S, T) = sep(S, T). If

sep(S, T) ≤ 1 then sep∗(S, T) may be either 1 or 2. However, deciding sep∗(S, T) = 1

can be done via linear programming (in the same way as in Linear Program 5.1.1)

and sep∗(S, T) = 2 is concluded otherwise.

Now, as shown by Lovász (cf. [15]), deciding χ(H) ≤ k is NP-Complete for

any fixed k ≥ 2. Therefore, we conclude that deciding sep∗(S, T) ≤ k is also NP-

Complete for all fixed k ≥ 2. . ¥

120

5(3)

1 (1)

2(2)

3(1)4(2)

Figure 5.2: A C5 graph with 3 coloring (colors in parentheses)

We demonstrate the construction of the proof on a 2-uniform hyper-graph (graph),

H = C5, the 5-gon, see Figure 5.2.

S =








1 0

1 0

0 0

0 0

0 0


 ,




0 1

0 1

0 0

0 0

0 0


 ,




0 0

1 0

1 0

0 0

0 0


 ,




0 0

0 1

0 1

0 0

0 0


 ,




0 0

0 0

1 0

1 0

0 0


 ,




0 0

0 0

0 1

0 1

0 0


 ,




0 0

0 0

0 0

1 0

1 0


 ,




0 0

0 0

0 0

0 1

0 1


 ,




1 0

0 0

0 0

0 0

1 0


 ,




0 1

0 0

0 0

0 0

0 1








T =








1 1

0 0

0 0

0 0

0 0


 ,




0 0

1 1

0 0

0 0

0 0


 ,




0 0

0 0

1 1

0 0

0 0


 ,




0 0

0 0

0 0

1 1

0 0


 ,




0 0

0 0

0 0

0 0

1 1








Now by Theorem 5.5.4 sep(S, T) = χ(H) = 3. Separation can be carried out by

〈



1 1

0 0

1 1

0 0

0 0


 , X

〉
≤ 1,

〈



0 0

1 1

0 0

1 1

0 0


 , X

〉
≤ 1,

〈



0 0

0 0

0 0

0 0

1 1


 , X

〉
≤ 1

Remark 5.5.5 It is clear from the proof that the separation decision problems for

any fixed k ≥ 2 remain NP-Complete when the universe is restricted to U = {0, 1}d.

We now consider the hardness of deciding ip(S) ≤ k. Naturally, for this problem

the input assumed to be S [and not (S, S̄)]. Thus, it is not exactly a special case of

121

the separation problem. For the hardness proof we use the concept of “Threshold

Graph” introduced by Chvatál and Hammer [11].

Definition 5.5.6 A graph G = (V, E) is called a Threshold Graph if non-negative

reals wv, v ∈ V and t exist such that
∑

v∈B wv ≤ t if and only if B ⊆ V is a stable

set.

An equivalent characterization of a Threshold Graph is as follow

Propsition 5.5.7 [Mahadev and Peled 1995] A graph is a Threshold Graph if and

only if there exist non-negative reals wv, v ∈ V and t such that for any pair of vertices

u and v, wu + wv > t if and only if uv ∈ E.

Proof. see [27] pages 10–13 ¥

Definition 5.5.8 The Threshold Dimension, t(G), of a graph G is the minimum

number k of threshold subgraphs T1, . . . , Tk of G that cover the edge set of G, i.e.,

E(T1) ∪ · · ·E(Tk) = E(G).

Note that since every edge along with isolated vertices is a threshold subgraph,

the threshold dimension is well-defined and bounded by the number of edges in

the graph. Chvatál and Hammer [11] showed that the problem of determining the

threshold dimension of a graph is NP-hard. Mahadev and Peled [27] later proved

that for any fixed k ≥ 3 deciding t(G) ≤ k is NP-Complete.

Remark 5.5.9 We note that the threshold dimension problem remains hard also

for the case of connected graphs. Clearly, if C1, . . . , Ck are connected component of

G (in edges) and E1 ⊆ C1, . . . , Ek ⊆ Ck are threshold subgraphs then ∪k
i=1Ei is also

a threshold subgraph of G. Hence, t(G) = maxit(Ci).

Theorem 5.5.10 For any fixed k ≥ 3, deciding whether ip(S) ≤ k for a given S is

NP-Complete.

Proof. The proof is by reduction of the threshold dimension problem of connected

graphs into the ip-separation problem. The characteristic vector of an edge (v, u)

is the vector eu + ev when ei is the unit vector in the vertices space. Consider

122

a graph G = (V, E) given by the list of characteristic vectors of its edges. Let

S = {x ∈ {0, 1}|V ||supp(x) /∈ E,1Tx = 2}. That is, S is the set of all characteristic

vectors of all edges not included in G. We shall show that ip(S) = t(G). Note that

this construction can be carried out in polynomial time since, assuming connected

graph the total number of non-edges at most |E|+ 1 times the number of edges.

To see that ip(S) ≤ t(G), consider a graph G = (V,E) with t(G) = k. Let

E1, . . . , Ek ⊆ E be edge subsets such that for any i ∈ [k] the subgraph (V, Ei) is

a maximal threshold graph with threshold value bi and vertices weights aij for all

j ∈ V . Let A = {a}ij and b = (b1, . . . , bk). By Proposition 5.5.7 we see that

{x : Ax ≤ b,1Tx = 2} is an IP-separation of S with k inequalities.

Conversely, we first show that t(G) ≤ sep∗(S, T) where T is the set of characteris-

tic vectors of edges in the graph and S = {x : 1Tx = 2}\T (the set of characteristic

vectors of all “non-edges”). Consider an inequalities separation Ax ≤ b with k in-

equalities. For each i ∈ [k] we set ci = min{minj aij, bi/2}, wij = aij−ci, ti = bi−2ci.

Note that by our construction wij and ti are non negative. Also, for any x ∈ {0, 1}|V |
with 1Tx = 2, x is valid for Ax ≤ b if and only if it is valid for Wx ≤ t. We see

that for every i ∈ [k], the weights (wi1, . . . , wi,|V |) and the threshold value ti define a

threshold subgraph of G with edge set Ei = {(α, β) ∈ E : wi,α + wi,β > ti} and ver-

tex set V . Also, since all the characteristic vectors of edges are invalid for Wx ≤ t

then any edge is contained in at least one of E1, . . . , E2. Now by Proposition 5.5.3

we have that if sep∗(S, T) ≥ 3 then sep∗(S, T) = sep(S, T) and so t(G) ≤ sep(S, T).

Finally note that in this case sep(S, T) = ip(S) since all the points in S ∪T violates

the equality 1x = 2 and so t(G) ≤ ip(S). ¥

Example 5.5.11 Here we demonstrate the reduction presented in the proof of The-

orem 5.5.10. Consider the C4 graphs with V = [4] and E = {{1, 2}, {2, 3}, {3, 4}, {4, 1}}.
The threshold dimension of this graph is 2, obtained by dividing the edge set

E into T1 = {{1, 2}, {2, 3}} and T2 = {{3, 4}, {4, 1}}. with A1 = (2, 4, 2, 0),

A2 = (2, 0, 2, 4), b1 = 5, b2 = 5. The only non-edges in this graph are {{1, 3}, {2, 4}}
so S =

{
(1, 0, 1, 0)T , (0, 1, 0, 1)T

}

Indeed a separation of of S from S̄ is given by the following system with 2

inequalities,

1x = 2, Ax ≤ b

123

or explicitly

x1 + x2 + x3 + x4 = 2, 2x1 + 4x2 + 2x3 ≤ 5, 2x1 + 2x3 + 4x4 ≤ 5.

We note that the question whether the IP-Separation index decision problems

for k = 1 and k = 2 are NP-Complete is left open.

5.6 Examples of IP-Separation index for some Fam-

ilies of sets

In many situation, especially in combinatorial optimization, it is natural to consider

a be family of binary sets of arbitrary dimension which posses some common uniform

structure. It is then may be useful to make to following definitions regarding such

families.

Let F be a family of binary sets in various dimensions and Fd be its sub-family

of all members F ∈ F such that F ⊂ {0, 1}d. More formally, let P (A) ≡ 2A be the

powerset of A; then F is a subset of ∪d≥1P ({0, 1}d) and Fd ≡ F ∩ P ({0, 1}d).

Definition 5.6.1 The IP-Separation index of a family F as above is a function

ipF : N→ N defined by

ipF(d) = max {ip(F) : F ∈ Fd}

Thus ipF(d) is the “worst” IP-separation index of any member F ∈ Fd.

Example 5.6.2 (Parity) Let Pd ⊂ {0, 1}d be the parity set i.e., the set of all the

vectors in {0, 1}d with even number of 1s. Let P = {Pd : d ∈ N}. By Example 5.3.9

we have that ipP(d) = 2d−1.

Example 5.6.3 (Perfect Matching) Let Mn be the set of all characteristic vec-

tors of perfect matchings in a complete graph Kn and let M be the family of all sets

Mn. Since there are
(

n
2

)
edges in Kn, then Mn ⊂ {0, 1}(n

2) . One can verify that

Mn = {x ∈ {0, 1}(n
2) :

n−1∑
i=0

ni
∑

e∈δ(vi)

xe =
n−1∑
i=0

ni} ≡

124

{x ∈ {0, 1}(n
2) :

∑
0≤i≤j≤n−1

(ni + nj)xij =
nn − 1

n− 1
}

when the vertices of Kn are denoted by v0, v1, . . . , vn−1. This construction is based

on the proof of 5.1.9. We conclude that ipM(d) = 0.

Definition 5.6.4 (Automorphisms of graphs) An Automorphisms of graph G =

(V, E) is a vertex permutation π : V → V which preserve E, that is {{π(i), π(j)} :

{i, j} ∈ E} = E.

Recall that for each permutation π : V → V , the corresponding permutation

matrix is the |V | × |V | matrix X with xij = 1 if π(i) = j and xij = 0 otherwise.

Definition 5.6.5 (Isomorphism group) The isomorphism group of a graph G is

the group AUT (G) of permutation matrices that correspond to automorphism of G.

Propsition 5.6.6 Let AUT be family of all isomorphism groups of graphs. Then

ipAUT (d) = 0.

Proof. Using Theorem 5.1.9 it left to present an IP-formulation of this set by a

system of equalities. Let G be the adjacency matrix of the graph, that is Gij = 1

if {i, j} ∈ E and 0 otherwise. It easy to check that if X as is a permutation matrix

then the matrix XGXT is the adjacency matrix of graph obtained by permuting

G according to X. That is X is in the automorphism group of G if and only if

XGXT = G

AUT (G) = {X ∈ {0, 1}n×n : GXT −XTG = 0,1X = 1,1XT = 1}.

The first type of equalities GXT −XTG = 0 obtained by a simple manipulation on

XGXT = G and using the fact that for permutation matrix X−1 = XT . The last

two equalities assure that X is a permutation matrices.¥

Definition 5.6.7 (Cuts of a complete graph) Consider the family C of all sets

of characteristic vectors of cuts in terms of edges in a complete graph Kn. Note that

the number of edges in Kn is d =
(

n
2

)
and thus C admits members only in dimensions

d =
(

n
2

)
for positive integers n.

125

Propsition 5.6.8 The IP-separation index ipC(d) ≤ 2d.

Proof. We provide a system with 2
(

n
2

)
= 2d inequalities that separates C from

its complement.

∑

e∈δ(i)

xe +
∑

e∈δ(j)

xe ≤ (2− x{i,j}) · n ∀{i, j} ∈ E (5.16)

∑

e∈δ(i)

xe ≥ −x{1,i} · n +
∑

e∈δ(1)

xe ∀i ∈ V \ {1} (5.17)

x{1,i} + x{1,j} ≥ x{i,j} ∀i, j ∈ V \ {1} : i 6= j (5.18)

We first show that (5.16) - (5.18) are valid for any characteristic vector of a cut.

Note that the edge set of a cut in Kn induces a complete bipartite graph Kα,n−α.

To see why (5.16) is a valid inequality consider any edge of the cut then its end

vertices are belong in different sides of the bipartite graphs. The vertex in the first

side is connected to n − α vertices and the vertex in the second side connected to

α vertices, that is for the case of xi,j = 1 we have n on both sides of the inequality.

Note that for xij = 0 the inequality is effectively vanished . Inequality 5.18) is valid

since the degree of any vertices in the same side of the complete bipartite as vertex

1 is equal the degree of 1 and the inequality vanishes for vertices on the opposite

side.

The see why (5.18) is a valid inequality for the set of characteristic vectors of

cuts assume w.l.g that vertex 1 is on side A. Now, we always at one of the following

four cases,

1. i and j are both in side A of the bipartite graph. That is xij = x1,j = x1,i = 0.

2. i is in side A and j is in side B of the bipartite graph. That is xij = x1,j = 1

and x1,i = 0.

3. j is in side A and i is in side B of the bipartite graph. That is xij = x1,i = 1

and x1,j = 0.

4. i and j are both in side B of the bipartite graph. That is x1,j = x1,i = 1 and

xij = 0.

126

We see that (5.18) holds in any of these cases. Note that the zero vector that

characterizes the empty cut is also valid for the above inequalities since the complete

bipartite graph Kn,0 is an empty graph.

Conversely, assume x ∈ {0, 1}(n
2) admits (5.16) - (5.18). We show that x is a char-

acteristic vector that induces a complete bipartite graph on V . Let us construct the

following partition of V : A = {i ∈ V |x{1,i} = 0} ∪ {1} and B = {i ∈ V |x{1,i} = 1}.
Note by (5.18) A is a stable set (i.e., there are no edge that connects its vertices).

By (5.17) the degree of each vertex in A is at least |B| but since A is a stable set it

must be exactly |B| and so each vertex of A is connected to all vertices of |B|. That

is the degree of each vertex in B is at least |A|. Now, by (5.16) the degree of each

vertex of B is at most |A| and so it must be exactly |A| and B must be a stable set.

We conclude that the induced graph is complete bipartite graph on V and so it is a

cut of the complete graph. ¥

We note that the bound provided by Proposition 5.6.8 is not a tight bound.

For example for S = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} the set off all cuts K3 we have

sep(S) = 0. A separation for this case is given by the following single equality

x{1,2} + x{1,3} + x{2,3} = 2. Also, for K4 we are able to provide a separation with

four inequalities namely,

−4998x1 −2x2 +5002x3 +5000x4 −10000x5 −5004x6 ≤ 1

12504x1 +12484x2 +25007x3 +24988x4 +37511x5 +37491x6 ≤ 1000000

−2x1 +4998x2 −5002x3 −5000x4 +9998x5 −10000x6 ≤ 49950

2x1 −4x2 −9996x3 −6x4 −9998x5 +10000x6 ≤ 1

Note this formulation obtained by solving a variant of Mixed Integer Program 5.4.1.

5.7 Discussion and Further Research

We study the concept of separation sets of vectors using a system of equalities and

inequalities. We believe that this idea can be used as a basis for better design of

Decision support system where binary decision and selection are to be made. In

a sense our method is an extension of Logical Data Analysis theory as any logical

representation with n terms can be converted to system of linear equalities and

127

inequalities with at most n inequalities and one equality. Moreover usually a much

smaller number of inequalities is needed.

This paper focused on some theoretical aspects of the separation. The practical

use of this method for real life application is yet to be studied. There are some

important points to be addressed in order to enhance the applicability of the .

First, more efficient algorithms and heuristic methods should be devised in order

to solve the separation problem. One possible direction for the case of binary sets is

to enhance Algorithm 5.2.1, see discussion in Section 5.2. It is also important to have

an algorithm and bound based on |S| for the case of sets of general integer vectors.

For this end it may be useful to extend the concept of separation to allow separation

using several systems of inequalities, where the points of S are those that are valid

for at least one of the systems and the points of T violate all the systems. Using

such a method it is possible to separate any pair of finite sets. Other interesting

direction for further research is to consider separation using non-linear inequalities.

Finally, to promote our theoretical endeavor, it will be interesting to character-

ize the IP-Separability of some important and complex sets such as the set of all

characteristic vectors of Hamiltonian cycles in a graph, or all cuts in a graph.

128

Bibliography

[1] J. Adams, E. Balas, and D. Zawack. The shifting bottleneck procedure for job

shop scheduling. Management Science, pages 391–401, 1988.

[2] G. Allon, D.P. Kroese, T. Raviv, and R.Y. Rubinstein. Solving the buffer

allocation problem using the cross entropy method. to be appear in Annals of

Operations Research, 2004.

[3] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and

M. Protasi. Complexity and approximation. Springer, 1999.

[4] E. Babson, S. Onn, and R.R. Thomas. The Hilbert zonotope and a polynomial

time algorithm for universal gröbner bases. Advances in Applied Mathematics,

30:529–544, 2003.

[5] D. Bertsimas and D. Gammarnik. Asymptotically optimal algorithm for job

shop scheduling and packet routing. Journal of Algorithms, 33:296–318, 1999.

[6] D. Bertsimas and J. Sethuraman. From fluid relaxations to practical algorithms

for job shop scheduling: the makespan objective. Mathematical Programming,

92:61–102, 2002.

[7] T. Boudoukh, M. Penn, and G. Weiss. Scheduling job shop with some identical

or similar jobs. Journal of Scheduling, 4:177–199, 2001.

[8] G.H. Bradley. Transformation of an integer programs to knapsack problems.

Discrete Mathematics, 1:29–45, 1971.

[9] H. Chen and A. Mandelbaum. Discrete flow networks: Bottleneck analysis and

fluid approximation. Mathematics of Operations Research, 16:2:408–445, 1991.

129

[10] H. Chen and D. D. Yao. Fundamentals of Queueing Networks: Performance,

Asymptotics and Optimization. Springer, 2001.

[11] V. Chvátal and P.L. Hammer. Aggregation of inequalities in integer program-

ming. Annals of discrete mathematics, 1:145–162, 1977.

[12] J.G. Dai. and G. Weiss. Stability and instability of fluid models for certain

re-entrant lines. Mathematics of Operations Research, 21:115–134, 1996.

[13] J.G. Dai and G. Weiss. A fluid heuristic for minimizing makespan in job-shops.

Operations Research, 50:692–707, 2002.

[14] A. Deza and M. Deza. On the skeleton of dual cut polytope. Report, 1993.

[15] P. Duchet. Handbook of combinatorics”, chapter Hypergraphs, pages 381–432.

Elsevier Science, Amsterdam, 1995.

[16] O. Ekin, P.L. Hammer, and A. Kogan. Convexity and logical analysis of data.

Theoretical Computer Science, 244:95–116, 2000.

[17] L. Fleischer and J. Sethuraman. Approximately optimal control of fluid net-

works. 2003.

[18] S.B. Gershwin and J.E. Schor. Efficient algorithms for buffer space allocation.

Annals of Operations Research, 93:117–144, 2000.

[19] Z. Drezner H. Gurnani and R. Akella. Capacity planning under different inspec-

tion strategies. European Journal of Operational Research, 89:302–312, 1996.

[20] N.G. Hall, T.E. Lee, and M.E. Posner. The complexity of cyclic shop scheduling

problems. Journal of Scheduling, 5:307–327, 2002.

[21] P.L. Hammer. Partially defined boolean functions and cause-effect relation-

ships. In Int’l Conf. Multi-Attrubute Decision Making Via OR-Based Expert

Systems, April 1986.

[22] C. Hanen. Study of an np-hard cyclic scheduling problem: the periodic recurrent

job shop. European Journal of Operational Research, 72:82–101, 1994.

130

[23] K. Kogan and T. Raz. Optimal allocation of inspection effort over a finite

planning horizon. IIE Transactions, 34:515 527, 2002.

[24] T.E. Lee and M.E. Posner. Performance measures and schedule patterns in

periodic job shops. Operations Research, 45:7291, 1997.

[25] G.F. Lindsay and A.B. Bishop. Allocation of screening inspection effort: a

dynamic programming approach. Management Science, 10:342–352, 1965.

[26] L. Lovász and A. Schrijver. Cones of matrices and set-function and 0-1 opti-

mization. SIAM Journal of Optimization, 1:166–190, 1991.

[27] N.V.R. Mahandev and U.N. Peled. Threshold Graphs and Related Topics.

North-Holand, Elsiver, 1995.

[28] K. Mehlhorn and S. Näher. Leda - a platform for combinatorial optimization

and geometric computing. Cambridge University Press, 1999.

[29] T. S. Mountford and B. Prabhakar. On the weak convergence of departures

from an infinite series of ·/m/1 queues. Annals of Applied Probability, 5:121–

127, 1995.

[30] B. L. Nelsson, J. Swann, D. Goldsman, and W. Song. Simple procedures for

selecting the best simulated system when the number of alternatives is large.

Operations Research, 49:950–963, 2002.

[31] S. Onn. Approximating oracle machines for combinatorial optimization. SIAM

Journal of Optimization, 4:142–145, 1994.

[32] M. Penn and T. Raviv. Approximation procedure for the high multiplicity job

shop and its extension. Annual Meeting of the Operations Research Society of

Israel, 2001.

[33] M. Penn and T. Raviv. Solving the infinite planning horizon vehicle routing

problem. in preparation, 2003.

[34] T. Raz. A survey of models for allocating inspections effort in multistage pro-

duction system. Journal of Quality Technology, 18:239–247, 1986.

131

[35] T. Raz and M. Kaspi. Location and sequencing of imperfect operations in serial

multi-stage production system. International Journal of Production Research,

29:1654–1659, 1991.

[36] R.T. Rockaffelar. Convex Analysis. Princeton University Press, 1970.

[37] B. Strumfels and R.R. Thomas. Variation of cost functions in integer program-

ming. Mathematical Programming, 77:357–387, 1997.

[38] S. Suresh and W. Whitt. The heavy-trafic bottleneck phenomenon in open

queueing networks. Operations Research Letters, 9:355–362, 1990.

[39] G.A. Vouros and H.T. Papadopoulos. Buffer allocation in unreliable produc-

tion lines using a knowledge based system. Computer & Operations Research,

25:1055–1067, 1998.

[40] G. Weiss. A simplex based algorithm to solve separated continuous linear

programs. Mathematical Programming, forthcoming, 2004.

[41] T. Yamada and R. Nakano. A genetic algorithm applicable to large-scale job-

shop instances. In R. Männer and B. Manderick, editors, Parallel instance

solving from nature 2, pages 281–290. North-Holand, Elsiver, 1992.

[42] B.J. Yum and E.D. McDowell. Optimal inspection policies in a serial production

system including scarp, rework and repair: an MILP approach. International

Journal of Production Research, 25:1451–1464, 1987.

132

